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Abstract. For a plane curve, a point in the projective plane is said to
be Galois when the point projection induces a Galois extension of function
fields. We completely classify plane curves with infinitely many outer Galois
points.

1. Introduction.

Let C ⊂ P 2 be an irreducible plane curve of degree d ≥ 3 over an algebraically
closed field K of characteristic p ≥ 0 and let K(C) be the function field of C. The
point projection πR : C 99K P 1 from a point R ∈ P 2 induces a field extension
K(C)/K(P 1) of function fields. When the extension is Galois, we call the point R

a Galois point for C. This notion was introduced by H. Yoshihara ([13], [22]). A
Galois point R ∈ P 2 is said to be inner (resp. outer) if R ∈ C (resp. R ∈ P 2 \C).
It is one of important problems to determine the distribution of Galois points for
a given curve. In many cases, the distribution has been determined ([2], [7], [12],
[13], [22], [23]). In most of such settled cases, the number of Galois points is finite.
However, recently T. Hasegawa and the present author [3] found an example of
a plane curve having infinitely many inner and outer Galois points. Also, they
classified a curve whose almost all inner points are Galois.

The purpose of this paper is to classify plane curves with infinitely many outer
Galois points. We will prove the following classification theorem.

Theorem 1. Let C ⊂ P 2 be an irreducible plane curve of degree d ≥ 3 over
an algebraically closed field K of characteristic p ≥ 0. We denote by ∆′ the set of
all outer Galois points for C. Then, the following conditions are equivalent.

(1) The set ∆′ is infinite.
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(2) The curve C is a rational strange curve with a center Q and there exists a line
L ⊂ P 2 which contains Q and infinitely many outer Galois points.

(3) p > 0, d = pe for some e ≥ 1 and the curve C is projectively equivalent to the
image of a morphism ψ(u : 1) = (ψ1(u) : ψ2(u) : 1) : P 1 → P 2 such that ψ is
birational onto its image and

ψ1 = a1u
p + · · ·+ aeu

pe

, ψ2 = u + b1u
p + · · ·+ beu

pe

,

where a1, . . . , ae, b1, . . . , be ∈ K.
(4) p > 0, d = pe for some e ≥ 1 and the curve C is projectively equivalent to an

irreducible plane curve whose equation is of the form

αex
pe

+ αe−1x
pe−1

+ · · ·+ α1x
p + x + βey

pe

+ · · ·+ β1y
p = 0,

where α1, . . . , αe, β1, . . . , βe ∈ K.

Moreover, if one of the conditions holds, then ∆′ is a Zariski open set of a line
(see Proposition 2) and the Galois group GR at R is isomorphic to (Z/pZ)⊕e for
any R ∈ ∆′, where pe = d.

In Section 2, we introduce some notation and recall some notions. In Section
3, we give several lemmas for plane curves having infinitely many outer Galois
points. In Section 4, we prove the rationality when ∆′ is infinite. In Section 5, we
prove the assertions (1) ⇒ (2) ⇒ (3) ⇒ (4) in our Theorem 1. Finally, in Section
6, we prove the assertion (4) ⇒ (1) and discuss the distribution of Galois points.

2. Preliminaries.

Let (X : Y : Z) be a system of homogeneous coordinates of the projective
plane P 2 and let C ⊂ P 2 be an irreducible plane curve of degree d ≥ 3. We denote
by Csm the smooth locus of C and by Sing(C) the singular locus of C. If P ∈ Csm,
we denote by TP C ⊂ P 2 the (projective) tangent line at P . For a projective line
l ⊂ P 2 and a point P ∈ C ∩ l, we denote by IP (C, l) the intersection multiplicity
of C and l at P .

A tangent line at a singular point P ∈ Sing(C) is defined as follows. Let
f(x, y) be the defining polynomial of C in the affine plane defined by Z 6= 0, and
let P = (0 : 0 : 1). We can write f = fm + fm+1 + · · · + fd, where fi is the i-th
homogeneous component. A tangent line at P is the line defined by an irreducible
component of fm. Therefore, a line l passing through P is a tangent line at P if
and only if IP (C, l) > m.

Let r : Ĉ → C be the normalization. We denote by RP the line passing
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through points R and P when R 6= P , and by πR : C 99K P 1;P 7→ RP the point
projection from a point R ∈ P 2. We write π̂R = πR ◦ r. If P ∈ Csm, we denote
by eP the ramification index of π̂R at (the fiber r−1(P ) of) P . It is not difficult
to check the following

Lemma 1. Let R ∈ P 2 \ C and let P ∈ Csm. Then for π̂R we have

eP = IP (C, RP ).

Let P̌ 2 be the dual projective plane, which parameterizes lines on P 2. Let
γ : Csm → P̌ 2 be the dual map of C, which assigns a smooth point P ∈ Csm

to the tangent line TP C ∈ P̌ 2 at P . We denote by s(γ) the separable degree of
(the function field extension defined by) the dual map γ of C onto its image, by
q(γ) the inseparable degree of γ, and by M(C) the generic order of contact (i.e.
IP (C, TP C) ≥ M(C) for any point P ∈ Csm and the equality holds for a general
point (see [20, p. 5]).), throughout this paper. If the dual map γ is separable
onto its image, then s(γ) = 1 and M(C) = 2 (see, for example, [14, Proposition
1.5]). If the dual map γ of C is not separable, then it follows from a theorem of
Hefez-Kleiman ([6, (3.5)]) that M(C) = q(γ). Using this theorem and Bézout’s
theorem, we find that d ≥ s(γ)q(γ).

We recall the definition of strangeness. The strangeness can be defined for
a curve in projective space, in general. Let C ⊂ P N be an irreducible curve of
degree d ≥ 3 with N ≥ 2. If there exists a point Q ∈ P N such that almost all
tangent lines of C pass through Q, then C is said to be strange and Q is called
a strange center (see [1], [9], [16]). It is easily checked that a strange center is
unique for a strange curve. The following fact was proved by E. Lluis [10, p. 51]
and reproved by P. Samuel [16, p. 76] (see also [1, (2.2) Remark], [9, p. 167]).

Fact 1. If a curve C ⊂ P N of degree d ≥ 3 is strange, then C is singular.

We consider the case where N = 2. Using Lemma 1, we find that the projec-
tion π̂Q from a point Q is not separable if and only if C is strange and Q is the
strange center. Therefore, if Q is the strange center, then Q is not Galois. If C

is strange, then we can identify the dual map γ with the projection πQ from the
strange center Q. Therefore, the dual map γ is not separable. Furthermore, for a
strange curve, d = s(γ)q(γ) if and only if the strange center Q is not contained in
C (see also [1, (2.3) Theorem]).

We denote by ∆′ ⊂ P 2 the set of all outer Galois points for a plane curve
C ⊂ P 2 and by GR the group of birational maps from C to itself corresponding
to the Galois group Gal(K(C)/π∗RK(P 1)) when R is Galois. We find easily that
the group GR is isomorphic to a subgroup of the automorphism group Aut(Ĉ) of
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Ĉ. Frequently, we identify GR with the subgroup. If a Galois covering θ : C → C ′

between smooth curves is given, then the Galois group G acts on C naturally. We
denote by G(P ) the stabilizer subgroup of P and by eP the ramification index at
P . The following fact is useful to find Galois points (see [19, III. 7.1, 7.2 and 8.2]).

Fact 2. Let θ : C → C ′ be a Galois covering of degree d with a Galois
group G. Then we have the following.

(1) For any σ ∈ G, we have θ(σ(P )) = θ(P ).
(2) If θ(P ) = θ(Q), then there exists an element σ ∈ G such that σ(P ) = Q.
(3) The order of G(P ) is equal to eP at P for any point P ∈ C.
(4) If θ(P ) = θ(Q), then eP = eQ.
(5) The index eP divides the degree d.

Especially, for a strange curve C and an outer Galois point R with respect to
C, we can classify ramification points of π̂R, as follows.

Lemma 2. Let C be a strange curve with a center Q. Assume that R ∈ P 2\C
is Galois and P ∈ Ĉ is a ramification point of π̂R. Then, we have the following
assertions.

(1) If r(P ) ∈ Csm, then the line r(P )R coincides with the tangent line Tr(P )C at
r(P ). Especially, r(P ) should be contained in RQ.

(2) If r(P ) ∈ Sing(C) and r(P ) 6∈ RQ, then the line r(P )R does not contain a
smooth point. Especially, the line r(P )R is a tangent line at r(P ), or contains
two or more singular points.

Proof. We prove the assertion (1). The first assertion is obvious by Lemma
1. Now, Q ∈ Tr(P )C by the definition of the strangeness. Then, r(P ) ∈ Tr(P )C =
RQ.

We prove the assertion (2). If r(P )R contains a smooth point P ′, then r(P )R
is tangent to C at P ′ by our assumption, Fact 2(4) and Lemma 1. Then, Q ∈
r(P )R since Q is the strange center. This is a contradiction. ¤

3. Plane curves having infinitely many outer Galois points.

Throughout this section, we assume that the set ∆′ of outer Galois points is
infinite.

Lemma 3. If ∆′ is infinite, then C is strange.

Proof. Let γ(Csm) be the image of dual map γ on the smooth locus. (We
do not take the closure of γ(Csm).) Let Λ ⊂ γ(Csm) be the set of tangent lines T
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at smooth points satisfying one of the following conditions. (i) The tangent line T

contains a singular point, (ii) the cardinality of the fiber γ−1(T ) is strictly less than
s(γ), or (iii) the tangent line T contains a smooth point P with IP (C, T ) > M(C).

If Λ is one-dimensional, then C is strange by the condition (i) of Λ, since
tangent lines which satisfy the condition (ii) or (iii) are finitely many. We may
assume that Λ is a finite set.

We prove that there exists a tangent line T ∈ γ(Csm)\Λ such that T ∩∆′ 6= ∅,
if C is not strange. If ∆′ ∩ (

⋃
T∈γ(Csm)\Λ T ) 6= ∅, then we have nothing to prove.

Assume that ∆′ ∩ (
⋃

T∈γ(Csm)\Λ T ) = ∅. Then, ∆′ is contained in a finite union of
lines. Therefore, there exists a line L ∈ P̌ 2 such that L∩∆′ is infinite. Considering
a morphism γ(Csm) \ (Λ ∪ {L}) → L; T 7→ T ∩ L, we find that the set L ∩⋃

T∈γ(Csm)\(Λ∪{L}) T is a Zariski open subset of L or consists of a unique point,
since γ(Csm) \ (Λ ∪ {L}) is irreducible. If L ∩ ⋃

T∈γ(Csm)\(Λ∪{L}) T consists of a
unique point, then C is strange. If L∩⋃

T∈γ(Csm)\(Λ∪{L}) T is a Zariski open subset
of L, then L∩∆′∩⋃

T∈γ(Csm)\(Λ∪{L}) T 6= ∅, since the set L∩∆′ is infinite. Then,
there exists a tangent line T ∈ γ(Csm) \ (Λ ∪ {L}) such that T ∩∆′ 6= ∅.

Let T ∈ γ(Csm) \ Λ satisfy that T ∩ ∆′ 6= ∅. Then, all points of C ∩ T are
smooth and T contains exactly s(γ) points of contact Q1, . . . , Qs(γ) such that the
intersection multiplicity IQi(C, T ) = M(C) for i = 1, . . . , s(γ). Because T contains
an outer Galois point, we have {Q1, . . . , Qs(γ)} = C∩T by Lemma 1 and Fact 2(4).
Since deg C > 2, it follows from Bézout’s theorem that s(γ) > 1 or M(C) > 2.
Therefore, the dual map γ is not separable, and hence M(C) = q(γ) by a theorem
of Hefez-Kleiman. A plane curve with d = s(γ)q(γ) is said to be extremal ([1],
[5]) and it follows from a theorem of Hefez ([5, (7.16) Corollary]) that such curves
are strange (see also [8, Corollary 1]). ¤

By Lemma 3, we consider a strange curve. Let Q be the strange center. We
define the set Σ ⊂ P̌ 2 which consists of lines l satisfying one of the following
conditions.

( i ) Q ∈ C and the line l is a tangent line at Q.
( ii ) The line l contains Q and a singular point not equal to Q.
(iii) The line l is the tangent line TP C at a smooth point P with IP (C, TP C) >

M(C) = q(γ).
(iv) The line l is a tangent line at a singular point.
( v ) The line l contains two or more singular points.

Note that the set Σ is a finite set. We consider the case where there exists a
point R such that R ∈ ∆′ but R 6∈ ⋃

l∈Σ l.

Lemma 4. Let R ∈ ∆′ \ (∆′ ∩ ⋃
l∈Σ l). Then, the ramification locus of
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π̂R : Ĉ → P 1 coincides with the set r−1(C ∩ RQ) and each ramification index is
equal to q(γ). Furthermore, d > q(γ) and C ∩RQ contains two distinct points.

Proof. Firstly note that there exists a ramification point for π̂R by
Riemann-Hurwitz formula. Let P ∈ Ĉ be a ramification point of π̂R with
r(P ) 6= Q. Now we prove that P ∈ r−1(C ∩RQ). If r(P ) ∈ Csm, then r(P ) ∈ RQ,
because of Lemma 2(1). If r(P ) ∈ Sing(C), then it follows from Lemma 2(2) and
the conditions (iv) and (v) of Σ that r(P ) should be contained in RQ. Using Fact
2(4), the ramification locus of π̂R coincides with r−1(C ∩RQ).

By the conditions (i) and (ii) of Σ, Csm ∩ (RQ \ {Q}) 6= ∅. Let P ∈ Csm ∩
(RQ \ {Q}). By the condition (iii) of Σ, the intersection multiplicity IP (C, RP )
at P is equal to M(C) = q(γ). By Lemma 1 and Fact 2(4), the ramification index
at each point of r−1(C ∩RP ) is equal to q(γ).

We have d > q(γ), by Lemma 5 below. Then, C ∩RQ contains two points. ¤

Lemma 5. Let C be a strange curve of degree d = q(γ) ≥ 3 with a center
Q. Then, Q ∈ P 2 \ C and Sing(C) 6= ∅. If R ∈ ∆′ and P ∈ Sing(C), then π̂R is
ramified at a point in the fiber r−1(P ) and RP ∈ Σ.

Proof. It follows from a theorem of Hefez-Kleiman that M(C) = q(γ).
Hence, by Bézout’s theorem, Q ∈ P 2\C. We consider the projection πQ : C → P 1

from Q. Since we can identify πQ with the dual map γ, πQ is generically one-to-
one, by the assumption d = q(γ). Therefore, π̂Q is Frobenius and hence, C is
rational and Sing(C) 6= ∅.

Let R ∈ ∆′ and let P ∈ Sing(C). Then, r−1(P ) consists of a unique point,
because π̂Q is one-to-one. It follows from Bézout’s theorem that π̂R is ramified
at a point in r−1(P ). If P ∈ RQ, then the line RP = PQ satisfies the condition
(ii) of Σ. If P 6∈ RQ, then the line RP satisfies the condition (iv) or (v) of Σ, by
Lemma 2(2). Therefore, RP ∈ Σ. ¤

Finally in this section, we consider the case where the set ∆′ is infinite and
∆′ ⊂ ⋃

l∈Σ l. Since Σ is a finite set, there exists a line L containing infinitely many
outer Galois points. We define Σ(L) := Σ\{L}. Note that (L∩∆′)\(L∩⋃

l∈Σ(L) l)
is an infinite set. Then, we have the following

Lemma 6. Let R ∈ (L ∩∆′) \ (L ∩⋃
l∈Σ(L) l).

(1) If Q 6∈ L, then we have the following assertions: (i) the set C ∩ (RQ \ {Q}) is
non-empty and is contained in Csm; (ii) the ramification index at any point in
r−1(C∩RQ) is equal to q(γ); and (iii) the ramification locus of π̂R is contained
in the set r−1(C ∩RQ) ∪ r−1(C ∩ L).

(2) If Q ∈ L, then the ramification locus of π̂R coincides with r−1(C ∩ L).
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Proof. Firstly note that there exist a ramification point for π̂R by
Riemann-Hurwitz formula.

We prove the assertion (1). The assertion (i) is derived from the conditions
(i) and (ii) of Σ. The assertion (ii) follows from the condition (iii) of Σ and Fact
2(4). We prove the assertion (iii). Let P ∈ Ĉ be a ramification point of π̂R. If
r(P ) ∈ Csm, then r(P ) ∈ RQ by Lemma 2(1). If r(P ) ∈ Sing(C) and r(P ) 6∈ RQ,
then r(P ) should be contained in L by Lemma 2(2) and the conditions (iv) and
(v) of Σ.

We consider the assertion (2). Let P be a ramification point of π̂R. If r(P ) ∈
Csm, then r(P ) ∈ RQ = L by Lemma 2(1). If r(P ) ∈ Sing(C), it follows from
Lemma 2(2) and the conditions (iv) and (v) of Σ that r(P ) ∈ RQ = L. Using
Fact 2(4), the ramification locus of π̂R coincides with r−1(C ∩ L). ¤

4. Rationality.

In this section, we discuss non-existence of curves of genus ≥ 1 having in-
finitely many outer Galois points. Firstly we note the following

Lemma 7. Let R1, R2 be two distinct outer Galois points for a plane curve
C. Then, GR1 ∩GR2 = {1} in the automorphism group Aut(Ĉ) of Ĉ.

Proof. Let B ⊂ Csm be the set of smooth points such that

P ∈ B ⇔ R1 ∈ TP C or R2 ∈ TP C.

The set B is finite, since Ri ∈ TP C if and only if the point P is a ramification
point of π̂Ri

for i = 1, 2 by Lemma 1.
Let σ ∈ GR1 ∩GR2 and let P ∈ Csm \ (B ∪R1R2). It follows from Fact 2(1)

that σ(P ) ∈ R1P ∩ R2P = {P}. Since P is not a ramification point of π̂Ri for
i = 1, 2, it follows from Fact 2(3) that σ = 1. ¤

It follows from a generalization of Hurwitz’s theorem ([15], [17]) that the
automorphism group of a smooth curve of genus > 1 is finite. Using this theorem,
we have the following

Lemma 8. If C ⊂ P 2 has infinitely many outer Galois points, then the
automorphism group Aut(Ĉ) is infinite. Furthermore, Ĉ is rational or elliptic.

Proof. Assume that Aut(Ĉ) is finite. Then, the set
⋃

R∈∆′ GR ⊂ Aut(Ĉ)
is finite. Hence, there exist finitely many Galois points R1, . . . , Rr such that⋃

i GRi
=

⋃
R∈∆′ GR. Then, there exists R ∈ ∆′ such that R 6= Ri for any i, be-

cause ∆′ is infinite. Since GR ⊂
⋃

i GRi , there exists i such that GR ∩GRi 6= {1}.
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This is a contradiction to Lemma 7. ¤

More strongly, we prove the rationality of Ĉ.

Proposition 1. We assume that ∆′ is an infinite set. Then, Ĉ is rational.

To prove this proposition, we use a linear system. For simplicity, we assume
that Ĉ is rational or elliptic. Let R ∈ P 2 \ C be a Galois point. We take a
general line l ⊂ P 2 passing through R. Then, l ∩ C consists of exactly d smooth
points Q1, . . . , Qd. We have a divisor D := r−1(Q1) + · · ·+ r−1(Qd) on Ĉ, which
is very ample because degD ≥ 3 ≥ 2g + 1, where g is the genus of Ĉ (under
the assumption that Ĉ is rational or elliptic). Let φ : Ĉ → P N be a morphism
induced from a complete linear system |D|, which is isomorphic onto its image. It
follows from the assertions (1) and (3) in Fact 2 that σ∗(D) = D for any σ ∈ GR.
Therefore, an automorphism σ ∈ GR induces a linear transformation σ̂ on P N

such that σ̂(φ(Ĉ)) = φ(Ĉ). The plane curve C is given by a linear projection πV

of φ(Ĉ) for a linear space V ⊂ P N of dimension N − 3. Let WR be the closure of
the set π−1

V (R) ⊂ P N , which is a linear space of dimension N − 2, and let πWR

be a projection P N 99K P 1 with a center WR. Then, we can identify πR ◦ r with
πWR

◦ φ. (See also [23, Section 2], [24, Section 3].)

Proof of Proposition 1. It follows from Lemma 3 that C is a strange
curve. We can also assume that Ĉ is rational or elliptic, by Lemma 8. Let Q ∈ P 2

be the strange center and let WQ be the closure of the set π−1
V (Q) ⊂ P N .

Now we consider φ(Ĉ) ⊂ P N . By abuse of terminology, we denote φ(Ĉ) also
by Ĉ here. We prove that there exists a point P ∈ Ĉ such that TP Ĉ ∩ V 6= ∅.
If there exists a point P such that TP Ĉ ⊂ WQ, then TP Ĉ ∩ V 6= ∅ by counting
dimensions. If TP Ĉ 6⊂ WQ for any point P ∈ Ĉ, then the set

⋃
P∈Ĉ(TP Ĉ ∩WQ) ⊂

WQ is closed and irreducible. If
⋃

P∈Ĉ(TP Ĉ ∩WQ) is zero-dimensional, then Ĉ is
strange in P N . Since Ĉ is smooth in P N , this is a contradiction to Fact 1 due to
Lluis and Samuel. Therefore,

⋃
P∈Ĉ(TP Ĉ ∩WQ) is one-dimensional. Then, there

exists a point P ∈ Ĉ such that TP Ĉ ∩ V 6= ∅ by counting dimensions.
For each point R ∈ ∆′, πWR

|Ĉ is ramified at P . It follows from Fact 2(3)
and Lemma 7 that there are infinitely many automorphisms σ on Ĉ such that
σ(P ) = P . Therefore, Ĉ should be rational, because of the following basic property
of an elliptic curve: the cardinality of the automorphism group fixing a given point
is finite (see, for example, [18, Theorem 10.1]). ¤

5. Case of rational curves.

We start with the following
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Lemma 9. Let θ : P 1 → P 1 be a Galois covering of degree d with a Galois
group G. Then we have the following.

(1) If the index eP at a point P is a power of p at least 2, then the stabilizer
subgroup G(P ) of P is a Sylow p-group. Furthermore, if eP = d, then P is
the unique ramification point.

(2) If θ(P ) is the unique branch point, then θ is ramified only at P and eP = d.
Furthermore, d is a power of p.

Proof. We may assume that P = (1 : 0). First we consider the assertion
(1). Let eP = q, where q is a power of p. It follows from Fact 2(3) that the index of
G(P ) is equal to q. Let σ ∈ G(P ). Then, by direct computations, σ is represented
by a matrix

Aσ =
(

1 α
0 1

)
(A)

as an automorphism of P 1, where α ∈ K, because σ(P ) = P and σq = 1. Then,
note that

G(P ) ∩G(R) = {1} (B)

for any R 6= P because a fixed point by σ of the form (A) is uniquely determined
if σ is not identity.

Let S be a Sylow p-group containing G(P ). Now we prove a claim that the
normalizer NS(G(P )) := {τ ∈ S|τ−1(G(P ))τ = G(P )} is equal to G(P ), because
this claim implies S = G(P ) by using a lemma of Matsuyama (see [11, Lemma 2],
[21, p. 88, Theorem 1.6]).

We assume that there exists τ ∈ NS(G(P )) \G(P ). We take σ ∈ G(P ) \ {1}.
Then, there exists η ∈ G(P ) such that τ−1στ = η. We have σ(τ(P )) = τ(η(P )) =
τ(P ), hence σ = 1 because P 6= τ(P ) and the above equation (B) holds. This is a
contradiction.

Consider the latter assertion of (1). If eP = d, then G(P ) = G by Fact 2(3).
For each σ ∈ G(P )\{1}, a fixed point of σ is uniquely determined, as is mentioned
above. Therefore, we have the conclusion.

We consider the assertion (2). We prove that θ−1(θ(P )) = {P}. We assume
that θ−1(θ(P )) = {P1, P2, . . . , Ps} with s ≥ 2. Then, it follows from Fact 2(3)
and (4) that the order of G(Pi) is equal to that of G(Pj) for any i, j. Since
G(Pi)∩G(Pj) is not empty as a set,

⋃
i G(Pi) 6= G as a set by considering the order.

Let τ ∈ G \ (
⋃

i G(Pi)). Considering a matrix representing τ as an automorphism
of P 1, there is a fixed point R by τ . It follows from Fact 2(3) that R is a ramifica-



204 S. Fukasawa

tion point of θ. Now θ(R) 6= θ(P ) because τ 6∈ ⋃
i G(Pi). This is a contradiction

to the uniqueness of the branch point. Therefore, P is the unique ramification
point. We also have eP = d by Fact 2(3).

Now we prove that the index eP is a power of p. Let eP = ql, where q is a
power of p and l is not divisible by p. Let σ ∈ G(P ) = G be any element. Then,
σ is represented by a matrix

Aσ =
(

ζ α
0 1

)

as an automorphism of P 1, where ζ is an l-th root of unity and α ∈ K, because
σ(P ) = P and σql = 1. If ζ 6= 1, then we find that σ has two fixed points, by
direct computations. Therefore, ζ = 1 by our assumption. Then, any element
of G(P ) \ {1} is of order p, by direct computations. If l > 1 then there exists
an element whose order is not divisible by p, by Sylow’s theorem. This is a
contradiction. Therefore, l = 1. ¤

Proof of (1) ⇒ (2) in Theorem 1. From Lemma 3, C is a strange curve.
Let Q be the strange center. By Proposition 1, we can assume that C is rational.
From Lemmas 4 and 9(2), ∆′ ⊂ ⋃

l∈Σ l. Since
⋃

l∈Σ l is a finite union of lines, there
exists a line L containing infinitely many outer Galois points. We define Σ(L) as
before Lemma 6. We prove that Q ∈ L.

Assume that Q 6∈ L. Now (L∩∆′)\(L∩⋃
l∈Σ(L) l) is an infinite set. It follows

from Lemma 6(1)(ii) and Fact 2(5) that d is divisible by q(γ). Let n := d/q(γ).
Then, it follows form Lemma 9(1) that n is not divisible by p. Let R ∈ (L∩∆′) \
(L ∩⋃

l∈Σ(L) l). If n > 1, then it follows from Lemmas 6(1)(iii) and 9(2) that the
ramification locus of π̂R coincides with the set r−1(C∩RQ)∪r−1(C∩L). By Sylow’s
theorem, there exists σR ∈ GR\{1} whose order divides n and is not divisible by p.
Then, by Fact 2(3) and Lemma 6(1)(ii), σR does not fix any point in r−1(C∩RQ).
Since σR is a non-trivial automorphism of P 1 whose order is not divisible by p,
there exist exactly two points PR, P ′R ∈ Ĉ such that σR(PR) = PR and σR(P ′R) =
P ′R. Since PR and P ′R are ramification points not contained in r−1(C ∩RQ), they
should be contained in r−1(C ∩L). Because r−1(C ∩L) is a finite set, there exist
points P1 and P2 such that σR(P1) = P1 and σR(P2) = P2 for infinitely many R ∈
L ∩∆′. By Lemma 7, the set {σR|R ∈ ∆′, σR(P1) = P1, σR(P2) = P2} is infinite.
However, this is a contradiction to the following property on automorphisms of
P 1: for an integer n and two points P1 and P2, the number of automorphisms σ,
such that the order of σ divides n and σ fixes P1 and P2, is finite.

Let n = 1, i.e. d = q(γ). It follows from Lemma 5 that Sing(C) 6= ∅. Let
P ∈ Sing(C). Then, by Lemma 6(1)(i), P 6∈ RQ. By Lemma 5, π̂R is ramified at
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a point in the fiber π−1(P ). Therefore, π̂R has two ramification points. This is a
contradiction to the latter assertion of Lemma 9(1). ¤

Proof of (2) ⇒ (3) in Theorem 1. Assume the condition (2). Let Q be
the strange center and let L be a line such that Q ∈ L and L ∩∆′ is infinite. Let
R ∈ (L ∩ ∆′) \ (L ∩ ⋃

l∈Σ(L) l). It follows from Lemmas 6(2) and 9(2) that d is
a power of p and r−1(C ∩ L) consists of a unique point. Let d = pe and let P

be the point contained in r−1(C ∩ L). We use the same notation as in Section 4.
Let H ⊂ P N be the closure of π−1

V (L), which is a hyperplane. Since r = πV ◦ φ

on Ĉ, H ∩ φ(Ĉ) = {φ(P )}. We may assume that φ : Ĉ = P 1 → P d is given by
φ(u : v) = (ud : ud−1v : · · · : vd) and P = (1 : 0). Then, H is defined by Xd = 0
because H ∩ φ(Ĉ) = {(1 : 0 : · · · : 0)}. Let three linear forms H1,H2, Xd define
V . Then, πV = (H1 : H2 : Xd). We can take a system of coordinates on P N

such that the form H2 does not have a term X0 nor Xd, and H1 has the term
X0 and does not have Xd. Then, πV (φ(P )) = (1 : 0 : 0). Now we can write
πV ◦ φ(u : 1) = (ψ1(u) : ψ2(u) : 1), where ψ1(u) is a polynomial of degree d in
u and ψ2(u) is a polynomial of degree < d in u with ψ1(0) = ψ2(0) = 0. We
consider a line l ⊂ P 2 passing through (1 : 0 : 0). Then, by direct computations,
r−1(C ∩ l) = {P} if and only if l is defined by Z = 0. Since r−1(C ∩ L) = {P},
the line L is defined by Z = 0. Let R = (1 : t : 0) ∈ L. Then, πR = (Y − tX : Z).
Hence, πR ◦ πV ◦ φ = (ψ2 − tψ1 : 1).

We prove that ψ1 and ψ2 have only terms of degree equal to some power of
p. If ψ1 or ψ2 has a term whose degree is not a power of p, then ψ2 − tψ1 has
such a term for a general t. Therefore, we have only to prove that, for a Galois
covering P 1 → P 1; (u : 1) 7→ (Ψ(u) : 1) of degree pe such that Ψ(0) = 0 and
P = (1 : 0) is the unique ramification point with eP = pe, the polynomial Ψ has
only terms of degree equal to some power of p. Let G be the Galois group. Note
that G = G(P ), by Fact 2(3). From the form of Aσ described as the equation
(A) in the proof of Lemma 9, for any σ ∈ G, there exists α(σ) ∈ K such that
σ∗(u) = u + α(σ). Then, Ψ(u + α(σ)) = Ψ(u), since Ψ(u) = σ∗Ψ(u) = Ψ(σ∗u).
Especially Ψ(α(σ)) = Ψ(0) = 0. Note that the set {α(σ)|σ ∈ G} forms an additive
subgroup of the base field K. It follows from [4, Proposition 1.1.5 and Theorem
1.2.1] that Ψ has only terms of degree equal to some power of p.

Now we have

ψ1(u) = a0u + a1u
p + · · ·+ aeu

pe

, ψ2(u) = b0u + b1u
p + · · ·+ beu

pe

,

where ai, bi ∈ K for i = 0, . . . , e. Since the morphism ψ := πV ◦ φ = (ψ1 : ψ2 : 1) :
P 1 → P 2 is birational onto its image, we have a0b0 6= 0. We can take b0 = 1 and
a0 = 0 for a suitable system of coordinates. We have the conclusion (3). ¤
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Proof of (3) ⇒ (4) in Theorem 1. Assume the condition (3). Let

x := ψ1(u) = a1u
p + · · ·+ aeu

pe

, y := ψ2(u) = u + b1u
p + · · ·+ beu

pe

.

Then, we consider (2e + 1) elements x, xp, xp2
, . . . , xpe

, yp, yp2
, . . . , ype

, which is
contained in K[u]. Then, these elements are contained in a vector space V (over
K) which is spanned by 2e elements up, up2

, . . . , up2e

. Since V is of dimension 2e,
there exist α0, . . . , αe, β1, . . . , βe ∈ K such that

f(x, y) := αex
pe

+ · · ·+ α1x
p + α0x + βey

pe

+ · · ·+ β1y
p = 0

in K[u]. Since d = pe, the curve C is defined by f(x, y) = 0. Then, α0 6= 0, because
f(x, y) is irreducible. We can take α0 = 1 for a suitable system of coordinates. ¤

6. Proof of (4) ⇒ (1) and the distribution of Galois points.

Now we consider the curve in (4) in our Theorem 1. Let L be the line defined
by Z = 0.

Proposition 2. Let C ⊂ P 2 be an irreducible plane curve of degree pe

defined by αex
pe

+ αe−1x
pe−1

+ · · ·+ α1x
p + x + βey

pe

+ · · ·+ β1y
p = 0. Then we

have the following.

( i ) The curve C is strange with a center Q = (0 : 1 : 0), and there exists a
unique singular point P on L. (P = Q is possible.)

( ii ) ∆′ = L \ {P, Q}.
(iii) For each point R ∈ ∆′, the Galois group GR is isomorphic to (Z/pZ)⊕e.
(iv) For each point R ∈ ∆′ and any automorphism σ ∈ GR, σ can be extended

to a linear transformation on P 2.

Proof. The tangent line at a point (x0 : y0 : 1) is defined by X −x0Z = 0,
by direct computations. Therefore, C is strange with a center Q = (0 : 1 : 0). The
singular locus is given by αeX

pe

+ βeY
pe

= Z = 0. Therefore, a singular point is
unique and is contained in L. We have the assertion (i). Let P be the singular
point.

We prove that L \ {P, Q} ⊂ ∆′, and the assertions (iii) and (iv) hold for any
point R ∈ L \ {P, Q}. Let R = (1 : b : 0) ∈ L \ {P, Q}. Then, αe + bpe

βe 6= 0
and the projection πR = (y − bx : 1). Let ŷ = y − bx. Then, we have a field
extension K(x, ŷ)/K(ŷ) with h(x) := (αe + bpe

βe)xpe

+ · · ·+ (α1 + bpβ1)xp + x +
βeŷ

pe

+ · · · + β1ŷ
p = 0. This gives a Galois extension and the Galois group is

isomorphic to (Z/pZ)⊕e if αe + bpe

βe 6= 0 (see [19, pp. 117–118]). Therefore,
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R ∈ ∆′. For any σ ∈ GR, there exists c ∈ K such that σ∗(x) = x + c and
σ∗(y) = y + bc, since σ∗(ŷ) = ŷ and h(x) = h(x + c) for any c ∈ K such that
((αe + bpe

βe)xpe

+ · · ·+ (α1 + bpβ1)xp + x)(c) = 0. Hence, σ can be extended to
a linear transformation on P 2.

Finally, we prove that ∆′ ⊂ L \ {P, Q}. Let R ∈ ∆′. Then, R 6= P, Q. Now,
the assertion (1) in Theorem 1 holds. Therefore, by the result (3), normalization r

is given by the morphism ψ. We find that r−1(P ) consists of one point. Therefore,
by Bézout’s theorem, π̂R is ramified at r−1(P ). Note that a tangent line at P is
uniquely determined, which is L.

Assume that P 6= Q. If R 6∈ L, then P 6∈ RQ. This is a contradiction to
Lemma 2(2). Therefore, R ∈ L.

Assume that P = Q. Then, it follows from Lemma 2 and Fact 2(4) that the
ramification locus coincides with r−1(C ∩RQ). If RQ 6= L, then C ∩RQ contains
two points, since the line RQ = RP is not a tangent line at P in this case. This
is a contradiction to Lemma 9(2). We have RQ = L. Therefore, R ∈ L. ¤

Finally, we mention the distribution of inner Galois points for the curve.

Proposition 3. Let C ⊂ P 2 be an irreducible plane curve of degree pe

defined by αex
pe

+ αe−1x
pe−1

+ · · ·+ α1x
p + x + βey

pe

+ · · ·+ β1y
p = 0, and let ∆

be the set of all inner Galois points in Csm. Then, we find that ∆ = Csm if C is
projectively equivalent to the curve defined by x− ype

= 0, and ∆ = ∅ otherwise.

Proof. As in Proposition 2(i), C is strange with a center Q and Sing(C) =
{P} for some point P . By Proposition 2(ii), ∆′ = L \ {P, Q}. Let R ∈ ∆ and let
R1 ∈ C \ (C ∩ (RP ∪RQ)). Then, R1 ∈ Csm and RR1 ∩∆′ 6= ∅.

Let R′ ∈ RR1∩∆′. Consider the projection π̂R′ from R′. It follows from Fact
2(2) that there exists an automorphism σ ∈ GR′ such that σ(R) = R1. Since the
automorphism σ ∈ GR′ can be extended to P 2 by Proposition 2(iv), the point R1

is also Galois for C.
By the above discussion, if there exists one inner smooth Galois point, then

almost all inner points are Galois. Such a curve is projectively equivalent to the
curve given by x− ype

= 0, from a result of the previous paper [3]. For this curve,
it is also proved that ∆ = Csm in [3]. ¤
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