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Abstract. The twisted de Rham complex associated with hypergeo-
metric integral of a power product of polynomials is quasi-isomorphic to the
corresponding logarithmic complex. We show in this article that the latter
has a double filtration with respect to degrees of polynomials and exterior al-
gebras. By a combinatorial method we prove the quasi-isomorphism between
the twisted de Rham cohomology and a specially filtered subcomplex in case
of polynomials of the same degree. This fact gives a more detailed structure
of a basis for the twisted de Rham cohomology.

1. Introduction.

Let Py(z) (1 <k <m) be polynomials of x = (z1,...,x,) in C™ over the coefficient
field C. We assume that each Py is of the same degree | (I > 1). Let Dy be the divisor
in C™ defined by Pj(z) = 0 and the union D = J{*, Di. Let M be the complement
C" — D. Denote by Q'(C™) = @,_, 2 (C") the polynomial differential forms on C™,
and by Q (log D) = @Z:o QP(log D) the space of logarithmic p-forms (0 < p < n) ¢ on
M along D, i.e.,

Py---Ppp, P---PpdpeQ(C").
We define the total degree of ¢ (denoted by tdeg(y)) to be deg(y) + p. Remark that
tdeg(de/Pk) = 0.
Let F,%(logD) (1 € Z) be the subspace of Q”(log D) consisting of ¢ such that

tdeg(yp) < p. Note that F,Q(log D) = {0} for u < —im+p. Then we have the increasing
filtration

{0} C FpQP(logD) C FAQ¥(log D) C --- C F,(QP(log D)) C --- C QP(log D).

By definition we have

Qr(log D) = | J F,.9"(log D).

p=0
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For A\, € C (1 < k < m), we consider the covariant differentiation V on Q' (log D)
and the subcomplex F, (log D) respectively by

m d %

vw—dw+§:M——A¢,

assuming that Iy ;- A\ ¢ Z. HP(Q (log D), V), HP(F,Q (log D), V) denote the respec-
tive twisted de Rham cohomologies. We also denote by HP(Q (xD), V) the twisted de
Rham cohomology for the complex Q' (xD) of rational differential forms on M with poles
only at D.

Similarly denote by Pj, the homogeneous part of highest degree of P, and by Dy
the divisor Py(x) =0 in C™ and D = |J{", Dy. By the differentiation V:

w_dw+ZAk—Aw,

we can also define the twisted de Rham cohomologies H? (Q (log D), V), H?(F,Q (log D),
V), HP (2 (xD), V) respectively.

In the sequel we simply write Q7 (log D), (log D) by QP Q' respectively. Denote
by [1,m] the set of natural numbers v such that 1 < v < m. For the set of indices
J={j1,...,3q} C [1,m], |J| denotes ¢ the size of J.

The homogenization of an inhomogeneous polynomial f(z) in Clz] is defined as a
homogeneous polynomial in C[zg, 1, ..., Zy]

We also define the homogenization of df by
~ . of
df = H(df) =df = a—idxk.
k=1

For ¢ € Q' (xD), the homogenizations of ¢ and dp are defined by

dp=dp, A=A,
An inhomogeneous ideal J in CJz] has the canonical homogenization H(J) in
C[Z‘o,l‘l,...,xn].

For r 4+ s polynomials fi,..., f. and g1,...,gs, we can consider the ideal generated
by the differential forms df; A --- Adf,. (1 <r <n)and g1,...,9s:

J=(dfi N+ - Ndfr,q1,--,9s)-

We now settle “genericity condition” for the family of the polynomials Py (z) (1 < k < m).
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The first condition is as follows:

(C1) Take any integer r such that 1 <r < min{m,n} and 1 < j; < --- < jr < m.
Let Q1,Q2,...,Qr (1 <1 < m) be arbitrary different polynomials among P, (1 < k <
m). Then the homogeneous ideal (H(dQ1 A+ ANdQy,Q1,...,Q;)) salisfies

(1) helght(H(dQl AREN /\dQ’lea' . '7QT)) >n+1 (/Ln C[.’L'07$17. . 7x’n]):
(ii) For 1 < s < min{m,n + 1}, H(Q1),...,H(Qs) form a regular sequence in
Clzo, 1, ., Tn).

The second condition is as follows:

(Ca) Take any integer v such that 1 < r < min{m,n — 1} and 1 < j; < --- <
Jr <m. Let Q,Qq,...,Q, (1 <7 < m) be arbztmry different polynomials among Py,
(1 <k <m). Then the homogeneous ideal (dQ, A -+ ANdQ,,Q1,...,Q,) satisfies

(1) helght(dal ASERRA d@rv@lv s v@r) >n (Z’]’L C[xla s ,.’En]),
(ii) For1<s<min{m,n}, Qy,...,Q, form a regular sequence in Clx1,...,x,].

Throughout our article we set the conditions (C1), (C,).
Then the following Proposition is valid (see [1], [2], [3], [7]):

PROPOSITION 1. (i) For u > 0 we have
HY(9,V) = HP(F,, V) = {0} (0<p<n—1),

(ii) H™(Q, V)~ H"(Q (xD), V),
dim H™ (Y, V) = (=1)"E(M)

-2 (e ()

where £(M) denotes the Euler characteristic of M.

LEMMA 2. Fory e QP (0<p<n-—1), ¥ can be described as

min(p,m)
dP; dP;,
=1y + Z Z Piﬂl/\.../\ij Ay (1)

=1 J={j1,dg}Cllim] T ’
for g € QP(C™), 1y € QP~YC™).
For the proof, see [1, Proposition 3.1].
ProrosiTIiON 3. For p > 0 we have
HP(Q(+D), V) = H? (' (log D), V)
= HP(F,(2 (log D), V)) = {0} (0<p<n).

As a Corollary of Lemma 2 and Proposition 3,
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LEMMA 4. Suppose that ¢ € QP (0 < p < n — 1) satisfies
Vo € B0 (1> 0),

then 1 can be described as (1) such that o € F,QP(C™), ¢; € F,QP~1(C™).

DEFINITION 5.  Denote by F}, ;Q7 (0 < ¢ < p) the subspace of F,Q2 consisting of
o such that ¢ can be written by

q
dP; ap;
ety Y e
v=1J={j1<<j,}C[l,m] = I !

v

for ¢o € F,QP(C™) and ¢; € F,QP7"(C"™). We have the double filtration
{0} CFLo CFE, QP C-- - CFupQP =F, p i = = F, QO C F,QPF.

In this article we shall give the decomposition formula for the n dimensional de Rham
cohomology H" (2", V) associated to the double filtration (Theorem 18 and Theorem 28)
and derive the corresponding formula of Gauss—Manin connection for the twisted integrals
(Theorem 29).

2. Dimension formula.

From now on, we assume that u > (I — 1)n.
The following Lemma is fundamental.

LEMMA 6.  Suppose that ¢ € F,, QP in (2) lies in F,, ;_1QP (¢+p < n), and hence
q
dP;, A+ NdPj, Aoy =0 mod Y Py, Fyiiq—1)2"(C™)
v=1
for each py (J = {j1,-.-,7q}), then ¢ can be described as
q
vs = (P60, +dP;, AO,), (3)
v=1

where 0, € F,_QP~9(C") and 0], € F,,_QP~971(C™), in other words,
©; =0 modFi (J),

where Ff~9(J) denotes the subspace of QP~9(C™):

q
FrI() =Y (P, FuetQP™9(C™) + dPj, A F, o QP 971(C™)).

v=1
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The proof can be done based on syzygies of Cohen-Macaulay H-ideals (homogeneous
ideals) and on de Rham-Saito lemma (see [3, Lemma 2.19], replacing n by n+ 1, and [1],
[8] for related topics).

We also note that

Fuq@/Fug = @ F.Q9(C")/FQ0 ().
JC[L,m];|J|=¢

We now fix . We want to give an explicit formula for the dimension of F,QP~2(C"™)/
FuQP~9(J). A numerical computations based on Lemma 6 show the following Proposi-
tions 11 and 13.

We fix the set of indices J = {j1,...,j,}. For simplicity we rewrite P;, by @Q,. Let
o denote the surjective morphism:

a0 : F QP 1(C™) — F,QP~9(C™)/FL=U(J) C F, Q" (log D)/F, .1 (log D),

which is defined by

@/\"'/\%/\S@J- (4)

UO((PJ) - Ql Qq

First we want to construct a resolution of the morphism oy.

Let S = @, , S, be the polynomial ring over C in the indeterminates y1, ..., yq,
and A = @Z:o AY be the exterior algebra over C in the indeterminates dyi,. .., dy,.
Here S, and A" denote the parts of v-th degree of S and A respectively. Let K, s = S, ®
AN Ey_ gy~ 977(C™), and put K, = @Hs:r/;OSrSp—q;OSsSq Krs, K =@,y Ko
Remark that I, = {0} for v > p+ 1. We can identify F,QP~9(C") with Ky = Ko0. An
arbitrary element v of K, s can be uniquely written as

1
Y= @Zykl---yk,.dyzl ANy, NY(KG L),
UKL

where K moves over the set of sequences consisting of r indices K = (k1,..., k) € [1,¢]"
and L moves over the set of sequences consisting of s different indices in [1, ¢]. |K| and |L|
denote r the size of K and s the size of L respectively. ¥(K; L) € F,_ (4 QP797"(C")
are symmetric with respect to k1, ..., k, and alternating with respect to l1,...,ls. In the
sequel we shall call such ¢(K; L) “admissible”.

We define the morphism

oy K, =K1 (v>1)

by the differentiation

—i(@- O aqin 3)
Uuw_i:1 1@ 7 ayl 1/)
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for ¢ € K. In more detail, o, (v =7+ s) is a morphism from K, s into K, s—1 & Ky_1 5.
Since

o o0, 0 0 o 0 o 0

Doy, " oy 0y ddy ody, "~ ady, ady

we have 0,1 0 0, = 0. In this way, we can define the Cartan-Koszul double complex

{K, (ov)v}:
{0} = =Ky = Kyy — -+ — Ko — F,QP79(C™)/F279(J) — {0} (5)

(See [5, Chapter 7] for the definitions and basic properties of Cartan and Koszul com-
plexes.)

We will show that the complex is a resolution of oo (Proposition 9).

The morphism ¢, can be described in terms of indices as follows:

(01%) (0 0) = Z@M{}Hd@w({z} 0 (v=1), (6)

=1

() (K’ L Z{QM/J K {i} U L)+ (~1)%dQ; Ay({i} U K L)},
(IK'N=r—1, |L|=s, r+s=v). (7)

The following Lemma corresponds to the acyclicity of the part of Cartan complex.

LEMMA 7.  Suppose that admissible (K; L) € F,_,, Q1" "(C") (|[K| =r, |L| = s,
r+ s =v) satisfy, for |K'| =r —1,

> dQi Ap({it UK';L) =0

i=1
mod (Q1F,_, Q"7 THC™) + -+ 4+ QuF,— QP97 (C™)). (8)

Then there exist admissible O(K; L) € Fy,_(, 11~ 97""1(C") (|K| = r + 1) such that

G(K;L) = (-1)° > dQ; AO({i} UK; L)

i=1

mod (Q1F, 1P (C") + -+ QuF (1 PTTT(CT)). 9)

Proor. We put E, to be the set of p pieces of the label ¢ contained in K such
that K = {k1,...,k—,} UE, and {k1,...,k.—,} C [1,¢ — 1]. The proof can be done by
double induction on lowering p and raising gq.

In case where ¢ = 0 the lemma is trivial.

Suppose first that ¢ > 0 and p = r i.e., K = E, consists of r pieces of only ¢. Then
by Lemma 6, (8) implies that there exist admissible O, (k1; L) € F,,_(, 41,97 ""1(C™)
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such that

U(E; L) = Zsz A, (i; L). (10)

=1

0g, (k1; L) may be denoted by 6({k;1} U E,; L) which can be made admissible too, so that
(9) is valid in case of K = F,..
And then (8) for K/ = E,_1 (p =7 — 1) shows

q—1

> dQi AMy({it U E, 15 L) — (=1)°dQy A 0({i} U E,; L)} = 0.

=1

By induction hypothesis with respect to ¢, there exist admissible 0, _, (ki1ko; L) €
Ey_(y41y Q797" 1(C™) such that

V({k1}UE,_y;L) = Z{dQM\GET ik L) 4+ dQg A O({k1} U En; L)}

=1

(1<ki<g-—-1). (11)

We may put 0({k1, k2t UE,_1;L) = 0g,_, (ki1ka; L), so that we have the identity (9)
for p=r — 1. (K; L) thus defined for |K| =r + 1, |L| = s may be made admissible.

Suppose now that the Lemma has been proved in case of p > 7. We want to prove it
in case of p = 7—1. The identity (8) implies that there exist ({k1, ..., kr—r41}UE; L) €
Fy_(y41y Q7977 1(C™) such that

V({ki,...,kr_}UE; L) = ZdQZ/\G {ik1,....kr_r} UE;; L). (12)

=1

We may assume that 0({k1,...,k—r41} U E;; L) is admissible. By substitution of
(12) into (8) we have the identity

q—1
> {dQi Ap{iskr, .. kp—r } U E- ;L) = (—1)°dQq A O({i, Ky, ..., kr_r }UE; L)} =
i=1

By induction hypothesis, there exist admissible 0g _, (k1---kr—rq2;L) € Fu_41y
QP=4=r=1(C™) such that

¢({k17 LR krf'rJrl} U E‘rfl; L)

—1)5{ > dQi N, _, (iky -+ kp—ryr; L) +dQq A O({ky, .. p—ria } U Ers L)}

i=1

{k1,. o ksl C 1,9 —1]). (13)
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We may put again
O{k1, s krrp2f UE ;L) =0p,_ (k1 kr—ry2; L).

Thus 6({k1, ..., kr—r42}UE;_1; L) are in F,_(,41,,QP~7 "~ }(C™) and made admissible.
Hence we have the identity (9) for E;_;. Lemma 7 has been proved for all K. O

The following Lemma related to the acyclicity of the part of Koszul complex is
well-known and can be proved similarly as above (see [5], [6]).

LEMMA 8.  Suppose that admissible (K; L) € F,,_,;Q*~ 7" (C") (|K| =r, |L| = s,
r+ s =v) satisfy

ST QUK {i}UL) =0 (L] = s~ 1), (14)

i=1

Then there exist admissible 0(K; L) € Fy_ P~ (C") (IL| = s + 1) such that

YK L) = Qif(K; {i} UL).

i=1
Under this circumstance the following Proposition holds.
PROPOSITION 9.  The complex {K, (0,),} is acyclic.

PROOF. Suppose o¢(ps) = 0 for ¢; € F,QP~9(C™). Then Lemma 6 shows that
there exist ¢({i};0) € F,_;QP~11(C™), ¥(0;{i}) € F,_;QP~%(C™) such that ¢; =
(019)(0;0).

Next suppose that 0,1 = 0 for ¢ € K, (v > 1). We must prove that there exists
0 € K,41 such that ¢ = 0,4160. By (7) we have the identity (8). From Lemma 7 there
exist admissible 6 € IC, 11 such that (9) is valid. We put Y = ¥ — 0,410, namely, for
|K|=r,|L=s, (r+s=v)

G(EGL) = (K L) = > {QiO(K;{i}) UL) + (—1)'dQi A6({i} UK; L)} (15)

i=1

Then Iiemma 7 shows that 1/; = 0. In particular, for |K| = v, L = ) there exist
admissible 0(K; {l1}) € Fj_(,41)Q2P~97"(C") such that

D3 0) = 30 QK{i)).

We put further §(K;0) to be 0 for |K| = v+ 1. By induction on s, we can construct
admissible §(K; L) for |K| =, |L| = s + 1 such that
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q
Z O(K;{i}UL)+ ZdQZ/\G{Z}UK L). (16)

i=1 i=1

In fact (16) is valid for s = 0. Suppose that 6(K; L) have been constructed for |L| < s.
The identity o, = 0 implies the identity for |K|=r, |L'|=s—1,r+s=w:

> QK {itUL) + (—1)"71dQ; Ap({i} UK; L) = 0. (17)
i=1

By the substitution of (16) for ¢({i} U K; L') into (17) we have
a

> Q { (K;{i}uL)+ 1)8—1ZdeAé({j}uK;{i}uL’)}:o.

i=1 j=1

Hence from Lemma 8 there exist admissible (K; L) € F,_ (V+1)lQp*q*”(C”) for |L| =
s+ 1 such that (16) holds for |L| = s. In this way we have constructed 0(K; L) for all
K, L with |K|+|L| = v+ 1 such that ¥ = ¢,,10. Therefore the following identity holds:

Y =0,41(0+0).
Proposition 9 has been proved. O
As a result of Proposition 9 we have the equality

COROLLARY 10. We have

dim F,QP~1(C™) ) F, QP ~9(J) = ij(—l)v dim K. (18)

v=0

PROPOSITION 11.  Fiz the set of indices J = {j1,...,jq} C [1,m]. We have the
dimension formula

dim F,QP~4(C™)/F2=(J) = N{F)

>
where

- ¥ (1>a+ﬁ(u+np+qla(l1)ﬂ>

n
a>0,p—q>5>0

(a s 57

In particular when p = n,
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+qg—la-(1-1)p n q\ (q+3—-1
N — 3 _pyets(H .
Hsd (=1) ( n n—q—p)\a B
az0;n—q>B2>0

Proor. Ifpu > (I—1)n,then uy+n—p+qg—Ila—(1—-1)3>0for g > a >0,
p—q > (> 0. The following formula

. (pan-pig—la—(I-18\( n ay(at+r-1
dlm’Cﬁ’a—( n )(p—q—ﬁ)(O)( B )

holds, since
-1
dim S5 = (‘”g ) dim A® = (Z)
. g +n—-p+qg—Ila-(1-1)p n
dim F,_ (o0 (C™) = (¥ .
N LYy (a+B)1 ( ) ( n p—q—ﬂ
Hence (18) shows Proposition 11. O

COROLLARY 12. We have

. 4 m
dim Fy, QP /F, 4 1QF = (q ) NP,

From now on, we simply write Nép) instead of N((lp—)l)n . for p= (I —1)n.

In particular, in case p = n, we have the following Proposition.
ProprosITION 13.  We have
min(nom) ot Im
dim F,Q" = (,Z:o (q)ijfq) = ( . ) (19)

By inversion formula, the identity (19) is equivalent to say

0 ST AR :
Nl(hq) = (-1)¢ Z(—l) <V> ( . ) (0 < ¢ < min(n,m)). (20)
v=0
As a result we have
F.Q"=F, Q"

In particular, for = (I — 1)n,

min(n,m)
-1
dim F(l—l)nQn _ ((l )n + lm) _ Z <m> N§7l)7 (21)

n gt q

]
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q
l—Dn+1v\/[q
N — (—1)e —1) ( . 22
= oy e () (22)

REMARK. The identity (20) is still valid for ¢ > n + 1 or ¢ > m + 1 in the sense
that both sides of (20) vanish simultaneously.

PROOF OF PROPOSITION 13. It is sufficient to prove the identity (20). We intro-
duce the two generating functions as follows:

oS O e

0<a<q,0<B<n—q

N GRaCH AR TG G T

0<a<q,0<8<n—q
By definition, we have

1. d

=N, at) = (14105 )50

Since f(¢), g(t) both are polynomials in ¢, we have

f(t) :qt*Q/O t17 g (t)dt. (25)

We first want to find an integral representation of g(t).

LEMMA 14. g(t) can be represented as the integral

— n 1 S—n—l s pn—(-1)n s I _ 1149 s -1 _ \n—q s.
o(1) () §osmaey (A4 191+ )" — )" s, (26)

q) 2mi

PROOF. In fact substituting the equality

(rramies D) L g ettt o)
s=0

n 21

into the RHS of (24),

! 1
= E ety 48 77{ —n—1(1 pta—la—(1-1)3
9() » ﬂ( ) (a) q'Bl(n—q— B)!t 2mi Jo—q i (1+9) ds

() S fr st

(03

1
(1) S0 (1) g f s (g

q
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1 1 1
_ (Z)meq{—o s +s)~—(l—1>n+lq{1 - H)l} (14 8)1 — )7 9ds

_[(n L g1 s u—(1—-1)n s I 1\q s -1 _ ;\n—q 5
_(q> 'ézo (L+5) (A +s) =11+ 5t —t}"%ds. O

21

By substituting (26) into (25), we have the integral formula for f(¢):

_ n! g L g1 g)p—(=1)n s) — 11945
) /t t17 (1 4 s)!7t — ) 9qt. (28)
0

Furthermore we have the following.

LEMMA 15.

! q—1 s -1 _ \n—qq4 _ _ g (q_l)!tq_u s n—q+v
/Ot {1 +s) tydt = ;(n_q+1) @) A0 +9)'t =t}

(q — 1)' s n(l—1)
—|—7(n_q+1)q(l+ ) . (29)

PROOF. (29) can be proved by induction on ¢, while n being fixed. In fact, for
g = 1 both sides of (29) are equal to

1
) ) (1),
Suppose 1 < ¢ < n. By integration by parts, the LHS of (29) is equal to

1

-1 t
_ tq_l 1 -1 _ t n—q+1 q / fq_Q 1 -1 _ t n—q+1dt.
e A (R L g A R

n—q+1
Applying the formula (29) for ¢ — 1 instead of ¢, we get the formula (29) for ¢. O
Hence from (28) and Lemma 15, we have

LHS of (20) = £(1)

(q - 1)T'L('n - q) i izo anfl(l + S)M*(Zfl)n{(l + 8)l _ 1}q

z q_l)‘ s n—q+v (q_l)' sn(l 1)
{ Z (n—q+1)u(q— ){(1+ o CErEST (1+) o

v=1

- = %fi:os_n_l(us)“{(us)l Sy 2

(g — Dl (n —g)! 2mi mds (30)
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L e (14 s) - 1)9ds. (31)

2mi Jo—o

Here the relation (30) follows from the Taylor expansions near s = 0:
[0+ 9) = (14 8)0 7 1ot = A

where A is a constant.
On the other hand, we have

RHS of (20) = (—1)¢ i(—nv(“;l“) (3)

v=0
1 ! wi(a
—(—=1)9— 1\ —n—1 p+lv
(Wig f s s (Fas
1
= (-1)9— N1 4 s)M {1 — (1 +5)'}d
(V5 s 1= (1 o) s
1
=5 sT"TH 1 4 8)M{(1 4 8)! — 1}%ds. (32)
a s=0
Hence (20) has been proved. O

From now on we only consider the case where = (I — 1)n.

DEFINITION 16.  For each J = {ji,...,,}, there exists an Né") dimensional sub-
space W of F(;_1),Q2"79(C™) such that

Fuon, Q2 U(C™) =Wy & F 1), ().

We also put Wy = F(;_1),Q"(C™).

Then it is possible from Lemma 6 and Proposition 13 to make the following identi-
fication:

COROLLARY 17.  We have the isomorphism
pr Fupn Q' =Woa ) > Wy (33)
q=1 JC[1,m],|J|=q

REMARK. F,)" coincides with the space spanned by

f

P = mw (f € Clx]) (34)

such that deg f <y —n + Im, where
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w=dxi N Ndx,.

As regards (34), there exist the unique ¢y € Wy, @5 € W such that

min(n,m)
f dP; P
p= PP 55 W =1%ot Z Z LA P'Jq/\SDLL
=1 J|J|=q 7
This is a partial fraction decomposition with the denominators Py, ..., P,,.

3. Main Results.

We first prove the following

THEOREM 18.  We have the isomorphism
HW(Q’ V) = Hn(F(l—l)'rLQ., v)

PROOF. It is enough to prove the following two facts:

(i) For an arbitrary ¢ € Q", there exists ¢* € F(;_1),2" such that

*

p~e.

(ii) Two arbitrary ¢, ¢* € F(;_1),2" which are cohomologous to each other in ' are

cohomologous in F(;_1),{2".

About (i):

Since Q" = U,Z(;_1),, Fu 2", there exists p (1 > (I — 1)n) such that ¢ € F,,Q".

By the formula (35) ¢ has the expression

min(n,m)

Py, dp;,
P =0+ Z > AR Ay 22
JCml|J|=q = 7

where ¢o € F,Q"(C™) and ¢ € F,Q""1(C").

Suppose that g > (I — 1)n. By taking the homogeneous part of highest degree,

min(n,m)
dP iP,
P=%o+ D, D, =EAA=EAR,
=1 J|J|=¢ = 7! Ja

Owing to Proposition 3 there exists a homogeneous ¢ € F,Q" ! (log D):

min(n—1,m)

=T+ Z deh on i g

siii=a T ij
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such that
F=Vy
Put
_ minllm) dP; apP; _
) =1y + Z: > ﬁA---A Pj"/\%.
=1 JlJ|=q ?
Then

o — Ve F,_ Q"

By continuing this process we finally arrive at (1).

About (ii):
By assumption there exists ¢ € F,Q"~! such that

=" =V,
where 1 has by Lemma 4 the expression
min(m,n—1)
dp;, dP;
= Ao A
vmwr 2 2P o

J|J|=q

LAYy (37)

q

such that ¢ € F,Q""1(C"), ¢, € F,Q"~971(C™).
Suppose that g > (I — 1)n. Then by taking the homogeneous part of highest degree
we have

0=V.
Due to Proposition 3 there exists x € F,,Q"2(log D) such that
P =VX.

Hence ¢ — Vx € F,_1Q2" ! and V¢ = V(¢ — V). By continuing this process, we
finally arrive at (ii). d

REMARK. Theorem 18 may be generalized as the following conjecture under a
weaker condition.

Let m polynomials Py of degree Iy such that Iy > Iy > --- > 1,,, > 1 satisfy the two
conditions Cq,Cy. We can similarly define the filtration F), for the logarithmic forms
and V as in Section 1. Then we have the isomorphism

H™M(Q,V) 2= HY(F,Q,V) (> (b — 1)n).

It is evident that
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p—1 4
VFMIQ - F;««HIQ :

Moreover the following is true:

PROPOSITION 19.  Suppose that v € F(l_l)mqﬂp*l 2<p<n 1<qg<p-1)
satisfies

V=0 mod F_1), 2.
Then we have
Y=0 modVE; 1y, 12+ Fi_1yng 1P,
i.e.
V Fu—1yn,g®) N F—1)n,g 7 = VE 1 1)n,q- 1772 4 Fu_1yn,q1 7,
so that we have
VE—1)n,g P N F_1yn, ¢ = VE _1)n,q-1 277 (38)

We want to prove this Proposition by induction on m. Before proving it we give
three Lemmas.

LEMMA 20. There exist x\©) e F(l_l)mq_lQp*Q, P e F(l_l)qup’l
P; P _
=T B AT A mod R s
Jc[,m—1],|J|=¢g—1 " 7 Ja—1
(1) Py, P, (1) p—1
P = Z B A AEEAY;) mod Fu-1yng-19
JC[1,m—1],|J|=q ~7* Ja
such that
¢ =Vx" + ¢ mod Fy_yy,, 1077 (39)
Proor. ¢ € F(l,l)nﬁqu_l can be described as
dP; dP; B
P = Z %A~'~AP7?(1A¢J mOdF(l_l)mq_lQp 1,
J1 Ja

J:{j17'“7jq}c[17m]

where 97 € F(l,l)nQp_l_q(C”), so that

" dP dP; dP;
Vi) = ZM?: N> LA A Ay mod Fy_gy o7
k

P,
=1 Jc[i,m],|J|=q ~ 7! Ja
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Hence in the representation (2) for ¢ = Vi) and K = {j1,...,Jq+1} C [1,m],

g+1

o= (1), po,x (40)

v=1

(0, K means the deletion of the suffix j, from K). Suppose further that

V=0 mod Fj_q), 2. (41)
Lemma 6 implies for each K
q+1
—q-1
o =Y (P05, +dP;, A0 ) € FLZ9HK), (42)
v=1

where

0,k € Fu_1yn—i P~ H(C™), 0} .k € Fu_1)n ¥~ 772(C™).

Case (i): J C[1,m—1], K = {J,m}.
From (40), (42)

q
YK = Z(_l)y_lAju¢8uJ,m + (=1 Amtps

v=1

= Pobmisc + AP A}, e mod FiZ9 ().
Hence from (42)

q
(=) Amths = = > (=17 Nj, %0, s.m + 9K + Pl + dPrm A6}y i
v=1

mod FfZ97 (). (43)

Case (ii): K C [1,m —1].
From (40), (42), (43)

g+1
oK = Z(—l)'/_l)\jﬂ/fauK
v=1
— at!
= (Al)q {Z(—l)”_l/\jv{ D DR C Vi WS

1<k<v<g

— (—1)HAK Z w@,/anK,m + (pal,K,m}:| mod ‘7:5:?)_73 (K)

1<v<r<q
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=0 modF}_{) [(K).

On the other hand, from (38), (42), (43)

‘ dp; a
J Jq v
= . -1 .
)\m Z . A A ij N { VZ::I( ) /\JV'(/JBVJ,m + @J,m}

dP; dP;
Y= Z J A"'AP?QAle
Jcl,m—1],|J|=¢ ~ 71 Ja
dP; dP;
+ > Rl NN % A
Jcltm=1],|J|=¢-1 = 7! Ja—1
(=1) dP
Jc[,m—1],|J|=¢ ~7?
+ del A A % A
JC[1,m—1],|J|=q—1 ~ 71 Ja—1

Jc[l,m—1],|J|=¢—1 ~ 7

_ (_1)q del

JC[1,m—1],|J|=q le
which shows Lemma 20.

From the equality

V=0 mod Fj_1) 4°,

the following Lemma is valid.

LEMMA 21. We have

Vl/)(l) =0 mod F(j_1),,?".

Namely if we write vV as

dP; dP;
1l)(l) = Z 3 A A szq
Ja

JC[1,m—1],|J|=¢q ~ 7*

then for J = {j1,...,4q} C [1,m — 1] we have

—1)¢ dP;
(0):_( ) Z JL AL

A wJ,m € F(l—l)n7q—IQp727

ap;,

Ao A2 N0 gm € Fuoiyn P77

A ¢(]1) mod F(l—l)n,q—lgp_lv

(44)

mod F(l_l)mq_lﬂp_l
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=0 modFE 1) m 45
(I-1)n

and for K = {j1,...,jq+1} C [1,m — 1] we have
q+1
. 1 —q-
S )TN e =0 mod BN (K). (46)
v=1

Continuing this process we can conclude the following assertion:

LEMMA 22. There exist x*) € F(l_l)nyq_lQp”, GRS F(l_l)nyqﬂp_l (s =
1,2,3,...):

dp; dPp; —1 s _
X(S) = Z 'Jl A A % A X(I) c F(l—l)n,q—lgp 2’
J={j1,-rjq_1}C[1,m—s—1] ~ ! Jg—1
dP; dP; s B
'(/J(S) = Z PJI A A P'Jq Awg) c F(lfl)n,qu 17
J={j1,rjqg}C[1,m—s] I Ja
$%' =0 mod  Fi8. (LR,
k=m—s+1
such that
Vw(G) = 0 mOd F(l,l)n’qu7 (47)
¥ = vx® 4Gt mod F(l*l)n’qlep_l. (48)

PROOF OF PROPOSITION 19. From (39), (47), (48) we get

p—q+1
E Z VX(S) mOdF(l 1)7’1(1 1Q _1
s=0
Since P8 It (o) ¢ F—1)n,q—19P~2, Proposition 19 is proved. O

PrOPOSITION 23.  Suppose that @ € F(l,l)n)qu_l 2<p<n, 1<qg<p-1)
satisfies

Vi = 0.
Then there exists x € F(l_l)mq_lﬂp*Q such that
Y =Vy,

i.e.,

KerV N F_1yn,¢ " = VF 1)1 P72 (49)
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PRrROOF. Indeed from Proposition 19, ¥ can be described as
¥ =YX+ (V€ Fuoiyng- 1972900 € Fuonyn, e 7).
By hypothesis V(1) = 0. By the same Proposition we have
v = VX + 9@ (€ Fyiyn,g—20"7% 6 € Fuoiyng—22"").

Repeating this process there exist x(*) € F(y_1) q—s— 172,00 € F_1), 45271 such
that

vy =0,
P& = vy 4t (s =1,2,3,..)).
Since 1(*) =0 (s > p — q), we have
PpP=a=) = gy pma=1),

Thus setting x = z;g_l x®), we have

Yv=Vx=0 mod F(l_l)n,q_lﬂpfl. 0

COROLLARY 24. For1<q<p-—1, we have

qg—1
dim KerV N Fg_1y,, o' =Y (=1)F dim Fy_1)p g—12° 27, (50)
k=0
q
dim VE 1), 7 =Y (—1)F dim Fy_y),, £, (51)
k=0

REMARK. Theorem 18, Proposition 19, Proposition 23, Corollary 24 are still true
for p (u > (I — 1)n) instead of u = (I — 1)n, seeing that the above proofs can proceed in
the same way. In the sequel we shall only consider the case p = (I — 1)n.

It is convenient to define F;_1), 0P for ¢ = —1 as follows:

DEFINITION 25.

Fu1yn, -1 = {¢ € Fu_1)0 02|V € Fy_1), 0™} (0<p<n-—1),
Fuiyn, 1" = VF(Z—l)n,()Q"_1 N F—_1)n,02".

By definition we have

VEF(—1yn,-192 = VFi_1)n0o% N Fi_1)n ot (0<p<n-1).



Twisted logarithmic complex 629

Hence (38) is also true for ¢ = 0.
LEMMA 26. Suppose 0 <p<n—1.
(i) Case (I —1)n —Im < 0, even more, case m > n. We always have
F(l*l)n,flﬂp %" {0} (52)

(ii) Case (I —1)n —Im > 0. If p < m then (52) does not hold, while if p > m then
(52) holds true for p > (I —1)(n —m), but it does not hold for p < (I—1)(n —m).

PROOF.  Suppose first that (I —1)n —Im < 0. ¥ € Fy_1)p,, 1 (0<p<n-—1)
can be described as

p
dP; dP;
w—P1~-~Pm<wo+Z | .Z AR ijw,]),
q=1 J={j1,....j¢}C[1,m],|J|=¢ ~ ! a

where ;€ Fi_1)n—imQP~4(C), ie., degyy < (I — 1)n —Im — p + q. Hence 1g and s
vanish for all J.

On the other hand, suppose (I — 1)n —Im > 0. If p < m, then for |J| = p, ¢, are
possibly nonzero. If p > m, then for |J| = m, (52) holds true or does not hold according
as(I—=1)(n—=m)—p<O0or (I—1)(n—m)—p>0. O

DEFINITION 27.  We can find a subspace V; of F(;_1), 42" such that

Fio1yng?" = Ve ® (VF1—1)ng-1Q" " + Fio1yng—1Q") (1 < ¢ < min(n,m)), (53)

n.q
Fu1yn o = Vo ® VF_1)0,09" " N Fy_1)n,00", (54)
ie.,

Fu-1)nqf2"
vP‘I(lfl)n,qflﬂn_1 + F(lfl)n,qflﬂn

IR

Vy (0 < ¢ < min(n,m)).

We note that, if m < n,

Vin 22 {0}.
In fact, an arbitrary ¢ € F(j_1),,,»2" can be expressed by

ii/\ AﬁﬁA
P P P12---m

for p12..m € F3_1)n Q""" (C™). We may assume A\; # 0. If we take

1 dPy A dP,,

= ——A-- A P12em € Fitynm_1Q" L,
N P P P12 (I-1)n, 1

(8
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then ¢ — Vb =0 mod F(j_1)n,m—192".
THEOREM 28. We have the isomorphism

min(n,m)

pi H"(Fu1)nQ,V) = @Vq,
so that the commutative diagram:

Fin " —— Wy @ S s Wy

o

H"(F—1)n$, V) & @;m%(n m) Vi

where 'H are the projections and the equality

a
dimV, = <Z ( )N(" a+v) 4 N q)> (0 < ¢ < min(n,m))

v=1
hold where
vin—aq) _ (n—q) - n—q
NO = NO dlmF(l,l)m,lQ .
PROOF. Indeed, for 0 < ¢ < min(n,m),
dim V, = dim Fjj_1y,, Q" — dim VE;_1y,,, -1 Q""" — dim Fjj_1),, 192"
+ dim(VF(l,l)n’q,lﬁn_l N F(lfl)n,qflgn)

= dim F(j_1)n,Q" — dim VF_1) 419" " — dim F(;_1), 412"

+ dim VF( 1), 420" !
= dim F(l—l)n,an — dim F(l—l)n,q—lgn

q—1
- Z(—l)k (dim Fly—qypqo1-xQ" 1 F —dim Fjy_ 1y 922" 7F)
k=0
q
= Z( ) (dlm F(l 1)n,q— kQ — dim F(lfl)n,q7k719n7k>
k=0

qg—1
n— m ~(n—
=SSN () + A,

On the other hand,

(55)
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min(n,m) min(n,m)
Y dimVy= Y (dimFo1)n,qQ" — dim VFj_qy,,q-1 Q"
q=0 q=0
— dim F(lfl)n’qflgn + dim(VF(l,l)nyq,lﬂ"_l N F(lfl)n,qflgn))
min(n,m)
= > (dim Fyoqyn, Q" — dim VF(_1y, 41 Q"
q=0

— dim F(y_1yn,q— 12" + dim VF_1),, 422" ")
= dim F(l_l)nQn — dim VF(l_l)"Qn71

ExXAMPLE 1. Casen =1.
We have

dimVp=1-1, dimV;=1I(m—1),

HYQ, V)2 H (F,_,Q, V)2V, eV, dimHY(Q,V)=Im—1.

EXAMPLE 2. Case m = 1.
We have

Vi 2{0} (1<k<n),
H'(Q,V) =V, dimVp=N" =(@1-1)"
In fact, it follows from Proposition 3 and Lemma 4 that

Nén) = Nén) —dim Fjy_qy,, 12" = Nén) - Z(_l)u_l dim Fy_1yp—p,02" "

v=1

= (l - 1)n7

since

. v I—-1)n+v(l-1
dlrn-F(l—l)n—l/l,OQ = <( ) n ( )>

ExXAMPLE 3. Casel = 1.
We have

Ve {0} (0<k<n-—1),

H™(Q,V) = HY(F,Q,V) 2 V,, dimV, = (m; 1).

ExampLE 4. Case [ = 2.
In view of Lemma 26, we have Nép) = Nép) forp>n—m+1 and
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n— - 1
N =1, Ny =nm+1), NV =24 2)(n+ Dnn - 1),

o 1 S|
N™ = 5n(n+3). N = 5370 = D(n+1)(3n + 14),

1
NQ(n) = ﬁn(n —1)(n? + 11n + 22).
Suppose first (i) m < n.
Theorem 28 shows that
- m -\ yn-v)
dimV, = —1)” NV (0<g<m-—1
e Vz—%( ) (q—V> v Osgsm=1),
dimV,, =0.
For example,
sm=1:dimVy=1, dimH"(Q,V)=1.
m=2:dimVy=1, dimV; =2n, dimH"(,V)=2n+1.
1
m=3:dmVy=1, dimV; = in(n—i— 7), dimV; = gn(n -1,
dim H™(Q,V) = 2n® + 2n + 1.
Suppose next (i) m > n + 1.
Then it follows that
1 m
dimV, = Z(—l)”(q - V) NI (0< g <n),
v=0

dimV, =0 (¢>n+1).

In particular, for m =n + 1,

dimVp = 1,
. 1 2
dimV; = §n(n+ 1)%,

1
dim V5 = @n(n +1)%(n — 1)(n? + 4n — 4),
dim V}, is a polynomial in n of degree 3k, or 3(n — k) + 1,
1
dimV,_ = En(n +1)(n* +3n —1),

dimV,, =n +1,
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and from Proposition 1 and Theorem 18,

mmfP%QgV)zdﬂnH"u%Q;vyzji(Z)01+1%wv

—)!
r (n—v)!
For example, we have the decomposition formula into Vj:

‘n=1: dim H*(F,Q
n=2: dim HX(F,Q

(

( =14+9+3=13.
-n=3: dim H3(F3Q

(

=1+4+24434+4 =63.

=1+4+50+175+90+5 = 321.

V) =
V)
V)
-n=4: dim H(F,Q,V)

4. Gauss-Manin Connection.

We take the multiplicative function

=[] P (=)
k=1

The integral of ®¢ attached to ¢ € F(;_1),2" over a twisted n dimensional cycle 3 in M
can be defined as a pairing between the cohomology class [¢] € H"™(F;-1),92",V) and
the homology class [3] of 3:

@w)l@w

which is abbreviated by () in the sequel (see [3] for details).
Theorem 28 shows that there exists the unique element H,(¢) € V; such that

min(n,m) min(n,m)
o~ H(p Z H,y(p) € V,. (56)
q=0
We fix p € V; as
dP dP . . n—
= P”’A~-A P*1A¢J (J = {j1,- - Jab s € Fu_1yn 2" 9(C™)). (57)
jl jq

We want to derive the differentiation formulae for (@) with respect to the coefficients
of P,. We may assume k = 1 without losing generality.
Suppose that P;(x) has the expression:

Py(x) = Z apx”.

v=(v1,...,vn),|V|<I
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We assume for simplicity that any s does not depend on a,,.

(i) Case 1 ¢ J.
Then we have

0 B v\ ¥ dP;, ap;,
%<<P>—>\1<P1<P>—)\1<P1 P, AREEWA 2 Nepg ).

q

Seeing that deg ¢ < (I — 2)n+ ¢ (i.e.,tdegpy < (I — 1)n), we have

17

X
— F_1),Q".
PISO € I'(1-1)

Hence we have

that is,

st =n(H(50) ) (59)

where H((z¥/P1)¢) belongs to Vo & Vi & -+ - & Vg1
(ii) Case 1 € J.

We may assume that j; = 1, i.e., J = {1, Ja,...,jq}. Then we have

%M — (n —1)<x"dpl/\ s ... p o /\<pJ>

P12 P]2 P]q
d@¥) dp, aP,
+< B /\Pj2 AmAijAgaJ . (59)
On the other hand, if we take
¥ dPj, dP;
= A N LA
w P] -F)j2 ij PJ,

then

‘Pl2 PJ2 P]q
av dP, dP dP; >
+ A =2 2 AN —2L A
,%:J k<P1 L P, 7
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By subtracting (60) from (59) side by side, we get

o dP,  dP; dP;
S (T ASEAASEA
k<P1 P P, P g0">
k¢J

Ja
1 dP; dP;
_ (_1)q—1<P1 PJQ A A Pqu Ad(m"(pJ)>
J2 Jq

d(x”) dpj2 deq

Ja

v dP | dP; dP;
=— /\k< —L2 AN =T ANy
,;, 7B "B, by,

¥  dP; dP;
1)? AN—L2 AN A dpg ).
T )<P1 pj, P; W>

(’9a,,

q

As (l’u/Pl)(de/P}g) /\de2/sz AR /\deq/ij Npg and (SCU/Pl)(dez/PJ?) A
P;,/P;, N dgp; both belong to F(;_1),2", we get the formula

o dP,  dPj, dp;
)
8@11 ]%;] Pl Pk P]z ij
2 dP; dP;
+(1>q<H( b j“Adw)>7 (61)
P P, P,

where

¥ de dpj2 de i de2 de
Z kA Ao A =22 A i Ao A =22 Ad
H<P1 PP, p. ") T\ B P, p, "

q q

both belong to Vo @ - -+ & Vinin (g+1,m)-

The differentiation with respect to the other coefficients of Py can be written simi-
larly.

In this way we have proved

THEOREM 29. The differentiations for ¢ with respect to the coefficients of each
Py preserves F(;_1),2". Therefore we can express the Gauss—Manin connection for the
integral (p,3) in the form (58), (61) through the projection H.

If we take, as a basis of Vq, e el (k, = dimV,), then the above Theorem

shows that the differential of <el, ) with respect to the coefficients a of the polynomials
Py,..., P, satisfies Gauss—Manin connection

min (¢g+1,m) x,

dg(el®) = Z ZW(W)
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(g,¢)

min(n,m)

where (wy”) denotes a suitable matrix valued (with values in gl, (C), k = > Kq)
rational differential 1-form over the field of the coefficients a.
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