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Abstract. We discuss the topology of Hausdorff leaf spaces (briefly the
HLS) for foliation of codimension one. After examining the connection between
HLSs and warped foliations, we describe the HLSs associated with foliations
obtained by basic constructions such as transversal and tangential gluing, spin-
ning, turbulization and suspension. We show that the HLS for any foliation
of codimension one on a compact Riemannian manifold is isometric to a finite
connected metric graph, and any finite connected metric graph is isometric to
a certain HLS. In the final part of this paper, we discuss the condition for a
sequence of warped foliations to converge the HLS.

1. Introduction.

In 1970s M. Berger has presented the concept of modification of a Riemannian
metric of S3 along the fibers of the Hopf fibration. Following this concept, the
author of this paper has introduced the notion of warped foliation [11]. Later on,
the author has examined the limits of a sequence of warped compact foliations
[10] and has proposed the notion of the Hausdorff leaf space (briefly the HLS) for
a foliation on a compact Riemannian manifold.

This paper is the continuation of the research undertaken in [10]. At the
beginning, the author shows that the HLS for any foliation F on a compact
Riemannian manifold (M, g) is the Gromov-Hausdorff limit of a sequence of warped
foliations with warping functions converging to zero on a dense subset G ⊂ M

(Section 3, Theorem 2). Next, he examines the Hausdorff leaf spaces for all natural
constructions of the foliation listed in [3]. Namely, the HLS for tangential and
transverse gluing, spinning, turbulization, and suspension are studied (Section 4).

The main results of this paper are developed in Section 5 (Theorem 9 and
Theorem 10), where the complete description of the Hausdorff leaf space for a
codim-1 foliation on a compact Riemannian manifold is presented. It is shown that
the HLS for a codim-1 foliation is isometric to a finite connected metric graph,
while for every finite connected metric graph G there exists a foliated Riemannian
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manifold (M, F , g) such that the Hausdorff leaf space for F is isometric to G.
Finally (Theorem 11), the necessary and sufficient condition for the sequence (fn)
of warping function on a compact Riemannian manifold carrying foliation of codim-
1 to have a sequence of warped foliations (Mfn) converging to the Hausdorff leaf
space for the foliation F is shown.

For the theory of foliations we refer to [3] or [6].
The author thanks Prof. Gilbert Hector from Universite Claude Bernard

Lyon-1 in France for inspiration and fruitful discussions.

2. Preliminaries.

We assume that all objects in this note are smooth (C∞).

2.1. Hausdorff leaf spaces.
It often happens that the leaf space of a foliation F on a Riemannian manifold

(M, g) defined as a quotient space of the equivalence relation of belonging to the
same leaf of F is not a Hausdorff space [3], [6]. To see this, one can consider
the Reeb foliation on a solid torus or a number of compact foliations presented by
Sullivan [9] or Epstein and Vogt [4] as an example.

In [10], the author of this note, has proposed a definition of a metric space,
and hence a Hausdorff space, directly connected with a foliation on a Riemannian
manifold. He called it the Hausdorff leaf space (briefly the HLS). Let us now recall
the notion of it:

Let (M, F , g) be a compact foliated manifold. Let us set

ρ(L,L′) = inf
{ n−1∑

i=1

dist(Li, Li+1)
}

,

where the infimum is taken over all finite sequences of leaves beginning at L1 = L

and ending at Ln = L′, and dist(F, F ′) = inf{d(x, y) : x ∈ F, y ∈ F ′} (see
Figure 1). Let ∼ be an equivalence relation in the space of leaves L defined by:

L ∼ L′ ⇔ ρ(L,L′) = 0, L, L′ ∈ L . (1)

Let L̃ = L /∼. Put

ρ̃([L], [L′]) = ρ(L,L′),

where [L], [L′] ∈ L̃ . (L̃ , ρ̃) is a metric space. We call it the Hausdorff leaf space
for the foliation F (briefly the HLS), and we denote it by HLS(F ).
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Figure 1. The idea of ρ.

Remark 1. Equivalently, the Hausdorff leaf space can be defined as follows:
Following [1], one can define in a metric space (X, d) equipped with an equivalence
relation R the quotient pseudo-metric dR as

dR(x, y) = inf
{ k∑

i=1

d(pi, qi) : p1 = x, qk = y, k ∈ N

}
.

where the infimum is taken over all sequences {pi}1≤i≤k, {qi}1≤i≤k, k ∈ N , such
that

(pi+1, qi) ∈ R.

Consider a pseudometric space (X/R, dR) and identify such points for which dR

is equal to zero. Obtained metric space is called the quotient metric space.
Let (M, F , g) be a compact foliated Riemannian manifold, and let R be the

relation of belonging to the same leaf of F . Using R in M we get the alternative
definition.

Lemma 2. For every foliation F on a compact foliated Riemannian mani-
fold the HLS(F ) is a length space.

Proof. By the definition of the length metric [5], for every two points
x, y ∈ HLS(F ) and any curve c : [0, 1] → HLS(F ) such that c(0) = x, c(1) = y we
have ρ̃(x, y) ≤ l(c). The opposite inequality follows directly from the definition of
the HLS. ¤

2.2. Gluing metric spaces.
Following [1], we now describe how to glue length spaces.
Let (Xα, dα) be a family of length spaces. Set the length metric d on a disjoint
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union qαXα as follows:
If x, y ∈ Xα, then d(x, y) = dα(x, y); otherwise, set d(x, y) = ∞. The metric

d is called the length metric of disjoint union.
Now, let (X, dX) and (Y, dY ) be two length spaces, while f : A → B be

a bijection between two subsets A ⊂ X and B ⊂ Y . Equip Z = X q Y with
the length metric of disjoint union. Introduce the equivalence relation ∼ as the
smallest equivalence relation containing relation generated by the relation x ∼ y

iff f(x) = y. The result of gluing X and Y along f is the metric space (Z/∼, d∼).

2.3. Warped foliations.
As we mentioned in the introduction, in the 70-s M. Berger has presented the

concept of modification of a Riemannian metric of S3 along the fibers of the Hopf
fibration. In 1969, Bishop and O’Neil in [2] have defined the warped product of
two manifolds. Extending these two notions, the author of this paper has defined
in [11] the notion of warped foliation [10], [11] as a modification of a Riemannian
structure conformally along the leaves of a foliation. The Hausdorff leaf space for
warped foliations will be the main topic of our interest in Section 3. The results
of Section 3 will be used as a tool in Sections 4 and 5.

Let (M, F , g) be a smoothly foliated Riemannian manifold and f : M →
(0,∞) be a smooth basic function on M , i.e. a smooth function constant along
the leaves of F . We modify the Riemannian structure g to gf in the following
way: gf (v, w) = f2g(v, w) while both v, w are tangent to the foliation F , but if
at least one of vectors v, w is perpendicular to F then we set gf (v, w) = g(v, w).
The foliated Riemannian manifold (M, F , gf ) is called here the warped foliation
and denoted by Mf . The function f is called the warping function.

2.4. Gromov-Hausdorff convergence.
Recall the notion of the Gromov-Hausdorff convergence [5]. Let (X, dX) and

(Y, dY ) be arbitrary compact metric spaces. The distance of X and Y can be
defined as

dGH(X, Y ) := inf{dH(X, Y )},

where d ranges over all admissible metrics on the disjoint union X q Y , i.e. d is
an extension of dX and dY , while dH denotes the Hausdorff distance. The number
dGH(X, Y ) is called the Gromov-Hausdorff distance of metric spaces X and Y .

Theorem 1. dGH(X, Y ) = 0 iff (X, dX) is isometric to (Y, dY ). ¤

The Gromov Lemma (below) will be used widely throughout this paper.

Lemma 3. Let (X, dX) and (Y, dY ) be arbitrary compact metric spaces, and
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let

A = {x1, . . . , xk} ⊂ X,

B = {y1, . . . , yk} ⊂ Y

be ε-nets satisfying for all 1 ≤ i, j ≤ k the condition

|dX(xi, xj)− dY (yi, yj)| ≤ ε.

Then dGH(X, Y ) ≤ 3ε. ¤

3. Convergence theorem.

Consider a sequence (fn)n∈N , fn : M → (0,∞), of warping functions on a
compact foliated Riemannian manifold (M, F , g). One can ask, how does the limit
in the Gromov-Hausdorff topology of a sequence of warped foliations (Mfn)n∈N

look like. Let G ⊂ M be a dense saturated subset (i.e. a dense subset which is
the sum of leaves).

Theorem 2. For an arbitrary compact foliated manifold (M, F , g) and any
sequence (fn)n∈N , fn : M → (0, 1), of warping functions on M converging to zero
on G, the Gromov-Hausdorff limit of a sequence of warped foliations is isometric
to HLS(F ).

Before we present a proof of the above Theorem, we should show that a
conformal modification of a Riemannian structure in the direction tangent to F
(warping) does not change the Hausdorff leaf space. This is true because the
distance ρ̃ defined by the formula (1) can be approximated by the length of curves
which are “almost perpendicular to the foliation” (see Figure 2). Readers, who
are not familiar with the methods of the Gromov-Hausdorff topology can omit
following proofs and continue reading of Section 4.

We say that two metric structures g and g′ on a compact foliated Riemannian
manifold (M, F ) coincide on the orthogonal bundle F⊥ if every vector v perpen-
dicular to F in g is perpendicular in g′ and vice versa, and g(v, w) = g′(v, w) for
any vectors v, w perpendicular to F either in g or g′.

Lemma 4. Let g and g′ be any Riemannian structures on M which coincide
on the orthogonal bundle F⊥. Then

ρ̃ = ρ̃′,

where ρ̃ and ρ̃′ are defined by (1).
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Figure 2. The idea for proofs of Lemma 4 and Theorem 2.

Proof. Since M is compact, we can assume that g ≤ C · g′ for a certain
constant C ≥ 1. Let ρ and ρ′ be pseudometrics given by

ρ(L,L′) = inf
{ n−1∑

i=1

dist(Li, Li+1)
}

,

ρ′(L,L′) = inf
{ n−1∑

i=1

dist′(Li, Li+1)
}

,

where dist and dist′ denote the distance of the leaves defined by g and g′, re-
spectively. Denote by l(γ) (l′(γ)) the g-length (g′-length) of a curve γ. Since the
geometry of M is bounded, then for every ε > 0 there exists δ > 0 and A > 0 such
that for every smooth curve γ : [0, l(γ)] → M parametrized naturally satisfying

1. γ̇(0) is perpendicular to F ,
2. the g′-length l′(γ) is smaller than δ,
3. the g′-geodesic curvature |kg′(γ)| is smaller than A,

the g-length of the component tangent to F satisfies

∣∣γ̇>∣∣ < ε.

Let ε > 0, L,L′ ∈ F be such that d = dist′(L,L′) < δ. Let γ : [0, l′(γ)] → M be a
curve with γ(0) ∈ L, γ(l′(γ)) ∈ L′ such that its length in g′ satisfies d ≤ l′(γ) ≤ δ.
We have
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dist(L,L′) ≤ l(γ) =
∫

[0,l′(γ)]

|γ̇| ≤
∫

[0,l′(γ)]

∣∣γ̇>
∣∣ +

∫

[0,l′(γ)]

∣∣γ̇⊥
∣∣

≤ C · l′(γ) · ε +
∫

[0,l′(γ)]

∣∣γ̇⊥
∣∣′ ≤ (1 + Cε) · l′(γ).

Since γ was chosen arbitrarily, we conclude that

dist(L,L′) ≤ (1 + Cε) · dist′(L,L′).

Now, for every sequence of leaves L1, . . . , Ln such that L1 = L, Ln = L′ and
satisfying

n−1∑

i=1

dist′(Li, Li+1) ≤ ρ′(L,L′) + ε,

and such that dist′(Li, Li+1) < δ for all i ∈ {1, . . . , n− 1}, we obtain

ρ(L,L′) ≤
n−1∑

i=1

dist(Li, Li+1) ≤ (1 + Cε) ·
( n−1∑

i=1

dist′(Li, Li+1)
)

≤ (1 + Cε) · (ρ′(L,L′) + ε).

Tending with ε to zero we get that ρ ≤ ρ′. Consequently ρ̃ ≤ ρ̃′. Similarly, we can
show that ρ̃′ ≤ ρ̃. ¤

We now turn to a proof of Theorem 2. The idea of a proof is to find, for given
ε > 0, two ε-nets in Mfn and HLS(F ) satisfying the condition of Lemma 3.

Denote by π : M → HLS(F ) the natural projection given by π(x) = [Lx]∼,
where ∼ is the equivalence relation defined in Section 2.1.

Proof. Let ε > 0 and let {x1, . . . , xk} be an ε-net on M contained in G.
Let i, j ∈ {1, . . . , k}. Choose a family of leaves F ij = {F ij

0 , . . . , F ij

δj
i

} such that

Lxi = F ij
0 , Lxj = F ij

δj
i

, F ij
ν ⊂ G for any 0 ≤ ν ≤ δj

i , and

δj
i−1∑
ν=0

dist
(
F ij

ν , F ij
ν+1

) ≤ ρ̃
(
π(Lxi), π(Lxj )

)
+ ε.

Consider a family of curves
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γij
0 , . . . , γij

δj
i−1

: [0, 1] → M

satisfying γij
ν (0) ∈ F ij

ν , γij
ν (1) ∈ F ij

ν+1, and

δj
i−1∑
ν=0

l
(
γij

ν

) ≤ ρ̃
(
π(Lxi

), π(Lxj
)
)

+ 2ε. (2)

Let δ = max{δj
i }. Since fn → 0 on G, and the number of leaves involved in

sets F ij , i, j = 1, . . . , k, is finite, there exists N ∈ N such that for any n > N ,
i, j ∈ {1, . . . , k} and ν ∈ {0, . . . , δj

i − 1} we have

dn,F ij
ν

(
γij

ν (1), γij
ν+1(0)

) ≤ ε

δ
,

dn,F ij
0

(
xi, γ

ij
0 (0)

) ≤ ε

δ
, (3)

dn,F ij

δ
j
i
−1

(
γij

δj
i−1

(1), xj

) ≤ ε

δ
,

where dn,F is the distance on the leaf F induced from the Riemannian metric
fn(F )g |F .

Let us pick one point in each {x1, . . . , xk} ∩ π−1(π(xi)), i = 1, . . . , k. We
obtain a set {y1, . . . , ym} (m ≤ k) with the property π(yi) 6= π(yj) iff i 6= j.

Let n > N . Direct calculation shows that the points y1, . . . , ym form a 4ε-net
on (M, gfn). Moreover, by (2) and (3),

dn(yi, yj) ≤ ρ̃
(
π(Lyi), π(Lyj )

)
+ 3ε,

where dn is a metric on M defined by the Riemannian structure gfn
(see Sec-

tion 2.3). Denote by ρ̃n the metric defined by gfn and the formula (1). By Lemma
4,

ρ̃
(
[Lyi

], [Lyj
]
)

= ρ̃n

(
π(Lyi

), π(Lyj
)
) ≤ dn(yi, yj).

The set π({y1, . . . , ym}) = π({x1, . . . , xk}) provides an ε-net on HLS(F ). By
Lemma 3, dGH(Mfn ,HLS(F )) ≤ 9ε. Tending with ε to zero we get that

dGH(Mfn
,HLS(F )) = 0.

The uniqueness of the limit and Theorem 1 completes our proof. ¤
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4. Basic constructions.

Studying foliations one can learn that there are several basic constructions
for building foliations [3]. In this chapter we examine the HLS for the following
constructions: tangential and transverse gluing, two transverse modifications –
turbulization and spinning along a transverse boundary component, and for sus-
pension.

We only provide here a detailed proof for tangential gluing and turbulization,
which are used in Section 5. For transverse gluing and spinning we give the
characterization of their HLS’s and we only provide an outline of a proof. Details,
analogical as for tangential gluing and turbulization, are left to the reader.

4.1. Tangential gluing.
Let us assume that (Mi,Fi, gi) (i = 1, 2) are compact foliated Riemannian

manifolds with boundary, while Fi is a foliation tangent to the boundary. Let
Si ⊂ ∂Mi (i = 1, 2) be a union of boundary components, and let h : S1 → S2

be an isometry mapping leaves onto leaves. According to [3], identify S1 with S2

using x ≡ h(x), and form the quotient foliated manifold M = M1 ∪h M2 with
foliation F = F1 ∪h F2 defined by the leaves of Fi (Figure 3).

Let us assume that one can obtain a smooth Riemannian structure g on M

with the property g | Mi = gi (i = 1, 2).

Figure 3. Tangential gluing.

Denote by π : M → HLS(F ), πi : Mi → HLS(Fi) (i = 1, 2) natural projec-
tions. Consider the smallest equivalence relation ∼ in disjoint union

HLS(F1)qHLS(F2)

containing the relation defined as follows:

π1(L) ∼ π2(L′) ⇔ ∃x∈π−1
1 (π1(L)) π2(h(x)) = π2(L′).

Let X = HLS(F1)qHLS(F2)/∼ endowed with quotient metric dX .
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Denote by Φ : HLS(F1) q HLS(F2) → X, π̃ : M1 q M2 → HLS(F1) q
HLS(F2), and p : M1 qM2 → M natural projections (see Figure 4).

M1 qM2
p //

π̃

²²

M
π // HLS(F )

HLS(F1)qHLS(F2)
Φ

// X

Figure 4. The projections for Theorem 3.

Theorem 3. The space HLS(F ) is isometric to (X, dX).

We begin the proof by the following:

Lemma 5. For any x, y ∈ M1 qM2

dX

(
Φ(π̃(x)),Φ(π̃(y))

)
= ρ̃

(
π(p(x)), π(p(y))

)
.

Proof. Let ε > 0. Consider points π(p(x)) and π(p(y)). By the definition
of HLS(F ), there exist points r1, q1, . . . , rk, qk in the disjoint union M1qM2 such
that rν , qν belong to the same component, and r1 ∈ Lx, qk ∈ Ly (Lx and Ly

are here the leaves of the appropriate foliation F1 or F2). Moreover, p(qν) and
p(rν+1) lie in the same leaf of F , and

k∑
ν=1

d̄
(
rν , qν) ≤ ρ̃(π(p(x)), π(p(y))

)
+ ε,

where d̄ is the length metric of disjoint union in M1qM2 (see Section 2.2). Denote
by d̃ the length metric of disjoint union in HLS(F1)qHLS(F2). By the definition
of X, we have

k∑
ν=1

d̄(rν , qν) ≥
k∑

ν=1

d̃(π̃(rν), π̃(qν))

≥ dX

(
Φ(π̃(x)),Φ(π̃(y))

)
.

Finally,

dX

(
Φ(π̃(x)),Φ(π̃(y))

) ≤ ρ̃
(
π(p(x)), π(p(y))

)
+ ε. (4)
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Next, consider points Φ(π̃(x)) and Φ(π̃(y)). There exist points r1, q1, . . . ,

rk, qk in the disjoint union HLS(F1)qHLS(F2) such that Φ(qν) = Φ(rν+1) (ν =
1, . . . , k), Φ(r1) = Φ(π̃(x)), Φ(qk) = Φ(π̃(y)), and

k∑
ν=1

d̃(rν , qν) ≤ dX

(
Φ(π̃(x)),Φ(π̃(y))

)
+ ε,

where d̃ denotes again the length metric of disjoint union in HLS(F1)qHLS(F2).
Now, for every ν = 1, . . . , k, one can find a sequence of leaves Lν

1 , . . . , Lν
lν

of the appropriate foliation (F1 if rν , qν ∈ HLS(F1) or F2 if rν , qν ∈ HLS(F2))
satisfying rν ∈ Lν

1 , qν ∈ Lν
lν

, and

lν−1∑
µ=1

dist
(
Lν

µ, Lν
µ+1

) ≤ d̃(rν , qν) +
ε

k
.

Since h maps leaves onto leaves, one can consider the leaves described above as
leaves of a foliation F . Moreover, π̃(x) ∈ π̃(L1

1), and π̃(y) ∈ π̃(Lk
lk

). Hence we
have

ρ̃
(
π(p(x)), π(p(y))

) ≤ dX

(
Φ(π̃(x)),Φ(π̃(y))

)
+ 2ε. (5)

Passing with ε to zero in inequalities (4) and (5), we get that

ρ̃
(
π(p(x)), π(p(y))

)
= dX

(
Φ(π̃(x)),Φ(π̃(y))

)
.

This completes our proof. ¤

Now, we turn to the proof of Theorem 3.

Proof. Let us consider a sequence (fn : M → (0, 1]) of constant functions
on M converging to zero. Obviously, it can be used as a sequence of warping
functions. By Theorem 2, the limit limGH Mfn = HLS(F ). We will show, that
limGH Mfn = (X, dX).

Let {x1
1, . . . , x

1
k1
} ⊂ M1 and {x2

1, . . . , x
2
k2
} ⊂ M2 be ε/2-nets. We can assume

that there exist N ∈ N , K1 ≤ k1, and K2 ≤ k2 such that

• π̃(x1
i ) 6= π̃(x1

j ) while i 6= j (i, j ≤ K1), π̃(x2
l ) 6= π̃(x2

m) while l 6= m (l, m ≤
K2);

• {x1
1, . . . , x

1
K1
} is an ε-net in (M1)fn

, while {x2
1, . . . , x

2
K2
} provides an ε-net

in (M2)fn
, n > N .
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Denote

• yj = Φ
(
π̃(x1

j )
)
, j = 1, . . . , K1;

• yK1+j = Φ
(
π̃(x2

j )
)
, j = 1, . . . , K2;

• xj = π
(
p(x1

j )
)
, j = 1, . . . , K1;

• xK1+j = π
(
p(x2

j )
)
, j = 1, . . . , K2.

One can easily check that {y1, . . . , yK1+K2} and {x1, . . . , xK1+K2} have the same
number of elements, and yi = yj iff xi = xj . Thus, putting K = K1 + K2 we
get two ε-nets {y1, . . . , yK} and {x1, . . . , xK} in X and HLS(F ), respectively. By
Lemma 5

dX(xi, xj) = ρ̃(yi, yj)

for all i, j ≤ K. By Lemma 3, dGH((X, dX),HLS(F )) = 0. Finally, by Theorem
1, we get the statement. ¤

Remark 6. Note that it can be impossible to construct a smooth Rieman-
nian structure g on M such that g | Mi = gi (i = 1, 2). But all Riemannian
structures on a compact manifold are equivalent. We slightly modify the Rieman-
nian structures gi to obtain structures with desired properties. In this case we can
only prove that HLS(F ) of the glued foliation is homeomorphic to (X, dX).

4.2. Transverse gluing.
Following [3], let (M1,F1, g1), (M2,F2, g2) be smooth compact foliated Rie-

mannian manifolds of dimension n with nonempty boundary and codimension q

foliations. Suppose that Si ⊂ ∂Mi is a union of boundary components (i = 1, 2)
and φ : S1 → S2 is an isometry mapping leaves to leaves. Suppose further that Fi

is gi-orthogonal to Si. Form a manifold M = M1 ∪φ M2 from the disjoint union
M1 qM2 by identifying x with φ(x). Endow M with an induced foliation.

Let us denote the natural projections as shown on the Figure 5.

M1 qM2 p
//

π̃

²²

M
π // HLS(F )

HLS(F1)qHLS(F2)
Φ // X

Figure 5. The projections for Theorem 4.

Consider the smallest equivalence relation ∼ in disjoint union

HLS(F1)qHLS(F2)
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containing the relation defined by

π̃(x) ∼ π̃(φ(x)).

Next, glue HLS(F1) with HLS(F2) along ∼ and denote the result endowed with
quotient metric by (X, dX).

Lemma 7. For any two points x, y ∈ M1 qM2

dX

(
Φ(π̃(x)),Φ(π̃(y))

)
= ρ̃

(
π(p(x)), π(p(y))

)
.

Proof. Analogical to the proof of Lemma 5. Left to the reader. ¤

Theorem 4. HLS(F ) coincides with (X, dX).

Proof. Denote by A1 = {x1, . . . , xk} ⊂ M1\∂M1 and A2 = {y1, . . . , ym} ⊂
M2 \ ∂M2 two ε-nets. One can easily check that p(A1 ∪ A2) is an ε-net in M ,
π(p(A1∪A2)) is an ε-net in HLS(F ) and Φ(π̃(A1∪A2)) is an ε-net in X. Moreover,
by the construction of X we have that

]
(
Φ(π̃(A1 ∪A2))

)
= ]

(
π(p(A1 ∪A2))

)
.

Lemma 7 and Lemma 3 yield the statement. ¤

Figure 6. Transverse gluing.

Remark 8. Of course, not every foliation transverse to the boundary com-
ponent is orthogonal to it. But one can easily modify (see [3]) any transverse
foliation to obtain a foliation orthogonal to the boundary component with the
same space as the Hausdorff leaf space (see Figure 6). Hence, Theorem 4 is true
for any foliations transverse to the boundary.

4.3. Turbulization.
Let now (M, F , g) be a foliated Riemannian manifold of dimension n + 1
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endowed with a codimension one foliation which is leaf-wise and transversely ori-
entable. Let γ : [0, 1] → M be a closed transversal curve and let N(γ) be a fixed
foliated tubular neighbourhood of γ. Let us equip N(γ) = Dn×S1 with cylindrical
coordinates (r, z, t) (we take t modulo 1, while the leaves of F |N(γ) are the sets
Dn × {t}). Let

ω = cos λ(r)dr + sinλ(r)dt,

where λ : [0, 1] → [−π/2, π/2] is a smooth, strictly increasing on [0, 3/4] function
satisfying λ(0) = −π/2, λ(2/3) = 0, λ(t) = π/2 for all t ≥ 3/4, and with deriva-
tives of all orders at zero vanishing. Since ω is integrable, it defines a foliation
Fγ of N(γ), which agrees with F near ∂N(γ) and has a Reeb component R in-
side N(γ). Modified foliation Fγ of M is called a turbulized foliation, while this
deformation is called the turbulization along the curve γ [3] (Figure 7).

Figure 7. Turbulization.

Denote by Lx (Lγ
x) the leaf of F (Fγ) passing through x ∈ M . Next, let

π : M → HLS(F ) be the natural projection, and let X be a metric space obtained
from HLS(F ) by identification π(γ([0, 1])) to a point (Figure 9). Equip X with
the quotient metric dX .

Theorem 5. HLS(Fγ) is isometric with (X, dX).

Before we start a proof, we shall prove technical lemmas.

Lemma 9. For every two leaves L1, L2 ∈ F and every ε > 0 there exists a
sequence of leaves F1, . . . , Fk ∈ Fγ , k ≤ 3, satisfying

1. F1 \N(γ) = L1 \N(γ) and Fk \N(γ) = L2 \N(γ),

2.
∑k−1

ν=1 dist(Fν , Fν+1) ≤ dist(L1, L2) + ε.
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[0, 1]
γ // (M, F , g)

π

²²

turb. // (M, Fγ , g)

πγ

²²
HLS(F )

p

²²

HLS(Fγ)

(X, dX)
f

88ppppppppppp

Figure 8. The projections for Theorem 5.

Figure 9. HLS for turbulized foliation.

Proof. Let ε > 0, and x ∈ L1, y ∈ L2 be such that d(x, y) ≤ dist(L1, L2)+
ε. We shall consider three cases:

1. x, y /∈ M \ N(γ). Put F1 = Lγ
x and F2 = Lγ

y . Then dist(F1, F2) ≤ d(x, y) ≤
dist(L1, L2) + ε.

2. x, y ∈ N(γ). Choose points x′ ∈ L1 \N(γ) and y′ ∈ L2 \N(γ). Put F1 = Lγ
x′ ,

F2 = Lγ
y′ . By the definition of the turbulization we have that

dist(F1, F2) = 0 ≤ dist(L1, L2).

3. x ∈ N(γ) and y ∈ M \ N(γ). Let z ∈ L1 \ N(γ). Put F1 = Lγ
z , F2 = Lγ

x,
F3 = Lγ

y . We have

dist(F1, F2) + dist(F2, F3) ≤ 0 + d(x, y) ≤ dist(L1, L2) + ε.

This completes the proof. ¤

Lemma 10. For any x, y ∈ M the following inequality holds:

dX

(
p(π(x)), p(π(y))

) ≤ dist
(
Lγ

x, Lγ
y

)
.
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Proof. Let x, y ∈ M . We shall consider few cases.
Case 1: Lγ

x ∩N(γ) = Lγ
y ∩N(γ) = ∅. Then Lx = Lγ

x, Ly = Lγ
y , and

dX

(
p(π(x)), p(π(y))

) ≤ dist
(
Lγ

x, Lγ
y

)
.

Case 2: Lγ
x ∩N(γ) 6= ∅, Lγ

y ∩N(γ) 6= ∅. Then, by the construction of Fγ ,

Lx ∩N(γ) 6= ∅, and Ly ∩N(γ) 6= ∅.

Finally,

dX

(
p(π(x)), p(π(y))

)
= 0 = dist

(
Lγ

x, Lγ
y

)
.

Case 3: Lγ
x ∩ N(γ) 6= ∅, Lγ

y ∩ N(γ) = ∅. Let ε > 0, and r ∈ Lγ
x, q ∈ Lγ

y be such
points that d(r, q) ≤ dist(Lγ

x, Lγ
y) + ε.

Suppose first that x /∈ N(γ), r /∈ N(γ). Then Lx = Lr, Ly = Lq, and

dX

(
p(π(x)), p(π(y))

) ≤ dist(Lx, Ly) ≤ d(r, q)

≤ dist
(
Lγ

x, Lγ
y

)
+ ε.

Next, suppose that x /∈ N(γ), r ∈ N(γ). Set L1 = Lx, L2 = Lr, L3 = Ly. Recall
that Lq = Ly. Hence, by Case 1,

dX

(
p(π(x)), p(π(y))

) ≤ dX

(
p(π(x)), p(π(r))

)
+ dX

(
p(π(r)), p(π(q))

)

≤ 0 + d(r, q) ≤ dist
(
Lγ

x, Lγ
y

)
+ ε.

Analogically we show that

dX

(
p(π(x)), p(π(y))

) ≤ dist
(
Lγ

x, Lγ
y

)
+ ε,

for x ∈ N(γ), r /∈ N(γ), and x ∈ N(γ), r ∈ N(γ).
Passing with ε to zero gives the desired inequality. ¤

Let us denote by πγ the natural projection from (M, Fγ , g) to HLS(Fγ) (see
Figure 8), and by ρ̃γ the metric in HLS(Fγ).

Let f : X → HLS(Fγ) be defined as follows:

f
(
p(π(x))

)
= πγ

(
Lγ

x

)
. (6)
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Lemma 11. For any x, y ∈ M we have

dX

(
p(π(x)), p(π(y))

) ≤ ρ̃γ

(
πγ(Lγ

x), πγ(Lγ
y)

)
.

Proof. Let ε > 0, x, y ∈ M . There exists a sequence of leaves Lγ
1 , . . . , Lγ

k

such that Lγ
1 = Lγ

x, Lγ
k = Lγ

y , and

k−1∑
ν=1

dist
(
Lγ

ν , Lγ
ν+1

) ≤ ρ̃γ

(
πγ(Lγ

x), πγ(Lγ
y)

)
+ ε.

Let r1, q1, . . . , rk−1, qk−1 ∈ M be such that rν ∈ Lγ
ν , qν ∈ Lγ

ν+1, and

d(rν , qν) ≤ dist
(
Lγ

ν , Lγ
ν+1

)
+

ε

k
.

Note that Lγ
x = Lγ

r1
, Lγ

y = Lγ
qk−1

, and Lγ
rν+1

= Lγ
qν

. By Lemma 10,

dX

(
p(π(x)), p(π(r1))

)
= 0,

dX

(
p(π(y)), p(π(qk−1))

)
= 0,

dX

(
p(π(rν+1)), p(π(qν))

)
= 0

for all ν ∈ {1, . . . , k − 1}. By the construction of X,

dX

(
p(π(x)), p(π(y))

)

≤
k−1∑
ν=1

dX

(
p(π(rν)), p(π(qν))

)
+

k−2∑
ν=1

dX

(
p(π(rν+1)), p(π(qν))

)

+ dX

(
p(π(x)), p(π(r1))

)
+ dX

(
p(π(y)), p(π(qk−1))

)

≤
k−1∑
ν=1

d(rν , qν) ≤ ρ̃γ

(
πγ(Lγ

x), πγ(Lγ
y)

)
+ 2ε.

Passing with ε to zero gives us the statement. ¤

Lemma 12. For any x, y ∈ M we have

ρ̃γ

(
πγ(Lγ

x), πγ(Lγ
y)

) ≤ dX

(
p(π(x)), p(π(y))

)
.
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Proof. Let x, y ∈ M , ε > 0. There exist points r1, q1, . . . , rk, qk ∈ HLS(F )
such that p(qi) = p(ri+1), π(x) = r1, π(y) = qk, and

k−1∑

i=1

ρ̃(ri, qi) ≤ dX

(
p(π(x)), p(π(y))

)
+ ε. (7)

For any i ∈ {1, . . . , k} one can find a family of leaves Li,1, . . . , Li,µi
satisfying

Li+1,1 = Li,µi
, x ∈ L1,1, y ∈ Lk,µk

, and

µi−1∑
ν=1

dist(Li,ν , Li,ν+1) ≤ ρ̃(ri, qi) +
ε

k
. (8)

By (7), (8), and Lemma 9, one can find a finite sequence Lγ
1 , . . . , Lγ

m of leaves of
Fγ such that Lγ

1 = Lγ
x, Lγ

m = Lγ
y and

ρ̃γ

(
πγ(Lγ

x), πγ(Lγ
y)

) ≤
m−1∑
ν=1

dist
(
Lγ

ν , Lγ
ν+1

)

≤ dX

(
p(π(x)), p(π(y))

)
+ 3ε.

Passing with ε to zero gives us the statement. ¤

Lemma 13. f is bijective.

Proof. Suppose that p(π(x)) = p(π(y)), x, y ∈ M . Consider two cases.
Case 1: π(x) = π(y). If π−1(π(x))∩γ([0, 1]) = ∅ then π−1(π(y))∩γ([0, 1]) = ∅, and
π−1

γ (πγ(x)) = π−1
γ (πγ(y)). Hence πγ(Lγ

x) = πγ(Lγ
y), and f(p(π(x))) = f(p(π(y))).

Case 2: If π(x) 6= π(y), then there exist ξx ∈ π−1(π(x)) ∩ γ([0, 1]) and ξy ∈
π−1(π(y))∩ γ([0, 1]). Hence, πγ(ξx) = πγ(ξy) = πγ(R), where R denotes the Reeb
component. But πγ(Lγ

x) = πγ(Lγ
ξx

). Thus f(p(π(x))) = f(p(π(y))).
Finally, f is well defined. By the definition, f is “onto” HLS(Fγ). Checking

that f is one-to-one we leave to the reader. ¤

Now, we can turn to the proof of Theorem 5.

Proof. By Lemma 13, f defined in (6) is a bijection from X onto HLS(Fγ).
By Lemmas 11 and 12, f is an isometry. ¤

4.4. Spinning.
Following the definition given in [3] we recall the notion of spinning a foliation

along a transverse boundary component (see Figure 10).
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Let (M, F , g) be a compact Riemannian manifold carrying codim-1 foliation
transverse to the boundary ∂M 6= ∅. Let S be a connected component of ∂M

with ∂S = ∅. Assume that F |S can be defined by a closed non-singular 1-form
ω ∈ A1(S).

Figure 10. Spinning along the boundary component.

Let N(S) = S × [0, 1) be a foliated collar, i.e. the leaves of F | N(S) are of
the form L× [0, 1), where L is a leaf of F | S.

Decompose T(x,t)(N(S)) = Tx(S) ⊕ Tt([0, 1)). One can write a vector field
ζ ∈ X(N(S)) as

ζ = vt + g∂t,

where g ∈ C∞(N(S)), ∂t = ∂/∂t, and vt denotes the component of ζ tangent to
S. Thus, ω extends to a closed non-singular form ωN(S) by

ωN(S)(vt + g∂t) = ω(vt).

Let h : [0, 1) → [0, 1] be a C∞-function such that h(t) = 0 for t ∈ [1/2, 1),
h(0) = 1, and h is decreasing strictly monotonically on [0, 1/2]. Moreover, let the
derivatives of all orders of h vanish at t = 0. Set

θ = (1− h(t))ωN(S) + h(t)dt.

θ agrees with ωN(S) on S×[1/2, 1) and with dt on S×{0}. Moreover, θ is integrable
and S becomes a leaf of a new foliation FS on S × [0, 1). But F coincides with
FS outside the collar S × [0, 1/2). Thus, we extend FS to a foliation FS on M

which is tangent to the boundary component S.
Now, identify in HLS(F ) the points of π(S) and denote the result by X.

Endow X with the quotient metric denoted by dX .
Before we examine the Hausdorff leaf space for a spinned foliation we formu-

late technical lemmas. Easy proofs are omitted and left to the reader.
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M
π //

πS

²²

HLS(F )

φ

²²
HLS(FS) X

Figure 11. The projections for Theorem 6.

Let π : M → HLS(F ), πS : M → HLS(FS), and φ : HLS(F ) → X denote
the natural projections (Figure 11). Denote by Lz (LS

z ) a leaf of F (FS) passing
through z ∈ M .

Lemma 14. For every two points p, q ∈ M such that LS
p = LS

q we have

dX

(
φ(π(Lp)), φ(π(Lq))

)
= 0. ¤

Lemma 15. For any two points p, q ∈ M such that Lp = Lq we have

ρ̃S

(
πS(LS

p ), πS(LS
q )

)
= 0. ¤

Lemma 16. For any two points x, y ∈ M we have

dX

(
φ(π(Lx)), φ(π(Ly))

)
= ρ̃S

(
πS(x), πS(y)

)
. ¤

Theorem 6. HLS(F ) coincides with (X, dX).

Figure 12. HLS of a foliation spinned along the boundary component S.

Proof. Let fn = 1/n be a constant function on M . Let A′ = {x1, . . . ,

xk′} ⊂ M be an ε/2-net on M . One can select a subset A = {x1, . . . , xk} ⊂ A′ and
N ∈ N such that π(xi) 6= π(xj) (i 6= j) and A an ε-net on M1/n = (M, F , g1/n)
for all n > N . We may assume that the points xk−l, . . . , xk are the only ones that
belong to π−1(π(S)). Now, pick from the points xk−l, . . . , xk exactly one, let say
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xk−l.
Observe that πS({xk−l, . . . , xk}) is a single point in HLS(FS). Hence, there

exists N ′ such that {x1, . . . , xk−l} is an ε-net on MS
1/n = (M, FS , g1/n) for all

n > N ′. Moreover, since xk−l, . . . , xk ∈ π−1(π(S)),

φ(π(xµ)) = φ(π(xν)), µ, ν ∈ {k − l, . . . , k}.

Set ζi = φ(π(xi)), ξj = πS(xj) (i, j = 1, . . . , k − l). By the construction and
Lemma 4, the sets {ζi} and {ξj} are 2ε-nets on X and HLS(FS), respectively. By
Lemma 16,

dX(ζi, ζj) = ρ̃S(ξi, ξj), for all i, j ∈ {1, . . . , k}.

By Lemma 3, dGH(X, HLS(FS)) = 0, and by Theorem 1, X is isometric to
HLS(FS ). ¤

4.5. Suspension.
Denote by B a smooth connected manifold, and by p : B̃ → B the universal

covering of B. Let x0 ∈ B. Recall that the covering transformation group Γ acts
from the right on B̃ and hence Γ ⊂ Diff(B̃). Let F be a q-dimensional manifold.
Consider a group homomorphism h : Γ → Diff(F ). Then Γ acts on B̃ × F by

γ(x, z) = (x · γ, h(γ)(z)), (x ∈ B̃, z ∈ F ).

Consider a foliation F̃ = {B̃ × {z}, z ∈ F}. Using canonical projection one can
project F̃ onto a foliation F of M = (B̃ × F )/Γ. The foliation F is called the
suspension of the homomorphism h. One can check that M is a fibre bundle over
B, and F coincides with its fibre.

Analogically as in Section 2.1, one can define the Hausdorff orbit space:
Let G be a group acting on a metric space (X, dX). Denote by O the space

of orbits of G-action. Set

ρ(G(x), G(y)) = inf
{ n−1∑

i=1

dX(Gi, Gi+1)
}

,

where the infimum is taken over all finite sequences of orbits beginning at G1 =
G(x) and ending at Gn = G(y), and G(z) denotes the orbit of z ∈ X. Define an
equivalence relation ∼ in O by:

G(x) ∼ G(y) ⇔ ρ(G(x), G(y)) = 0, x, y ∈ X.
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Let Õ = O/∼. Put

ρ̃
(
[G(x)], [G(y)]

)
= ρ(G(x), G(y)),

where [G(x)], [G(y)] ∈ Õ. (Õ, ρ̃) is a metric space. We call it the Hausdorff orbit
space of the G-action, and we denote it by HOS(X/G).

Theorem 7. HLS(F ) is homeomorphic to HOS(F/h(Γ)).

Proof. By the construction of suspension, there exists a homeomorphism
between the space of leaves of F and the space of orbits of h(Γ). It induces a
homeomorphism between HLS(F ) and HOS(F/h(Γ)). ¤

5. Main results – HLS for codim-1 foliations.

5.1. HLS for compact I-bundles.
Let (M, F ,pr) be a foliated I-bundle, I = [0, 1]. Note that there are at most

two boundary leaves. Let us denote by L0 the boundary leaf passing through the
points 0 ∈ I of every fiber. Consider the function d : L → [0, 1] (L denotes here
the space of leaves of the foliation F ) defined by d(L) = ρ̃(L0, L), where ρ̃ denotes
the metric in HLS(F ). Let π : M → HLS(F ) again be the natural projection.

Lemma 17. For any two leaves L 6= L′ such that π(L) 6= π(L′) we have
d(L) 6= d(L′).

Proof. Since π(L) 6= π(L′) then ρ̃(π(L), π(L′)) > 0. Let ε > 0, and let
L1, . . . , Lk be a family of leaves such that Lk = L′, and

k−1∑
ν=0

dist(Lν , Lν+1) < ρ̃(L0, L
′) + ε.

Without loss of generality we can assume that there exists j ∈ {0, . . . , k − 1}
satisfying Lj = L (if not then rename the leaf L to L′ and L′ to L). Then

ρ̃(L0, L) + ρ̃(L,L′) ≤
j−1∑
ν=0

dist(Lν , Lν+1) +
k−1∑

ν=j

dist(Lν , Lν+1) < ρ̃(L0, L
′) + ε.

Hence,

d(L) + ρ̃(L,L′) ≤ d(L′).

By the triangle inequality and the above, we obtain
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d(L) + ρ̃(L,L′) = d(L′).

But ρ̃(L,L′) > 0. Hence, d(L) < d(L′). This completes the proof. ¤

Theorem 8. Let (M, F ,pr) be a foliated I-bundle. HLS(F ) is isometric
to a metric segment or a singleton.

Proof. Let L0 denote the same leaf as in Lemma 17, d be a function on the
space of leaves of F defined by d(L) = ρ̃(L0, L), and let δ = maxL∈F d(L). Let
π : M → HLS(F ) be a natural projection, while p : M → [0, δ] be the mapping
defined by p(x) = d(Lx). By Lemma 17, for any two leaves such that π(L) 6= π(L′)
we have

d(L) 6= d(L′).

Let ε > 0, and L,L′ ∈ F be two arbitrary leaves such that d(L) < d(L′). Let
L1, . . . , Lk, Lk+1, . . . , Lk+l be a family of leaves satisfying Lk = L, Lk+l = L′,
and

k+l−1∑
ν=0

dist(Lν , Lν+1) ≤ ρ̃(π(L0), π(L′)) + ε.

Since ρ̃(π(L0), π(L)) ≤ ∑k−1
ν=0 dist(Lν , Lν+1), we have

ρ̃(π(L), π(L′)) ≤
k+l−1∑

ν=k

dist(Lν , Lν+1)

≤ ρ̃
(
π(L0), π(L′)

)
+ ε− ρ̃

(
π(L0), π(L)

)
= d(L′)− d(L) + ε. (9)

Now, let L1, . . . , Lk, Lk+1, . . . , Lk+l be a family of leaves such that Lk = L, Lk+l =
L′

k−1∑
ν=0

dist(Lν , Lν+1) ≤ ρ̃(π(L0), π(L)) +
ε

2
,

and

k+l−1∑

ν=k

dist(Lν , Lν+1) ≤ ρ̃(π(L), π(L′)) +
ε

2
.
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Then

d(L′) ≤
k+l−1∑
ν=0

dist(Lν , Lν+1) ≤ ρ̃(π(L0), π(L)) +
ε

2
+ ρ̃(π(L), π(L′)) +

ε

2

≤ d(L) + ρ̃(π(L), π(L′)) + ε.

We get

d(L′)− d(L) ≤ ρ̃(π(L), π(L′)) + ε. (10)

We finally get, by (9) and (10),

∣∣ |d(L)− d(L′)| − ρ̃(π(L), π(L′))
∣∣ ≤ ε. (11)

Let A = {x1, . . . , xk} be an ε-net on M . Then π(A) and p(A) are ε-nets on
HLS(F ) and ([0, d], | · |), respectively. Moreover, ]π(A) = ]p(A). By (11), we have

∣∣ |p(Li)− p(Lj)| − ρ̃(π(Li), π(Lj))
∣∣ ≤ ε,

where Lν = Lxν . By Lemma 3, dGH(HLS(F ), [0, d]) ≤ 3ε. Finally,

dGH(HLS(F ), [0, d]) = 0,

and, by Theorem 1, HLS(F ) is isometric to the metric segment I = ([0, d], | · |). ¤

5.2. HLS for codim-1 foliations.
Recall now [1] that the metric graph G is the result of gluing of a set of a

disjoint metric segments E = {Ei} and points V = {vi} along an equivalence
relation defined in the union of V and the set of the endpoints of the segments
equipped with the length metric. A graph G is called finite if V and E are finite.

Theorem 9. HLS(F ) of any codimension one foliation on a compact Rie-
mannian manifold is isometric to a finite connected metric graph.

Proof. Following the proof of the main theorem of [7], we can cover M by a
finite number of mutually disjoint saturated neighbourhoods Ni (i = 1, . . . , k) such
that the HLS of the foliation restricted to Ni is a singleton, and a finite number
of mutually disjoint foliated I-bundles (denoted by C1, . . . , Cm) with their HLS’s,
by Lemma 8, isometric to [0, dj ], dj > 0, 1 ≤ j ≤ m. We can assume that
Ni ∩ Cj ⊂ ∂Ni ∩ ∂Cj , 1 ≤ i ≤ k, 1 ≤ j ≤ m (Figure 13), and that the sets Ni
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(i = 1, 2, . . . , k) are maximal, i.e. π−1(π(Ni)) = Ni, where π : M → HLS(F )
denotes the natural projection.

Figure 13. The sets Ni and Cj .

Let vi = HLS(F |Ni), and V = {v1, . . . , vk}. Next, let

E = {I1, . . . , Im}, Ij = HLS(F | Cj) = [0, dj ].

Denote by πj : Cj → [0, dj ] natural projections.
Introduce in V and in the set of the endpoints of the segments Ij , 1 ≤ j ≤ m,

the smallest equivalence relation ∼ generated by the following relation:
A point vi is in the relation with an endpoint a (a can be equal to 0 or dj) of

the segment Ij iff Ni ∩ π−1
j (a) 6= ∅.

Figure 14. Construction of a graph.

Now, let glue points from V and segments from E along ∼. We now endow
obtained space with the length metric. In this way we create a metric graph G

(Figure 14). By the construction of G and Theorem 3, HLS(F ) is isometric to G.
¤

Remark 18. One can easily check that, for a given foliation F of codimen-
sion one, it is possible to construct a number of metric graphs, not necessarily
finite, isometric to HLS(F ), but all of them are isometric as metric spaces with
length metric. For example, consider a foliation of T 2 by a infinite number of
Kronecker components separated by circles foliation (Figure 15). Then every Kro-
necker component can define itself a node of a graph, and every circle foliation
can define an edge. One also can select only one Kronecker component to be a
node, and the rest of foliation to be an edge. One can check that any metric graph
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Figure 15. A part of a foliation by Kronecker components and circles.

constructed this way is isometric to a circle.

Example 19. Recall that any compact connected manifold of dimension 1
is either an interval I or a 1-dimensional sphere S1. Hence, a foliated bundle of
codim-1 is either I-bundle or S1-bundle. One can see that the Hausdorff leaf space
for a codim-1 foliated bundle is a singleton, a metric segment or a circle S1.

Lemma 20. For every k ∈ N there exists a compact foliated manifold
(M, F ) such that M has exactly k boundary components and HLS(F ) is a sin-
gleton, and the holonomy mappings h of the boundary leaves satisfy h(0) = 0,
h′(0) = 1, h(n)(0) = 0 for all n ≥ 2.

Proof. Let M̂ = S1×Σ, where Σ is a compact surface of dimension 2, and
let F̂ be the product foliation by {z} × Σ, z ∈ S1. Let x1, . . . , xk ∈ Σ. Let Ni

(i = 1, . . . , k) be disjoint tubular neighbourhoods of γi = S1 × {xi}. Turbulize F̂
simultaneously along γi. One can check [3] that it is possible to turbulize in such
way that the holonomy mappings h of the compact leaves of the Reeb components
satisfy h(0) = 0, h′(0) = 1, h(n)(0) = 0 for all n ≥ 2.

Next, let M be a foliated manifold obtained from (M̂, F̂ ) by removing the
interior of the Reeb components of the turbulized foliation. It follows that M

is compact, and its boundary has exactly k components homeomorphic with the
torus T 2. Moreover, every leaf different from boundary leaves accumulate on
every boundary component. Thus HLS(F ) is a singleton, and F is a foliation
with desired properties. ¤

Remark 21. One can see that all leaves of the foliation constructed in
Lemma 20 are proper.

Lemma 22. For any metric segment I = [0, d] there exists a compact foliated
Riemannian manifold (M, F , g) carrying codim-1 foliation such that HLS(F ) is
isometric to I.

Proof. Taking M = [0, d] × Σ, where again Σ is a compact surface, with
product foliation {t} × Σ and the product metric we get the statement. ¤
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Theorem 10. For every finite connected metric graph G there exists a com-
pact foliated Riemannian manifold (M, F , g) such that HLS(F ) is isometric to G.
Moreover, every leaf of F is proper.

Proof. Let G = (V, E) be a finite connected metric graph with k nodes.
“Cutting” every edge in the middle we obtain k connected metric graphs Gi (Fig-
ure 16).

Figure 16. Star graphs Gi.

Consider a graph Gi. If all nodes of Gi have only one edge, then assign for
Gi a foliated manifold indicated in Lemma 22.

Let v be a node having more than one edge, let say m. One can assign for v

a 3-dimensional foliated Riemannian manifold (Vi,Fi, gi) indicated in Lemma 20
with exactly m boundary components homeomorphic to the torus T 2, and such
that HLS for Vi is a singleton, and the holonomy mappings h of the boundary
leaves satisfy h(0) = 0, h′(0) = 1, h(n)(0) = 0 for all n ≥ 2.

Next, for every edge assign a manifold Ei
ν = [0, di] × T 2 (as described in

Lemma 22), 1 ≤ ν ≤ m. Note that both Fi and foliations of Ei
ν are tangent to

the boundary components.
Since the holonomy mappings h of the boundary leaves satisfy h(0) = 0,

h′(0) = 1, h(n)(0) = 0 for all n ≥ 2, then by Theorem 3, one can glue manifolds
Vi and Ei

ν to obtain a compact foliated Riemannian manifold (Mi,Fi, gi) with
HLS(Fi) isometric to Gi (Figure 17). Moreover, the boundary components of Mi

(i = 1, . . . , m) are homeomorphic to T 2, the foliation Fi on each Mi is tangent

Figure 17. Construction of a manifold Mi for the graph Gi.
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Figure 18. The graph G and the manifold (M, F , g).

to the boundary, and holonomy mappings h of boundary leaves satisfy h′(0) = 1,
h(n)(0) = 0 for all n ≥ 2.

Again, by Theorem 3, one can glue manifolds Mi to get a compact foliated
manifold (M, F , g) such that HLS(F ) is isometric to G (Figure 18).

By Remark 21, all leaves of F are proper. This ends our proof. ¤

5.3. Warped foliations in codim-1.
Let (M, F , g) be an arbitrary compact foliated Riemannian manifold with

codim-1 foliation. Let (fn)n∈N , fn : M → (0, 1], be a sequence of warping func-
tions (see Section 2.3). We will now provide the necessary and sufficient condition
for a sequence of warped foliations (Mfn

)n∈N to converge to the Hausdorff leaf
space for the foliation F .

First, note that on any connected finite metric graph G with at least two
nodes there exist a measure µ and constants β ≥ 1, η0 > 0 such that for all
0 < η < η0 and x ∈ G

1
β

η ≤ µ(Bd(x, η)) ≤ βη, (12)

where Bd(x, η) = {y ∈ G : d(x, y) < η}. Indeed, denote by V = {e1, . . . , ek}
the set of vertices, and by E = {I1, . . . , Im} the set of all edges of the graph G.
Let µ be a measure induced by the Lebesgue measure on edges Ij of G and let
η0 = (1/2)min l(Ij) and β = max{2,maxi=1,...,k n(ei)}, where l(I) denotes the
length of an edge I, and n(e) denotes the number of edges in a vertex e. Such µ

satisfies (12).
Let (fn)n∈N , fn : M → (0, 1], be a sequence of smooth warping functions on

(M, F , g), where F is a foliation of codimension one.

Theorem 11. dGH((M, gfn
),HLS(F )) → 0 if and only if for every ε > 0

there exists N ∈ N such that for any n > N the following is satisfied :
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There exists a finite family of leaves Fn = {Fn
1 , . . . , Fn

k } such that

1.
⋃

Fn is ε-dense in M ,
2. fn|SF n < ε.

The proof of the sufficient condition is analogical to the proof of Theorem 2
in Section 3. The proof of the necessary condition is the same as the proof of
Theorem 6.5 in [10]. We don’t repeat them here and we leave them to the reader.

6. Final remarks.

One can ask, what is the classification of HLS for foliations of codimension
greater than one. This question still is open. We only present some results for an
arbitrary codimension.

Let (M, F , g) be a compact connected foliated Riemannian manifold, and
again let π : M → HLS(F ) be the natural projection. One can easily check that
π is continuous. Moreover, for any leaf L ∈ F the set π−1(π(L)) is a closed,
nonempty, saturated subset of M .

Let us recall that a subset A ⊆ M is called minimal if it is nonempty, closed
and saturated and there is no proper subset of A with these properties [3]. From
the construction of HLS(F ) it follows that for any leaf L ∈ F the set π−1(π(L))
contains a minimal set.

As a simple consequence of the above observations we have:

Theorem 12. If the number of minimal sets of F is countable then the
HLS(F ) is a singleton.

Proof. Since the number of minimal sets is countable, then HLS(F ) is a
countable set. The projection π : M → HLS(F ) is continuous, hence HLS(F ) is
compact and connected. This ends our proof. ¤

Theorem 13. If F contains a compact leaf with finite holonomy then
HLS(F ) contains an open subset U homeomorphic to an open set of Rq, where q

is a codimension of F .

Proof. The statement is a direct consequence of the Reeb Stability Theo-
rem (see [3] or [6]). ¤
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http://www.math.uni.lodz.pl/˜sajmonw/

Szymon M. Walczak

University of ÃLódź
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