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Abstract. We introduce a new class of actions of the group Z2
o SLð2;ZÞ

on finite von Neumann algebras and call them twisted Bernoulli shift actions. We

classify these actions up to conjugacy and give an explicit description of their

centralizers. We also distinguish many of those actions on the AFD II1 factor in

view of outer conjugacy.

1. Introduction.

We consider the classification of Z2
o SLð2;ZÞ-actions on finite von

Neumann algebras in this paper. Mainly, we concentrate on the case that the

finite von Neumann algebra is the AFD factor of type II1 or non-atomic abelian.

There are two difficulties for analyzing discrete group actions on operator

algebras. The first is that we do not have various ways to construct actions. The

second is that we can not analyze them by concrete calculation in most cases. To

give many examples of actions which admit concrete analysis, we introduce a class

of trace preserving Z2
o SLð2;ZÞ-actions on finite von Neumann algebras and call

them twisted Bernoulli shift actions. We classify those actions up to conjugacy

and study them up to outer conjugacy.

An action �ðH;�; �Þ in the class is defined for a triplet ðH;�; �Þ, where H is

an abelian countable discrete group, � is a normalized scalar 2-cocycle of H and �

is a character of H. We obtain the action by restricting the so-called generalized

Bernoulli shift action to a subalgebra NðH;�Þ and ‘‘twisting’’ it by the character

�. The process of restriction has a vital role in concrete analysis of these actions.

A �-isomorphism which gives conjugacy between two twisted Bernoulli shift

actions �ðHa; �a; �aÞ and �ðHb; �b; �bÞ must be induced from an isomorphism

between the two abelian groups Ha and Hb. We prove this by concrete calculation

(Section 4). It turns out that there exist continuously many, non-conjugate

Z2
o SLð2;ZÞ-actions on the AFD factor of type II1 (Section 5). By using the
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same technique, we describe the centralizers of all twisted Bernoulli shift actions.

Here we should mention that the present work was motivated by the previous

ones [Ch], [NPS], where similar studies were carried out in the case of SLðn;ZÞ.
In Section 6, we distinguish many twisted Bernoulli shift actions in view of

outer conjugacy. The classification for actions of discrete amenable groups on the

AFD factor of type II1 was given by Ocneanu [Oc]. Outer actions of countable

amenable groups are outer conjugate. In the contrast to this, V. F. R. Jones [Jon]

proved that any discrete non-amenable group has at least two non outer conjugate

actions on the AFD factor of type II1. S. Popa ([Po3], [Po4], [PoSa], etc.) used

the malleability/deformation arguments for the Bernoulli shift actions to study

(weak) 1-cocycles for the actions. For some of twisted Bernoulli shift actions,

which we introduce in this paper, it is shown that (weak) 1-cocycles are

represented in simple forms under some assumption on the (weak) 1-cocycles. We

prove that there exist continuously many twisted Bernoulli shift actions which are

mutually non outer conjugate. This strengthens the result mentioned above due

to Jones in the Z2
o SLð2;ZÞ cases.

2. Preparations.

2.1. Functions det and gcd.

For the definition of twisted Bernoulli shift actions in Section 3, we define

two Z-valued functions det and gcd. The function det is given by the following

equation:

det
q

r

 !
;

q0

r0

 ! !
¼ qr0 � rq0;

q

r

 !
;

q0

r0

 !
2 Z2:

The value of the function gcd at k 2 Z2 is the greatest common divisor of the two

entries. For 0 2 Z2, let the value of gcd be 0.

LEMMA 2.1.

(1) The action of SLð2;ZÞ on Z2 preserves the functions det and gcd, that is,

detðk; k0Þ ¼ detð� � k; � � k0Þ;
gcdðkÞ ¼ gcdð� � kÞ; k; k0 2 Z2; � 2 SLð2;ZÞ:

(2) The following equation holds true:

detðk; k0Þ ¼ gcdðkÞ þ gcdðk0Þ � gcdðkþ k0Þ mod2; k; k0 2 Z2:
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PROOF. The claim (1) is a well-known fact, so we prove the claim (2). For

the function gcd, we get

gcd
q

r

 ! !
¼

1 mod 2; ðeither q or r is oddÞ,
0 mod 2; ðboth q and r are evenÞ.

(

Since the action of SLð2;ZÞ on Z2 preserves the functions det and gcd, it suffices

to show the desired equation against the following four pairs:

ðk; k0Þ ¼
0

0

 !
;

0

0

 ! !
;

1

0

 !
;

0

0

 ! !
;

1

0

 !
;

1

0

 ! !
;

1

0

 !
;

0

1

 ! !
mod2:

�

2.2. Scalar 2-cocycles for abelian groups.

We fix some notations for countable abelian groups and their scalar 2-

cocycles. For the rest of this paper, let H be an abelian countable discrete group

and suppose that any scalar 2-cocycle � : H �H ! T ¼ fz 2 C j jzj ¼ 1g is

normalized, that is, �ðg; 0Þ ¼ 1 ¼ �ð0; gÞ for g 2 H. We denote by �� the 2-cocycle

for H given by ��ðg; hÞ ¼ �ðh; gÞ; g; h 2 H. Let ��� be the function on H �H

defined by

���ðg; hÞ ¼ �ðh; gÞ�ðg; hÞ; g; h 2 H:

This is a bi-character, that is, ���ðg; �Þ and ���ð�; hÞ are characters of H. By using

this function, we can describe the cohomology class of �. See [OPT] for the proof

of the following Proposition:

PROPOSITION 2.2. Two scalar 2-cocycles �1 and �2 of H are cohomologous

if and only if ��
1�1 ¼ ��

2�2.

Let C�ðHÞ be the twisted group algebra of H with respect to the 2-cocycle �.

We denote by fuh j h 2 Hg the standard basis for C�ðHÞ as C-linear space. We

recall that the C-algebra C�ðHÞ has a structure of �-algebra defined by

ug uh ¼ �ðg; hÞ ugþh; u�
g ¼ �ðg;�gÞu�g; g; h 2 H:

Let e� be the T-valued function on
L

Z2 H �
L

Z2 H defined by
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e�ð�1; �2Þ ¼
Y
k2Z2

�ð�1ðkÞ; �2ðkÞÞ; �1; �2 2
M

Z2H: ðEq1Þ

The function e� is a normalized scalar 2-cocycle for
L

Z2 H. Let �ðHÞ be the

abelian group defined by

�ðHÞ ¼ � : Z2 ! H �nitely supported and
X
k2Z2

�ðkÞ ¼ 0

�����
( )

:

Its additive rule is defined by pointwise addition.

2.3. Definition of a Z2
o SLð2;ZÞ-action on �ðHÞ.

The group SLð2;ZÞ acts on Z2 as matrix-multiplication and the group Z2

also does on Z2 by addition. These two actions define the action of Z2
o SLð2;ZÞ

on Z2 which is explicitly described as

q

r

 !
;

x y

z w

 ! !
�

q0

r0

 !
¼

q þ xq0 þ yr0

rþ zq0 þ wr0

 !
;

for all

q

r

 !
;

x y

z w

 ! !
2 Z2

o SLð2;ZÞ;
q0

r0

 !
2 Z2:

We define an action of Z2
o SLð2;ZÞ on

L
Z2 H as

ð� � �ÞðkÞ ¼ �ð��1 � kÞ; k 2 Z2;

for � 2 Z2
o SLð2;ZÞ and � 2

L
Z2 H.

2.4. On the relative property (T) of Kazhdan.

We recall the definition of the relative property (T) of Kazhdan for a pair of

discrete groups.

DEFINITION 2.3. Let G � � be an inclusion of discrete groups. We say that

the pair ð�; GÞ has the relative property (T) if the following condition holds:

There exist a finite subset F of � and � > 0 such that if � : � ! U ðH Þ is a unitary

representation of � on a Hilbert space H with a unit vector � 2 H satisfying

k�ðgÞ� � �k < � for g 2 F , then there exists a non-zero vector 	 2 H such that

�ðhÞ	 ¼ 	 for h 2 G.
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Instead of this original definition, we use the following condition.

PROPOSITION 2.4 ([Jol]). Let G � � be an inclusion of discrete groups. The

pair ð�; GÞ has the relative property (T) if and only if the following condition holds:

For any 
 > 0, there exist a finite subset F of � and � > 0 such that if

� : � ! U ðH Þ is a unitary representation of � on a Hilbert space H with a

unit vector � 2 H satisfying k�ðgÞ� � �k < � for g 2 F , then k�ðhÞ� � �k < 
 for

h 2 G.

The pair ðZ2
o SLð2;ZÞ;Z2Þ is a typical example of group with the relative

property (T). See [Bu] or [Sh] for the proof.

2.5. Weakly mixing actions.

An action of a countable discrete group G on a von Neumann algebra N is

said to be ergodic if any G-invariant element of N is a scalar multiple of 1. The

weak mixing property is a stronger notion of ergodicity.

DEFINITION 2.5. Let N be a von Neumann algebra with a faithful normal

state �. A state preserving action ð�gÞg2G of a countable discrete group G on N is

said to be weakly mixing if for every finite subset fa1; a2; . . . ; ang � N and 
 > 0,

there exists g 2 G such that j�ðai�gðajÞÞ � �ðaiÞ�ðajÞj < 
; i; j ¼ 1; . . . ; n.

The following is a basic characterization of the weak mixing property.

Between two von Neumann algebra N and M, N �M stands for the tensor

product von Neumann algebra.

PROPOSITION 2.6 (Proposition D.2 in [Vaes]). Let N be a finite von

Neumann algebra and tr be a faithful normal tracial state. Let a countable

discrete group G act on N by trace preserving automorphisms ð�gÞg2G. The

following statements are equivalent:

(1) The action ð�gÞ is weakly mixing.

(2) The only finite-dimensional invariant subspace of N is C1.

(3) For any action ð
gÞ of G on a finite von Neumann algebra ðM; �Þ, we have
ðN �MÞ��
 ¼ 1�M
, where ðN �MÞ��
 and M
 are the fixed point

subalgebras.

2.6. A remark on group von Neumann algebras.

Let � be a discrete group and let � be a scalar 2-cocycle of �. A group � acts

on the Hilbert space ‘2� by the following two ways;

u�ð�gÞ ¼ �ð�; gÞ��g; ��ð�gÞ ¼ �ðg; ��1Þ�g��1 ; �; g 2 �:
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These two representations commute with each other. The von Neumann algebra

L�ð�Þ generated by the image of u is called the group von Neumann algebra of �

twisted by �. The normal state h��e; �ei is a trace on L�ð�Þ. The vector �e is

separating for L�ð�Þ. For any element a 2 L�ð�Þ, we define the square summable

function að�Þ on � by a�e ¼
P

aðgÞ�g. The function að�Þ is called the Fourier

coefficient of a. We write a ¼
P

g2� aðgÞug and call this the Fourier expansion of a.

The Fourier expansion of a� is given by a� ¼
P

g2� �ðg; g�1Þaðg�1Þug, since the

Fourier coefficient a�ðgÞ ¼ ha��e; �gi is described as

�e; a�g�1�e
� �

¼ ��g�1�e;
X
g

aðgÞ�g

* +
¼ �ðg; g�1Þaðg�1Þ:

Here we used the equation ��g�1 ¼ �ðg; g�1Þ�g, which is verified by direct

computation. For two elements a; b, the Fourier coefficient of ab is given by

abð�Þ ¼ hb�e; ���1a��ei ¼
X
g

a�ðgÞ�ðg; �Þbðg�Þ ¼
X
g

�ðg�1; g�Þaðg�1Þbðg�Þ:

This equation allows us to calculate the Fourier coefficient algebraically, that is,

ab ¼
X
�

X
g

�ðg�1; g�Þaðg�1Þbðg�Þ
 !

u� ¼
X
�

X
gh¼�

aðgÞbðhÞuguh:

For a subgroup � � �, the subalgebra fu� j � 2 �g00 � L�ð�Þ is isomorphic to

L�ð�Þ. We sometimes identify them. An element a 2 L�ð�Þ is in the subalgebra

L�ð�Þ if and only if the Fourier expansion að�Þ : � ! C is supported on �, since

the conditional expectation E from L�ð�Þ onto L�ð�Þ preserving h��e; �ei is

described as EðaÞ ¼
P

�2� að�Þu�.

3. Definition of twisted Bernoulli shift actions.

In this section, we introduce twisted Bernoulli shift actions of Z2
o SLð2;ZÞ

on finite von Neumann algebras. The action is defined for a triplet i ¼ ðH;�; �Þ,
where H 6¼ f0g is an abelian countable discrete group, � is a normalized scalar 2-

cocycle of H and � is a character of H. The finite von Neumann algebra, on which

the group Z2
o SLð2;ZÞ acts, is defined by the pair ðH;�Þ.

We introduce a group structure on the set �0 ¼ bH � Z2 � SLð2;ZÞ as

ðc1; k; �1Þðc2; l; �2Þ ¼ c1c2�
detðk;�1�lÞ; kþ �1 � l; �1�2

� �
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for any c1; c2 2 bH; k; l 2 Z2; �1; �2 2 SLð2;ZÞ. The associativity is verified by

Lemma 2.1 (1). It turns out that the subsets bH ¼ bH � f0g � feg and G0 ¼bH � Z2 � feg are subgroups in �0. It is easy to see that G0 is a normal subgroup of

�0 and that bH is a normal subgroup of G0 and �0. We get a normal inclusion of

groups G0= bH � �0= bH and this is isomorphic to Z2 � Z2
o SLð2;ZÞ.

Before stating the definition of the twisted Bernoulli shift action, we define a

�0-action � on the von Neumann algebra Le� ðLZ2 HÞ. We denote by uð�Þ 2
Le� ðLZ2 HÞ the unitary corresponding to � 2

L
Z2 H. We define a faithful normal

trace tr of Le� ðLZ2 HÞ in the usual way. For c 2 bH; k 2 Z2; � 2 SLð2;ZÞ, let

�ðcÞ; �ðkÞ; �ð�Þ be the linear transformations on Ce� ðLZ2 HÞ given by,

�ðcÞðuð�ÞÞ ¼
Y
l2Z2

cð�ðlÞÞ
 !

uð�Þ;

�ðkÞðuð�ÞÞ ¼
Y
m2Z2

�ð�ðmÞÞdetðk;mÞ
 !

uðk � �Þ;

�ð�Þðuð�ÞÞ ¼ uð� � �Þ; � 2 �ðHÞ:

These maps are compatible with the multiplication rule and the �-operation of

Ce� ðLZ2 HÞ . Since these maps preserve the trace, they extend to �-auto-
morphisms on Le� ðLZ2 HÞ. It is immediate to see that �ðcÞ commutes with �ðkÞ
and �ð�Þ. For k; l 2 Z2, we have the following relation:

�ðkÞ � �ðlÞðuð�ÞÞ ¼
Y
m2Z2

�ð�ðmÞÞdetðl;mÞ�ðkÞðuðl � �ÞÞ

¼
Y
m2Z2

�ð�ðmÞÞdetðl;mÞ Y
m2Z2

�ððl � �ÞðmÞÞdetðk;mÞuðk � ðl � �ÞÞ

¼
Y
m2Z2

�ð�ðmÞÞdetðl;mÞ�ð�ðmÞÞdetðk;mþlÞuððkþ lÞ � �Þ:

By detðl;mÞ þ detðk;mþ lÞ ¼ detðk; lÞ þ detðkþ l;mÞ, this equals to

Y
m2Z2

�ð�ðmÞÞ
 !detðk;lÞ Y

m2Z2

�ð�ðmÞÞdetðkþl;mÞuððkþ lÞ � �Þ

¼ �ð�detðk;lÞÞ � �ðkþ lÞðuð�ÞÞ:

Since det is SLð2;ZÞ-invariant (Lemma 2.1 (1)), for k 2 Z2; � 2 SLð2;ZÞ, we get
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�ð� � kÞ � �ð�Þðuð�ÞÞ ¼ �ð� � kÞðuð� � �ÞÞ

¼
Y
l2Z2

�ðð� � �ÞðlÞÞdetð��k;lÞuðð� � kÞ � ð� � �ÞÞ

¼
Y
l2Z2

�ð�ðlÞÞdetð��k;��lÞuð� � ðk � �ÞÞ

¼
Y
l2Z2

�ð�ðlÞÞdetðk;lÞ�ð�Þðuðk � �ÞÞ

¼ �ð�Þ � �ðkÞðuð�ÞÞ; � 2 �ðHÞ:

By the above two equations, � satisfies the following formula:

ð�ðc1Þ � �ðkÞ � �ð�1ÞÞ � ð�ðc2Þ � �ðlÞ � �ð�2ÞÞ
¼ �ðc1Þ � �ðc2Þ � �ðkÞ � �ð�1Þ � �ðlÞ � �ð�2Þ
¼ �ðc1Þ � �ðc2Þ � �ðkÞ � �ð�1 � lÞ � �ð�1Þ � �ð�2Þ
¼ �ðc1Þ � �ðc2Þ � �ð�detðk;�1�lÞÞ � �ðkþ ð�1 � lÞÞ � �ð�1�2Þ
¼ �ðc1c2�detðk;�1�lÞÞ � �ðkþ ð�1 � lÞÞ � �ð�1�2Þ:

With �ðc; k; �Þ ¼ �ðcÞ � �ðkÞ � �ð�Þ, � gives a �0-action on Le� ðLZ2 HÞ.
We define the finite von Neumann algebra NðH;�Þ as the group von

Neumann algebra Le� ð�ðHÞÞ. By using Fourier coefficients, we can prove that

NðH;�Þ is the fixed point algebra under the bH-action �ð bH; 0; eÞ on Le� ðLZ2 HÞ.
We get a Z2

o SLð2;ZÞ-action on NðH;�Þ by

�ðk; �ÞðxÞ ¼ �ð1; k; �ÞðxÞ; k 2 Z2; � 2 SLð2;ZÞ; x 2 NðH;�Þ:

This is the definition of the twisted Bernoulli shift action � ¼ �ðH;�; �Þ on

NðH;�Þ.
We obtained the actions �ðH;�; �Þ not only by twisting generalized Bernoulli

shift actions but also restricting to subalgebras NðH;�Þ � Lb� ðLZ2 HÞ ¼N
Z2 L�ðHÞ. This restriction allows us to classify the actions up to conjugacy in

the next section. In order to give a variety of the actions, we twisted the shift

actions by the character � of the abelian group H.

REMARK 3.1. The action �jZ2 ¼ �ðH;�; �ÞjZ2 has the weak mixing prop-

erty. In definition 2.5, we may assume that the Fourier coefficients of ai 2 N ¼
NðH;�Þ are finitely supported ði ¼ 1; 2; . . . ; nÞ, by approximating in the L2-norm.

Then for appropriate k 2 Z2, we get trðai�ðkÞðajÞÞ ¼ trðaiÞtrðajÞ; i; j ¼ 1; 2; . . . ; n.
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4. Classification up to conjugacy.

In this section, we classify the twisted Bernoulli shift actions f�ðH;�; �Þg up

to conjugacy (Theorem 4.1). We prove that an isomorphism which gives

conjugacy between two twisted Bernoulli shift actions is of a very special form.

In fact, it comes from an isomorphism on the level of base groups H. We also

determine the centralizer of the Z2
o SLð2;ZÞ-action �ðH;�; �Þ on NðH;�Þ

(Theorem 4.4).

We fix some notations for the proofs. We define 0; e1; e2 2 Z2 as

0 ¼
0

0

 !
; e1 ¼

1

0

 !
; e2 ¼

0

1

 !
:

Let � be the element of Z2
o SLð2;ZÞ satisfying

� � 0 ¼ e1; � � e1 ¼ e2; � � e2 ¼ 0:

The elements � and �2 are explicitly described as

� ¼ e1;
�1 �1

1 0

 ! !
,

�2 ¼ e2;
0 1

�1 �1

 ! !
.

8>>>>><>>>>>:
The order of � is 3. Let 	; � 2 SLð2;ZÞ be given by 	 ¼ �1 0

0 �1

� �
, � ¼ 1 1

0 1

� �
.

Let D be the subset of all elements of Z2 fixed under the action of �, that is,

D ¼
n

0

 ! ����� n 2 Z

( )
:

Then we get

� �D ¼
1� n

n

 ! ����� n 2 Z

( )
; �2 �D ¼

0

1� n

 ! ����� n 2 Z

( )
:

We define the subgroup �DðHÞ of �ðHÞ by

Classification and centralizers 143



�DðHÞ ¼ f� 2 �ðHÞ j � : Z2 ! H is supported on Dg:

Let ðHa; �a; �aÞ and ðHb; �b; �bÞ be triplets of countable abelian groups, their

normalized 2-cocycles and characters. For h 2 Ha, we define �h 2 �DðHaÞ as

�hðkÞ ¼
h ðk ¼ e1Þ,

�h ðk ¼ 0Þ,
0 ðk 6¼ e1; 0Þ.

8><>:
For g 2 Hb, we define �g 2 �DðHbÞ as

�gðkÞ ¼
g ðk ¼ e1Þ,

�g ðk ¼ 0Þ,
0 ðk 6¼ e1; 0Þ.

8><>:
We denote by vð�Þ 2 NðHb; �bÞ the unitary corresponding to � 2 �ðHbÞ.

THEOREM 4.1. If � : NðHa; �aÞ ! NðHb; �bÞ is a �-isomorphism giving

conjugacy between �a ¼ �ðHa; �a; �aÞ and �b ¼ �ðHb; �b; �bÞ, then there exists a

group isomorphism � ¼ �� : Ha ! Hb satisfying

(1) �ðuð�ÞÞ ¼ vð� � �Þ mod T for � 2 �ðHaÞ,
(2) the 2-cocycles �að�; �Þ and �bð�ð�Þ; �ð�ÞÞ of Ha are cohomologous,

(3) �2
a ¼ ð�b � �Þ2:

Conversely, given a group isomorphism � : Ha ! Hb satisfying (2) and (3), there

exists a �-isomorphism � ¼ �� : NðHa; �aÞ ! NðHb; �bÞ which satisfies condition

(1) and gives conjugacy between �a, �b.

We note that by Proposition 2.2 the condition (2) for � is equivalent to

(2)0 ��
a�aðg; hÞ ¼ ��

b�bð�ðgÞ; �ðhÞÞ; g; h 2 Ha:

PROOF FOR THE FIRST HALF OF THEOREM 4.1. Suppose that there exists a

(not necessarily trace preserving) �-isomorphism � from NðHa; �aÞ onto NðHb; �bÞ
such that � � �að�Þ ¼ �bð�Þ � �; � 2 Z2

o SLð2;ZÞ.
We prove that for every h 2 Ha there exists �ðhÞ 2 Hb satisfying

�ðuð�hÞÞ ¼ vð��ðhÞÞ modT. Let Uh denote the unitary in NðHb; �bÞ

Uh ¼ � �aðh;�hÞuð�hÞ
� �

; h 2 Ha:
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We identify NðH;�Þ with the subalgebra of the infinite tensor productN
Z2 L�ðHÞ, which is canonically isomorphic to Le� LZ2 H

� 	
. The preimage

��1ðUhÞ can be written as u�
h � uh. Here uh is the unitary corresponding to h 2 Ha

and placed on 1 2 Z2 and the unitary u�
h is placed on 0 2 Z2. We describe Uh as

the Fourier expansion Uh ¼
P

�2�ðHbÞ cð�Þvð�Þ. Since e1 and 0 are fixed under the

action of �, one has

�bð�ÞnðUhÞ ¼ � � �að�Þnð��1ðUhÞÞ ¼ Uh:

It follows that the Fourier expansion Uh ¼
P

�2�ðHbÞ cð�Þvð�Þ must satisfy that

cð�Þ ¼ cð��n � �Þ for every � 2 �ðHbÞ and n 2 Z. For � 2 �ðHbÞ n �DðHbÞ, the orbit
of � under the action of ��1 is an infinite set, since the support suppð�Þ � Z2 is not

included in D. It turns out that cð�Þ ¼ 0 for all � 2 �ðHbÞ n �DðHbÞ due toP
�2�ðHbÞ jcð�Þj

2 ¼ 1 < þ1, so that Uh ¼
P

�2�DðHbÞ cð�Þvð�Þ.
The unitary �aðhÞU�

h is also fixed under the action of � and can be written as

�aðhÞU�
h ¼ � �aðhÞ�aðh;�hÞuð��hÞ

� �
¼ � �aðhÞ�aðh;�hÞuð� � �hÞ

� �
� �aðh;�hÞuð�2 � �hÞ
� �

¼ �bð�ÞðUhÞ�bð�2ÞðUhÞ:

Letting ne1 ¼ ðn; 0ÞT 2 Z2, we get

�bð�ÞðUhÞ ¼ �bð�Þ
X

cð�Þ vð�Þ
� �

¼
X

�2�DðHbÞ
cð�Þ vð� � �Þ

Y
n2Z

�bð�ðne1ÞÞn;

�bð�2ÞðUhÞ ¼ �bð�2Þ
X

cð�Þ vð�Þ
� �

¼
X

�2�DðHbÞ
cð�Þ vð�2 � �Þ:

Since Fourier expansion admits algebraical calculation as in subsection 2.6, the

expansion of �aðhÞU�
h is

�aðhÞU�
h ¼ �bð�ÞðUhÞ�bð�2ÞðUhÞ

¼
X

�1;�22�DðHbÞ
cð�1Þ cð�2Þ vð� � �1Þ vð�2 � �2Þ

Y
n2Z

�bð�1ðne1ÞÞn

¼
X

�1;�22�DðHbÞ
cð�1Þ cð�2Þ e�bð� � �1; �

2 � �2Þ
Y
n2Z

�bð�1ðne1ÞÞn vð� � �1 þ �2 � �2Þ:
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The map �DðHbÞ � �DðHbÞ 3 ð�1; �2Þ 7! � � �1 þ �2 � �2 2 �ðHbÞ is injective. In-

deed, �1 is uniquely determined by � � �1 þ �2 � �2, since �1ðkÞ ¼ ð� � �1 þ �2 � �2Þð� �
kÞ; k 2 D n fe1g and �1ðe1Þ ¼ �

P
k2Dnfe1g �1ðkÞ. Here we used the conditionP

�1ðkÞ ¼ 0. The element �2 is also determined by � � �1 þ �2 � �2. Thus the index

ð�1; �2Þ uniquely determines � � �1 þ �2 � �2.

We take arbitrary elements �1; �2 2 �DðHbÞ and suppose that cð�1Þ 6¼ 0;

cð�2Þ 6¼ 0. Since the unitary �aðhÞU�
h is invariant under the action of � and the

coefficient of � � �1 þ �2 � �2 is not zero, � � �1 þ �2 � �2 is supported on D. It follows

that the elements �1 and �2 can be written as �1 ¼ ��ðhÞ ¼ �2, by some �ðhÞ 2 Hb.

Indeed, since the subsets D n f0; e1g; �D n fe1; e2g and �2D n fe2; 0g are mutually

disjoint, the element � � �1 must be supported on fe1; e2g and the element �2 � �2

must be supported on fe2; 0g. By the assumption
P

k2Z2 �iðkÞ ¼ 0 ði ¼ 1; 2Þ, �i can

be written as ��ðhiÞ. Then using the fact that ð� � �1 þ �2 � �2Þðe2Þ ¼ �1ðe1Þ þ
�2ð0Þ ¼ 0, we get that �1 ¼ ��ðhÞ ¼ �2 for some �ðhÞ 2 Hb. This means that there

exists only one � 2 �ðHbÞ such that cð�Þ 6¼ 0 and that it is of the form � ¼ ��ðhÞ.

Then the unitary Uh satisfies Uh ¼ �ðuð�hÞÞ ¼ vð��ðhÞÞ modT .

We claim that the map � ¼ �� : Ha ! Hb is a group isomorphism. For all

h1; h2 2 Ha, we get

�ðuð�h1þh2ÞÞ ¼ �ðuð�h1ÞÞ �ðuð�h2
ÞÞ ¼ vð��ðh1ÞÞ vð��ðh2ÞÞ

¼ vð��ðh1Þ þ ��ðh2ÞÞ ¼ vð��ðh1Þþ�ðh2ÞÞ modT :

On the other hand, we get �ðuð�h1þh2ÞÞ ¼ vð��ðh1þh2ÞÞ modT. Since fvð�Þg are

linearly independent, we get ��ðh1þh2Þ ¼ ��ðh1Þþ�ðh2Þ, and hence

�ðh1 þ h2Þ ¼ �ðh1Þ þ �ðh2Þ:

This means that the map � is a group homomorphism. The bijectivity of the

�-isomorphism � leads to that of the group homomorphism � ¼ ��. Since f� �
�h j � 2 Z2

o SLð2;ZÞ; h 2 Hag � �ðHaÞ generates �ðHaÞ, we get �ðuð�ÞÞ ¼ vð� �
�Þ modT for � 2 �ðHaÞ.

We prove that the group isomorphism � ¼ �� satisfies the conditions (2) and

(3) in the theorem. For all h 2 Ha, there exists cðhÞ 2 T satisfying

Uh ¼ � �aðh;�hÞ uð�hÞ
� �

¼ cðhÞ�bð�ðhÞ;��ðhÞÞ vð��ðhÞÞ:

Since ðe1; 	Þ 2 Z2
o SLð2;ZÞ acts on Z2 as ðe1; 	Þ � e1 ¼ 0; ðe1; 	Þ � 0 ¼ e1, we get
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Uh �bðe1; 	ÞðUhÞ ¼ � �aðh;�hÞuð�hÞ�aðh;�hÞuð��hÞ
� �

¼ �aðh;�hÞ2 e�að�h;��hÞ ¼ 1;

where the function e�a is defined by the equation (Eq1) in subsection 2.2.

The following equation also holds:

Uh �bðe1; 	ÞðUhÞ ¼ cðhÞ�bð�ðhÞ;��ðhÞÞ vð��ðhÞÞ cðhÞ�bð�ðhÞ;��ðhÞÞ vð���ðhÞÞ

¼ cðhÞ2 �bð�ðhÞ;��ðhÞÞ2 e�bð��ðhÞ;���ðhÞÞ ¼ cðhÞ2:

Thus we have cðhÞ 2 f1;�1g for h 2 Ha.

Since � � e1 ¼ e2, � � e2 ¼ 0 and � � 0 ¼ e1, we have

Uh �bð�ÞðUhÞ�bð�2ÞðUhÞ

¼ � �aðh;�hÞuð�hÞ
� �

� �aðhÞ�aðh;�hÞuð� � �hÞ
� �

� �aðh;�hÞuð�2 � �hÞ
� �

¼ �aðhÞ:

On the other hand, we have the following:

Uh �bð�ÞðUhÞ�bð�2ÞðUhÞ ¼ cðhÞ�bð�ðhÞ;��ðhÞÞ vð��ðhÞÞ

cðhÞ�bð�ðhÞÞ�bð�ðhÞ;��ðhÞÞ vð� � ��ðhÞÞ

cðhÞ�bð�ðhÞ;��ðhÞÞ vð�2 � ��ðhÞÞ

¼ cðhÞ3 �bð�ðhÞÞ ¼ cðhÞ�bð�ðhÞÞ:

It follows that

cðhÞ ¼ �bð�ðhÞÞ�aðhÞ ðEq2Þ

and �bð�ðhÞÞ2 ¼ �aðhÞ2, for all h 2 Ha.

We recall that the algebra Le�a
ð
L

Z2 HaÞ is canonically identified with the

infinite tensor product
N

Z2 L�a
ðHaÞ. The unitary ��1ðUhÞ 2 NðHa; �aÞ �N

Z2 L�a
ðHaÞ can be written as 1� u�

h � uh, where 1 is placed on �e1 2 Z2, u�
h is

placed on 0 and uh is placed on e1. Since 	 2 Z2
o SLð2;ZÞ acts on Z2 as

	 � e1 ¼ �e1, 	 � 0 ¼ 0, the unitary ��1ð�bð	ÞðUgÞÞ can be written as ug � u�
g � 1. We

have the following equation:
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Ug �bð	ÞðUhÞU�
g �bð	ÞðUhÞ�

¼ �ðð1� u�
g � ugÞðuh � u�

h � 1Þð1� u�
g � ugÞ�ðuh � u�

h � 1Þ�Þ ¼ ��
a�aðg; hÞ:

The unitary Uh can be written as cðhÞð1�v��ðhÞ�v�ðhÞÞ2NðHb; �bÞ�
N

Z2 L�b
ðHbÞ.

Here we write v�ðhÞ for the unitary in L�b
ðHbÞ corresponding to �ðhÞ. The unitary

�bð	ÞðUgÞ can be written as cðgÞðv�ðgÞ � v��ðgÞ � 1Þ. Then we get

Ug �bð	ÞðUhÞU�
g �bð	ÞðU�

hÞ
¼ ð1� v��ðgÞ � v�ðgÞÞðv�ðhÞ � v��ðhÞ � 1Þð1� v��ðgÞ � v�ðgÞÞ�ðv�ðhÞ � v��ðhÞ � 1Þ�

¼ ��
b�bð�ðgÞ; �ðhÞÞ:

Thus we get ��
a�aðg; hÞ ¼ ��

b�bð�ðgÞ; �ðhÞÞ, for all g; h 2 Ha. We proved that the

group isomorphism � ¼ �� satisfies the conditions ð1Þ, ð2Þ and ð3Þ. �

From a group homomorphism which satisfies the conditions ð2Þ and ð3Þ, we
construct a �-homomorphism from NðHa; �aÞ to NðHb; �bÞ with the condition (1).

In the construction, the function b� on �ðHÞ given below is useful. We fix an index

for Z2 as Z2 ¼ fk0; k1; k2; . . .g throughout the rest of this section. For a scalar 2-

cocycle � of H, we define the function b� by

b�ð�Þ ¼Yn
j¼1

�
Xj�1

i¼0

�ðkiÞ; �ðkjÞ
 !

; � 2 �ðHÞ;

where � is supported on fk0; k1; k2; . . . ; kng. This definition depends on the choice

of an order on Z2. Since
P

i �ðkiÞ ¼ 0, the function b� is also given by the following

relation in C�ðHÞ:

b�ð�Þ1 ¼ u�ðk0Þu�ðk1Þu�ðk2Þ � � �u�ðknÞ; � 2 �ðHÞ:

If � is a coboundary, then the definition of b� does not depend on the order on Z2,

since C�ðHÞ is commutative.

LEMMA 4.2. Let �0 be another normalized scalar 2-cocycle for H. Let e�0 be

the scalar 2-cocycle on �ðHÞ � �ðHÞ given in the same way as equation (Eq1) in

subsection 2.2 and let b�0 be the function on �ðHÞ constructed from �0 in the above

manner. If the scalar 2-cocycles � and �0 are cohomologous, then for all

�1; �2 2 �ðHÞ, we have the equation
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e�ð�1; �2Þ b�ð�1Þ b�ð�2Þ b�ð�1 þ �2Þ ¼ e�0ð�1; �2Þ b�0ð�1Þ b�0ð�2Þ b�0ð�1 þ �2Þ:

PROOF. We denote by f�ðg; hÞg the scalar 2-cocycle f�0ðg; hÞ�ðg; hÞg of H.

Since � is a 2-coboundary, there exists fcðgÞgg2H � T satisfying �ðg; hÞ ¼
bðgÞbðhÞbðgþ hÞ. Then the map b� becomes b�ð�Þ ¼Qi bð�ðkiÞÞ. Since

b�ð�1Þ b�ð�2Þ ¼
Y
i

bð�1ðkiÞÞ bð�2ðkiÞÞ;

e�ð�1; �2Þ ¼
Y
i

bð�1ðkiÞÞ bð�2ðkiÞÞ bð�1ðkiÞ þ �2ðkiÞÞ;

b�ð�1 þ �2Þ ¼
Y
i

bð�1ðkiÞ þ �2ðkiÞÞ:

we get b�ð�1Þ b�ð�2Þ ¼ e�ð�1; �2Þ b�ð�1 þ �2Þ. By the definitions of e�; e�0; b� and b�0, the

maps b� and e� are given by

b�ð�Þ ¼ b�ð�Þ b�0ð�Þ; e�ð�1; �2Þ ¼ e�ð�1; �2Þ e�0ð�1; �2Þ:

Thus the desired equality immediately follows. �

PROOF FOR THE SECOND HALF OF THEOREM 4.1. Suppose that there exists

a group isomorphism � satisfying the conditions (2) and (3) in the theorem. We

prove that there exists a �-isomorphism � ¼ �� from NðHa; �aÞ onto NðHb; �bÞ
preserving the Z2

o SLð2;ZÞ-actions with the condition (1).

We define a group homomorphism c� from Ha to f1;�1g � T by

c�ðhÞ ¼ �bð�ðhÞÞ�aðhÞ; h 2 Ha:

Let ec� be the group homomorphism from �ðHaÞ to f1;�1g � T given by

ec�ð�Þ ¼ Y
k2Z2

c�ð�ðkÞÞgcdðkÞ ¼
Y
k2Z2

�að�ðkÞÞgcdðkÞ�bð�ð�ðkÞÞÞ
gcdðkÞ

; � 2 �ðHaÞ:

We define a linear map � from the group algebra Ce�a
ð�ðHaÞÞ onto Ce�b

ð�ðHbÞÞ by

� b�að�Þuð�Þ
� �

¼ ec�ð�Þ b�bð� � �Þ vð� � �Þ; � 2 �ðHaÞ:

By direct computations, for all �1; �2 2 �ðHaÞ, we get
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� b�að�1Þuð�1Þ
� �

� b�að�2Þ uð�2Þ
� �

¼ ec�ð�1Þ ec�ð�2Þ b�bð� � �1Þ b�bð� � �2Þ vð� � �1Þ vð� � �2Þ

¼ ec�ð�1 þ �2Þ b�bð� � �1Þ b�bð� � �2Þ b�bð� � �1; � � �2Þ vð� � ð�1 þ �2ÞÞ:

On the other hand, we have the following equation:

� b�að�1Þ b�að�2Þuð�1Þ uð�2Þ
� �
¼ � b�að�1Þ b�að�2Þ e�að�1; �2Þuð�1 þ �2Þ

� �
¼ b�að�1Þ b�að�2Þ e�að�1; �2Þ b�að�1 þ �2Þ � b�að�1 þ �2Þuð�1 þ �2Þ

� �
¼ ec�ð�1 þ �2Þ b�að�1Þ b�að�2Þ e�að�1; �2Þ b�að�1 þ �2Þb�bð� � ð�1 þ �2ÞÞ vð� � ð�1 þ �2ÞÞ:

By Lemma 4.2 and the condition (2) for the group isomorphism � in the theorem,

we have that

b�bð� � �1Þ b�bð� � �2Þ e�bð� � �1; � � �2Þ

¼ b�að�1Þ b�að�2Þ e�að�1; �2Þ b�að�1 þ �2Þ b�bð� � ð�1Þ þ � � ð�2ÞÞ:

Therefore we get �ðuð�1ÞÞ �ðuð�2ÞÞ ¼ �ðuð�1Þ uð�2ÞÞ. The linear map � also

preserves the �-operation. As a consequence, � is a �-isomorphism from

Ce�a
ð�ðHaÞÞ onto Ce�b

ð�ðHbÞÞ and this preserves the trace. The map � ¼ �� is

extended to a normal �-isomorphism from NðHa; �aÞ onto NðHb; �bÞ.
We next prove that this � preserves the Z2

o SLð2;ZÞ-actions. The group

homomorphism ec� from �ðHaÞ to f1;�1g is invariant under the action of SLð2;ZÞ,
by Lemma 2.1 ð1Þ. The scalar 2-cocycle �ðg; hÞ ¼ �aðg; hÞ�bð�ðhÞ; �ðgÞÞ satisfies

�ðg; hÞ ¼ �ðh; gÞ by condition (2), so the function b�ð�Þ ¼ b�að�Þ b�bð� � �Þ on �ðHaÞ
does not depend on the order on Z2 chosen before. Since

� � �að�Þðuð�ÞÞ ¼ �ðuð� � �ÞÞ

¼ ec�ð� � �Þ b�að� � �Þ b�bð� � ð� � �ÞÞvð� � ð� � �ÞÞ

¼ ec�ð�Þ b�að�Þ b�bð� � �Þvð� � ð� � �ÞÞ

¼ �bð�Þ ec�ð�Þ b�að�Þ b�bð� � �Þvð� � �Þ
� �

¼ �bð�Þ � �ðuð�ÞÞ; � 2 SLð2;ZÞ; � 2 �ðHaÞ;
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it turns out that the �-isomorphism � is compatible with the SLð2;ZÞ-actions
�ajSLð2;ZÞ and �bjSLð2;ZÞ.

For all � 2 �ðHaÞ and k 2 Z2, we have

� � �aðkÞðuð�ÞÞ ¼ �
Y
l2Z2

�að�ðlÞÞdetðk;lÞuðk � �Þ
 !

¼
Y
l2Z2

c�ððk � �ÞðlÞÞgcdðlÞ
Y
l2Z2

�að�ðlÞÞdetðk;lÞ b�aðk � �Þ b�bð� � ðk � �ÞÞ vð� � ðk � �ÞÞ:

Since c�ðhÞdetðk;lÞc�ðhÞgcdðkþlÞ ¼ c�ðhÞgcdðkÞc�ðhÞgcdðlÞ, by Lemma 2.1 ð2Þ, the unitary
� � �aðkÞðuð�ÞÞ equals toY

l2Z2

c�ð�ðlÞÞgcdðkþlÞ Y
l2Z2

c�ð�ðlÞÞdetðk;lÞ�bð� � �ðlÞÞdetðk;lÞ
� �

b�aðk � �Þ b�bð� � ðk � �ÞÞ vð� � ðk � �ÞÞ

¼
Y
l2Z2

c�ð�ðlÞÞgcdðkÞ
Y
l2Z2

c�ð�ðlÞÞgcdðlÞ
Y
l2Z2

�bð� � �ðlÞÞdetðk;lÞ

b�aðk � �Þ b�bð� � ðk � �ÞÞ vðk � ð� � �ÞÞ

¼ ec�ð�Þ b�aðk � �Þ b�bðk � ð� � �ÞÞ �bðkÞðvð� � �ÞÞ
¼ �bðkÞ � �ðuð�ÞÞ:

This means that the �-isomorphism � preserves the Z2-actions.

We get the �-isomorphism � ¼ �� from NðHa; �aÞ onto NðHb; �bÞ giving

conjugacy between �a and �b. �

REMARK 4.3. The proof of the first half of Theorem 4.1 shows that any

isomorphism � giving conjugacy between �a and �b is of the form ��. This means

that an isomorphism which gives conjugacy between two twisted Bernoulli shift

actions must be trace preserving.

This proof shows that an isomorphism giving conjugacy between the two

actions �ðHa; �a; �aÞ, �ðHb; �b; �bÞ is of a very special form derived from a group

isomorphism between Ha and Hb. Taking notice of this fact, we can describe the

centralizer of a twisted Bernoulli shift action. We define two topological groups

before we state Theorem 4.4.

Let � be a trace preserving action of some group � on a separable finite von

Neumann algebra ðN; trÞ. We denote by AutðN; �Þ the group of all automor-

phisms which commute with the action �, that is,
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f
 2 AutðNÞ j �ð�Þ � 
 ¼ 
 � �ð�Þ; � 2 �g:

We regard the group AutðN; �Þ as a topological group equipped with the

pointwise-strong topology. When � is a twisted Bernoulli shift action on N, an

automorphism 
 commuting with � is necessarily trace preserving by Remark 4.3.

We consider that AutðN; �Þ is equipped with the pointwise-2-norm topology.

Let AutðH;�; �Þ be the group of all automorphisms of an abelian group H

which preserve its 2-cocycle � and character �, that is,

f� 2 AutðHÞ j �ðg; hÞ ¼ �ð�ðgÞ; �ðhÞÞ; �ðgÞ ¼ �ð�ðgÞÞ; g; h 2 Hg:

We define the topology of AutðH;�; �Þ by pointwise convergence.

THEOREM 4.4. For � 2 AutðNðH;�Þ; �ðH;�; �ÞÞ, there exists a unique

element � ¼ �� 2 AutðH;���; �2Þ satisfying �ðuð�ÞÞ ¼ uð� � �Þ mod T for � 2
�ðHÞ. The map � 7! �� gives an isomorphism between two topological groups

AutðNðH;�Þ; �ðH;�; �ÞÞ ¼� AutðH;���; �2Þ:

PROOF. We use the notations in the proof of the previous theorem, letting

Ha ¼ Hb ¼ H, �a ¼ �b ¼ � and �a ¼ �b ¼ �. Denote N ¼ NðH;�Þ and � ¼
�ðH;�; �Þ. We have already have shown the first claim. Let

AutðH;���; �2Þ 3 � 7! �� 2 AutðN; �Þ;

be the map given as in the proof of Theorem 4.1, that is,

�� b�ð�Þuð�Þ� �
¼ ec�ð�Þ b�ð� � �Þuð� � �Þ; � 2 �ðHÞ;

where

ec�ð�Þ ¼ Y
k2Z2

�ð�ðkÞÞgcdðkÞ �ð� � �ðkÞÞgcdðkÞ:

It is easy to prove that ��� ¼ � by the definition. Thus the map � 7! �� is

surjective. We prove that this map is injective. Let � be an element of

AutðH;���; �2Þ. Suppose that � is an arbitrary element of AutðN; �Þ satisfying

� ¼ ��. The set f�ð�Þðuð�hÞÞ j h 2 H; � 2 Z2
o SLð2;ZÞg generates N, so we

have only to prove the uniqueness of cðhÞ 2 T satisfying
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� �ðh;�hÞuð�hÞ
� �

¼ cðhÞ�ð�ðhÞ;��ðhÞÞ uð��ðhÞÞ;

for all h 2 H. In the proof of the first half of the previous theorem (equation

(Eq2)), we have already shown that cðhÞ ¼ �ðhÞ�ð�ðhÞÞ. Thus the �-isomorphism

� is uniquely determined and the map � 7! �� is injective.

We prove the two maps � 7! �� and � 7! �� are continuous. Let ð�iÞ be a net

in AutðH;���; �2Þ converging to �. For all h 2 H, we have

��i
�ðhÞ�ðh;�hÞuð�hÞ
� �

¼ �ð�iðhÞÞ�ð�iðhÞ;��iðhÞÞ uð��iðhÞÞ:

The right side of the equation converges to

�ð�ðhÞÞ�ð�ðhÞ;��ðhÞÞ uð��ðhÞÞ ¼ �� �ðhÞ�ðh;�hÞuð�hÞ
� �

:

This proves that ��i
converges to �� in pointwise 2-norm topology on the

generating set f�ð�Þðuð�hÞÞ j h 2 H; � 2 Z2
o SLð2;ZÞg of N. Thus ��i

converges

to �� on N.

Conversely, let ð�iÞ be a net in AutðN; �Þ converging to �. For all h 2 H, we

get �iðuð�hÞÞ ¼ uð���i ðhÞÞ modT . The left side of the equation converges to

�ðuð�hÞÞ ¼ uð���ðhÞÞ. If ��iðhÞ 6¼ ��ðhÞ, then the distance between Tuð���ðhÞÞ and
Tuð���i ðhÞÞ is

ffiffiffi
2

p
in the 2-norm. Thus ��iðhÞ ¼ ��ðhÞ for large enough i. This

means that ð��iÞ converges to ��.

As a consequence, the two maps � 7! �� and � 7! �� are continuous group

homomorphisms and inverse maps of each other. �

5. Examples.

5.1. Twisted Bernoulli shift actions on L1ðXÞ.
In this subsection, we consider the case of � ¼ 1 and H 6¼ f0g. Then the

algebra NðH; 1Þ is abelian and has a faithful normal state, so it is isomorphic to

L1ðXÞ, where X is a standard probability space. The measure of X is determined

by the trace on NðH; 1Þ. Furthermore, X is non-atomic, since NðH; 1Þ is infinite
dimensional and the action �ðH; 1; �Þ is ergodic. As corollaries of Theorems 4.1

and 4.4, we get trace preserving Z2
o SLð2;ZÞ-actions on L1ðXÞ whose central-

izers are isomorphic to some prescribed groups.

REMARK 5.1. The Z2
o SLð2;ZÞ-action on X defined by � ¼ �ðH; 1; �Þ is

free. An automorphism 
 2 AutðL1ðXÞ; �Þ is free or the identity map for any

twisted Bernoulli shift action � on L1ðXÞ. This is proved as follows. We identify
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�ð�Þ ð� 2 Z2
o SLð2;ZÞÞ and 
 with measure preserving Borel isomorphisms on X

here. Suppose that there exists a non-null Borel subset Y � X whose elements are

fixed under 
. All elements in eY ¼
S
f�ð�ÞðY Þ j � 2 Z2

o SLð2;ZÞg are fixed

under 
. By the ergodicity of �, the measure of eY is 1. Then 
 is the identity map

of L1ðXÞ.

COROLLARY 5.2. For any abelian countable discrete group H 6¼ f0g, there
exists a trace preserving essentially free ergodic action � of Z2

o SLð2;ZÞ on

L1ðXÞ satisfying

AutðL1ðXÞ; �Þ ¼� AutðHÞ:

PROOF. When we define � ¼ �ðH; 1; 1Þ, we have the above relation by

Theorem 4.4. �

In the next corollary we use the effect of twisting by a character �.

COROLLARY 5.3. For every abelian countable discrete group H 6¼ f0g, there
exist continuously many trace preserving essentially free ergodic actions f�cg of

Z2
o SLð2;ZÞ on L1ðXÞ which are mutually non-conjugate and satisfy

AutðL1ðXÞ; �cÞ ¼� H oAutðHÞ:

Here the topology of H o AutðHÞ is the product of the discrete topology on H and

the pointwise convergence topology on AutðHÞ.

PROOF. Let c 2 fei�t j t 2 ð0; 1=2Þ nQg. We put �c ¼ �ðH 	 Z ; 1; 1� �cÞ,
where the character �c of Z is defined as �cðnÞ ¼ cn. By Theorem 4.4, we get

AutðL1ðXÞ; �cÞ ¼� AutðH 	 Z ; 1; 1� �2
cÞ:

Since the character �2
c is injective, a group automorphism 
 2 AutðH 	

Z ; 1; 1� �2
cÞ preserves the second entry. For all 
 2 AutðH 	 Z ; 1; 1� �2

cÞ, there
exist �
 2 AutðHÞ and h
 2 H satisfying


ðh; nÞ ¼ ð�
ðhÞ þ nh
; nÞ; ðh; nÞ 2 H 	 Z :

The map AutðH 	 Z ; 1; 1� �2
cÞ 3 
 7! ðh
; �
Þ 2 H o AutðHÞ is a homeomorphic

group isomorphism.

If c1; c2 2 fei�t j t 2 ð0; 1=2Þ nQg and c1 6¼ c2, then there exists no isomor-

phism from H 	 Z to H 	 Z whose pull back of the character 1� �2
c2
is equal to

1� �2
c1
. The two actions �c1 and �c2 are not conjugate by Theorem 4.1. �
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COROLLARY 5.4. There exist continuously many trace preserving essen-

tially free ergodic actions f�cg of Z2
o SLð2;ZÞ on L1ðXÞ which are mutually non-

conjugate and have the trivial centralizer AutðL1ðXÞ; �cÞ ¼ fidL1Xg.

PROOF. Let f�c j c ¼ ei�t; t 2 ð0; 1=2Þg be characters of Z such that

�cðmÞ ¼ cm. Since �2
cð1Þ is in the upper half plane, the identity map is the only

automorphism of Z preserving �2
c . By Theorem 4.4, we get Autð�ðZ ; 1; �cÞÞ ¼

fidg.
If �ðZ ; 1; �c1Þ; �ðZ ; 1; �c2Þ are conjugate, then there exists a group isomor-

phism on Z whose pull back of �2
c2

is �2
c1

by Theorem 4.1. This means c1 ¼ c2.

Thus the actions f�ðZ ; 1; �cÞg are mutually non-conjugate. �

5.2. Twisted Bernoulli shift actions on the AFD factor of type II1.

Firstly, we find a condition that the finite von Neumann algebra NðH;�Þ is
the AFD factor of type II1.

LEMMA 5.5. For an abelian countable discrete group H 6¼ f0g and its

normalized scalar 2-cocycle �, the following statements are equivalent:

(1) The algebra NðH;�Þ is the AFD factor of type II1.

(2) The group von Neumann algebra L�ðHÞ twisted by the scalar 2-cocycle �

is a factor (of type II1 or In).

(3) For all g 2 H n f0g, there exists h 2 H such that �ðg; hÞ 6¼ �ðh; gÞ.

PROOF. The amenability of the group �ðHÞ leads the injectivity for

NðH;�Þ. The injectivity for NðH;�Þ implies that NðH;�Þ is approximately finite

dimensional ([Co]). We have only to show the equivalence of conditions ð2Þ, ð3Þ
and

ð1Þ0 The algebra NðH;�Þ is a factor.

By using Fourier expansion it is easy to see that condition ð2Þ holds true if and

only if for any g 2 H n f0g there exists h 2 H satisfying uguh 6¼ uhug. This is

equivalent to condition ð3Þ. Similarly, condition ð1Þ0 is equivalent to

ð1Þ00 For any �1 2 �ðHÞ n f0g, there exists �2 2 �ðHÞ satisfyinge�ð�2; �1Þe�ð�1; �2Þ 6¼ 1:

Suppose condition ð3Þ. For any �1, choose element k; l 2 Z2 so that k 2 suppð�1Þ
and l =2 suppð�1Þ. By condition ð3Þ, there exists h 2 H satisfying ���ð�1ðkÞ; hÞ 6¼ 1.

Let �2 be the element in �ðHÞ which takes h at k, �h at l and 0 for the other

places. The element �2 satisfies e�ð�2; �1Þe�ð�1; �2Þ ¼ ���ð�1ðkÞ; hÞ 6¼ 1. Here we get

condition ð1Þ00. The implication from ð1Þ00 to ð3Þ is easily shown. �
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REMARK 5.6. The twisted Bernoulli shift action � ¼ �ðH;�; �Þ is an outer

action of Z2
o SLð2;ZÞ. Any non-trivial automorphism in AutðR; �ðH;�; �ÞÞ is

also outer. This is proved by the weak mixing property of the action �ðH;�; �Þ as
follows. If 
 2 AutðR; �ðH;�; �ÞÞ is an inner automorphism AdðuÞ, then we have

Adð�ð�ÞðuÞÞðxÞ ¼ �ð�Þðu�ð�Þ�1ðxÞu�Þ ¼ �ð�Þ � 
 � �ð�Þ�1ðxÞ
¼ 
ðxÞ ¼ AdðuÞðxÞ;

for all x 2 R and � 2 Z2
o SLð2;ZÞ. Since Adð�ð�ÞðuÞu�Þ ¼ id, Cu � R is an

invariant subspace of the action �. The only subspace invariant under the weakly

mixing action � is C1 (Proposition 2.6), thus we get 
 ¼ id.

Using Theorems 4.1 and 4.4, we give continuously many actions of Z2
o

SLð2;ZÞ on R such that there exists no commuting automorphism except for

trivial one.

COROLLARY 5.7. There exist continuously many ergodic outer actions f�cg
of Z2

o SLð2;ZÞ on the AFD factor R of type II1 which are mutually non-conjugate

and have the trivial centralizer AutðR; �cÞ ¼ fidRg.

PROOF. We can choose and fix a character � on Z2 such that �2 is injective.

Let f�c j c ¼ ei�t; t 2 ð0; 1=2Þ nQg be scalar 2-cocycles for Z2 defined by

�c

s1

t1

 !
;

s2

t2

 ! !
¼ cs1t2�t1s2 ; s1; t1; s2; t2 2 Z :

We put �c ¼ �ðZ2; �c; �Þ. The 2-cocycle �c satisfies condition ð3Þ in Lemma 5.5.

Thus �c defines a Z2
o SLð2;ZÞ-action on R. By Theorem 4.4, we get the

following isomorphism between topological groups:

AutðR; �cÞ ¼� AutðZ2; ��
c�c; �

2Þ ¼ AutðZ2; �c2 ; �
2Þ:

Since the character �2 of Z2 is injective, so the group of the right side is fidjZ2g.
This means that the action �c has trivial centralizers.

Finally, we prove that the actions f�c j c ¼ ei�t; t 2 ð0; 1=2Þ nQg are mutually

non-conjugate. Suppose that actions �c1 and �c2 are conjugate. By Theorem 4.1,

there exists a group isomorphism � of Z2 satisfying

�c2
1
ðg; hÞ ¼ �c2

2
ð�ðgÞ; �ðhÞÞ; g; h 2 Z2:
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A group isomorphism of Z2 is given by an element of GLð2;ZÞ. If the

automorphism � is given by an element of SLð2;ZÞ, we get c22 ¼ c21. If � is given

by an element of GLð2;ZÞ n SLð2;ZÞ, then we get c22 ¼ �c21. Since both c1 and c2
have the form ei�t; t 2 ð0; 1=2Þ, we get c1 ¼ c2. �

Any cyclic group of an odd order can be realized as the centralizer of a

twisted Bernoulli shift actions on R.

COROLLARY 5.8. Let q be an odd natural number 
 3 and denote by Hq the

abelian group ðZ=qZÞ2. We define the 2-cocycle �q and the character �q on Hq as

�q

s1

t1

 !
;

s2

t2

 ! !
¼ exp ð2�is1t2=qÞ; �q

s1

t1

 ! !
¼ exp ð2�is1=qÞ:

Then the algebra NðHq; �qÞ is the AFD factor R of type II1 and the centralizer of

the twisted Bernoulli shift action �a ¼ �ðHq; �q; �qÞ is isomorphic to Z=qZ.

PROOF. By Lemma 5.5, it is shown that the algebra NðHQ; �QÞ is the AFD

factor of type II1. Using Theorem 4.4, we have only to prove that AutðHq; �
�
q�q;

�2
qÞ ¼� Z=qZ.

Let � be in AutðHq; �
�
q�q; �

2
qÞ. The automorphism � of Hq is given by a 2� 2

matrix A of Z=qZ. Since � preserves ��
q�q, the determinant of Amust be 1. Since q

is odd, the value of �2
q determines the first entry of ðZ=qZÞ2 and � preserves �2

q .

The matrix A is of the form

1 0

t� 1

 !
; t� 2 Z=qZ :

The map � 7! t� is an isomorphism. In turn, if the matrix A is of this form, it

defines an element in AutðHq; �
�
q�q; �

2
qÞ. �

COROLLARY 5.9. For a set Q consisting of odd prime numbers, let �Q be the

tensor product
N

q2Q �q of the actions �q on the AFD factor of type II1. The

centralizer of �Q is isomorphic to
Q

q2Q Z=qZ.

PROOF. The action �Q is the twisted Bernoulli shift action �ðHQ; �Q; �QÞ,
where HQ is the abelian group

L
q2Q Hq and the scalar 2-cocycle �q and the

character �Q on HQ are given by
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�QððsqÞ; ðtqÞÞ ¼
Y
q2Q

�qðsq; tqÞ;

�QððsqÞÞ ¼
Y
q2Q

�qðsqÞ; ðsqÞ; ðtqÞ 2 HQ; sq; tq 2 Hq:

Using Theorem 4.4, we have only to prove

AutðHQ; �
�
Q�Q; �

2
QÞ ¼�

Y
q2Q

Z=qZ :

A group automorphism � ofHQ ¼
L

q2Q Hq has a form �ððkqÞÞ ¼ ð�qðkqÞÞ, for some

f�q 2 AutðHqÞg. Thus we get

AutðHQ; �
�
Q�Q; �

2
QÞ ¼�

Y
q2Q

AutðHq; �
�
q�q; �

2
qÞ:

Together with the previous corollary, we get the conclusion. �

REMARK 5.10. If Q1 6¼ Q2, then the two groups
Q

q2Q1
Z=qZ andQ

q2Q2
Z=qZ are not isomorphic. The continuously many outer actions f�Qg are

distinguished in view of conjugacy only by using the centralizers fAutðR; �QÞg.

6. Malleability and rigidity arguments.

In this section, we give malleability and rigidity type arguments invented by

S. Popa, in order to examine weak 1-cocycles for actions. See Popa [Po2], [Po3],

[Po4] and Popa-Sasyk [PoSa] for the references. S. Popa in [Po3] showed that

every 1-cocycle for a Connes-Størmer Bernoulli shift by a property (T) group (or

w-rigid group like Z2
o SLð2;ZÞ) vanishes modulo scalars. As a consequence, two

such actions are cocycle conjugate if and only if they are conjugate. In our case, 1-

cocycles do not vanish modulo scalars but they are still in the situation that

cocycle (outer) conjugacy implies conjugacy. We need the following notion to

examine outer conjugacy of two group actions.

DEFINITION 6.1. Let 
 be an action of discrete group � on a von Neumann

algebra M . A weak 1-cocycle for 
 is a map w : � ! U ðMÞ satisfying

wgh ¼ wg
gðwhÞ mod T ; g; h 2 �:

The weak 1-cocycle w is called a weak 1-coboundary if there exists a unitary

v 2 U ðMÞ satisfying wg ¼ v
gðvÞ� mod T . Two weak 1-cocycles w and w0 are said

to be equivalent when w0
g ¼ vwg
gðvÞ� mod T for some v 2 U ðMÞ.
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Let N be a finite von Neumann algebra with a faithful normal trace. The

following is directly obtained by combining Lemmas 2.4 and 2.5 in [PoSa],

although these Lemmas were proved for Bernoulli shift actions on standard

probability space. The following can be also regarded as a weak 1-cocycle version

of Proposition 3.2 in [Po4].

PROPOSITION 6.2. Let G be a countable discrete group. Let � be a trace

preserving weakly mixing action of G on N. A weak 1-cocycle fwggg2G � N for � is

a weak 1-coboundary if and only if there exists a non-zero element ex0 2 N �N

satisfying

ðwg � 1Þð�g � �gÞð ex0Þð1� w�
gÞ ¼ ex0; g 2 G:

The following is a weak 1-cocycle version of Proposition 3.6.3� in [Po4].

PROPOSITION 6.3. Let � be a countable discrete group and G be a normal

subgroup of �. The group � acts on a finite von Neumann algebra N in a trace-

preserving way by �. Suppose that the restriction of � to G is weakly mixing. Let

fw�g�2� be a weak 1-cocycle for �. If wjG is a weak 1-coboundary, then w is a weak

1-coboundary for the �-action.

PROOF. Suppose that wjG is a weak 1-coboundary, that is, there exists a

unitary element v in N such that wg ¼ v�gðv�Þ modT for g 2 G. It suffices to show

that fw0
�g ¼ fv�w���ðvÞg is in T for all � 2 �. Take arbitrary � 2 �; g 2 G. Write

h ¼ ��1g� 2 G. Let �� be the unitary on L2ðNÞ induced from ��. Since w
0
h; w

0
g 2 T,

we get

w0
��gw

0
�
� ¼ ðw0

���Þðw0
h�hÞðw0

���Þ� ¼ w0
�h��1��h��1 ¼ �g modT :

By applying these operators to 1̂ 2 bN � L2ðNÞ, it follows that w0
��gðw0

�
�Þ 2 T.

Since the G-action is weakly mixing, we have w0
� 2 T . �

By using the above propositions, we will ‘‘untwist’’ some weak 1-cocycles

later. We require some ergodicity assumption on the weak 1-cocycles.

DEFINITION 6.4. Let � be a discrete group and G be a subgroup of �.

Suppose that its restriction to G is ergodic. Let � be a trace preserving action of �

on N. A weak 1-cocycle w ¼ fwggg2� for � is said to be ergodic on G, if the action

�w of G is still ergodic, where �w is defined by �w
g ¼ Adwg � �g; g 2 G.

Let � be a �-action on N. Suppose that the diagonal action � � � on ðN �
N; tr� trÞ has an extension e� on a finite von Neumann algebra ð eN; �Þ. The algebra
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eN is not necessarily identical with N �N. When the action e� is ergodic on a

normal subgroup G � �, we get the following:

PROPOSITION 6.5. Let fw�g�2� � N be a weak 1-cocycle for �. Let 
 be a

trace preserving continuous action of R on eN satisfying the following properties:

. 
1ðx� 1Þ ¼ 1� x, for all x 2 N.

. 
t � e�ð�ÞðexÞ ¼ e�ð�Þ � 
tðexÞ, for all t 2 R, � 2 � and ex 2 eN.

Suppose that the weak 1-cocycle fw� � 1g � eN is ergodic for the G-action e�jG. If
the group inclusion G � � has the relative property (T) of Kazhdan, then there

exists a non-zero element ex0 2 eN so that ðwg � 1Þe�gð ex0Þð1� w�
gÞ ¼ ex0; g 2 G.

This is proved in the same way for Bernoulli shift actions on the infinite

tensor product of abelian von Neumann algebras ([PoSa], Lemma 3.5). Since we

are interested in actions on the AFD II1 factor, we require the ergodicity

assumption on weak 1-cocycle fw� � 1g. For the self-containedness and in order to

make it clear where the ergodicity assumption works, we write down a complete

proof.

PROOF. For t 2 ð0; 1�, let Kt be the convex weak closure of

fðwg � 1Þ
tðw�
g � 1Þ j g 2 Gg � eN

and ext 2 Kt be the unique element whose 2-norm is minimum in Kt. Since

ðwg � 1Þ e�gððwg1 � 1Þ
tðw�
g1
� 1ÞÞ
tðw�

g � 1Þ
¼ ðwg�gðwg1Þ � 1Þ
tð�gðw�

g1
Þw�

g � 1Þ
¼ ðwgg1 � 1Þ
tðw�

gg1
� 1Þ; g; g1 2 G;

we have ðwg � 1Þe�gðKtÞ
tðw�
g � 1Þ ¼ Kt, for g 2 G. By the uniqueness of ext, we get

ðwg � 1Þe�gðextÞ
tðw�
g � 1Þ ¼ ext; g 2 G: ðEq3Þ

By the assumption, the action ðAdðwg � 1Þ � e�gÞg2G is ergodic on eN . By the

calculation

ðwg � 1Þe�gðext ext
�Þðw�

g � 1Þ

¼ ðwg � 1Þe�gðextÞ
tðw�
g � 1Þ
tðwg � 1Þe�gðext

�Þðw�
g � 1Þ

¼ ext ext
�; g 2 G;

we get ext ext
� 2 C1. The element ext is a scalar multiple of a unitary in eN.
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We shall next prove that gx1=n is not zero for some positive integer n. The pair

ð�; GÞ has the relative property (T) of Kazhdan. By Proposition 2.4, we can find a

positive number � and a finite subset F � � satisfying the following condition: If a

unitary representation ð�;H Þ of � and a unit vector � of H satisfy

k�ð�Þ� � �k � � ð� 2 F Þ, then k�ðgÞ� � �k � 1=2 ðg 2 GÞ. By the continuity of

the action 
, there exists n such that

kðw� � 1Þ
1=nðw�
� � 1Þ � 1ktr;2 � �; � 2 F:

The actions � and ð
l
1=nÞl2Z on eN give a �� Z action on eN. Let P be the crossed

product von Neumann algebra P ¼ eN o ð�� ZÞ. Let ðU�Þ�2� and W be the

implementing unitaries in P for � and 1 2 Z respectively. We put V� ¼
ðw� � 1ÞU�; � 2 �. We regard AdV� as a unitary representation of � on L2ðP Þ.
Since

kAdV�ðWÞ �WkL2ðP Þ ¼ kðw� � 1ÞW ðw�
� � 1ÞW � � 1kL2ðP Þ

¼ kðw� � 1Þ
1=nðw�
� � 1Þ � 1k

L2ðeNÞ
� �; � 2 F;

we have the following inequality:

1

2

 kAdVgðW Þ �WkL2ðP Þ ¼ kðwg � 1Þ
1=nðw�

g � 1Þ � 1k
L2ðeNÞ

; g 2 G:

We get 1=2 
 kgx1=n � 1k
L2ðeNÞ and gx1=n 6¼ 0.

Let gu1=n be the unitary of eN given by a scalar multiple of gx1=n. By equation

(Eq3), the unitary satisfies

ðwg � 1Þe�gðgu1=nÞ
1=nðw�
g � 1Þ ¼ gu1=n; g 2 G:

Let ex0 be the unitary defined by

ex0 ¼ gu1=n
1=nðgu1=nÞ
2=nðgu1=nÞ
ðn�1Þ=nðgu1=nÞ:

By direct computations, we have the following desired equality:

ðwg � 1Þe�gð ex0Þð1� w�
gÞ ¼ ðwg � 1Þe�gð ex0Þ
1ðw�

g � 1Þ ¼ ex0; g 2 G: �

THEOREM 6.6. Let � ¼ �ðH;�; �Þ be a twisted Bernoulli shift action on

NðH;�Þ. Suppose that NðH;�Þ is the AFD factor of type II1 and that there exists a
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continuous R-action ð
ð0Þ
t Þt2R on L�ðHÞ � L�ðHÞ satisfying the following proper-

ties:

. For any x 2 L�ðHÞ, 
ð0Þ
1 ðx� 1Þ ¼ 1� x.

. The automorphism 

ð0Þ
t commutes with the diagonal action of bH.

Let �ð1Þ be another action of Z2
o SLð2;ZÞ on the AFD factor N ð1Þ of type II1 and

suppose that its restriction to Z2 is ergodic. The action �ð1Þ is outer conjugate to �,

if and only if �ð1Þ is conjugate to �.

PROOF. We deduce from outer conjugacy to conjugacy in the above

situation. Let � be a �-isomorphism from N ð1Þ onto NðH;�Þ which gives the outer

conjugacy of the action �ð1Þ and � ¼ �ðH;�; �Þ. There exists a weak 1-cocycle

fw�g�2Z2
oSLð2;ZÞ for � satisfying

� � �ð1Þð�Þ ¼ Adw� � �ð�Þ � �; � 2 Z2
o SLð2;ZÞ:

Since the action �ð1Þ is ergodic on Z2, the weak 1-cocycle w is ergodic on Z2.

We use the notations �0; G0 given in Section 3. Let e� be the diagonal action

�� � of �0 on the tensor product algebra eM ¼ Le�ðLZ2 HÞ � Le�ðLZ2 HÞ:

e�ð�0Þða� bÞ ¼ �ð�0ÞðaÞ � �ð�0ÞðbÞ:

The fixed point algebra eN � eM of the diagonal bH-action contains NðH;�Þ �
NðH;�Þ. Since Z2

o SLð2;ZÞ ¼ �0= bH, the action e� gives a Z2
o SLð2;ZÞ-action e�

on eN . The action e� is the extension of the diagonal action � � � on

NðH;�Þ �NðH;�Þ. We denote by 
t the action on eM ¼�
N

Z2ðL�ðHÞ � L�ðHÞÞ
given by the infinite tensor product of the R-action 


ð0Þ
t . By the assumption on



ð0Þ
t , the R-action 
t commutes with the action e�. It follows that the subalgebra eN

is globally invariant under 
t.

The set of unitaries fW� ¼ w� � 1g�2Z2
oSLð2;ZÞ � eN is a weak 1-cocycle for e�.

We shall prove that this weak 1-cocycle is ergodic on Z2. Let a be an element in eN
fixed under e�W jZ2 . The element a can be written as a ¼

P
�2
L

Z2 H
a� � uð�Þ in

L2 eM, where a� � 1 ¼ EM�C ðað1� uð�ÞÞ�Þ. Since a is fixed under the action of Z2,

we have
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a ¼ e�W ðkÞðaÞ ¼
X

�2
L

Z2 H

Adwk � �ð1; kÞða�Þ � �ð1; kÞðuð�ÞÞ

¼
X

�2
L

Z2 H

Adwk � �ð1; kÞða�Þ �
Y
l2Z2

�ð�ðlÞÞdetðk;lÞuðk � �Þ:

Since Adwk � �ð1; kÞ preserves the 2-norm, we get ka�k2 ¼ kak�1��k2. Since kak22 ¼P
ka�k22 < 1 and the set fak�1�� j k 2 Z2g is infinite for � 6¼ 0, it turns out that

a� ¼ 0 for � 6¼ 0 and thus a 2 eN \ ðM �CÞ ¼ NðH;�Þ �C . By the ergodicity of

the Z2-action fAdwk � �ðkÞg, we get a 2 C . We conclude that the weak 1-cocycle

fW�g � eN is ergodic on Z2.

By the relative property (T) for the inclusion Z2 � Z2
o SLð2;ZÞ and

Proposition 6.5, there exists a non-zero element ex0 2 eN satisfying

ðwk � 1Þe�ðkÞð ex0Þð1� w�
kÞ ¼ ex0; k 2 Z2:

The element ex0 can be written as the following Fourier expansion:

ex0 ¼
X

cð�1; �2Þuð�1Þ � uð�2Þ 2 eN � Le� M Z2H
� �

� Le� M
Z2H

� �
:

Here cð�1; �2Þ is a complex number and ð�1; �2Þ 2 ð
L

Z2 HÞ2 runs through all pairs

satisfying
P

k2Z2ð�1ðkÞ þ �2ðkÞÞ ¼ 0. Choose and fix a pair ð�1; �2Þ satisfying

�
X
k2Z2

�1ðkÞ ¼ h ¼
X
k2Z2

�2ðkÞ; cð�1; �2Þ 6¼ 0:

Let v0h 2 M be the unitary written as v0h ¼ uh � 1� 1� � � �, where uh 2 L�ðHÞ is

placed on 0 2 Z2. The following unitaries fw0
�g � NðH;�Þ give a weak 1-cocycle

for �:

w0
ðk;�0Þ ¼ v0hwðk;�0Þ�ð1; k; �0Þðv0h

�Þ; ðk; �0Þ 2 Z2
o SLð2;ZÞ:

Letting ey ¼ ðv0h � 1Þ ex0ð1� v0hÞ
� 2 eM, we get

ey ¼ ðw0
k � 1Þe�ðkÞðeyÞð1� w0

k
�Þ; k 2 Z2:

Applying the trace preserving conditional expectation E ¼ ENðH;�Þ�NðH;�Þ, we get
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EðeyÞ ¼ ðw0
k � 1ÞEðe�ðkÞðeyÞÞð1� w0

k
�Þ

¼ ðw0
k � 1Þe�ðkÞðEðeyÞÞð1� w0

k
�Þ; k 2 Z2:

Since the Fourier coefficient of ex0 at ð�1; �2Þ 2 ð
L

Z2 HÞ2 is not zero, that of EðeyÞ
at ð�1 þ �h;0; �2 � �h;0Þ 2 �ðHÞ2 is not zero, where �h;0 2

L
Z2 H is zero on Z2 n f0g

and is h on 0 2 Z2. By Proposition 6.2, it follows that the weak 1-cocycle

fw0
ðk;eÞgk2Z2 � NðH;�Þ is a weak 1-coboundary of �jZ2 . Since the Z2-action �jZ2 is

weakly mixing, w0 is a weak 1-coboundary on Z2
o SLð2;ZÞ, by Proposition 6.3.

In other words, there exists v 2 NðH;�Þ satisfying

w0
� ¼ v�ð�Þðv�Þ modT ;

w� ¼ v0h
�
v�ð1; �Þðv�v0hÞ modT ; � 2 Z2

o SLð2;ZÞ:

Noting that u ¼ v�v0h 2 M is a normalizer of NðH;�Þ, we get

ðAdðuÞ � �Þ � �ð1Þð�Þ ¼ AdðuÞ �Adðw�Þ � �ð�Þ � �
¼ Adð�ð1; �ÞðuÞÞ � �ð�Þ � �
¼ �ð1; �Þ �AdðuÞ � �
¼ �ð�Þ � ðAdðuÞ � �Þ; � 2 Z2

o SLð2;ZÞ:

Thus we get the conjugacy of two Z2
o SLð2;ZÞ-actions �ð0Þ and �. �

We can always apply Theorem 6.6 if H is finite.

COROLLARY 6.7. Let H be a finite abelian group and let � ¼ �ðH;�; �Þ be a

twisted Bernoulli shift action on NðH;�Þ. Suppose that NðH;�Þ is the AFD factor

of type II1. Let �
ð1Þ be an action of Z2

o SLð2;ZÞ on the AFD factor Nð1Þ of type II1
and suppose that its restriction to Z2 is ergodic. The action �ð1Þ is outer conjugate

to �, if and only if �ð1Þ is conjugate to �.

PROOF. We have only to construct an R-action on L�ðHÞ � L�ðHÞ
satisfying the properties in Theorem 6.6. Let U be an element of L�ðHÞ �
L�ðHÞ defined by

U ¼
1

jHj1=2
X
h2H

uh � u�
h:

We note that ���ðg; �Þ is a character of H and that it is not identically 1 provided

g 6¼ 0 by Lemma 5.5. The element U is self-adjoint and unitary, since
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U� ¼
1

jHj1=2
X
h2H

u�
h � uh ¼

1

jHj1=2
X
h2H

�ðh;�hÞu�h � �ðh;�hÞu�
�h ¼ U;

U2 ¼
1

jHj
X
g;h2H

uguh � u�
gu

�
h ¼

1

jHj
X
g;h2H

���ðg; hÞugþh � u�
gþh

¼
1

jHj
X
g2H

X
h2H

���ðg; h� gÞ
 !

ug � u�
g ¼ 1:

The operator U is a fixed point under the action of bH, so the projections

P1 ¼ ð1þ UÞ=2 and P�1 ¼ ð1� UÞ=2 are also fixed points. Thus the R-action



ð0Þ
t ¼ AdðP1 þ exp ði�tÞP�1Þ commutes with the bH-action. The automorphism



ð0Þ
1 satisfies



ð0Þ
1 ðug � 1Þ ¼ Uðug � 1ÞU� ¼ ð1� ugÞUU� ¼ 1� ug; g 2 H:

This verifies the first condition for 
ð0Þ. �

COROLLARY 6.8. Let Q be a set consisting of odd prime numbers and �Q be

the twisted Bernoulli shift action defined in Corollary 5.9. Let � be a

Z2
o SLð2;ZÞ-action on the AFD factor of type II1 whose restriction to Z2 is

ergodic. The actions �Q and � are outer conjugate if and only if they are conjugate.

In particular, f�Qg is an uncountable family of Z2
o SLð2;ZÞ-actions which are

mutually non outer conjugate.

PROOF. We will use the notation given in Corollary 5.8 and 5.9. Let 

ðqÞ
t be

the R-action on L�q
ðHqÞ � L�q

ðHqÞ constructed as in the previous corollary. We

define theR-action 
ðQÞ on L�Q
ðHQÞ � L�Q

ðHQÞ by 

ðQÞ
t ð
N

q2Q xqÞ ¼
N

q2Q 

ðqÞ
t ðxqÞ,

where xq 2 L�q
ðHqÞ � L�q

ðHqÞ and xq 6¼ 1 only for finitely many q. The R-action

satisfies the conditions in Theorem 6.6. By Corollary 5.9, f�Qg are mutually non

conjugate and their restriction to Z2 is ergodic. Thus they are mutually non outer

conjugate. �
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