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Abstract. We study the asymptotic behavior in time of solutions to the Cauchy
problem of nonlinear Schrödinger equations with a long-range dissipative nonlinear-
ity given by λ|u|p−1u in one space dimension, where 1 < p ≤ 3 (namely, p is a
critical or subcritical exponent) and λ is a complex constant satisfying Im λ < 0 and`
(p − 1)/2

√
p
´|Re λ| ≤ | Im λ|. We present the time decay estimates and the large-

time asymptotics of the solution for arbitrarily large initial data, when “p = 3” or
“p < 3 and p is suitably close to 3”.

1. Introduction.

We study the large time behavior of solutions to the initial value problem of
the following nonlinear Schrödinger equation in one space dimension:





i∂tu +
1
2
∂2

xu = λN (u), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

(1.1)

where u0 is a complex-valued (given) initial data, u is a complex-valued unknown
function, ∂t = ∂/∂t, ∂x = ∂/∂x, and N (u) is the gauge invariant power type
nonlinearity discribed as

N (u) = |u|p−1u
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with 1 < p ≤ 3. As for the complex constant λ, we denote λ1 = Re λ and
λ2 = Im λ, and we assume the large dissipative condition, i.e.,

λ2 < 0 (1.2)

and

p− 1
2
√

p
|λ1| ≤ |λ2|. (1.3)

From the physical point of view, (1.1) with p = 3 is said to be a governing
equation of the light traveling through optical fibers, in which |u(t, x)| describes the
amplitude of electric field, t denotes the position along the fiber and x stands for the
temporal parameter expressing a form of pulse. As for the nonlinear coefficient, λ1

denotes the magnitude of the nonlinear Kerr effect and λ2 implies the magnitude
of dissipation due to nonlinear Ohm’s law (see e.g. [1] for detail). Therefore,
λN (u) causes a loss of energy, and we easily expect the decay of u(t) for large t.
One of our aims in this paper is the justification of the decaying property of u(t).

There are a lot of mathematical works concerning the large-time asymptotic
profiles of the solution to (1.1) for various kinds of nonlinearities. Most of these
works deals with a real λ, but the ideas are still applicable to a complex λ (for
small initial data). For instance, if p > 3, λ ∈ C and the size of u0(x) is suffi-
ciently small, it is well-known that the solution u(t) behaves like a free solution
U(t)φ for large t (see e.g. [3] and references therein), where U(t) = exp((it/2)∂2

x)
denotes the solution operator of the free Schrödinger equation and φ is called the
scattering state which is determined in terms of the initial data. The strategy for
this free asymptotic profile is largely relies on the rapid decay of nonlinearity. In
other words, the integrability of N (u(t))/u(t) = |u(t)|p−1 around t = ∞ allows
the nonlinearity to be regarded as negligible in the long-time dynamics, and it
occurs if and only if p > 3 since

∫∞
1
|u(t)|p−1 dt ∼ ∫∞

1
t−(p−1)/2 dt < ∞ by ex-

pecting that u(t) decays like a free solution. On the other hand, in the case p ≤ 3,
the situation changes. In this case, we can not expect the free asymptotic profile
of the solution, but some modification is required. In the case that the space
dimension n = 1, p = 3 and λ is real, Ozawa [12] constructed modified wave oper-
ators to the equation (1.1) for small scattering states, and Hayashi and Naumkin
[5] proved the time decay and the large-time asymptotics of u(t) for small initial
data. According to their results, if λ ∈ R, then the small solution u(t) asymp-
totically tends to a modified free solution like F−1 exp(iλ|φ(ξ)|2 log t)FU(t)φ as
t → ∞ and the L∞-norm of u(t) decays similarly to the free solution, where
F denotes the Fourier transform. The nonlinear Schrödinger equations have
been so far treated in non-dissipative structures of nonlinearities. In [13], the
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second author of this paper has studied the dissipative critical nonlinear case,
i.e., p = 3 and λ2 < 0 (that is, the condition (1.2)), by imposing smallness as-
sumption on the initial data, in which the negativity of λ2 visibly affects the
decay rate of ‖u(t)‖L∞ and, actually, it decays like t−1/2(log t)−1/2 (This tells
us that u(t) decays more rapidly in comparison with the free solution). To de-
rive these decaying properties in dissipative or non-dissipative structure, they
wrote u(t, x) as u(t, x) = (it)−1/2 exp(ix2/2t)Fv(t, x/t) + (error term) where
v(t) = U(−t)u(t) and estimated Fv(t) by applying certain gauge transform. The
estimate of the error terms were established in terms of the operator J , where
J = x + it∂x = U(t)xU(−t). This idea is also applied to the case of cubic deriva-
tive nonlinearity with dissipative structure due to Hayashi-Naumkin-Sunagawa [7].
Then our next concern is to observe the subcritical case, i.e., p < 3. When λ2 = 0,
Hayashi-Kaikina-Naumkin [4] treated this case for small data solution, and proved
that u(t) asymptotically behaves like a modified free solution. Their idea requires
the non-zero condition, strong decay and analiticity of the initial data to overcome
the difficulty of non-smooth nonlinearity and derivative loss in their estimates. If
λ2 < 0 (which is the condition (1.2)), Hayashi and Naumkin [6] also studied “the
final value problem” with the generalized linear dispersion like (−∂2

x)ρ/2 (ρ ≥ 1)
included, where they proved the existence and uniqueness of the solution which
asymptotically tends to a given modified free solution. On the other hand, when
the linear dispersion is of the second order, we considered “the initial value prob-
lem” for small initial data and showed the time decay estimate of u(t) as well as
the asymptotic formula for large time [9]. Note that, in [9], the smallness assump-
tion is required to minimize the growth order of ‖Ju(t)‖L2 . We also note that the
analogy in [9] is not applied when (−∂2

x)ρ/2 with ρ 6= 2 is included in the equation,
since our argument largely depends on the concrete structure of exp((it/2)∂2

x). As
far as the authors know, there seems to be no result established for the asymptotic
behavior of large data solutions to (1.1), and in this paper, we are aimed at the
time decay and asymptotic profile of u(t) without any smallness assumptions on
u0 for the long-range case (i.e. p ≤ 3). The key to remove the smallness of u0 is
to use the dissipative structure described as (1.2) and (1.3) which helps us obtain
the time-global estimate of ‖∂xu(t)‖L2 + ‖Ju(t)‖L2 and regard any error terms in
our argument as negligible. Our first result is concerning the global existence and
time decay rate of the solution.

Theorem 1.1. Assume that 1 < p ≤ 3 and λ satisfies the conditions (1.2)
and (1.3). Let u0 ∈ H1,0 ∩ H0,1. Then there exists a unique solution u to the
initial value problem (1.1) satisfying

u ∈ C([0,∞); H1,0), Ju ∈ C([0,∞); L2), (1.4)
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‖u(t)‖H1,0 + ‖Ju(t)‖L2 ≤ ‖u0‖H1,0∩H0,1 (1.5)

for any t ≥ 0. Furthermore, if (5 +
√

33)/4 < p ≤ 3, then there exists a constant
C0 > 0 such that

‖u(t)‖L∞ ≤ C0{(2 + t) log(2 + t)}−1/2, when p = 3, (1.6)

‖u(t)‖L∞ ≤ C0(1 + t)−1/(p−1), when 5+
√

33
4 < p < 3 (1.7)

for any t ≥ 0.

Remark 1.1. We want to emphasize that Theorem 1.1 is valid without any
smallness conditions on the initial data u0.

Remark 1.2. The nonlinear effect is visible in the time decay estimates (1.6)
and (1.7). In fact, the solution decays faster than the non-trivial free solution.
(Recall that the L∞-norm of the non-trivial free solution decays like t−1/2 in one
space dimension.) We also remark that, in (1.7), u(t) decays like an ODE-solution
satisfying i∂tu = λN (u). This implies that, in subcritical case, the nonlinear
dissipation is dominant over the linear dispersion for large time.

Remark 1.3. The additional assumption p > (5 +
√

33)/4 = 2.686 · · · in
Theorem 1.1 comes from the estimate of the error term (see (3.7) below).

We next present the result on the large time asymptotics of the global solution
as in Theorem 1.1. To obtain Theorem 1.2, we need to make the lower bound of
p enlarged.

Theorem 1.2. Suppose that the assumptions in Theorem 1.1 are satisfied,
and let u be the global solution as in Theorem 1.1. In addition, assume that
(21 +

√
177)/12 < p ≤ 3. Then the followings hold :

(I) Let

Φ(t, ·) =
∫ t

1

τ−(p−1)/2|FU(−τ)u(τ)|p−1 dτ. (1.8)

Then, there exists a unique φ ∈ L2 ∩ L∞ such that

∥∥eiλΦ(t)FU(−t)u(t)− φ
∥∥

L2∩L∞ = O(t−β),

as t →∞ for some β > 3− p.
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(II) There exists a unique real valued function η ∈ L∞ such that

e(p−1)|λ2|Φ(t,x) = 1 + (p− 1)|λ2||φ(x)|p−1

∫ t

1

τ−(p−1)/2 dτ + η(x)

+ O(t−(β−(3−p)/2))

in L∞ as t →∞, where β is the same as in (I). Furthermore there exists a
constant T̃ ≥ 1 such that

1 + (p− 1)|λ2||φ(x)|p−1

∫ t

1

τ−(p−1)/2 dτ + η(x) ≥ 1
2

for almost every x ∈ R and for any t ≥ T̃ .
(III) For t ≥ T̃ , let

A(t, x) =
1

(p− 1)|λ2| log
(

1 + (p− 1)|λ2||φ(x)|p−1

∫ t

1

τ−(p−1)/2 dτ + η(x)
)

=





1
2|λ2| log(1 + 2|λ2||φ(x)|2 log t + η(x)), when p = 3,

1
(p− 1)|λ2| log

(
1 +

2(p− 1)|λ2|
3− p

|φ(x)|p−1(t
3−p
2 − 1) + η(x)

)
,

when 21+
√

177
12 < p < 3.

(1.9)

Then the followings hold :

u(t, x) = (it)−1/2ei|x|2/2te−iλA(t,x/t)φ(x/t)

+

{
o((t log t)−1/2), when p = 3,

o(t−1/(p−1)), when 21+
√

177
12 < p < 3

(1.10)

in L∞, as t →∞. Furthermore

∥∥u(t)− U(t)F−1(e−iλA(t,·)φ)
∥∥

L2

=

{
o((log t)−1/2), when p = 3,

o(t−(1/(p−1)−1/2)), when 21+
√

177
12 < p < 3

(1.11)
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as t →∞, and

lim
t→∞

‖u(t)‖L2 = 0. (1.12)

Remark 1.4. The additional assumption p > (21 +
√

177)/12 = 2.858 · · ·
in Theorem 1.2 comes from the inequality (4.1) below.

Remark 1.5. According to the asymptotic formulas (1.10) and (1.11), we
see that the solution u is not asymptotically free. By the definition (1.9) of A, we
can write the modification factor e−iλA(t,x) explicitly:

e−iλA(t,x) =
exp

{
− iλ1

2|λ2| log(1 + 2|λ2||φ(x)|2 log t + η(x))
}

(1 + 2|λ2||φ(x)|2 log t + η(x))1/2

when p = 3, and

e−iλA(t,x) =
exp

{
− iλ1

(p−1)|λ2| log
(
1 + 2(p−1)|λ2|

3−p |φ(x)|p−1(t(3−p)/2 − 1) + η(x)
)}

(
1 + 2(p−1)|λ2|

3−p |φ(x)|p−1(t(3−p)/2 − 1) + η(x)
)1/(p−1)

when (21 +
√

177)/12 < p < 3.

This paper is organized as follows. In Section 2, we collect several lemmas
required to bound ‖u(t)‖H1,0 and ‖Ju(t)‖L2 by ‖u0‖H1,0∩H0,1 . In Sections 3,
the global existence of the solution and the key proposition to obtain the decay
estimate of u(t) are proved (see Proposition 3.2). In Proposition 3.2, we derive
‖FU(−t)u(t)‖L∞ ≤ K(log t)−1/2 if p = 3, and ≤ Kt1/2−1/(p−1) otherwise for
large t. Note that the positive constant K is independent of the size of initial
data, and this contributes to removing the smallness assumption on u0. (In [9],
the dependence of ‖u0‖H1,0∩H0,1 remains in K, and so we require to impose the
smallness of u0.) In Section 4, we prove Theorem 1.2 by combining the estimates
given in the former sections.

We close this section by presenting several notations. For ψ ∈ S ′(R), the
Fourier transform of ψ is denoted by Fψ or ψ̂. For ψ ∈ L1(R), Fψ is represented
as

Fψ(ξ) = (2π)−1/2

∫

R

ψ(x)e−ixξ dx.

For m, s ≥ 0, the weighted Sobolev space is defined by
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Hm,s = {ψ ∈ L2(R); ‖ψ‖Hm,s < ∞},

where

‖ψ‖Hm,s =
∥∥(1 + |x|2)s/2(1− ∂2

x)m/2ψ
∥∥

L2 .

‖ψ‖Lq1∩Lq2 and ‖ψ‖Hm1,s1∩Hm2,s2 denote ‖ψ‖Lq1 + ‖ψ‖Lq2 and ‖ψ‖Hm1,s1

+‖ψ‖Hm2,s2 , respectively. Throughout this paper, we use the following operators:

U(t) = eit∂2
x/2 = F−1e−it|ξ|2/2F , J = x + it∂x.

We often use the factorization : U(t) = M(t)D(t)FM(t), where M(t) and D(t)
are the following operators:

(M(t)ψ)(x) = ei|x|2/2tψ(x), (D(t)ψ)(x) = (it)−1/2ψ(x/t).

2. Preliminaries.

In this section, we collect several lemmas for the proof of our main theorems.

Lemma 2.1. For z1, z2 ∈ C and q > 1, the following inequality holds:

∣∣ Im{(|z1|q−1z1 − |z2|q−1z2)(z1 − z2)}
∣∣

≤ q − 1
2
√

q
Re

{
(|z1|q−1z1 − |z2|q−1z2)(z1 − z2)

}
.

Lemma 2.1 is obtained by Liskevich and Perelmuter [10, Lemma 2.2]. Ac-
cording to Okazawa and Yokota [11], this lemma is also applicable to the theory of
the complex Ginzburg-Landau equation, where they showed the global existence
and smoothing property of the solution.

Applying Lemma 2.1, we derive the following two fundamental inequalities
which lead us to the important estimates of ‖u(t)‖H1,0 and ‖Ju(t)‖L2 .

Lemma 2.2. Let p > 1, and let λ = λ1 + iλ2 ∈ C satisfy the conditions (1.2)
and (1.3). Then for z1, z2 ∈ C, the following inequality holds:

Im
{
λ(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)

} ≤ 0.

Proof. It follows from the conditions (1.2)–(1.3) and Lemma 2.1 that
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Im
{
λ(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)

}

= λ1 Im
{
(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)

}

+ λ2 Re
{
(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)

}

= λ1 Im
{
(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)

}

− |λ2|Re
{
(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)

}

≤ |λ1|
∣∣ Im{(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)}

∣∣

− |λ2|
2
√

p

p− 1

∣∣ Im{(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)}
∣∣

=
(
|λ1| −

2
√

p

p− 1
|λ2|

)∣∣ Im{(|z1|p−1z1 − |z2|p−1z2)(z1 − z2)}
∣∣

≤ 0.

Therefore this lemma is proved. ¤

Lemma 2.3. Let λ = λ1 + iλ2 ∈ C satisfy the conditions (1.2) and (1.3).
Let w = w(t, x) be a complex valued function satisfying w ∈ C([0,∞); H1,0) and
Jw ∈ C([0,∞); L2). Then for all t ≥ 0, the inequalities

Im
{
λ∂xN (w)(t, x) · ∂xw(t, x)

} ≤ 0, (2.1)

Im
{
λ(JN (w))(t, x) · (Jw)(t, x)

} ≤ 0 (2.2)

hold for almost every x ∈ R.

Proof. Let w ∈ C([0,∞); H1,0) and Jw ∈ C([0,∞); L2). We fix t0 ≥ 0
arbitrarily. Since w(t0, ·) ∈ H1,0, w(t0, x) is absolutely continuous with respect
to x on any bounded interval of R. Therefore w(t0, x) is classically differentiable
for almost every x ∈ R. We fix a (classically) differentiable point x0 ∈ R of the
function w(t0, ·) arbitrarily.

First we prove the inequality (2.1) for almost every x ∈ R and for all t ≥ 0.
By the conditions (1.2)–(1.3) and Lemma 2.2, we see that for h ∈ R \ {0},

Im
{

λ
N (w)(t0, x0 + h)−N (w)(t0, x0)

h

w(t0, x0 + h)− w(t0, x0)
h

}
≤ 0, (2.3)

because of h2 > 0. Since w(t0, ·) is differentiable at x0, letting h → 0 in the
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inequality (2.3), we have

Im
{
λ∂xN (w)(t0, x0) · ∂xw(t0, x0)

} ≤ 0.

Therefore for all t ≥ 0, we obtain the inequality (2.1) for almost every x ∈ R.
Next we prove the inequality (2.2) for almost every x ∈ R and for all t ≥ 0.

Let M(t, x) = eix2/2t. We note that

J = M(t, x)(it∂x)M(t, x)−1. (2.4)

Applying the above calculation to M−1w instead of w, we see that

Im
{
λ∂xN (M−1w)(t0, x0) · ∂x(M−1w)(t0, x0)

} ≤ 0.

By the gauge invariance M−1N (w) = N (M−1w), we have

Im
{
λ∂x(M−1N (w))(t0, x0) · ∂x(M−1w)(t0, x0)

} ≤ 0.

Since t0 ≥ 0 is arbitrary, x0 is an arbitrary classically differentiable point of w(t0, ·)
and M−1(t0, ·)w(t0, ·), and the functions w(t0, x) and M−1(t0, x)w(t0, x) is classi-
cally differentiable for almost every x ∈ R, it follows that for t ≥ 0, the inequality

Im
{
λ∂x(M−1N (w))(t, x) · ∂x(M−1w)(t, x)

} ≤ 0

holds for almost every x ∈ R. This implies that for any t ≥ 0, the estimate

Im
{
λ(M(it∂x)M−1N (w))(t, x) · (M(it∂x)M−1w)(t, x)

} ≤ 0 (2.5)

holds for almost every x ∈ R. By the identity (2.4) and the inequality (2.5), for
any t ≥ 0, we obtain the inequality (2.2) for almost every x ∈ R. Therefore this
lemma is proved. ¤

3. Proof of Theorem 1.1.

Throughout this section, we assume that, the space dimension is one, 1 < p ≤
3 and λ ∈ C satisfies the conditions (1.2) and (1.3). (For the proof of the time
decay estimates, we will assume the additional condition (5 +

√
33)/4 < p ≤ 3.)

For T > 0, let
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XT =
{
w ∈ C([0, T ]; H1,0); Jw ∈ C([0, T ];L2), ‖w‖XT

< ∞}
,

where

‖w‖XT
= sup

0≤t≤T
‖w(t)‖H1,0 + sup

0≤t≤T
‖Jw(t)‖L2 .

The following proposition is concerned with the global existence and unique-
ness, that is, the first half of Theorem 1.1.

Proposition 3.1. Let u0 ∈ H1,0 ∩H0,1. Then there exists a unique global
solution u to the initial value problem (1.1) satisfying (1.4)–(1.5).

Proof. For initial data u0 ∈ H1,0∩H0,1, the local existence and uniqueness
in XT of a solution to the Cauchy problem (1.1) easily follow from the embedding
H1,0(R) ↪→ L∞(R) (See, e.g., Cazenave [2], Ginibre [3] or Kato [8]). Therefore
we derive a priori estimates of a solution u ∈ XT to (1.1).

For u0 ∈ H1,0 ∩ H0,1, let u ∈ XT be a solution to the Cauchy problem
(1.1). By the equation (1.1), the relation J(i∂t + (1/2)∂2

x) = (i∂t + (1/2)∂2
x)J , the

conditions (1.2)–(1.3) and Lemma 2.3, we have

1
2

d

dt
‖u(t)‖2L2 = λ2‖u(t)‖p+1

Lp+1 ≤ 0,

1
2

d

dt
‖∂xu(t)‖2L2 = Im

{
λ〈(∂xN (u))(t), ∂xu(t)〉} ≤ 0,

1
2

d

dt
‖Ju(t)‖2L2 = Im

{
λ〈(JN (u))(t), Ju(t)〉} ≤ 0

for any t ∈ [0, T ]. Therefore

‖u(t)‖L2 ≤ ‖u0‖L2 ,

‖∂xu(t)‖L2 ≤ ‖∂xu0‖L2 ,

‖Ju(t)‖L2 ≤ ‖xu0‖L2

for any t ∈ [0, T ], and hence

‖u(t)‖H1,0 + ‖Ju(t)‖L2 ≤ ‖u0‖H1,0∩H0,1

for any t ∈ [0, T ]. By this estimate, we can extend the solution to the interval
[0,∞), and the estimate (1.5) holds. Therefore this proposition is proved. ¤
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It remains to show the time decay estimates (1.6)–(1.7). Let u0 ∈ H1,0 ∩
H0,1 and let u be the global solution to the Cauchy problem (1.1) obtained in
Proposition 3.1. To proceed in our argument, let v(t) = U(−t)u(t). Note that
U(t) is factorized like U(t) = MDFM . Then, according to the gauge invariance
property of N (u), we see that v(t) satisfies

i∂t(Fv) = λt−(p−1)/2N (Fv) + R(t), (3.1)

where R(t) denotes the rapidly decaying error term written as

R(t) = R1(t) + R2(t)

with

R1(t) = λt−(p−1)/2F (M−1 − 1)F−1N (FMv),

R2(t) = λt−(p−1)/2
(
N (FMv)−N (Fv)

)
.

The error R(t) is estimated as in the following lemma.

Lemma 3.1. Let µ satisfy 0 < µ < 1/4. Then, there exists some positive
constant Cµ such that

‖R(t)‖L2∩L∞ ≤ Cµt−(p−1)/2−µ‖u0‖p
H1,0∩H0,1

for all t ≥ 1.

To prove Lemma 3.1, we first show that ‖R(t)‖L2∩L∞ ≤ Cµt−(p−1)/2−µ‖u‖p
XT

which similarly follows from the proof of Lemma 2.2 in [9] with n = 1, s = 1,
σ = 0. By using Theorem 1.1 (1.5), ‖u‖XT

≤ ‖u0‖H1,0∩H0,1 and then Lemma 3.1
is obtained.

The following proposition plays an important role for deriving the desired
L∞-decay estimate of u.

Proposition 3.2. Assume that (5 +
√

33)/4 < p ≤ 3. Let

K =





√
2

4|λ2| − ε
, when p = 3,

(
3− p

2(p− 1)|λ2| − ε

) 1
p−1

, when 5+
√

33
4 < p < 3,

(3.2)
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where ε is a constant such that 0 < ε < 2(p − 1)|λ2|. Then there exists some
constant T0 = T0(‖u0‖H1,0∩H0,1 , ε) ≥ 1 such that

(log t)1/2‖Fv(t)‖L∞ ≤ K, when p = 3, (3.3)

t1/(p−1)−1/2‖Fv(t)‖L∞ ≤ K, when 5+
√

33
4 < p < 3 (3.4)

for any t > T0.

To prove Proposition 3.2, we require the following lemma.

Lemma 3.2. Suppose that the assumptions of Proposition 3.2 are satisfied.
Let

Aε =

{{
t ∈ [2,∞); K < (log t)1/2‖Fv(t)‖L∞}, when p = 3,

{
t ∈ [2,∞); K < t1/(p−1)−1/2‖Fv(t)‖L∞}, when 5+

√
33

4 < p < 3,

where K is the constant defined by (3.2). Then, Aε is a bounded subset of R.

Proof. We describe only the proof of this lemma for the subcritical case
(5 +

√
33)/4 < p < 3. For the critical case p = 3, this lemma is proved in the

same way. Let (5 +
√

33)/4 < p < 3. We prove it by the contradiction argument.
Assume that Aε is unbounded. Then for any n ∈ N , there exist some tn ∈ [n,∞)
and ξn ∈ R such that

K < t1/(p−1)−1/2
n |Fv(tn, ξn)| = t(3−p)/2(p−1)

n |Fv(tn, ξn)|.

(It is possible to take {tn} as a monotone increasing sequence if needed.) Let fix
t0 À 1. We first show that for any n > t0,

K < t(3−p)/2(p−1)|Fv(t, ξn)| (3.5)

holds for t ∈ [t0, tn]. If not so, there exist some n > t0 and t∗,n ∈ [t0, tn) such that

K = t
(3−p)/2(p−1)
∗,n |Fv(t∗,n, ξn)| and K < t(3−p)/2(p−1)|Fv(t, ξn)| (3.6)

for t ∈ (t∗,n, tn), since for each ξ ∈ R, Fv(t, ξ) is continuous in t, which follows
from v ∈ C([0,∞); H0,1) due to Theorem 1.1 and the embedding H1,0(R) ↪→
L∞(R). We note that
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0 < p

(
1

p− 1
− 1

2

)
<

1
4
, (3.7)

since (5 +
√

33)/4 < p < 3. Hence we can choose a constant b such that

p(3− p)
2(p− 1)

= p

(
1

p− 1
− 1

2

)
< b <

1
4
. (3.8)

By multiplying |Fv(t, ξn)|−(p+1)Fv(t, ξn) on both hand sides of (3.1) and taking
the imaginary part, Lemma 3.1 with µ = b gives

− 1
p− 1

∂t|Fv(t, ξn)|−(p−1) = λ2t
−(p−1)/2 + Im

Fv(t, ξn)R(t)
|Fv(t, ξn)|p+1

≤ λ2t
−(p−1)/2 + C‖u0‖p

H1,0∩H0,1K
−pt−(p−1)/2−α (3.9)

for t ∈ (t∗,n, tn), where α = b− p(1/(p− 1)− 1/2), which is positive according to
(3.8). (We here note that, in (3.9), the mollification of Fv(t, ξ) with respective
to t is required for the rigorous argument. However, we proceed in formal way to
avoid the complexity of the proof.) Then, (3.9) gives

|Fv(t, ξn)|−(p−1) ≥ |Fv(t∗,n, ξn)|−(p−1) +
2|λ2|(p− 1)

3− p

(
t(3−p)/2 − t

(3−p)/2
∗,n

)

− 2C(p− 1)
3− p− 2α

‖u0‖p
H1,0∩H0,1K

−p
(
t(3−p)/2−α − t

(3−p)/2−α
∗,n

)

= K−(p−1)t
(3−p)/2
∗,n +

2|λ2|(p− 1)
3− p

(
t(3−p)/2 − t

(3−p)/2
∗,n

)

− 2C(p− 1)
3− p− 2α

‖u0‖p
H1,0∩H0,1K

−p
(
t(3−p)/2−α − t

(3−p)/2−α
∗,n

)
.

This implies that

∣∣t(3−p)/2(p−1)Fv(t, ξn)
∣∣−(p−1)

≥ K−(p−1)

(
t∗,n
t

)(3−p)/2

+
2|λ2|(p− 1)

3− p

(
1−

(
t∗,n
t

)(3−p)/2)

− 2C(p− 1)
3− p− 2α

‖u0‖p
H1,0∩H0,1K

−p
(
t−α − t

(3−p)/2−α
∗,n t−(3−p)/2

)

≡ f(t).
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We see that f(t) is monotone increasing around t = t∗,n. Indeed,

f ′(t∗,n) = t−1
∗,n

(
− 3− p

2Kp−1
+ |λ2|(p− 1)− C(p− 1)‖u0‖p

H1,0∩H0,1K
−pt−α

∗,n

)

≥ t−1
∗,n

(
ε− C(p− 1)‖u0‖p

H1,0∩H0,1K
−pt−α

0

)

> 0

if t0 is so large that C(p − 1)‖u0‖p
H1,0∩H0,1K

−pt−α
0 < ε/2. Thus, if t is slightly

larger than t∗,n, then t(3−p)/2(p−1)|Fv(t, ξn)|−(p−1) > K−(p−1). This contradicts
to (3.6), and hence (3.5) is valid.

The relations (3.1) and (3.5) yield

|Fv(tn, ξn)|−(p−1) ≥ |Fv(t0, ξn)|−(p−1) +
2|λ2|(p− 1)

3− p

(
t(3−p)/2
n − t

(3−p)/2
0

)

− 2C(p− 1)
3− p− 2α

‖u0‖p
H1,0∩H0,1K

−p
(
t(3−p)/2−α
n − t

(3−p)/2−α
0

)
.

Since K−(p−1)t
(3−p)/2
n > |Fv(tn, ξn)|−(p−1), we have

K−(p−1) > t−(3−p)/2
n |Fv(t0, ξn)|−(p−1) +

2|λ2|(p− 1)
3− p

(
1−

(
t0
tn

)(3−p)/2)

− 2C(p− 1)
3− p− 2α

‖u0‖p
H1,0∩H0,1K

−p
(
t−α
n − t

(3−p)/2−α
0 t−(3−p)/2

n

)
(3.10)

Note that the first term on the right hand side of (3.10) is estimated as

0 ≤ t−(3−p)/2
n |Fv(t0, ξn)|−(p−1) ≤ t−(3−p)/2

n t
(3−p)/2
0 K−(p−1),

and so limn→∞ t
−(3−p)/2
n |Fv(t0, ξn)|−(p−1) = 0. Then, taking n → ∞ in (3.10),

we have

K−(p−1) ≥ 2|λ2|(p− 1)
3− p

.

This inequality is a contradiction. Hence, Aε is a bounded subset of [0,∞). ¤

We turn to the proof of Proposition 3.2.
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Proof of Proposition 3.2. By Lemma 3.2, we can choose T0 as sup Aε

if Aε 6= ∅ and as 2 if Aε = ∅ so that ‖Fv(t, ·)‖L∞ ≤ Kt−(1/(p−1)−1/2) for t > T0.
Thus the estimate (3.4) (in the subcritical case) is proved. In the same way, the
estimate (3.3) (in the critical case) follows. ¤

Proposition 3.3. Let (5 +
√

33)/4 < p ≤ 3. Then there exists a constant
C > 0 such that for any t ≥ 0,

‖u(t)‖L∞ ≤ (K + C‖u0‖H1,0∩H0,1){(2 + t) log(2 + t)}−1/2 (3.11)

when p = 3, and

‖u(t)‖L∞ ≤ (K + C‖u0‖H1,0∩H0,1)(1 + t)−1/(p−1) (3.12)

when (5 +
√

33)/4 < p < 3, where K is the positive constant defined by (3.2).

Proof. We prove only the estimate (3.12) (in the subcritical case). The
estimate (3.11) (in the critical case) is proved in the same way, and the proof of
(3.11) is easier than that of the estimate (3.12). Let (5 +

√
33)/4 < p < 3, and let

T0 ≥ 1 be the constant appearing in Proposition 3.2. Note that

u(t) = U(t)v(t)

= MDFv(t) + MDF (M − 1)v(t).

Then, by taking a constant b satisfying (3.8) and applying H0,1−2b(R) ↪→ L1(R),
Proposition 3.2 gives

‖u(t)‖L∞ ≤ Kt−1/2 · t−(1/(p−1)−1/2) + Ct−1/2‖(M − 1)v(t)‖L1

≤ Kt−1/(p−1) + Ct−1/2−b‖|x|2bv(t)‖L1

≤ Kt−1/(p−1) + Ct−1/2−b‖|x|2bv(t)‖H0,1−2b

≤ Kt−1/(p−1) + Ct−1/2−b‖v(t)‖H0,1

≤ Kt−1/(p−1) + Ct−1/2−b(‖u(t)‖L2 + ‖Ju(t)‖L2)

≤ Kt−1/(p−1) + Ct−1/2−b‖u0‖H1,0∩H0,1 (3.13)

for t > T0. In (3.13), we see that −1/2− b < −1/(p− 1), since b > p{1/(p− 1)−
1/2} > 1/(p− 1)− 1/2 by (3.8). Therefore
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‖u(t)‖L∞ ≤ (K + C‖u0‖H1,0∩H0,1)t−1/(p−1) (3.14)

for t > T0. On the other hand, by the estimate (1.5), we have

‖u(t)‖L∞ ≤ C‖u(t)‖H1,0 ≤ C‖u0‖H1,0∩H0,1 (3.15)

for any t ≥ 0. The inequalities (3.14) and (3.15) imply the estimate (3.12). ¤

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that the assumptions of Theorem 1.1
are satisfied. Then the unique existence of a solution u to the Cauchy problem
(1.1) satisfying (1.4) and (1.5) is proved in Proposition 3.1. Furthermore under
the additional assumption (5 +

√
33)/4 < p ≤ 3, the time decay estimates (1.6)

and (1.7) are shown in Proposition 3.3. These complete the proof of Theorem 1.1.
¤

4. Proof of Theorem 1.2.

Throughout this section, we assume that, the space dimension is one,
(21 +

√
177)/12 < p ≤ 3 and λ ∈ C satisfies the conditions (1.2) and (1.3).

Let u0 ∈ H1,0 ∩H0,1 and u be the global solution to the initial value problem
(1.1) obtained in Theorem 1.1. Also, let v = U(−t)u as in the previous section.
Recall that Φ is the function defined by (1.8). We write

Φ(t, ·) =
∫ t

1

τ−(p−1)/2|Fv(τ)|p−1 dτ

by using v. Then, the equation (3.1) is deformed into

∂t(eiλΦ(t)Fv(t)) = −ieiλΦ(t)R(t).

First we investigate the large-time behavior of eiλΦ(t)Fv(t).

Proposition 4.1. If (21 +
√

177)/12 < p ≤ 3, then there exist a constant
T1 ≥ 1 and a unique φ ∈ L2 ∩ L∞ such that

∥∥eiλΦ(t)Fv(t)− φ
∥∥

L2∩L∞ ≤ Ct−β for any t > T1,

for some β > 3− p. In particular, limt→∞ eiλΦ(t)Fv(t) = φ in L2 ∩ L∞.
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Proof. We note that

(3p− 2)(3− p)
2(p− 1)

<
1
4
, (4.1)

since (21 +
√

177)/12 < p ≤ 3. Let d be a constant satisfying

(3p− 2)(3− p)
2(p− 1)

< d <
1
4
. (4.2)

First we show this proposition in the subcritical case (5 +
√

33)/4 < p < 3.
By the definition (3.2) of K, K is represented by

K =
(

3− p

2(p− 1)|λ2| +
δε

|λ2|
)1/(p−1)

, (4.3)

where

δε = |λ2|
(

3− p

2(p− 1)|λ2| − ε
− 3− p

2(p− 1)|λ2|
)

. (4.4)

Note that limε↓0 δε = 0. According to (4.2), we can take ε > 0 sufficiently small
so that

0 < δε < d− (3p− 2)(3− p)
2(p− 1)

. (4.5)

Let t > T0, where T0 is the positive constant appearing in Proposition 3.2. By
Proposition 3.2, we have

‖Φ(t)‖L∞ ≤
∫ t

1

τ−(p−1)/2‖Fv(τ)‖p−1
L∞ dτ

≤ Kp−1

∫ t

1

τ−1 dτ

= Kp−1 log t,

and so Lemma 3.1 with µ = d gives
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∥∥eiλΦ(t)Fv(t)− eiλΦ(t′)Fv(t′)
∥∥

L2∩L∞

≤
∫ t

t′

∥∥e|λ2|Φ(τ)R(τ)
∥∥

L2∩L∞ dτ

≤ C

∫ t

t′
e|λ2|‖Φ(τ)‖L∞‖R(τ)‖L2∩L∞ dτ

≤ C‖u0‖p
H1,0∩H0,1

∫ t

t′
e|λ2|Kp−1 log τ τ−(p−1)/2−d dτ

= C‖u0‖p
H1,0∩H0,1

∫ t

t′
τ−1−β dτ

for T0 < t′ < t, where

β = −1 +
(p− 1)

2
+ d− |λ2|Kp−1 = d− p(3− p)

2(p− 1)
− δε. (4.6)

Here we note that β > 3−p, since the equality (4.6) and the inequality (4.5) imply

β − (3− p) = d− p(3− p)
2(p− 1)

− δε − (3− p)

> d− (3p− 2)(3− p)
2(p− 1)

− δε > 0.

Therefore

∥∥eiλΦ(t)Fv(t)− eiλΦ(t′)Fv(t′)
∥∥

L2∩L∞ ≤ C‖u0‖p
H1,0∩H0,1t

′−β

for T0 < t′ < t. This implies that there exists a unique φ ∈ L2 ∩ L∞ such that

∥∥eiλΦ(t)Fv(t)− φ
∥∥

L2∩L∞ ≤ C‖u0‖p
H1,0∩H0,1t

−β

for t > T0.
Next we consider the critical case p = 3. Let t > T0. By Proposition 3.2, we

have

‖Φ(t)‖L∞ ≤
∫ t

1

τ−1‖Fv(τ)‖2L∞ dτ ≤ K2

∫ t

1

τ−1(log τ)−1 dτ

= K2 log(log t).



Schrödinger equations with a dissipative nonlinearity 57

Lemma 3.1 with µ = d gives

∥∥eiλΦ(t)Fv(t)− eiλΦ(t′)Fv(t′)
∥∥

L2∩L∞

≤
∫ t

t′

∥∥e|λ2|Φ(τ)R(τ)
∥∥

L2∩L∞ dτ

≤ C

∫ t

t′
e|λ2|‖Φ(τ)‖L∞‖R(τ)‖L2∩L∞ dτ

≤ C‖u0‖3H1,0∩H0,1

∫ t

t′
e|λ2|K2 log(log τ)τ−1−d dτ

= C‖u0‖3H1,0∩H0,1

∫ t

t′
(log τ)|λ2|K2

τ−1−d dτ

≤ C‖u0‖3H1,0∩H0,1t′
−β

for T0 < t′ < t, where β is a constant such that 0 < β < d. This implies that there
exists a unique φ ∈ L2 ∩ L∞ such that

∥∥eiλΦ(t)Fv(t)− φ
∥∥

L2∩L∞ ≤ C‖u0‖3H1,0∩H0,1t−β

for t > T0. This completes the proof of Proposition 4.1. ¤

Let us next observe the asymptotic behavior of Φ(t). Noting that

∂tΦ(t) = t−(p−1)/2|Fv(t)|p−1

= t−(p−1)/2e(p−1)λ2Φ(t)
∣∣eiλΦ(t)Fv(t)

∣∣p−1

= t−(p−1)/2e−(p−1)|λ2|Φ(t)
∣∣eiλΦ(t)Fv(t)

∣∣p−1
,

we see that

∂te
(p−1)|λ2|Φ(t) = (p− 1)|λ2|t−(p−1)/2

∣∣eiλΦ(t)Fv(t)
∣∣p−1

.

Integrating the above equation from 1 to t, we have

e(p−1)|λ2|Φ(t) = 1 + (p− 1)|λ2|
∫ t

1

τ−(p−1)/2
∣∣eiλΦ(τ)Fv(τ)

∣∣p−1
dτ.
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Therefore we see that

e(p−1)|λ2|Φ(t)

= E(t) + (p− 1)|λ2|
∫ t

1

τ−(p−1)/2
(|eiλΦ(τ)Fv(τ)|p−1 − |φ|p−1

)
dτ, (4.7)

where

E(t, x) = 1 + (p− 1)|λ2||φ(x)|p−1

∫ t

1

τ−(p−1)/2 dτ

=





1 + 2|λ2||φ(x)|2 log t, when p = 3,

1 +
2(p− 1)|λ2|

3− p
|φ(x)|p−1(t(3−p)/2 − 1), when 21+

√
177

12 < p < 3.

By (4.7), we can derive the asymptotic formula of e(p−1)|λ2|Φ(t).

Proposition 4.2. Assume that (21 +
√

177)/12 < p ≤ 3. Then there exist
a constant T2 ≥ 1 and a unique real valued function η ∈ L∞ such that

∥∥e(p−1)|λ2|Φ(t) − E(t)− η
∥∥

L∞ ≤ Ct−(β−(3−p)/2) (4.8)

for any t ≥ T2, where β is the constant satisfying β > 3 − p, which appears in
Proposition 4.1. Furthermore, there exists a constant T̃ ≥ 1 such that T̃ ≥ T2 and

E(t, x) + η(x) ≥ 1
2

(4.9)

for almost every x ∈ R and for any t ≥ T̃ .

Proof. We show the estimate (4.8). First we consider the subcritical case
(21 +

√
177)/12 < p < 3. We show that the function e(p−1)|λ2|Φ(t) − E(t) has a

limit in L∞ as t →∞. It follows from the identity (4.7) that

(
e(p−1)|λ2|Φ(t) − E(t)

)− (
e(p−1)|λ2|Φ(t′) − E(t′)

)

= (p− 1)|λ2|
∫ t

t′
τ−(p−1)/2

(|eiλΦ(τ)Fv(τ)|p−1 − |φ|p−1
)
dτ. (4.10)

By Proposition 4.1 and the fact that 1 < p− 1 ≤ 2, we see that if T2 ≥ T1 and T2

is sufficiently large, then
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∥∥|eiλΦ(τ)Fv(τ)|p−1 − |φ|p−1
∥∥

L∞

≤ C max
{‖eiλΦ(τ)Fv(τ)‖p−2

L∞ , ‖φ‖p−2
L∞

}∥∥|eiλΦ(τ)Fv(τ)| − |φ|∥∥
L∞

≤ C
∥∥eiλΦ(τ)Fv(τ)− φ

∥∥
L∞

≤ Cτ−β (4.11)

for τ ≥ T2, where T1 is a positive constant appearing in Proposition 4.1. Therefore
by the identity (4.10) and the estimate (4.11), we obtain

∥∥(e(p−1)|λ2|Φ(t) − E(t))− (e(p−1)|λ2|Φ(t′) − E(t′))
∥∥

L∞

≤ (p− 1)|λ2|
∫ t′

t

τ−(p−1)/2
∥∥|eiλΦ(τ)Fv(τ)|p−1 − |φ|p−1

∥∥
L∞ dτ

≤ C

∫ t′

t

τ−β−(p−1)/2 dτ

≤ Ct−(β−(3−p)/2) (4.12)

for T2 ≤ t < t′. Therefore there exists a unique function η ∈ L∞ such that

∥∥e(p−1)|λ2|Φ(t) − E(t)− η
∥∥

L∞ ≤ Ct−(β−(3−p)/2)

for t ≥ T2. Hence the estimate (4.8) is proved in the subcritical case
(21 +

√
177)/12 < p < 3. In the same way as above, when p = 3 (that is, the

critical case), we can show the estimate (4.8). (Recall that β > 0 when p = 3.)
We note that e(p−1)|λ2|Φ(t) ≥ 1 if t ≥ 1. Therefore by the estimate (4.8), we

see that there exists a sufficiently large T̃ ≥ T2 such that

E(t, x) + η(x) ≥ 1
2

for almost every x ∈ R and for any t ≥ T̃ . Hence the estimate (4.9) is proved. ¤

For t ≥ T̃ , let A be the function defined by (1.9). Then

A(t, x) =
1

(p− 1)|λ2| log(E(t, x) + η(x)),

and then
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e(p−1)|λ2|A(t,x) = E(t, x) + η(x)

= 1 + (p− 1)|λ2||φ(x)|p−1

∫ t

1

τ−(p−1)/2 dτ + η(x),

e|λ2|A(t,x) = (E(t, x) + η(x))1/(p−1)

=
(

1 + (p− 1)|λ2||φ(x)|p−1

∫ t

1

τ−(p−1)/2 dτ + η(x)
)1/(p−1)

.

(4.13)

Then we have the asymptotic profile of the modification factor e−iλΦ(t) as given
below.

Lemma 4.1. Assume that (21 +
√

177)/12 < p ≤ 3. Then there exists a
constant T3 > 1 such that the following estimate holds for t ≥ T3:

∥∥(e−iλΦ(t) − e−iλA(t))φ
∥∥

L2∩L∞ ≤ Ct−( β
p−1− 3−p

2(p−1) ),

where β is the constant satisfying β > 3− p, which appears in Proposition 4.1.

Proof. Let t ≥ T̃ , where T̃ ≥ 1 is the constant appearing in Proposition
4.2. We write

(
e−iλΦ(t) − e−iλA(t)

)
φ = e−iλ1Φ(t)e−|λ2|Φ(t)

(
e|λ2|Φ(t) − e|λ2|A(t)

)
e−|λ2|A(t)φ

+
(
e−iλ1Φ(t) − e−iλ1A(t)

)
e−|λ2|A(t)φ

≡ P1(t) + P2(t).

We here remark ‖e−|λ2|Φ(t)‖L∞ ≤ 1 and ‖e−|λ2|A(t)‖L∞ ≤ 21/(p−1) by the inequal-
ity (4.9), and it follows from Proposition 4.2 that

∥∥e|λ2|Φ(t) − e|λ2|A(t)
∥∥

L∞ ≤
∥∥∥
(
e(p−1)|λ2|Φ(t)

)1/(p−1) − (
e(p−1)|λ2|A(t)

)1/(p−1)
∥∥∥

L∞

≤ C
∥∥e(p−1)|λ2|Φ(t) − e(p−1)|λ2|A(t)

∥∥1/(p−1)

L∞

≤ Ct−( β
p−1− 3−p

2(p−1) ).

Then it follows from the above estimates that
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‖P1(t)‖L2∩L∞ ≤ C
∥∥e−|λ2|Φ(t)

∥∥
L∞

∥∥e|λ2|Φ(t) − e|λ2|A(t)
∥∥

L∞
∥∥e−|λ2|A(t)φ

∥∥
L2∩L∞

≤ Ct−( β
p−1− 3−p

2(p−1) )

and

‖P2(t)‖L2∩L∞ ≤ C
∥∥e−iλ1Φ(t) − e−iλ1A(t)

∥∥
L∞

∥∥e−|λ2|A(t)φ
∥∥

L2∩L∞

≤ C‖Φ(t)−A(t)‖L∞

≤ C
∥∥e|λ2|Φ(t) − e|λ2|A(t)

∥∥
L∞

≤ Ct−( β
p−1− 3−p

2(p−1) ).

Therefore Lemma 4.1 is proved. ¤

Now we prove Theorem 1.2.

Proof of Theorem 1.2. We have already proved Part (I) and Part (II)
of Theorem 1.2 in Proposition 4.1 and Proposition 4.2. It remains to prove Part
(III) of Theorem 1.2.

Suppose that the assumptions in Theorem 1.2 are satisfied. First we show the
asymptotic formula (1.10). Since

u(t)−MDe−iλAφ = U(t)v(t)−MDe−iλA(t)φ

= MDF (M − 1)v(t) + MDe−iλΦ(t)(eiλΦ(t)Fv(t)− φ)

+ MD(e−iλΦ(t) − e−iλA(t))φ,

we have

∥∥u(t)−MDe−iλAφ
∥∥

L∞

≤ ‖MDF (M − 1)v(t)‖L∞ +
∥∥MDe−iλΦ(t)(eiλΦ(t)Fv(t)− φ)

∥∥
L∞

+
∥∥MD(e−iλΦ(t) − e−iλA(t))φ

∥∥
L∞

≤ t−1/2‖F (M − 1)v(t)‖L∞ + t−1/2
∥∥eiλΦ(t)Fv(t)− φ

∥∥
L∞

+ t−1/2
∥∥(e−iλΦ(t) − e−iλA(t))φ

∥∥
L∞

≡ I1(t) + I2(t) + I3(t) (4.14)
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Here we have noted that ‖e−iλΦ(t)‖L∞ = ‖e−|λ2|Φ(t)‖L∞ ≤ 1. Lemma 4.1 yields

I3(t) ≤ Ct−
1
2−( β

p−1− 3−p
2(p−1) ) = Ct−(p+β−2)/(p−1).

Hence we see that

I3(t) =

{
o((t log t)−1/2), when p = 3,

o(t−1/(p−1)), when 21+
√

177
12 < p < 3,

(4.15)

since (p + β − 2)/(p − 1) > 1/(p − 1) which follows from the fact β > 3 − p.
Proposition 4.1 gives

I2(t) ≤ Ct−1/2−β .

Note that β > 3−p > (3−p)/2(p−1) = 1/(p−1)−1/2, since 2(p−1) > 1. Hence

I2(t) =

{
o((t log t)−1/2), when p = 3,

o(t−1/(p−1)), when 21+
√

177
12 < p < 3.

(4.16)

As we proved in the estimate (3.13), we obtain

I1(t) ≤ Ct−1/2−b,

where b > 0 is the constant satisfying (3.8). By the inequality (3.8), we see that
b > p{1/(p− 1)− 1/2} > 1/(p− 1)− 1/2, and hence

I1(t) =

{
o((t log t)−1/2), when p = 3,

o(t−1/(p−1)), when 21+
√

177
12 < p < 3.

(4.17)

By the estimates (4.14)–(4.17), we have the asymptotic formula (1.10).
Next we prove the asymptotic formula (1.11). The following holds:

∥∥u(t)− U(t)F−1(e−iλA(t)φ)
∥∥

L2

=
∥∥FU(−t)u(t)− e−iλA(t)φ

∥∥
L2

=
∥∥Fv(t)− e−iλA(t)φ

∥∥
L2
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≤ ∥∥Fv(t)− e−iλΦ(t)φ
∥∥

L2 +
∥∥(e−iλΦ(t) − e−iλA(t))φ

∥∥
L2

≤ ∥∥eiλΦ(t)Fv(t)− φ
∥∥

L2 +
∥∥(e−iλΦ(t) − e−iλA(t))φ

∥∥
L2

≡ I4(t) + I5(t). (4.18)

In the same way as in the proof of the estimate (4.16) together with Proposition
4.1, we obtain

I4(t) =

{
o((log t)−1/2), when p = 3,

o(t−(1/(p−1)−1/2)), when 21+
√

177
12 < p < 3.

(4.19)

By Lemma 4.1, we can show

I5(t) =

{
o((log t)−1/2), when p = 3,

o(t−(1/(p−1)−1/2)), when 21+
√

177
12 < p < 3.

(4.20)

in the same way as in the proof of the estimate (4.15). The estimates (4.18)–(4.20)
imply the asymptotic formula (1.11).

Finally we prove (1.12). The unitarity of U(t) and F gives

∥∥U(t)F−1(e−iλA(t)φ)
∥∥

L2 =
∥∥e−iλA(t)φ

∥∥
L2 =

∥∥e−|λ2|A(t)φ
∥∥

L2 .

By the identity (4.13), we have

lim
t→∞

e−|λ2|A(t,x)φ(x) = 0

for almost every x ∈ R. By the estimate (4.9), note that for x ∈ R and t > T̃ ,

∣∣e−|λ2|A(t,x)φ(x)
∣∣ = (E(t, x) + η(x))−1/(p−1)|φ(x)|
≤ C|φ(x)|.

Then C|φ(x)| is regarded as a dominating function of |e−|λ2|A(t,x)φ(x)|, and we
have

lim
t→∞

∥∥e−|λ2|A(t)φ
∥∥

L2 = 0

by Lebesgue’s dominated convergence theorem. Therefore
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lim
t→∞

∥∥U(t)F−1(e−iλA(t)φ)
∥∥

L2 = 0. (4.21)

By (4.21) and the asymptotic formula (1.11), we have (1.12). This completes the
proof of Theorem 1.2. ¤
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