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Abstract. Shioji and Takahashi proved that for every bounded sequence
{an}22  of real numbers,

{¢({an}sZo) | ¢ is a Banach limit}
= ﬂ%{(wl)‘l D kim | an‘,mEO}.
j=1 k=0

‘We generalize this result to bounded sequences of vectors and also apply it to
bounded measurable functions.

1. Introduction.

Let X be a Banach space over the complex field C and f : [0,00) — X be a
locally integrable function. It is well-known that the existence of the Ceséro limit
y = limy_ ot ! fot f(s)ds implies that the Abel limit limy o A [ e=* f(t)dt also
exists and equals y. In general, the existence of the Abel limit does not guarantee
the existence of the Cesdro limit (cf. [4, p.8] and [10]). The discrete case has
similar result, too. We ask what will happen if one of these two limits does not
exsist.

We denote the dual space of X by X*, the algebra of all bounded (linear)
operators on X by B(X), and z*(z) by (z,z*) for x € X and z* € X*. For a
normed algebra A with the identity 1, we denote by D(1, A) the state which is
the set:

D(1,A):= {F € A* | |F| = F(1) = 1}.

The (algebra) numerical range [1], [2] of an element a € A is defined as the
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nonempty compact convex set
Vi(a) :={¢(a) | ¢ € D(1, A)}.

If L is a closed linear operator in A with L1 = 1, we define 7y, :== {¢ € D(1,A) |
L*¢ = ¢} [7] and

mr(a) :={¢(a) | p € mr} forae A.

An element ¢ of D(1,A) is said to be a mean (cf. [6]) and ¢ € 7p is said to
be an invariant mean under L*. If o : £>° — (> is the operator o({a,}52,) =
{an+1}52,, then m, = the set of all Banach limits. Here £*° is the space of all
bounded sequences in C'.

In 1948, Lorentz [13] first studied Banach limits and defined the so-called
o-limits for bounded sequences in ¢*° as following:

o-lima, :=a

if for {an}S2, € £, p({an}22,) = a for all Banach limits ¢. Lorentz also showed
that o-lima,, := a if and only if {a,}52 is almost convergence, i.e.,

n
Z Gf+m = @ uniformly on m > 0.
k=0

lim
n—oon + 1

For related results of almost convergence, we refer to [3], [5], [12], [14], [15], [16],
[17], [18], [19], [20].

Recently, Naoki Shioji and Wataru Takahashi [23] proved that for every
bounded sequence {a,}>2 , of real numbers and a real number «, ¢p({a,}22,) < «
for all Banach limits ¢ if and only if for every € > 0 there is an integer ny > 1
such that

n

(n+ 1)_1Zak+m < a+e¢forall n>ngand m > 0.
k=0
In fact, their result implies that for any bounded sequence {a, }22, of real numbers,

o l{anize) = Y oo{ (04 D7 Y awin [ 02 om > 0

j=1 k=0
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We ask what will happen if the sequence is an arbitrary bounded sequence of
vectors in a Banach space X.

In Section 2, we shall give some necessary results. For example, we prove a
result (Corollary 2.5) that for a mapping f from a set Q to a Banach space X,
the range of f is relatively weak compact if and only if for any ¢ € A* there is a
z € X such that

d((f(-),z*)) = (z,2*) forall z* € X*.

In Section 3, we show two general theorems. One of them is a result (Theorem
3.2) that under some conditions, if the range of f € A(X) is relatively weak
compact, then

By (rp) = (S0 F)(Q) = ﬂco[ U <Sﬁf><n>].

In section 4, we show a result (Theorem 4.1) that if f € L*°(]0, o), X) satisfies
that f[0, 00) is relatively weak compact, then

nm{gl/sf(r+u)dr|szt,u20}
0

t>0

ﬂ(x){tl/otf(r+u)dr|u20}

t>0

= ﬂco{A/oooe—“f(Hs)dtszo}

A>0

= ﬂco{,u/ e”tf(t+s)dt|0<,u<)\,520}.
0

A>0

In Section 5, we prove that if {x,}°2 is a bounded sequence in a Banach space
X such that the trace {z,, | n > 0} is relatively weak compact, then

7+

J
ﬂCO{.llZiEker |j>n7m>0}
k=0

O B
B ﬂco{n+1;xk+mlm>0}

n>1



822 Y.-C. L1

{1—6 Ze xk+m|m20}
k=0

I
D

o0
ﬂ {l—e Ze J:k+m0<s<r,m20}.
k=0

r>0

2. Preliminaries.
To do our work, we need the following definitions and some basic results.

DEFINITION 2.1. Let A be a closed linear operator in X. A net {A,} of
bounded operators on X is called an A-semi-ergodic net if it satisfies the following
conditions:

(Ea) There is an M > 0 such that ||A,|| < M for all «;

(Eb) N(A) C N(A,—1I) and R(A, —I) C R(A) for all o, where N(A) is the null
space of A and R(A) the range of A;

(Ec) R(An) C D(A) for all & and s-lim,, A, Az =0 for all x € D(A).

{A,} is called an A-ergodic net [7], [21], [22] if it is an A-semi-ergodic net and
satisfies

w-lim AA,x =0 for all z € X.

The A-ergodic net {A,} is said to be contractive if M = 1.

EXAMPLE 1. Let S : [0,00) — B(Y) be an integrated semigroup (cf. [8])
with generator A, where Y is a Banach space. Suppose ||[S(t + h) — S(t)|| < h
for all t,h > 0. Thus ||S(t)| < t for all t > 0. Let A; := t~1S(¢), t > 0 and

let the resolvent operators of S(-) defined by R(A)f := A\? [[ e MS(t) fdt for
fe Y and A > 0. (For instance, if Y = L*°([0,0), X), we can take [S(¢)f](s) :=
fo s)dr for allt,s > 0 and f € L*°(]0,00),Y), where T'(-) is the translation

semlgroup on L>([0,00),Y).) Then we have [8], [9]
t
S(t)f—tsz/ S(r)fdr forallt>0and feY
0
t
= / S(r)Afdr for allt >0 and f € D(A).
0

It follows from the assumption on S(-) that we have |4 < 1 for all ¢ > 0
and ||R(A)|] < 1 for all A > 0. Therefore both {A;};~0 and {R(\)}r>o satisfy
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(Ea). And for every f € D(A), ||S'(t)f|| < [|fllec and S"(t)f — f = S(t)Af. This

implies
AL <1 forallt>0
and
1AAf] = I S@OASF = tHIS" () f = FIl < t7HIFIl— 0 ast — oo

So, {At}is0(t — o0) satisfies (Ec). Next, integrating by parts, we have that for
every f € D(A) and A > 0,

R\Af =X /OOO e”{/ot S(r)Afdr} dt

=3 /OO e M[S(t)f — tf]dt
0

=AR\N)f—=Af—0as X |0.

So, the R(A)(A | 0) satisfies (Ec).
Finally, if f € N(A), the null space of A, then 0 = fo r)Afdr =S(t)f —tf.
So, we have A;f = f for all £ > 0 and

RO\ f =\ /OOO e MS(t) fdt = N\ /OOO e Mtfdt = f.

On the other hand, we have that for every f €Y, A, f — f =t71A fo r)fdr €
R(A) and the closedness of A implies

RO — f = X2 /OO NS f — tf]dt

= )\2 MA{ / tS(r) fdr} dt
af

Therefore both {A;}i~0(t — 00) and {R(A)}aso(A | 0) satisfy (Eb) and then they
are all A-semi-ergodic nets on Y.

/t S(T)fd’l“:| dt € D(A).
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LEMMA 2.2. Let A be a complex unital normed algebra and let L be a closed
linear operator on A with L1 = 1. Suppose that {A,} is a contractive (L — I)-
semi-ergodic net on A.

(i) If po € D(1,A) for all a and v is a weakly* limiting point of {A%¢a}, then
Y ETL.
(ii) If ¢ € mp, then AXp = ¢ for all a.

PROOF. Since L1 = 1, it is immediate that (ii) follows from the second part
of (Eb). We show (i). The assumption [|A,| < 1 and Alaoglu’s theorem imply
that there is a weakly™ convergent subnet {Aj¢} of {A}¢} such that ¢ = w*-
limg Aj¢ and [[4[| < 1 for some ¢ € A*. Since (L — 1)1 =0, the first part of (Eb)
implies A,1 = 1 for all a. Therefore, we have

[9(1) = 1) = lim | A505(1) — 95(1)|

= lién |p(Agl —1)| =0

and hence ¢ € D(1,A). Since {A,} is an (L — I)-semi-ergodic net, by (Ec) we
have lim, Ay (L — I)a = 0 for all a € D(L). It follows that

[¥(La — ) = lim|450(La - )] = lim |65(45(La — o))

<limsup |Ag(La —a)|| =0
B

for all @ € D(L). This means ¢ € 7y, and then (i) holds. The proof is complete.

Lemma 2.2(i) shows that 7 can not be empty. Since D(1,A) is weakly*
compact and convex, it is easy to see from the definition of w; that mp is also
weakly* compact and convex.

LEMMA 2.3. LetT : X — Y be a bounded linear operator, where X and 'Y
are two Banach spaces.

(a) If F is a nonempty subset of X, then T(coF') C T(coF). If, in addition, COF
is weakly compact, then T(coF) = T(coF).

(b) If {F,} is a decreasing net of nonempty weakly compact sets in X and F :=
N Fa, then TF =, TF,.

(c) If {Fa} is a decreasing net of nonempty compact sets in X and F =, Fa,

then
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lim sup dist(F,z) = 0,
@ geF,

where dist(K,z) = inf{|ly — | | y € K} for 0 # K C X. In particular, if
F = {z}, then lim, dist(F,,z) =0

PROOF. (a) Since T is continuous, T'(C0F') C T'(coF') is immediate. Now,
suppose that ¢oF' is weakly compact. Since T' is a bounded linear operator, T is
weakly continuous. This implies that T'(¢oF’) is weakly compact and so T'(coF) is
closed. Since

T(coF) C T(coF) C T(coF),
we must have that T'(CoF') = T'(coF'). This proves (a).

(b) Since {F,} is a decreasing net of weakly compact sets in X, F' C F, for
all a. So, we have TF C (), TF,. Conversely, put a y € (), TF, and fix an
arbitrary «g. Then for every « there is an x, € F, such that y = Tx,. Since
Xy € Fy, for all @ > ap and F,, is weakly compact, {x,} has a weakly convergent
subnet {xg} which is independent of the choice of ag, say  := w-limg xz. Since
for every a > ay, F, is weakly compact and xg € F,, for all § > ap, we must
have x € F,,. Since the choice of g is arbitrary, we must have x € F'. Since T is
weakly continuous, this also implies

Y= liénTacﬁ = Tw—liénxg =Tz cTF.

Therefore (), TF, C TF and hence the equality holds. This proves (b).
(c) Clearly, the sup,cp dist(F,z) decrease. Fix an arbitrary ag. Suppose
that there is a positive number € > 0 such that

lim sup dist(F,z) > e.
@ xcF,

Then for every a > o there is an z, € F,, such that dist(F,z,) > . Since F,,
is compact and F,, decrease, {z,} has a convergent subnet {zg} in F,,. Say y =
limg x3. Thus we have y € F,,,. Since «y is arbitrary, this implies

ye()Fa=F.

Therefore

0 =dist(F,y) = liéndist(F, xg) > €.
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This is impossible and the proof is complete.

Now, we consider a unital normed algebra A consisting of bounded functions
from a nonempty set  to C' equipped with the sup-norm || - ||s. Define

AX)={f: Q= X[ (f(),z*) e Aforall a* € X"},

where X* is the dual space of X. Let f € A(X). Then for any ¢ € D(1, A), there
is an z** € X** = (X*)* such that

O((f(-),z")) = (&, 2™) for all ™ € X",

In general, such #** may not be in X, where X is considered as the canonical
subspace of X**.

LEMMA 2.4. Let f € A(X).

(a) If o € A* and the range f(Q) of f is relatively weak compact in X, then there
is a vector z € X such that

d((f(-),z")) = (z,2%) for all 2" € X*.

In particular, ||z|| < ||@|| - || flloc, where || flloe := supyeq ||f(w)]. Such z is
unique and will be denoted by O ().
(b) Suppose that for every ¢ € A*, there is an ®s(¢) € X such that

o((f(),2")) = (Ps(e),z") for all 2" € X* (1)
Then ®(D(1,A)) = Tof ().

PrOOF. (a) Let the range f(2) of f € A(X) be relatively weak compact
in X. By Theorem 31.1 of [2], we have A* = the linear span of D(1,A). Such
mean case was shown by Kido and Takahashi [6] for another situation. We show
the mean case by applying Kido and Takahashi’s method as following. Assume ¢
is a mean on A. Then there is some h € X** such that

d({f(+),x*)) = (x*, h) for all z* € X*.

Since f(£2) is relatively weak compact, ¢of(2) is a weakly compact subset of X,
and so the strong and weak closed subset @6 f(€2) is also a weakly compact subset
of X. This subset of X can also be written as o(X**, X*)-clcof(2) when it is
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considered as a subset of X**. We show that h € o(X**, X*)-clcof (). If it is
not, then by the Hahn-Banach separation theorem and the property of a mean,
there would exist an x* € X* such that

Reh(z*) < inf Re{(z*,2**) | 2** € o(X**, X*)-clcof(Q) }
= inf Re{(f(s),x*);s € Q}
< Reg((f(+),2")) = Reh(z").

This is a contradiction. Therefore h € €0 f(€2) and this proves the existence of z.
Since z € X satisfies that

((f(),a")) = (z,a%) for all o* € X,

it is clear that such z is unique by the Hahn-Banach separation theorem and

2]l = sup {|¢((f (), 2| | 2" € X*, [la"|| < 1}
1]l - sup {|(f(w),2")] | w € Q, 2" € X*, [|a"|| < 1}
<18l £ lloo-

This proves (a).
(b) Clearly, ®; is linear. Since D(1,A) is weakly* compact and convex in
A* ®4(D(1,A)) is closed and convex. If for w € Q, d,, € A* is defined by

dw(h) :== h(w) forall h € A,
then d,, € D(1,A) and

(@7 (0w),2%) = 0uw((f(),2")) = (f(w),z")

for all z* € X*. Therefore f(w) = ®;(d,,) and so cof(2) C 4(D(1,A)).
Conversely, suppose ¢ € D(1,A) and ®;(¢) € cof(2). By the Hahn-Banach
separation theorem, there is an x* € X* such that

sup Re(f(w),z*) < Re(®(¢),z™)

weS )
= Reo((f(-),2"))

< sup Re(f(w),z").
weN
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This is a contradiction and so ®¢(¢) = cof(Q).

From Lemma 2.4, we see that if f € A(X) satisfies (1), then &7 : A* — X is
a bounded linear operator and [|® ]| < || f||co-

COROLLARY 2.5. Let f € A(X). Then f satisfies (1) if and only if f(Q) is
relatively weak compact.

PrROOF.  “If” part. follows from Lemma 2.4(a).

We prove “Only if” part. Suppose f satisfies (1). By Lemma 2.4, it suffices
to show that ®¢(D(1,A)) is weakly compact. Let {z,} be an arbitrary net in
®¢(D(1,A)). Then we have that for every a, there is an ¢, € D(1, A) such that

Do ({(f(-), ™)) = (24, 2") for all z* € X*.
Since D(1,A) is weakly* compact, {¢,} has a weakly* convergent subnet {¢gz}.

Say, {¢g} converges to ¢ weakly*. Then we have ¢ € D(1,A) and there is a
unique z € ®#(D(1,A)) by the assumption of (1) such that

Y((f(),x")) = (z,2%) for all z* € X*.
Therefore we have for every z* € X*|

(z,27) = 0((f(),2"))
= lip 63((7().2))
— lim(zg, z%).
%n(zg z*)
This proves that the subnet {23} of {z,} converges weakly to z and so ®(D(1,A))
is weakly compact.

DEFINITION 2.6. Let T and S be two bounded linear operators in A and
A(X), respectively. Then (7,.5) is said to be a corresponding pair in (A, A(X))
if for every f € A(X) and for all z* € X*,

T(f(-),z") = ((Sf)(),z") for all 2" € X™.

The following lemma is immediately from Definition 2.6 and (1).

LEMMA 2.7. Let f € A(X) satisfy (1).
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(a) If S is a bounded linear operator on A(X), then Sf also satisfy (1).
(b) Let T and S be two bounded linear operators on A and A(X), respectively. If
(T, S) is a corresponding pair, then

®4(T*¢) = Dgs(¢) for all ¢ € A,

3. General results.

We show the following main theorems.

THEOREM 3.1. Let A be a complex normed algebra with identity 1 and let L
be a closed linear operator on A with L1 = 1. Suppose that {A,} is a contractive
(L — I)-semi-ergodic net on A. If a € A, then

71 (a) = OV(Aaa) = ngga V(Aga)> :

PROOF. Since ||Ayall < |ja|| for all «, it follows from the definition of nu-
merical range that V(Asa) C {z € C | |z| < |la||} for all a. If ¢ € 7y, then by
Lemma 2.2(ii) we have that for every «,

p(a) = (A50)(a) = ¢(Aaa) € V(Aqa).
So, we have

mr(a) C V(Aqa) for all «,

that is, 7r.(a) C ), V(Aaa). We show

ﬂ U V(Aga) C mr(a).

a B>

Let F':= N, Upsqa V(Aga). We have shown 7z(a) C F. Let € > 0 be arbitrary.
Suppose F'\ N(mwr(a);e) # 0, where N(wp(a);e) = {z € C | dist(rr(a), z) < &}.
Then for every «, there is a

Ao € | V(Apa) \ N(mp(a);e).
BZa

Thus Ay = ¢ (4, a) for some ¢, € D(1,A) and for some r, > a. By Alaoglu’s
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theorem, {A] @a} has a convergent subnet {Ay ¢s}. Say, A7 ¢z — 1) weakly™.
Therefore ¢ € 7, by Lemma 2.2(i) and

Y(a) = lién (A:iﬁqbﬁ) (a) = lién ¢p(Ar,a) € N(mp(a);e).

This is impossible because ¥ (a) € 71, (a). We have shown F C N(wp(a);¢) for any
€ > 0. Since 7 (a) is a compact set in C, this implies

(U V(4sa) > 7p(a) = (| N(m(a);e) O F O mp(a).

a f>a e>0

Therefore these sets are all equal. By Lemma 2.3(c), we have that for every
e >0,

U V(Aga) C N(mp(a);e) for sufficiently large a.
Bza

Since N(rwp(a);e) is also compact and convex, this implies

@ | J V(4sa) C N(mp(a);e)
B>a

and hence

7r(a) = ﬂ@ U V(Aga).

« B>a
The proof is complete.

THEOREM 3.2. Let A be a closed linear operator in A(X), let L be a closed
linear operator in A with L1 = 1 and let f € A(X) satisfy (1). Suppose that
{(Aa;Sa)} is a net in B(A) x B(A(X)) satisfying the following conditions:

(1%) {A.} is a contractive (L — I)-semi-ergodic net on A such that L1 = 1;
(2%) {S4} is a contractive (A)-semi-ergodic net on A(X);
(3%) for every a, the pair (Aa, Sa) is a corresponding pair in (A, A(X)).

Then

By (rr) = (S0 )(Q) = ﬂc[ U (Sﬁfxm}
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PrOOF. If ¢ € mp, then we have that for every a, ¢ = A%¢ by (1*). By
Lemma 2.4(b) and Lemma 2.7(b), we have

Dy (¢) = 25(ALP) = s, (¢) € TO(5af)(Q).

This means that ®f(mr) C (), c0(Saf)(€2). It suffices to show
Mo ©0Up>a(S5f)(Q)] C @p(mr). Since AZD(1, A) C D(1, A) for every o, we
have -

co(Saf)(Q) = ®g,r(D(1,A)) by Lemma 2.4(b)
=®4(ALD(1,A)) C ®4(D(1,A)) by Lemma 2.7(b) and (1*)
=cof(Q) by Lemma 2.4(b) again.

This proves that @[, (55f)(€2)] is weakly compact for all a. Let 2* € X* be
arbitrary. We have

(@p(mr),a”) = {(@f(d),2") | ¢ € 7L}
:{d)(f,fﬂ> |¢€7TL}

—ﬂcoU{(bAg )) | ¢ € D(1,A)} by Theorem 3.1
a B>
= |J {6((Ssf(-),2*)) | ¢ € D(1,A)} by (3%)
[eY B>
= ﬂco< U Q5,7 (D(1,A)), >
B>«
= ﬂco< U (Spf)(Q),x > by Lemma 2.4(b)
B>«
= <ﬂ U (Spf)(Q > by Lemma 2.3(a) and (b).
a Bza

Since ®¢(mr) and [, €0(Saf)(2) are closed and convex in X, it follows from
the Hahn-Banach separation theorem that

=@ | (Ss)(Q).

[eY B>«
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This completes the proof.

4. Continuous case.

The following theorem is deduced from Theorem 3.2.

THEOREM 4.1. Let X be a Banach space and let the range f[0,00) of f €
L>([0,00), X) be relatively weak compact. Then

ﬂm{gl/sf(r+u)dr|szt,u20}
0

t>0

= ﬂco{t_l/otf(r—&-u)druzo}

t>0

- ﬂw{)\/oooe_’\tf(t—&-s)dﬂszo}

A>0

= ﬂco{p/ e’“f(t+s)dt|0<u</\,520}.
0

A>0

PrOOF. Consider the integrated semigroup S(-) and its resolvent opera-
tors R(A) defined on L%°([0,00),X) as in Example 1. By Example 1, both
{t71S(t) }i>0(t — o00) and {R(A\)}aso(A | 0) are all A-semi-ergodic nets on
L*>([0,00), X ), where A is the generator of S(-). Whenever X = C, we denote
S(-) and R(-) by So(-) and Ry(-), respectively. Let L — I be the generator of Sp(-).
Then we have that for every g € L*°([0,00), X) and a* € X*,

So(t){g(-), 2") = ((S()g)(-), z7).

So, (So(t),S(t)) is a corresponding pair for all ¢ > 0. Similarly, (Ro(\), R()\)) is
also a corresponding pair for all A > 0. Now, we assume that the range [0, 00) of
f € L>(]|0,00), X) is relatively weak compact. By Theorem 3.2, we have

mco{s—l/?f(r—l—u)dr | sZt,uZO}
0

t>0

— N (s S()0, )

t>0 s>t

— (NIt (1) 1[0, 50) = ﬂco{t_1 /Otf(r+u)dr | u > 0}

t>0 t>0
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= ®y(mp)
= co x) = co 0067)\75 S S
fﬂ [RO) A0, 50) ﬂ {A / F(t+ )t | 20}

by integrating by parts.

e U [R(u)/0,00)

A>0 0<p<A

co{ / _“t/ drdt|0<u<)\s>0}
A>0

= ﬂ co{ / eHft+s)dt|0<pu< A s> O} by integrating by parts,
A>0

where T'(-) is the translation semigroup on L*°([0,00), X). This completes the
proof.

The following result is an analogue of the proposition in [21].

COROLLARY 4.2. Let X be a Banach space and let the range f[0,00) of
f e L>®(0,00),X) is relatively weak compact. If y € X, then

limg oo t™ fo r + s)dr =y weakly uniformly on s >0
if and only if
limxjo A [y~ e M f(t + s)dt = y weakly uniformly on s > 0.

From Lemma 2.3(c), if f]0, o) is relatively compact, the convergence in Corol-
lary 4.2 is strongly.

5. Discrete case.

EXAMPLE 2. Let £°°(X) be the space of all bounded sequences in X with
sup-norm || ||cc. Let & be the bounded operator on £>°(X) defined by 6{x, }2, =
{@n11}22. Define Cp, :=1/(m+1) 37", 6k, m=1,2,..., and

n

A, (1—e" Ze krak for all r > 0.
k=0

We show that both the C), and the A, are (6 — I)-ergodic nets on ¢>°(X). Since
I6]] < 1, we have that ||Cy,]| < 1 for all m > 1 and ||A,|| < 1 for all » > 0. So,
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both C,, and A, satisfy (Ea).
If {x,}22, € N(G —I), then we have that

Cod@ntnzo = {zn}tnzo and A {z,}iio=(1-€¢") Z eikr{xn}zozo = {zn}nlo-

k=0

Since 6% — I = (6 — I) Ef;é 67 for all k =1,2,..., it is easy to see that

R(C,—I)CR(G—1I)forallm=1,2,...
and
R(A, —I) C R — 1) forall+> 0.

Therefore both C,, and A, satisfy (Eb).
Finally, we have

1
C'm(&—l)zm+1(&m+1—l)—>0asm—>oo

and

A(6—-1)=(e"—-1)A, —e"(1—e")—0asr|0.
Therefore both C,, and A, satisfy (Ec) and hence they are all (6 — I)-ergodic
nets.

The proof of the following theorem is similar to Theorem 4.1. So, we ommited
it.

THEOREM 5.1.  Let the trace {zn;n > 0} of {zn}5L, € £°(X) is relatively
weak compact. Then

7+

J
mco{_112mk+m |j>n,m>0}
k=0

G B
B mCO{n+1kak+mm>0}

=0
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:ﬂ {1—6 ie xk+m|m20}
k=0

r>0
o
:m {l—e Ze xk+m|0<s<r,m20}.
>0 k=0

In Theorem 5.1, we see from Lemma 2.3(c) that the convergence is strongly
whenever the trace {z, | n > 0} is compact. If {z,,}°2, is a bounded sequence
in X, we say that {z,}5%, is weakly almost convergent to some x, written as
o-limy,_,o0 T, = x or o-limz,, = x (see [8]) if

d({{zn, 2*)}02y) = (x,2%) for all ¢ € m, and for all 2* € X*.

The following corollary is an analogue of [8, Theorem 3.2(d)].

COROLLARY 5.2.  If {x,}5%, is a bounded sequence in X such that the trace
{zy | n > 0} is relatively weak compact and x € X, then o-limx,, = x if and only
if for every x* € X*,

e M (@hym, ) = (z,2%) uniformly on m > 0.

M8

lim(1 —e™")

B
I
<]

ExaMpLE 3. For every noninteger real number z,

e " cos(2(k + m)mx) = 0 uniformly on m >0

NE

lim(1 —e™"
e

x>
Il

0

since o-lim,,_, o, cos(2nmz) = 0 for all noninteger real number x (see [12, Theorem
3.1]).

ACKNOWLEDGEMENTS. The author would like to thank the referee for his
valuable suggestions.

References

[1] F.F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of
elements of normed algebra, London Math. Soc. Lecture Note Series No.2, Cambridge
University Press, 1971.

[2] F.F.Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Series
No. 10, Cambridge University Press, 1973.

[3] R.E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert



836

(4]

[5]
[6]

(7]
(8]
(9]

10]

1)
[12)
[13]
[14]
[15)
[16]

[17]
(18]

(19]
20]
21]
(22]

(23]

Y.-C. L1

space and the structure of the weak w-limit set, Israel J. Math., 29 (1978), 1-16.

R. Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal., 61
(1985), 1-14.

J. D. Hill, Almost-convergent double sequences, Tohoku Math. J., 17 (1995), 105-116.
K. Kido and W. Takahashi, Mean ergodic theorems for semigroups of linear operators, J.
Math. Anal. Appl., 103 (1984), 387-394.

Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean ergodic theorem, Studia Math.,
121 (1996), 207-219.

Y.-C. Li and S.-Y. Shaw, N-times integrated C-semigroups and the abstract Cauchy
problem, Taiwanese J. Math., 1 (1997), 75-101.

Y.-C. Li and S.-Y. Shaw, On local a-times integrated C-semigroup, Abstract Appl. Anal.,
2007, Art. ID 34890, 18 pp.

Y.-C. Li, R. Sato and S.-Y. Shaw, Convergence theorems and Tauberian theorems for
functions and sequences in Banach spaces and Banach lattices, Israel J. Math., 162 (2007),
109-149.

Y.-C. Li, S. Li and C. Li, On o-limit and so-limit in Banach spaces, Taiwanese J. Math.,
9 (2005), 359-371.

Y .-C. Li, Almost convergence of sequences in Banach spaces in weak, strong, and absolute
senses, Taiwanese J. Math., 10 (2006), 209-218.

G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80
(1948), 167-190.

I. J. Maddox, A new type of convergence, Math. Proc. Cambridge-Philos. Soc., 83 (1978),
61-64.

F. Méricz and B. E. Rhoades, Almost convergence of double sequences and strong regu-
larity of summability matrices, Math. Proc. Cambridge Philos. Soc., 104 (1988), 283-294.
M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math.
Oxford Ser. (2), 34 (1983), 77-86.

I. Miyadera, Nonlinear mean ergodic theorems, Taiwanese J. Math., 1 (1997), 433-449.
R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math.
J., 30 (1963), 81-94.

P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972),
104-110.

P. Schaefer, Mappings of positive integers and subspaces of m, Port. Math., 38 (1979),
29-38.

S.-Y. Shaw, Ergodic projections of continuous and discrete semigroups, Proc. Amer. Math.
Soc., 78 (1980), 69-76.

S.-Y. Shaw, Mean ergodic theorems and linear functional equations, J. Funct. Anal., 87
(1989), 428-441.

N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonex-
pansive mapping in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641-3645.

Yuan-Chuan LI

Department of Applied Mathematics
National Chung-Hsing University
Taichung, 402 Taiwan

E-mail: ycli@amath.nchu.edu.tw


doi:10.1007/BF02760397
doi:10.1016/0022-1236(85)90037-0
doi:10.2748/tmj/1178243576
doi:10.1016/0022-247X(84)90136-7
doi:10.1007/s11856-007-0091-x
doi:10.1007/BF02393648
doi:10.1017/S0305004100054281
doi:10.1017/S0305004100065464
doi:10.1093/qmath/34.1.77
doi:10.1215/S0012-7094-63-03009-6
doi:10.1090/S0002-9939-1972-0306763-0
doi:10.1090/S0002-9939-1980-0548087-7
doi:10.1016/0022-1236(89)90018-9
doi:10.1090/S0002-9939-97-04033-1

