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Abstract. The goal of the paper is to study the Log-effect for special p-
evolution type models. The loss of regularity is related in an optimal way due to
some unboundedness conditions for the derivatives of coefficients up to the second
order with respect to t. Some counter-examples show that these conditions are sharp.
We present the state of art of methods to construct such counter-examples.

1. Introduction.

Recently the study of p-evolution operators with non-regular coefficients was
discussed by several authors. This study was motivated by astonishing progress
was obtained in the last years for strictly hyperbolic operators, in the language of
p-evolution operators these operators are called 1-evolution operators, with non-
regular coefficients. This progress to prove H∞ well-posedness of the Cauchy
problem bases heavily on the regularity assumptions the authors taking into ac-
count. There is a C1 approach [4] which assumes only some conditions to the first
derivatives of coefficients of the principal part with respect to t and which yields
H∞ well-posedness with a finite loss of regularity. The non-regular behavior is in
fact some non-Lipschitz behavior which allows that the first derivatives in t become
singular in a suitable way if t, let us say, tends to 0. Here and in the following
t = 0 is the hyperplane where the Lipschitz behavior of coefficients is violated.
Such a singular behavior is described by so-called local conditions. If one addi-
tionally assumes a global condition to the coefficients uniformly on the interval of
definition [0, T ], e.g. some Hölder or some Logm-Lipschitz behavior, then it might
be that the global condition allows to weaken the local one [12]. But in this paper
we shall state only local conditions to the coefficients. The question for sharpness
of the obtained results was answered by introducing several counter-examples. If
one studies these counter-examples in the case of local conditions in C1 approach,
that is, one takes into account the first order derivative of the coefficient only, then
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one can find a gap (see [3]) between necessary and sufficient conditions which is
described by a log 1/t term.

This gap was the starting point to create a C2 approach which in the language
of local conditions needs as well as conditions for the first and for the second
derivatives of coefficients of the principal part with respect to t cf. with [5], [8].
This higher regularity allows to close the gap which tells us that the local condition
for the first derivative is weaker than in the C1 approach [5], [8]. Nevertheless
we need to control the second derivative. Moreover, several notions of loss of
regularity, no loss, arbitrary small loss, finite loss and infinite loss were introduced
in [8], [10]. Today we have a complete optimal hierarchy of local conditions which
is connected with the hierarchy of loss of regularity. This relation is called Log-
effect because the hierarchy strongly depends on powers of log 1/t (see e.g. [7] or
Remark 2.1).

In several papers [1], [3] the C1 approach was generalized to classes of opera-
tors of p-evolution type. Global or local conditions or the coupling between both
was considered.

The goal of the present paper is to study the Log-effect for classes of operators
of p-evolution type.

In Section 2 we discuss classes of models of p-evolution type with time-
dependent coefficients. Results for H∞ well-posedness of the Cauchy problem
is proved.

Section 3 is devoted to counter-examples which show the optimality of our
assumptions in the main result. We introduce the state of art of methods. On the
one hand Floquet’ theory is introduced as an effective tool. On the other hand
the interplay of Lyapunov and energy functional of solutions is used to understand
interactions of oscillations. Finally, an instability argument coupled with an old
approach from [6] yields the information that the loss of regularity really occurs.

Some concluding remarks will be given in Section 4.

2. P -evolution type models with time dependent coefficients.

2.1. Main result.
From the results for the Log-effect of [5] and [8] it seems to be reasonable

that one effective class of Cauchy problems which allows to prove the Log-effect is
the class of operators with the principal part in the sense of Petrowsky

D2
t −

∑

|α|=2p

aα(t)Dα
x . (2.1)

Therefore most of the considerations of this paper are devoted to the forward
Cauchy problem
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



D2
t u−

2p∑

|α|=0

aα(t)Dα
x u−

p−1∑

|α|=0

bα(t)Dα
x Dtu = 0,

u(0, x) = u0(x), ut(0, x) = u1(x).

(2.2)

In the same way we can study the backward Cauchy problem. Although the
principal part of the operator in (2.2) in the sense of Petrowsky is given in (2.1)
we will call

D2
t −

2p∑

|α|=p+1

aα(t)Dα
x −

p−1∑

|α|=1

bα(t)Dα
x Dt (2.3)

the principal part of the p-evolution operator. The terms

p∑

|α|=0

aα(t)Dα
x + b0(t)Dt (2.4)

form the part of lower order of the p-evolution operator. Both parts are treated
in a different way.

Now we are in position to formulate the main result of this paper.

Theorem 2.1. Let us consider the Cauchy problem (2.2) under the following
assumptions:
• (for the principal part in the sense of Petrowsky)
There exists a positive constant C0 such that

C0|ξ|2p ≤
∑

|α|=2p

aα(t)ξα ≤ C−1
0 |ξ|2p.

Moreover, with γ ∈ [0, 1] it holds

|Dl
taα| .

(
1
t

(
log

1
t

)γ)l

, for l = 1, 2, and |α| = 2p.

• (for the remaining coefficients of the principal part (2.3))
We assume that aα are real and that

|Dl
taα| .

(
1
t

(
log

1
t

)γ)σlα

for l = 0, 1, 2, and |α| = p + 1, . . . , 2p− 1,
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where

0 ≤ σ0α ≤ 2p− |α|
p

, σ1α =
(5p− 2|α|)(1− σ0α) + |α| − p

2(|α| − p)
,

σ2α =
(3p− |α|)(1− σ0α) + |α| − p

|α| − p
.

Moreover, we assume that bα are real and that

|Dl
tbα| .

(
1
t

(
log

1
t

)γ)θlα

for l = 0, 1, 2, and |α| = 1, . . . , p− 1,

where

0 ≤ θ0α ≤ p− |α|
p

, θ1α =
(p− |α|)(1− θ0α) + |α|

|α| ,

θ2α =
(2p− |α|)(1− θ0α) + |α|

|α| .

• (for the lower order part (2.4))
We assume the integrability condition aα, b0 ∈ L1(0, T ) for |α| = 0, . . . , p. Then
the Cauchy problem is H∞ well-posed with loss of regularity exp(C2(log〈Dx〉)γ),
that is,

‖(〈Dx〉pu,Dtu)(t, ·)‖Hs ≤ C1‖ exp(C2(log〈Dx〉)γ)(〈Dx〉pu0, u1)‖Hs ,

where C1 and C2 are suitable positive constants.

Remark 2.1. The statement of this theorem describes the Log-effect. Log-
effect means that the power γ of the Log-term log 1/t has a strong influence on
the loss of regularity. Namely, if γ = 0, then we have no loss. If γ ∈ (0, 1), then
exp(C(log〈Dx〉)γ) corresponds to an arbitrary small loss 〈Dx〉ε, ε is positive and
arbitrary small. If γ = 1, then we have a finite loss 〈Dx〉C . Finally, we want to
mention again that, if we would include the sum

∑
|α|=p bα(t)Dα

x Dtu in (2.2), then
due to the counter-example from [9] γ = 0 in the above assumptions can already
imply a finite loss. This result corresponds to expected results from C1 theory,
consequently, the Log-effect cannot be shown (cf. with Theorem 3.1).

Remark 2.2. To fix the general model with time dependent coefficients
(2.2) we recall one counter-example from [9] which tells us that for the strictly
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hyperbolic Cauchy problem

D2
t u + b(t)D2

xtu− a(t)D2
xu = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (2.5)

we cannot expect the Log-effect. The main reason is that the interaction of oscil-
lations of coefficients a(t) and b(t) does in general not allow to observe this effect.
Consequently, the Log-effect can be proved only under special assumptions to the
coefficients a(t) and b(t) of (2.5), see e.g. the papers for the case b(t) ≡ 0.

In Section 3.1 this counter-example will be generalized to the p-evolution type
model

D2
t u + b(t)Dp

xDtu− a(t)D2p
x u = 0, u(0, x) = u0(x), ut(0, x) = u1(x) (2.6)

(see Theorem 3.1).

2.2. Proof.
The proof is divided into several steps. After partial Fourier transformation

with respect to x we get from (2.2)

D2
t v −

2p∑

|α|=0

aα(t)ξαv −
p−1∑

|α|=0

bα(t)ξαDtv = 0, (2.7)

where v denotes the partial Fourier transform of u.

2.2.1. Regularization and energy.
With a smooth function χ = χ(s), χ(s) = 1 for |s| ≤ 1, χ(s) = 0 for |s| ≥ 2,

χ(s) ∈ [0, 1] we define the regularization

aεα
α (t) := χ

(
t

εα

)
aα(εα) +

(
1− χ

(
t

εα

))
aα(t) for |α| = p + 1, . . . , 2p,

bηα
α (t) := χ

(
t

ηα

)
bα(ηα) +

(
1− χ

(
t

ηα

))
bα(t) for |α| = 1, . . . , p− 1,

where εα and ηα are positive constants. We introduce the following notations:

λ1(t, ξ) :=
( 2p∑

|α|=p+1

aα(t)ξα

) 1
2

, λε
1(t, ξ) :=

( 2p∑

|α|=p+1

aεα
α (t)ξα

) 1
2

,
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µ1(t, ξ) :=
1
2

p−1∑

|α|=1

bα(t)ξα, µη
1(t, ξ) :=

1
2

p−1∑

|α|=1

bηα
α (t)ξα,

νε,η
1 (t, ξ) :=

(
λε

1(t, ξ)
2 + µη

1(t, ξ)2
) 1

2 , ha(t, ξ) :=

∑p
|α|=0 aα(t)ξα

νε,η
1 (t, ξ)

.

Then the equation (2.7) is rewritten as follows:

(
D2

t − λ2
1 − νε,η

1 ha − 2µ1Dt − b0Dt

)
v(t, ξ) = 0.

Let us carry out the complex dissipation transformation

w(t, ξ) := exp
(
− i

∫ t

0

µη
1(s, ξ) ds

)
v(t, ξ).

Then we have

exp
(
− i

∫ t

0

µη
1(s, ξ) ds

)
(D2

t − λ2
1 − νε,η

1 ha − 2µ1Dt − b0Dt) exp
(

i

∫ t

0

µη
1(s, ξ) ds

)

= D2
t + 2µη

1Dt + Dtµ
η
1 + (µη

1)2 − λ2
1 − νε,η

1 ha − 2µ1Dt − 2µ1µ
η
1 − b0Dt − b0µ

η
1

= D2
t − (λε

1)
2 − (

λ2
1 − (λε

1)
2
)− (µη

1)2 − 2
(
µ1µ

η
1 − (µη

1)2
)− 2(µ1 − µη

1)Dt

− b0Dt + Dtµ
η
1 − νε,η

1 ha − b0µ
η
1

= D2
t − (νε,η

1 )2 − (
λ2

1 − (λε
1)

2
)− 2µη

1(µ1 − µη
1)− 2(µ1 − µη

1)Dt − b0Dt

+ Dtµ
η
1 − νε,η

1 ha − b0µ
η
1

= D2
t − (νε,η

1 )2 − νε,η
1 ga − 2µη

1gb − 2gbDt − b0Dt + Dtµ
η
1 − νε,η

1 ha − b0µ
η
1

= D2
t − (νε,η

1 )2 − νε,η
1 r11 − r12Dt,

where

ga = ga,ε,η :=
λ2

1 − (λε
1)

2

νε,η
1

, gb = gb,ε,η := µ1 − µη
1

and
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r11 := ga +
2µη

1gb

νε,η
1

− Dtµ
η
1

νε,η
1

+ ha +
b0µ

η
1

νε,η
1

, r12 := 2gb + b0.

Thus our starting equation (2.7) is reduced to

(
D2

t − (νε,η
1 )2 − νε,η

1 r11 − r12Dt

)
w(t, ξ) = 0. (2.8)

We define the energy of w by

W (t, ξ) = (w1, w2)T :=
(
νε,η
1 w, Dtw

)T (t, ξ).

Our first strategy is that for large frequencies the dominant term in νε,η
1 (t, ξ) is∑

|α|=2p aεα
α (t)ξα. For this reason we have to pose some dominance conditions to

the terms of lower order of νε,η
1 (t, ξ).

Lemma 2.1. Let us suppose the dominance conditions





βα ≤ 2p− |α|
σ0α

for |α| = p + 1, . . . , 2p− 1,

δα ≤ p− |α|
θ0α

for |α| = 1, . . . , p− 1,

(2.9)

where βα and δα are defined by the balance between regularization parameters εα, ηα

and frequency variable ξ

1
εα

(
log

1
εα

)γ

= c̃|ξ|βα ,
1
ηα

(
log

1
ηα

)γ

= c̃|ξ|δα , (2.10)

with a small constant c̃. Then νε,η
1 (t, ξ) ≥ C|ξ|p for large frequencies with a suitable

positive constant C.

Proof. The statement follows immediately from the estimates

|aεα
α (t)ξα| ≤ C

(
1
εα

(
log

1
εα

)γ)σ0α

|ξ||α| ≤ Cc̃|ξ|βασ0α |ξ||α| ≤ Cc̃|ξ|2p,

|bηα
α (t)ξα|2 ≤ C

(
1
ηα

(
log

1
ηα

)γ)2θ0α

|ξ|2|α| ≤ Cc̃|ξ|2δαθ0α |ξ|2|α| ≤ Cc̃|ξ|2p

together with the assumptions from Theorem 2.1 for aα with |α| = 2p. ¤
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2.2.2. Two steps of diagonalization procedure.
In opposite to the C1 approach we will carry out two steps of diagonalization

procedure. Using the definition of W we obtain from (2.8) and from the definition
of the energy

Dtw1 = νε,η
1 w2 +

Dtν
ε,η
1

νε,η
1

w1, Dtw2 = (νε,η
1 + r11)w1 + r12w2.

Thus from (2.8) we arrive at

DtW − νε,η
1

(
0 1
1 0

)
W − Dtν

ε,η
1

νε,η
1

(
1 0
0 0

)
W −

(
0 0

r11 r12

)
W = 0. (2.11)

To carry out the first step of diagonalization procedure we set

W =: M1W1 with M1 :=
(

1 1
1 −1

)
.

Applying this transformation to system (2.11) it yields





DtW1 − νε,η
1

(
1 0
0 −1

)
W1 − Dtν

ε,η
1

2νε,η
1

(
1 1
1 1

)
W1

−1
2

(
r11 + r12 r11 − r12

−r11 − r12 −r11 + r12

)
W1 = 0.

(2.12)

To carry out the second step of diagonalization procedure we take into consider-
ation only the structure of the antidiagonal elements of the second matrix from
(2.12). Here we will later use the special structure of Dtν

ε,η
1

2νε,η
1

. For this reason we
define

q = q(t, ξ) :=
Dtν

ε,η
1

4(νε,η
1 )2

=
Dt(ν

ε,η
1 )2

8(νε,η
1 )3

(2.13)

and apply the transformation

W1 =: M2W2 with M2 :=
(

1 −q

q 1

)
.
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Setting this transformation into the system (2.12) gives





DtW2 − νε,η
1


 1− 2q2

1+q2 −2q + 2q3

1+q2

−2q + 2q3

1+q2 −1 + 2q2

1+q2


 W2

−Dtν
ε,η
1

2νε,η
1


 1 + 2q

1+q2 1− 2q2

1+q2

1− 2q2

1+q2 1− 2q
1+q2


 W2 + M−1

2 (DtM2)W2

−1
2
M−1

2

(
r11 + r12 r11 − r12

−r11 − r12 −r11 + r12

)
M2W2 = 0.

(2.14)

But here we supposed the invertibility of M2. It follows from the smallness of
q in the definition of M2. This smallness condition can be realized by an additional
balance between the regularization parameters εα, ηα and the frequency variable
ξ.

Lemma 2.2. Let us suppose the conditions

{
βασ1α ≤ 3p− |α| for |α| = p + 1, . . . , 2p,

δα1θ0α1 + δα2θ1α2 ≤ 3p− |α1| − |α2| for |α1|, |α2| = 1, . . . , p− 1,
(2.15)

where all βα, δα1 , δα2 are defined by (2.10) with a small constant c̃. Then the
matrix M2 is invertible for large frequencies.

Proof. The statement follows immediately if we can show that the above
assumption guarantees the smallness of |q| from (2.13). Together with the assump-
tions of Theorem 2.1 this smallness follows from





(
1
εα

(
log

1
εα

)γ)σ1α

|ξ||α| ≤ c̃|ξ|3p for |α| = p + 1, . . . , 2p,

(
1

ηα1

(
log

1
ηα1

)γ)θ0α1

|ξ||α1|
(

1
ηα2

(
log

1
ηα2

)γ)θ1α2

|ξ||α2| ≤ c̃|ξ|3p

for |α1|, |α2| = 1, . . . , p− 1.

The conditions (2.10) and the above assumptions ensure these relations for large
frequencies. ¤
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2.2.3. Discussion of system (2.14).
Calculating in system (2.14) the first three matrices and leaving the other

ones unchanged we arrive at the new system

DtW2 − νε,η
1

(
1 0
0 −1

)
W2 − Dtν

ε,η
1

2νε,η
1

(
1 0
0 1

)
W2 −B0W2 = 0, (2.16)

where the matrix B0 has the following structure:

B0 :=





νε,η
1



− 2q2

1+q2
2q3

1+q2

2q3

1+q2
2q2

1+q2


 +

Dtν
ε,η
1

2νε,η
1




2q
1+q2 − 2q2

1+q2

− 2q2

1+q2 − 2q
1+q2




−M−1
2 Dtq

(
0 −1
1 0

)
+

1
2
M−1

2

(
r11 + r12 r11 − r12

−r11 − r12 −r11 + r12

)
M2.

We should mention that the above calculations show that the matrix

Dtν
ε,η
1

2νε,η
1

(
0 1
1 0

)

disappears after the second step of diagonalization. This is the main use of this
step. From system (2.16) we conclude that the transformation

W2 =: M3(t, ξ)W3 with M3(t, ξ) := exp
( ∫ t

0

∂sν
ε,η
1

2νε,η
1

ds

)

gives the system

∂tW3 − iνε,η
1

(
1 0
0 −1

)
W3 −B1W3 = 0, (2.17)

where B1 has the same structure as B0. Summarizing we have proved the following
lemma:

Lemma 2.3. After two steps of diagonalization and suitable transformations
the system (2.11) is transferred to system (2.17). All transformations are organized
in such a way that no additional loss of regularity is produced.
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2.2.4. Estimate of
∫ T

0
|B1(t, ξ)|dt.

To verify the statements of Theorem 2.1 we have to analyze the system (2.17).
The diagonal matrix brings no additional loss of regularity because of the fact that
νε,η
1 is real. The loss of regularity will be determined from the term

exp
( ∫ t

0

|B1(s, ξ)|ds

)
(2.18)

after applying Gronwall’s inequality to estimate the usual energy of W3. Thus it
remains to estimate

∫ T

0
|B1(t, ξ)|dt. The analysis of the structure of B1 from the

previous step shows that therefore we have to estimate
∫ T

0
over

|νε,η
1 ||q|2,

∣∣∣∣
Dtν

ε,η
1

2νε,η
1

∣∣∣∣|q|, |Dtq|, |r12|, |r11|.

Here we are able to omit some terms by using the smallness of q (invertibility of
M2, cf. Lemma 2.2).

Estimate of
∫ T

0
|νε,η

1 ||q|2dt:
Here we use

|νε,η
1 ||q|2 . |Dt(ν

ε,η
1 )2|2

|ξ|5p
. |ξ|−5p

∣∣Dtλ
ε
1(t, ξ)

2 + Dtµ
η
1(t, ξ)2

∣∣2

. |ξ|−5p

( 2p∑

|α|=p+1

∣∣Dta
εα
α (t)ξα

∣∣ + 2
∣∣µη

1(t, ξ)Dtµ
η
1(t, ξ)

∣∣
)2

. |ξ|−5p

( 2p∑

|α|=p+1

∣∣Dta
εα
α (t)ξα

∣∣2 + |ξ|2p
∣∣Dtµ

η
1(t, ξ)

∣∣2
)

. |ξ|−5p

( 2p∑

|α|=p+1

∣∣Dta
εα
α (t)ξα

∣∣2 + |ξ|2p

p−1∑

|α|=1

∣∣Dtb
ηα
α (t)ξα

∣∣2
)

.

From the supposed unboundedness of Dtaα(t) (with σ1α ≥ 1 for |α| = p+1, . . . , 2p)
and of Dtbα(t) (with θ1α > 1 for |α| = 1, . . . , p− 1) we conclude

∫ T

εα

∣∣Dta
εα
α (t)ξα

∣∣2dt|ξ|−5p .
(

1
εα

(
log

1
εα

)γ)2σ1α

εα|ξ|2|α|−5p,
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∫ T

ηα

∣∣Dtb
ηα
α (t)ξα

∣∣2dt|ξ|−3p .
(

1
ηα

(
log

1
ηα

)γ)2θ1α

ηα|ξ|2|α|−3p.

If we introduce the balance between εα, ηα and ξ as in (2.10), then the conditions





2σ1αβα − βα + 2|α| − 5p ≤ 0, σ1α ≥ 1, |α| = p + 1, . . . , 2p,

2θ1αδα − δα + 2|α| − 3p ≤ 0, θ1α > 1, |α| = 1, . . . , p− 1, imply
∫ T

0

|λε
1||q|2dt . (log |ξ|)γ for large frequencies.

(2.19)

In the same way we can estimate
∫ T

0

∣∣Dtν
ε,η
1

2νε,η
1

∣∣|q|dt.

Estimate of
∫ T

0
|Dtq|dt:

If we differentiate q, then the only interesting new integral is that one over
|D2

t (νε,η
1 )2

8(νε,η
1 )3

|. The other integral which appears can be estimated as the previous
integral. Here we use

∣∣∣∣
D2

t (νε,η
1 )2

8(νε,η
1 )3

∣∣∣∣ . |ξ|−3p

( 2p∑

|α|=p+1

∣∣D2
t aεα

α (t)ξα
∣∣
)

+ |ξ|−2p

( p−1∑

|α|=1

∣∣D2
t bηα

α (t)ξα
∣∣
)

+ |ξ|−3p

( p−1∑

|α|=1

∣∣Dtb
ηα
α (t)ξα

∣∣2
)

.

From the supposed unboundedness of D2
t aα(t) (with σ2α > 1 for |α| = p +

1, . . . , 2p), of D2
t bα(t) (with θ2α > 1 for |α| = 1, . . . , p − 1) and of Dtbα(t) (with

θ1α > 1 for |α| = 1, . . . , p− 1) we conclude

∫ T

εα

∣∣D2
t aεα

α (t)ξα
∣∣dt|ξ|−3p .

(
1
εα

(
log

1
εα

)γ)σ2α

εα|ξ||α|−3p,

∫ T

ηα

∣∣D2
t bηα

α (t)ξα
∣∣dt|ξ|−2p .

(
1
ηα

(
log

1
ηα

)γ)θ2α

ηα|ξ||α|−2p,

∫ T

ηα

∣∣Dtb
ηα
α (t)ξα

∣∣2dt|ξ|−3p .
(

1
ηα

(
log

1
ηα

)γ)2θ1α

ηα|ξ|2|α|−3p.

If we introduce the balance between εα, ηα and ξ as in (2.10), then the conditions
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



σ2αβα − βα + |α| − 3p ≤ 0, σ2α > 1, |α| = p + 1, . . . , 2p,

θ2αδα − δα + |α| − 2p ≤ 0, θ2α > 1, |α| = 1, . . . , p− 1,

2θ1αδα − δα + 2|α| − 3p ≤ 0, θ1α > 1, |α| = 1, . . . , p− 1, imply
∫ T

0

|Dtq|dt . (log |ξ|)γ for large frequencies.

(2.20)

Estimate of
∫ T

0
|r12|dt:

The desired estimate for this integral follows from the estimates for∫ T

0
|b0(t)|dt and for

∫ T

0
|gb(t, ξ)|dt. To estimate the first integral we use the L1(0, T )

property. To estimate the other integral we proceed as follows:

∫ T

0

|gb(t, ξ)|dt =
∫ T

0

∣∣∣∣
p−1∑

|α|=1

(bα(t)−bηα
α (t))ξα

∣∣∣∣dt .
p−1∑

|α|=1

∫ 2ηα

0

∣∣(bα(t)−bηα
α (t))ξα

∣∣dt.

If we suppose some unbounded behavior for bα(t) as it is described in the assump-
tions of the theorem, then for θ0α < 1 it holds

∫ 2ηα

0

∣∣(bα(t)− bηα
α (t))ξα

∣∣dt . |ξ||α|
∫ 2ηα

0

(
1
t

(
log

1
t

)γ)θ0α

dt

. |ξ||α|
(

1
ηα

(
log

1
ηα

)γ)θ0α

ηα.

Using the definition (2.10) for δα implies that δα ≥ |α|
1−θ0α

gives the estimate∫ T

0
|gb(t, ξ)|dt . (log |ξ|)γ . Summarizing we have shown that the conditions





b0 ∈ L1(0, T ), δα ≥ |α|
1− θ0α

for θ0α < 1, |α| = 1, . . . , p− 1,

imply
∫ T

0

|r12|dt . (log |ξ|)γ for large frequencies.

(2.21)

Estimate of
∫ T

0
|r11|dt:

To estimate this integral we firstly devote to
∫ T

0

∣∣b0
µη

1
νε,η
1

∣∣dt. The property of

b0 to belong to L1(0, T ) implies b0
µη

1
νε,η
1

∈ L1(0, T ).

We can estimate
∫ T

0
|gb

µη
1

λε
1
|dt as it was done above to estimate

∫ T

0
|r12|dt.

To estimate
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∫ T

0

|ga(t, ξ)|dt =
∫ T

0

∣∣∣∣
2p∑

|α|=p+1

(aα(t)− aεα
α (t))|ξ||α|−p

∣∣∣∣dt

.
2p∑

|α|=p+1

∫ 2εα

0

∣∣(aα(t)− aεα
α (t))|ξ||α|−p

∣∣dt

we suppose some possible unbounded behavior for aα(t) as it is described in the
assumptions of the theorem by σ0α ≥ 0. Then for σ0α < 1 and for |α| = p +
1, . . . , 2p, it holds

∫ 2εα

0

∣∣(aα(t)− aεα
α (t))|ξ||α|−p

∣∣dt . |ξ||α|−p

∫ 2εα

0

(
1
t

(
log

1
t

)γ)σ0α

dt

. |ξ||α|−p

(
1
εα

(
log

1
εα

)γ)σ0α

εα.

Using the definition (2.10) for βα implies that βα ≥ |α|−p
1−σ0α

gives the estimate∫ T

0
|gε,a(t, ξ)|dt . (log |ξ|)γ . To estimate

∫ T

0
|ha(t, ξ)|dt we use the supposed

L1(0, T ) property for aα(t), |α| = 0, . . . , p. Finally, it remains to estimate∫ T

0
|Dtµ

η
1

νε,η
1
|dt. It holds

∫ T

0

∣∣∣∣
Dtµ

η
1

νε,η
1

∣∣∣∣dt . |ξ|−p

∫ T

ηα

∣∣Dtb
ηα
α (t)ξα

∣∣dt.

From the supposed unboundedness of Dtbα(t) (with θ1α > 1 for |α| = 1, . . . , p−1)
we conclude

∫ T

ηα

∣∣Dtb
ηα
α (t)ξα

∣∣dt|ξ|−p .
(

1
ηα

(
log

1
ηα

)γ)θ1α

ηα|ξ||α|−p.

Summarizing we have shown that the conditions





θ1αδα − δα + |α| − p ≤ 0, θ1α > 1, for |α| = 1, . . . , p− 1,

aα ∈ L1(0, T ), for |α| = 0, . . . , p,

βα ≥ |α| − p

1− σ0α
for σ0α < 1, |α| = p + 1, . . . , 2p,

imply
∫ T

0

|r11|dt . (log |ξ|)γ for large frequencies.

(2.22)
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2.2.5. Verification.
To verify the statement of the theorem we have to take into consideration

the conditions from (2.9), (2.15), (2.19), (2.20), (2.21), (2.22). From (2.9) and
(2.21) we conclude |α|

1−θ0α
≤ p−|α|

θ0α
which is equivalent to θ0α ≤ p−|α|

p < 1 for

|α| = 1, . . . , p− 1. The constants δα = |α|
1−θ0α

. From (2.9) and (2.22) we conclude
|α|−p
1−σ0α

≤ 2p−|α|
σ0α

which is equivalent to σ0α ≤ 2p−|α|
p < 1 for |α| = p + 1, . . . , 2p− 1.

The constants βα = |α|−p
1−σ0α

. The assumptions for aα, |α| = 2p, imply σ0α = 0,
hence βα = p for |α| = 2p. Using βα ≤ p we see that the restriction for σ1α coming
from (2.19) is more restrictive than that one coming from (2.15). Thus the optimal
σ1α is

σ1α =
5p− 2|α|+ βα

2βα
=

(5p− 2|α|)(1− σ0α) + |α| − p

2(|α| − p)
> 1

for |α| = p + 1, . . . , 2p− 1, σ1α = 1 for |α| = 2p.

From (2.20) we get immediately

σ2α =
3p− |α|+ βα

βα
=

(3p− |α|)(1− σ0α) + |α| − p

|α| − p
> 1 for |α| = p + 1, . . . , 2p.

Using δα ≤ p we see that the restriction for θ1α coming from (2.22) is more
restrictive than those ones coming from (2.20), (2.19) or from (2.15) together with
(2.9). Thus the optimal θ1α is

θ1α =
p− |α|+ δα

δα
=

(p− |α|)(1− θ0α) + |α|
|α| > 1 for |α| = 1, . . . , p− 1.

At the end we conclude from (2.20)

θ2α =
2p− |α|+ δα

δα
=

(2p− |α|)(1− θ0α) + |α|
|α| > 1 for |α| = 1, . . . , p− 1.

Thus all assumptions we made during the proof are satisfied. This completes the
proof of the theorem. ¤

2.3. Examples.
2.3.1. Bounded coefficients in principal part.
Let us suppose that σ0α = 0 for |α| = p + 1, . . . , 2p− 1 and θ0α = 0 for |α| =

1, . . . , p−1. We will call this case regular case. Then σ1α = 4p−|α|
2(|α|−p) < 2p

|α|−p = σ2α
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for |α| = p + 1, . . . , 2p − 1 and θ1α = p
|α| < 2p

|α| = θ2α for |α| = 1, . . . , p− 1. If we
set |α| = 2p, then we have σ1α = 1, σ2α = 2 for |α| = 2p. These are the typical
orders for the leading coefficients aα, |α| = 2p, to observe the Log-effect. If we
compare our assumptions for the first derivatives with respect to t with those from
[1] to carry out the C1 approach, then our orders σ1α are larger. The orders θ1α

coincide with those from [1]. But we have to control derivatives of second order,
too.

2.3.2. Optimal unbounded coefficients in principal part.
Now let us allow the optimal unbounded behavior for coefficients aα, |α| =

p + 1, . . . , 2p − 1 and bα, |α| = 1, . . . , p − 1, that is, σ0α = 2p−|α|
p for |α| =

p + 1, . . . , 2p − 1 and θ0α = p−|α|
p for |α| = 1, . . . , p− 1. We call this case critical

singular case. Then σ1α = 3p−|α|
p < 4p−|α|

p = σ2α for |α| = p + 1, . . . , 2p − 1 and

θ1α = 2p−|α|
p < 3p−|α|

p = θ2α for |α| = 1, . . . , p− 1.

Remark 2.3. Not only from the examples but also from Theorem 2.1 we
see the following two tendencies:

• As more singular the allowed behavior of the above coefficients aα and bα is,
as more restrictive are the conditions for the derivatives of first and second
order.

• The allowed behavior of the derivatives of second order is more singular
than that one for the derivatives of first order.

3. Counter-examples.

3.1. Possible interactions of oscillations.
The possible interaction of oscillations of coefficients of the principal part in

the sense of Petrowsky of a p-evolution operator is described in the following
result (cf. Remarks 2.1 and 2.2).

Theorem 3.1. Let us consider the Cauchy problem

D2
t u + b(t)Dp

xDtu− a(t)D2p
x u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (3.1)

where D2
t + b(t)Dp

xDt − a(t)D2p
x is a p-evolution operator. There exist coefficients

a and b from C2(0, T ] which satisfy the conditions

• a0 ≤ a(t) ≤ a1, b0 ≤ b(t) ≤ b1,

• |a′(t)|2 + |a′′(t)| . (
1
t

(
log 1

t

)γ)2,

• |b′(t)|2 + |b′′(t)| . (
1
t

(
log 1

t

)γ)2,
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with positive constants a0, a1, b0, b1 and with an arbitrary small positive γ such
that the Cauchy problem (3.1) is not H∞ well-posed.

Proof. The proof follows exactly the lines of the proof of Theorem 1 from
[9]. ¤

3.2. Counter-examples for conditions of principal part.
3.2.1. Optimality of conditions for the principal part in the sense

of Petrowsky.
In this section we want to show the sharpness of the assumptions to the

coefficients of the principal part from Theorem 2.1. That the assumptions for
aα(t), |α| = 2p, are sharp shows the generalization of the results from [8] to the
operator D2

t − a2p(t)D2p
x .

Theorem 3.2. Let us consider the Cauchy problem

D2
t u− ω

((
log

1
t

)γ+1)
D2p

x u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (3.2)

where ω(τ) ∈ C∞[0,∞) is a positive and 1-periodic function. Then the Cauchy
problem (3.2) is not H∞ well-posed with the loss of regularity exp(C(log〈Dx〉)γ0),
γ0 < γ, that is, the inequality

‖(〈Dx〉pu,Dtu)(t, ·)‖Hs ≤ C1‖ exp(C2(log〈Dx〉)γ0)(〈Dx〉pu0, u1)‖Hs

does not hold, where C1 and C2 are arbitrary positive constants and 0 < γ0 < γ.

Proof. The proof is similar to the proof of Theorem 3.3. For this reason
we omit it. ¤

3.2.2. Optimality of conditions for the coefficients ak of the re-
maining principal part.

First of all we remark that instead of the forward Cauchy problem we are able
to study the backward Cauchy problem under the assumptions of Theorem 2.1.
This leads to the more general inequality

‖(〈Dx〉pu,Dtu)(t, ·)‖Hs ≤ C1‖ exp(C2(log〈Dx〉)γ)(〈Dx〉pu,Dtu)(r, ·)‖Hs ,

where C1 and C2 are suitable positive constants independent of t, r ∈ [0, T ].
In the next theorem we will give a counter-example and will formulate a

corresponding result to the previous theorem. The proof bases on the application
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of Floquet’ theory (see [13] and [15]), which is an effective tool to prove counter-
examples.

Theorem 3.3. Let us consider the Cauchy problem

D2
t u−D2p

x u−ak(t)Dk
xu = 0, u(r, x) = u0(x), ut(r, x) = u1(x), r ∈ [0, T ], (3.3)

where k = p + 1, . . . , 2p − 1. Then, there exists a positive, non-constant and
1-periodic function ω = ω(·) ∈ C∞[0,∞) such that the Cauchy problem (3.3)
with ak(t) = ( 1

t (log 1
t )

γ)
2p−k

p ω((log 1
t )

γ+1) is not H∞ well-posed with the loss of
regularity exp(C(log〈Dx〉)γ0), γ0 < γ, that is, the inequality

‖(〈Dx〉pu,Dtu)(t, ·)‖Hs ≤ C1‖ exp(C2(log〈Dx〉)γ0)(〈Dx〉pu,Dtu)(r, ·)‖Hs (3.4)

does not hold, where C1 and C2 are arbitrary positive constants which are inde-
pendent of r, t ∈ [0, T ].

Proof. Let us assume that the above inequality (3.4) is true uniformly for
r, t ∈ [0, T ]. Transfer into the phase space this means (L2,s := F (Hs))

‖(〈ξ〉pv, Dtv)(t, ·)‖L2,s ≤ C1‖ exp(C2(log〈ξ〉)γ0)(〈ξ〉pv, Dtv)(r, ·)‖L2,s (3.5)

for the partial Fourier transform v of the solution u. We understand from the
L2,s-L2,s estimate (3.5) that the fundamental solution E = E(t, r, ξ) satisfying

(〈ξ〉pv, Dtv)T (t, ξ) = E(t, r, ξ)(〈ξ〉pv, Dtv)T (r, ξ) (3.6)

can be estimated by

|E(t, r, ξ)| ≤ C1 exp(C2(log〈ξ〉)γ0).

Consequently, the proof of the statement of the theorem follows immediately from
the following proposition. ¤

Proposition 3.1. Let us consider the Cauchy problem

D2
t v − ξ2pv − ak(t)ξkv = 0, v(r, ξ) = v0(ξ), vt(r, ξ) = v1(ξ), r ∈ [0, T ]. (3.7)

Let E = E(t, r, ξ) be the fundamental solution from (3.6). Then, there exist for
any given ξ time levels tξ and t̃ξ satisfying 0 < t̃ξ < tξ and lim|ξ|→∞ t̃ξ = 0 such
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that the following inequality holds for the fundamental solution E:

∣∣E(tξ, t̃ξ, ξ)
∣∣ ≥ exp(C(log〈ξ〉)γ), (3.8)

where C is a positive constant which is independent of ξ.

Proof. For a smooth, 1-periodic and non-constant function ω̃(s) satisfying

ω̃0 ≤ ω̃(s) ≤ ω̃1 (3.9)

with some positive constants ω̃0 and ω̃1 we consider the following Cauchy problem:





d

dτ
X(s0 − τ ; s0) =

(
0 1

−λ0ω̃(s0 − τ) 0

)
X(s0 − τ ; s0),

X(s0; s0) =
(

1 0
0 1

)
,

(3.10)

where λ0 is chosen as a positive constant taking into account the following property
which results from Floquet’ theory:

Lemma 3.1 (Floquet’ theory). Let ω̃(s) be a smooth, 1-periodic and non-
constant function, and let X(τ ; s0) be the solution to the first order system (3.10).
Then there exists a positive real number λ0 such that X(s0 + 1; s0) has the eigen-
values µ and µ−1 satisfying |µ| > 1.

(For the proof see [13] or [15], for instance.) ¤

Remark 3.1. Here the constant λ0 belongs to an interval, which is called
an interval of instability. Generally, for any given large positive number L, there
exists a real constant λ0 > L such that λ0 belongs to an interval of instability.
On the other hand, λ0 can be chosen from intervals, which are called the intervals
of stability; thus we have |µ| = 1. Therefore, Lemma 3.1 can be represented as
Lemma 3.4 below in the case that λ0 belongs to an interval of stability.

Let us introduce the notations

κ(t) :=
1
t

(
log

1
t

)γ

, s(t) :=
(

log
1
t

)γ+1

and ω(s) := λ0(γ + 1)2ω̃(s)− 1.

Then we define the coefficient ak(t) of (3.7) as follows:
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ak(t) := κ(t)
2p−k

p ω(s(t)).

Here we note that ω(s) satisfies

ω0 ≤ ω(s) ≤ ω1 (3.11)

for some positive constants ω0 and ω1 since L ≥ 1/(ω̃0(γ + 1)2) by (3.9).
Let us define ν = ν(s) by

ν(s) := −s′(t(s)) = (γ + 1)s
γ

γ+1 exp(s
1

γ+1 ) = (γ + 1)κ(t(s)),

where t(s) = exp(−s1/(γ+1)). Then we introduce the following notations:

λ1(s, ξ) := (γ + 1)−
2p−k

p ν(s)−
k
p ξk,

λ2(s) :=
1
4
ν′(s)2ν(s)−2 − 1

2
ν′′(s)ν(s)−1,

ζ(s, ξ) :=
λ2(s) + ν(s)−2ξ2p

λ1(s, ξ)
, p(s, s̃, ξ) := ω(s̃) + ζ(s, ξ)

and

λ(s, s̃, ξ) := λ1(s, ξ)p(s, s̃, ξ).

Denoting w = w(s, ξ) := ν(s)
1
2 v(t(s), ξ), the equation of (3.7) for t ∈ (0, T ] is

reduced to the following equation:

D2
sw − λ(s, s, ξ)w = 0 (3.12)

for s ∈ [s(T ),∞). Here we remark that the first variable, and the second variable
of λ(s, s, ·) describe the decreasing, and oscillating behavior of the coefficient re-
spectively. Moreover, we can suppose that the parameter ξ is positive and large
without loss of generality.

For a given ξ ∈ R, we define sξ implicitly by

ν(sξ) = (γ + 1)ξp, (3.13)

it follows that
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λ1(sξ, ξ) = (γ + 1)−2 and ζ(sξ, ξ) = 1 + (γ + 1)2λ2(sξ). (3.14)

Therefore, noting lims→∞ λ2(s) = 0 we conclude ζ(s, ξ) > 0 if s is large and

λ(sξ, s, ξ) = (γ + 1)−2(ω(s) + 1) + λ2(sξ) → λ0ω̃(s) as sξ →∞. (3.15)

Then we have the following lemma:

Lemma 3.2. Let δ be a positive small constant. Then the following estimates
are established :

sup
τ∈(0,1)

{∣∣λ(sξ, sξ − τ, ξ)− λ(sξ − τ, sξ − τ, ξ)
∣∣} ≤ Cs

− γ
γ+1

ξ

and

sup
τ∈(0,1)

{∣∣λ(sξ − j + 1− τ, sξ − j + 1− τ, ξ)− λ(sξ − j − τ, sξ − j − τ, ξ)
∣∣}

≤ Cs
− γ

γ+1
ξ

for any j + 1 ≤ δs
γ/(γ+1)
ξ .

Proof. Let α be a non-zero real number and d be a positive constant
satisfying 0 < d ≤ δsγ/(γ+1) for large s. Then we have

∣∣ exp
(
αs

1
γ+1

)− exp
(
α(s− d)

1
γ+1

)∣∣



≥ C−1ds−

γ
γ+1 exp

(
α

γ
γ+1

)

≤ Cds−
γ

γ+1 exp
(
α

γ
γ+1

)

and

exp
(
s

1
γ+1 − (s− d)

1
γ+1

)
{≥ 1 + C−1δ

≤ 1 + Cδ.

Consequently, we have

|λ1(s, ξ)− λ1(s− d, ξ)| ≤ Cds−
γ

γ+1 λ1(s, ξ),

|λ2(s)− λ2(s− d)| ≤ Cds−
γ

γ+1 λ2(s)
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and

1− Cδ ≤ λ1(s− d, ξ)
λ1(s, ξ)

≤ 1 + Cδ.

It follows with the above inequalities that

|ζ(s, ξ)− ζ(s− d, ξ)|

≤ Cds−
γ

γ+1

(
λ2(s) + ν(s)−2ξ2p

λ1(s, ξ)
+

λ2(s− d) + ν(s− d)−2ξ2p

λ1(s− d, ξ)

)

≤ Cds−
γ

γ+1 ζ(s, ξ).

In particular, by (3.14) we have

|ζ(sξ, ξ)− ζ(sξ − d, ξ)| ≤ Cds
− γ

γ+1
ξ .

Therefore, for τ ∈ (0, 1) it holds

∣∣λ(sξ, sξ − τ, ξ)− λ(sξ − τ, sξ − τ, ξ)
∣∣

≤ ∣∣ω(sξ − τ) + ζ(sξ − τ, ξ)
∣∣∣∣λ1(sξ, ξ)− λ1(sξ − τ, ξ)

∣∣

+ λ1(sξ, ξ)
∣∣ζ(sξ − τ, ξ)− ζ(sξ, ξ)

∣∣

≤ Cs
γ

γ+1
ξ

(
ω1 + λ1(sξ, ξ) + ζ(sξ, ξ)

) ≤ Cs
γ

γ+1
ξ .

By using the 1-periodicity of ω we conclude

∣∣λ(sξ − j + 1− τ, sξ − j + 1− τ, ξ)− λ(sξ − j − τ, sξ − j − τ, ξ)
∣∣

≤ C(sξ − j + 1− τ)−
γ

γ+1 λ1(sξ − j + 1− τ, ξ)

× (
ω(sξ − j + 1− τ) + ζ(sξ − j + 1− τ, ξ)

)

+ λ1(sξ − j − τ, ξ)
∣∣ζ(sξ − j + 1− τ, ξ)− ζ(sξ − j − τ, ξ)

∣∣

≤ Cs
− γ

γ+1
ξ λ1(sξ, ξ)

(
1 + js

− γ
γ+1

ξ

) ≤ Cs
− γ

γ+1
ξ .

Thus the lemma is proved. ¤

Let λ0 and µ(= µ(0)) be determined from Lemma 3.1. Then, by the contin-
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uous dependence of eigenvalues on the coefficients there exists ε0 > 0 depending
only on ω̃(s) such that an eigenvalue µ(ε) of X(s0 +1, s0; ε), which is a solution of





d

dτ
X(s0 − τ ; s0, ε) =

(
0 1

−λ0ω̃(s0 − τ) + ε 0

)
X(s0 − τ ; s0, ε),

X(s0; s0, ε) =
(

1 0
0 1

)
,

(3.16)

satisfies min|ε|≤ε0{|µ(ε)|} > 1. Indeed, taking into account of (3.15), and substi-
tuting s0 = sξ and ε = λ2(sξ) in (3.16) we shall apply Floquet’ theory to the
following Cauchy problem:





d

dτ
X(sξ − τ ; sξ) =

(
0 1

−λ(sξ, sξ − τ, ξ) 0

)
X(sξ − τ ; sξ),

X(sξ; sξ) =
(

1 0
0 1

)
.

(3.17)

Let us introduce the positive integer n by

n = n(sξ) :=
[
δs

γ
γ+1
ξ

]
(3.18)

for a positive small constant δ, where [·] denotes the Gauss symbol. Moreover, we
consider the following Cauchy problems for first order systems:





d

dτ
Xj(τ ; 0) =

(
0 1

−λ(sξ − j + 1− τ, sξ − j + 1− τ, ξ) 0

)
Xj(τ ; 0),

Xj(0; 0) =
(

1 0
0 1

)
for j = 1, . . . , n.

(3.19)

Here we denote the solutions of (3.17) and (3.19) at τ = 1 by

X(sξ − 1; sξ) :=
(

x11 x12

x21 x22

)
and Xj(1; 0) :=

(
x11(j) x12(j)
x21(j) x22(j)

)
, (3.20)

and we denote the eigenvalues of X(sξ−1; sξ), and Xj(1; 0) by µ(λ2(sξ))±1 = µ±1,
and µ±1

j respectively. It holds
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x11 + x22 = µ + µ−1, |x11 − µ|+ |x22 − µ| ≥ |µ− µ−1|.

Therefore, due to Lemma 3.1

max{|x11 − µ|, |x22 − µ|} ≥ 1
2
|µ− µ−1| > 0.

Let us assume

max{|x11 − µ|, |x22 − µ|} = |x11 − µ|,

the other case can be treated in the same way, we have

|x22 − µ−1| ≥ 1
2
|µ− µ−1|.

Then the following lemma is valid:

Lemma 3.3. There exist positive real numbers δ and C such that for any
j = 1, . . . , n− 1 the following estimates hold :

max
1≤j≤n−1

{|xlm(j)− xlm(j + 1)|+ |µj − µj+1|} ≤ Cs
− γ

γ+1
ξ (3.21)

for any l, m = 1, 2 and

min
1≤j≤n

{|µj |} > 1. (3.22)

Proof. By Lemma 3.2 we immediately obtain the estimate (3.21) and

sup
τ∈(0,1)

{|Xj(τ ; 0)|} ≤ C.

Let us introduce Zj(τ) := X(sξ − τ ; sξ)−Xj(τ ; 0). Then Zj(τ) is a solution to





d

dτ
Zj(τ) =

(
0 1

−λ(sξ, sξ − τ, ξ) 0

)
Zj(τ)

+
(

0 0
λ(sξ − j + 1− τ, sξ − j + 1− τ, ξ)− λ(sξ, sξ − τ, ξ) 0

)
Xj(τ ; 0)

(3.23)
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for j = 1, . . . , n. A Gronwall type argument and Lemma 3.2 imply

sup
τ∈(0,1)

{|Zj(τ)|} ≤ Cjs
− γ

γ+1
ξ ≤ Cns

− γ
γ+1

ξ .

Therefore, we have from the definition of xlm and xlm(j) that

|µ− µj | ≤ C(|x11 − x11(j)|+ |x22 − x22(j)|) ≤ Cns
− γ

γ+1
ξ ≤ Cδ,

and, recalling |µ| > 1, the choice δ = (|µ| − 1)/(2C) brings the estimate |µ−µj | ≤
(|µ| − 1)/2, it follows that |µj | ≥ min{|µ|, (|µ| + 1)/2} > 1. Thus the proof is
concluded. ¤

Denoting

Bj :=
( x12(j)

µj−x11(j)
1

1 x21(j)

µ−1
j −x22(j)

)
and Gj = B−1

j Bj+1 − I,

we have the following representation:

(
w(sξ, ξ)
ws(sξ, ξ)

)
= X1(1, 0) · · ·Xn(1, 0)

(
w(sξ − n, ξ)
ws(sξ − n, ξ)

)

= B1YnB−1
n

(
w(sξ − n, ξ)
ws(sξ − n, ξ)

)
,

where

Yn :=
(

µ1 0
0 µ−1

1

)
(I + G1) · · · (I + Gn−1)

(
µn 0
0 µ−1

n

)
. (3.24)

Then Lemma 3.3 ensures the boundedness of each of the elements of Bj , B−1
j and

of Bj−1 −Bj , and the estimate |Gj | ≤ Cs
−γ/(γ+1)
ξ holds for any j ≤ n.

To estimate the entries of Yn we write

Yn =
( ∏n

k=1 µk 0
0

∏n
k=1 µ−1

k

)
+ M1 + · · ·+ Mn−1, (3.25)

where Ml is the matrix which is the sum of all the products of matrices from the
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right-hand side of (3.25) containing exactly l of the Gk matrices; observe

|Ml| ≤
( n∏

k=1

|µk|
)( ∑

1≤i1<···<il≤n−1

l∏

j=1

|Gij
|
)

.

Therefore,

n−1∑

l=1

|Ml| ≤
( n∏

k=1

|µk|
) n−1∑

l=1

(
n− 1

l

)(
Cs

− γ
γ+1

ξ

)l

≤
( n∏

k=1

|µk|
)

1
2
Cns

− γ
γ+1

ξ

(
1 + Cs

− γ
γ+1

ξ

)n ≤
( n∏

k=1

|µk|
)

1
2
Cδ

(
1 +

Cδ

n

)n

≤
( n∏

k=1

|µk|
)

1
2
CδeCδ.

Thus we obtain

|(Yn)11| ≥
( n∏

k=1

|µk|
)

(1− Cδ) ≥ 1
2

( n∏

k=1

|µk|
)

taking account of the smallness of δ. On the other hand, |(Yn)kl|, (k, l) 6= (1, 1)
is very small—it is less than ε

∏n
k=1 |µk|, where we can take ε as small as we like.

Introducing the notation Rn := B1Yn we conclude from the above estimates the
following ones:

|(Rn)11| ≥ C

n∏

k=1

|µk|, |(Rn)12| ≤ ε

n∏

k=1

|µk|, (3.26)

where C is a positive constant and ε is positive, but as small as we wish. Taking
account of

w(sξ, ξ) = (Rn)11
(
b̃11w(sξ − n, ξ) + b̃12ws(sξ − n, ξ)

)

+ (Rn)12
(
b̃21w(sξ − n, ξ) + b̃22ws(sξ − n, ξ)

)
,

w(s, ξ) = ν(s)
1
2 v(t(s), ξ),

here b̃kl denote the entries of B−1
n , the special choice of data
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ws(sξ − n, ξ) =
ν′(s)
ν(s)

w(sξ − n, ξ) (3.27)

on s = sξ − n implies vt(t̃ξ, ξ) = 0, where we choose tξ = t(sξ) and t̃ξ = t(sξ − n).
Moreover, noting the estimates

C−1sξ ≤
(
log〈ξ〉)γ+1 ≤ Csξ, (3.28)

we get from (3.26) and (3.27) together with the smallness of ν′(s)
ν(s) for s → ∞ the

estimate

|w(sξ, ξ)| ≥ C exp
(
C(log〈ξ〉)γ

)|w(sξ − n, ξ)|. (3.29)

Transforming this inequality back and using the proof to Lemma 3.2 gives

|v(tξ, ξ)| ≥ C
ν(sξ − n)1/2

ν(sξ)1/2
exp

(
C(log〈ξ〉)γ

)|v(t̃ξ, ξ)|

≥ C0 exp
(
C(log〈ξ〉)γ

)|v(t̃ξ, ξ)|.

The last inequality and vt(t̃ξ, ξ) = 0 imply

〈ξ〉p|v(tξ, ξ)| ≥ C0 exp
(
C(log〈ξ〉)γ

)|(〈ξ〉pv(t̃ξ, ξ), vt(t̃ξ, ξ))|.

Thus we have (3.8) and the proof of Proposition 3.1 is concluded. ¤

3.2.3. Optimality of conditions for the coefficients bk of the re-
maining principal part.

Finally, let us check the assumptions for bα, |α| = 1, . . . , p − 1. It turns out
that a new strategy to prove counter-examples is used. The strategy bases on
the interplay between the Lyapunov and energy functional as it was used to prove
necessity of Levi conditions (see e.g. [11] or [14]). By this interplay we are able to
understand interactions of oscillations in coefficients. The proof of the following
theorem is an essential refinement of the proof of the main result from [9]. We
will show that microlocal (this means, in some part of the extended phase space)
the coefficient a2k(t) has a stabilizing influence, but bk(t) has a non-stabilizing
influence there.

Let us consider the following Cauchy problem:
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(
D2

t − ξ2p − a2k(t)ξ2k + bk(t)ξkDt

)
v = 0, (v(tξ, ξ), vt(tξ, ξ)) = (v0(ξ), v1(ξ)),

(3.30)

where the equation is reduced by inverse partial Fourier transformation with re-
spect to ξ to

(
D2

t −D2p
x − a2k(t)D2k

x + bk(t)Dk
xDt

)
u = 0. (3.31)

Let ω(s) ∈ C∞(R) be a positive 1-periodic function satisfying

ω(s) =





2 on [0, 1/4],

monotone decreasing on (1/4, 1/2),

1 on [1/2, 3/4],

monotone increasing on (3/4, 1).

Let us define a2k(t) by (for the definition of κ(t) and s(t) see the previous section)

a2k(t) := κ(t)
2(p−k)

p ω
(
s(t)

)
.

Then we verify that a2k(t) satisfies the conditions of Theorem 2.1, precisely, σl2k

is given by σl2k = l + 2(p− k)/p. Therefore if bk(t) satisfies

∣∣Dl
tbk(t)

∣∣ ≤ Clκ(t)θlk with θlk = l +
p− k

p
for l = 0, 1, 2, (3.32)

then one can conclude that all solutions of (3.30) satisfy the following estimate:

〈ξ〉2p|v(t, ξ)|2 + |Dtv(t, ξ)|2 ≤ exp
(
C0(log〈ξ〉)γ

)(〈ξ〉2p|v(tξ, ξ)|2 + |Dtv(tξ, ξ)|2
)

(3.33)

for any tξ, t satisfying 0 ≤ tξ < t uniformly with respect to ξ.
Let us prove now the optimality of the conditions to bk(t) from Theorem 2.1

in the following sense:

Theorem 3.4. Let v be a solution of (3.30) and γ be a positive real number.
If bk(t) ≡ 0, then there exist initial data (v0, v1), which are prescribed on t = tξ
and there exist t̃ξ such that 0 < tξ < t̃ξ and
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〈ξ〉2p|v(t̃ξ, ξ)|2 + |Dtv(t̃ξ, ξ)|2 ≤ C1

(〈ξ〉2p|v(tξ, ξ)|2 + |Dtv(tξ, ξ)|2
)
, (3.34)

where C1 is independent of tξ and t̃ξ. On the other hand, there exist initial
data (v0, v1), which are prescribed on t = tξ and there exist t̃ξ and a coefficient
bk(t) ∈ C3(0, T ] satisfying |Dl

tbk(t)| ≤ Clκ(t)l+(p−k)/p for l = 0, 1, 2, 3 such that
the following estimate holds:

〈ξ〉2p|v(t̃ξ, ξ)|2 + |Dtv(t̃ξ, ξ)|2 ≥ exp
(
C2(log〈ξ〉)γ

)(〈ξ〉2p|v(tξ, ξ)|2 + |Dtv(tξ, ξ)|2
)

(3.35)

for any ξ, where C2 is independent of tξ and t̃ξ.

Proof. The estimate (3.34) is proved by the same arguments as in the
proof of Theorem 3.3 under a suitable choice of λ0 in an interval of stability. Let
us introduce the following lemma, which is another description of Lemma 3.1.

Lemma 3.4. Let ω̃(s) and X(s; s0) be defined as in Lemma 3.1. Then there
exist different positive real numbers λ0± such that for any λ0 ∈ (λ0−, λ0+), X(s0 +
1; s0) has the eigenvalues µ = µ(λ0) and µ−1 = µ(λ0)−1 satisfying |µ| = |µ−1| = 1.

Let λ0 be a constant from Lemma 3.4, and (sξ, ξ) is determined by (3.13).
Then the eigenvalues µ = µ(λ2(sξ))±1 of X(sξ+1; sξ) to the solution of (3.17) with
τ = 1 satisfies |µ| = 1 for large sξ by the continuous dependence of eigenvalues on
the coefficients. Here we note that Lemma 3.2 is valid if λ0 belongs to intervals of
stability. Therefore, the eigenvalues µ±1

j of Xj(1; 0) to the solution of (3.19) with
τ = 1 satisfy

max
1≤j≤n

{∣∣µ±1
j

∣∣} ≤ 1 + Cs
− γ

γ+1
ξ ,

and |Gj | ≤ Cs
−γ/(γ+1)
ξ for any j = 1, . . . , n, where n = [δsγ/(γ+1)

ξ ]. Consequently,
we have

|(Yn)lm| ≤
(
1 + Cs

− γ
γ+1

ξ

)n ≤
(

1 +
Cδ

n

)n

≤ eCδ,

which implies the estimate (3.34) for tξ = t(sξ) and t̃ξ = t(sξ − n).

Let us now prove the estimate (3.35). By putting w = w(t, ξ) :=
e−iξk

R T
t

bk(s) dsv(t, ξ) the equation from (3.30) is rewritten as

(
D2

t − c2ξ2k − (Dtbk)ξk
)
w = 0, (3.36)
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where

c = c(t, ξ) :=
√

ξ2(p−k) + a2k(t) + bk(t)2.

Let us define for l = 0, 1, 2, 3 the sequences {tj,l}∞j=1 by tj,l := exp(−(j −
l/4)1/(γ+1)), in particular, we denote tj,0 = tj . Then we define bk(t) satisfying
(3.32) and

bk(t) =





monotone increasing on (tj , tj,1),√
2κ(tj)

p−k
p on [tj,1, tj,2],

monotone decreasing on (tj,2, tj,3),

κ(tj−1)
p−k

p on [tj,3, tj−1]

for j = 1, 2, . . . . Here we remark that s(tj,l) = j − l/4, it follows that

ω(s(t)) =





2 on [tj , tj,1],

monotone decreasing on (tj,1, tj,2),

1 on [tj,2, tj,3],

monotone increasing on (tj,3, tj−1).

Let us define the zone ZH by ZH := {(t, ξ) ∈ (0, T ] ×R ; t ≥ tξ, |ξ| À 1},
where tξ = t(sξ) and sξ is defined by (3.13) with the constant λ0 which allows
to derive the estimate (3.34). By denoting K := λ

p/k
0 (γ + 1)2p/k and choosing λ0

large, ZH is represented as follows:

ZH = {(t, ξ) ∈ (0, T ]×R ; Kκ(t) ≤ |ξ|p, |ξ| À 1}. (3.37)

We introduce the following symbol classes in ZH :

S h
j (m) =

{
f(t, ξ) ∈ Cm(ZH) ; |∂l

tf(t, ξ)| ≤ Cj |ξ|hpκ(t)j+l, l = 0, . . . , m
}
.

Then we immediately have the following properties:

• If f ∈ S h
j (m), then ∂l

tf ∈ S h
j+l(m− l).

• If f1 ∈ S h1
j1

(m1), f2 ∈ S h2
j2

(m2), then f1f2 ∈ S h1+h2
j1+j2

(min{m1,m2}).
• We have the inclusion S h

j (m) ⊂ S h+l
j−l (m) for any l > 0.

• It holds a2k(t), bk(t) ∈ S 0
(p−k)/p(3), c(t, ξ) ∈ S

(p−k)/p
0 (3) and c(t, ξ)−1 ∈
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S
−(p−k)/p
0 (3).

Denoting W0 = W0(t, ξ) := t(Dtw(t, ξ), c(t, ξ)ξkw(t, ξ)), (3.36) is represented by
the following system:

(
Dt −

(
0 cξk + Dtbk

c

cξk Dtc
c

))
W0 = 0. (3.38)

Moreover, by using the matrix M1:

M1 :=
(

1 1
1 −1

)

in the first step of diagonalization procedure, (3.38) is rewritten as follows:

(Dt − Λ1 −B)W1(t, ξ) = 0, (3.39)

where W1 := M1W0,

Λ1 = Λ1(t, ξ) :=

(
cξk + Dtc

2c 0

0 −cξk + Dtc
2c

)

and

B = B(t, ξ) :=
1
2c

(
Dtbk −Dt(bk + c)

Dt(bk − c) −Dtbk

)
∈ S

− p−k
p

2p−k
p

(2).

The second step of diagonalization procedure is carried out by using the following
matrix M2 = M2(t, ξ):

M2 :=

(
1 − B12

2cξk

B21
2cξk 1

)
,

where Blm denotes the (l, m)’th element of B. Here the property M2 − I ∈
S
−(2p−k)/p
(2p−k)/p (2) guarantees the invertibility of M2 for a large K, and a large λ0

respectively. Thus, (3.39) is rewritten as follows:
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(Dt − Λ2 −B2)W2 = 0, (3.40)

where W2 := M−1
2 W1,

Λ2 :=

(
cξk + Dtc

2c + Dtbk

2c 0

0 −cξk + Dtc
2c − Dtbk

2c

)
,

and

B2 := M−1
2

(
(I −M2)

(
B11 0
0 B22

)
+

(
B12B21

2cξk −B11B12
2cξk

B21B22
2cξk −B12B21

2cξk

)
−DtM2

)
.

Our proof requires the third step of diagonalization procedure by the matrix M3 =
M3(t, ξ):

M3 :=




1 − {B2}12
2cξk+

Dtbk
c

{B2}21
2cξk+

Dtbk
c

1


 .

Then the properties 1/(2cξk + Dtbk/c) ∈ S −1
0 (2) and B2 ∈ S

−(2p−k)/p
(3p−k)/p (1) guar-

antee the invertibility of M3 for large K, and a large λ0 respectively; thus (3.40)
is rewritten as follows:

(Dt − Λ2 −B3)W3 = 0, (3.41)

where W3 := M−1
3 W2 and B3 ∈ S

−(3p−2k)/p
(4p−2k)/p (0). Here we note the following

properties:

M−1
3 B2M3 + M−1

3 [Λ2,M3]−
( {B2}11 0

0 {B2}22

)
∈ S

− 5p−2k
p

6p−2k
p

(1),

{B2}11, {B2}22 ∈ S
− 3p−2k

p
4p−2k

p

(2), M−1
3 (DtM3) ∈ S

− 3p−k
p

4p−k
p

(0).

The main contribution of the third step of diagonalization procedure is that the
symbol class of remainder part of the equation is improved (with respect to the ξ

variable) from S
−(2p−k)/p
(3p−k)/p (1) to S

−(3p−2k)/p
(4p−2k)/p (0).

For a positive constant T we define the matrix Ξ = Ξ(t, T, ξ) by
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Ξ(t, T, ξ) :=

√
c(t, ξ)
c(T, ξ)


 exp

(
iξk

∫ T

t
c(s, ξ) ds

)
0

0 exp
(
− iξk

∫ T

t
c(s, ξ) ds

)

 ,

W := Ξ−1W3, and Q := iΞ−1B3Ξ. Then (3.41) is rewritten as follows:

(
∂t − b′k(t)

2c(t, ξ)

(
1 0
0 −1

)
−Q(t, ξ)

)
W (t, ξ) = 0, (3.42)

where Q ∈ S
−(3p−2k)/p
(4p−2k)/p (0). Let θ = θ(t, ξ) ∈ L1,loc(ZH), and define Θ = Θ(t, ξ)

and Y = Y (t, ξ) by

Θ(t, ξ) := exp
( ∫ T

t

θ(s, ξ)ds

)
and Y :=

(
Θ−1 0

0 Θ

)
W.

Then the equation (3.42) is rewritten as follows:

(
∂t −

(
b′k
2c

+ θ

)(
1 0
0 −1

)
−

(
{Q}11 Θ−2{Q}12

Θ2{Q}21 {Q}22

))
Y = 0. (3.43)

Let us define the Lyapunov functional S = S(t, ξ) and the energy functional E =
E(t, ξ) with Y = t(y1, y2) by

S := −|y1|2 + |y2|2 and E := |y1|2 + |y2|2. (3.44)

Then there exists a positive constant q0 such that

∂tS = −
(

b′k
c

+ 2θ

)
E − 2<{Q}11|y1|2 + 2<{Q}22|y2|2

− 2<(Θ−2{Q}12y1y2) + 2<(Θ2{Q}21y1y2)

≥
(
− b′k(t)

c(t, ξ)
− 2θ(t, ξ)− q0|ξ|−3p+2kκ(t)

4p−2k
p

(
Θ(t, ξ)2 + Θ(t, ξ)−2

))
E.

Let us denote

q(t, ξ) := q0|ξ|−3p+2kκ(t)
4p−2k

p

and
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ψ = ψ(t, ξ) := − b′k(t)
c(t, ξ)

− 2θ(t, ξ)− q(t, ξ)
(
Θ(t, ξ)2 + Θ(t, ξ)−2

)
.

If ψ ≥ 0 on [tξ, t̃ξ] for any fixed ξ, then we have ∂tS ≥ ψS. It follows from a
Gronwall type argument that

S(tξ, ξ) exp
( ∫ t̃ξ

tξ

ψ(s, ξ) ds

)
≤ S(t̃ξ, ξ) ≤ E(t̃ξ, ξ), (3.45)

which is an estimate of regularity loss of order exp(
∫ t̃ξ

tξ
ψ(s, ξ)ds) since S(tξ, ξ) > 0

if we can additionally guarantee E(tξ, ξ) ≤ CS(tξ, ξ). Indeed, the behavior of this
integral is dominated by the integral over −b′k/c by grace of our special choice of
a2k and bk. Moreover, one can determine the function θ(t, ξ) such that ψ ≥ 0.
Actually, these properties are contained in the following proposition:

Proposition 3.2. For any given ξ with large |ξ| we define N ∈ N by
N := [sξ]. Then, there exist positive constants δ > 0, K in (3.37), and θ(t, ξ) ∈
L1,loc(ZH) providing the following properties:

sup
(t,ξ)∈ZH

{∣∣∣∣
∫ T

t

θ(s, ξ) ds

∣∣∣∣
}
≤ θ0 (3.46)

and

∫ tN−n

tN

ψ(s, ξ) ds ≥ ρ(log〈ξ〉)γ (3.47)

for some positive constants ρ and θ0, where n is defined by (3.18).

If the above statements are valid, then by taking tξ = tN and t̃ξ = tN−n we
have

S(tξ, ξ) exp
(
ρ(log〈ξ〉)γ

) ≤ S(t̃ξ, ξ) ≤ E(t̃ξ, ξ).

Noting the equivalences

|y1(t, ξ)| '
∣∣Dtv(t, ξ) + ξk(bk(t) + c(t, ξ))v(t, ξ)

∣∣,
|y2(t, ξ)| '

∣∣Dtv(t, ξ) + ξk(bk(t)− c(t, ξ))v(t, ξ)
∣∣

and
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E(t, ξ) ' |W0(t, ξ)|2 ' |ξ|2p|v(t, ξ)|2 + |vt(t, ξ)|2

in ZH we see that a suitable choice of the initial data gives

|W0(tξ, ξ)| ' E(tξ, ξ) ≤ CS(tξ, ξ).

This yields the estimate (3.35).

We shall introduce the following lemmas for the preparation of the proof of
Proposition 3.2.

Lemma 3.5. Let us denote νj := (κ(tj)|ξ|−p)(p−k)/p. There exists a positive
constant ρ0 independent of K such that

∫ tj−1

tj

b′k(s)
c(s, ξ)

ds ≤ −ρ0µ
3
j

for any j = 2, . . . , N .

Proof. Let us denote νj,l = (κ(tj,l)|ξ|−p)(p−k)/p for l = 1, 2, 3. Noting
b′k ≥ 0 on (tj , tj,1), b′k ≤ 0 on (tj,2, tj,3) and b′k ≡ 0 on (tj,1, tj,2) ∪ (tj,3, tj−1) we
have

∫ tj,1

tj

b′k(s)
c(s, ξ)

ds =
∫ tj,1

tj

b′k(s)ds√
ξ2(p−k) + 2κ(s)

2(p−k)
p + bk(s)2

≤
∫ tj,1

tj

b′k(s)ds√
ξ2(p−k) + 2κ(tj,1)

2(p−k)
p + bk(s)2

= log

(
bk(tj,1) +

√
ξ2(p−k) + 2κ(tj,1)

2(p−k)
p + bk(tj,1)2

bk(tj) +
√

ξ2(p−k) + 2κ(tj,1)
2(p−k)

p + bk(tj)2

)

= log

(√
2κ(tj)

p−k
p +

√
ξ2(p−k) + 2κ(tj,1)

2(p−k)
p + 2κ(tj)

2(p−k)
p

κ(tj)
p−k

p +
√

ξ2(p−k) + 2κ(tj,1)
2(p−k)

p + κ(tj)
2(p−k)

p

)

= log

(√
2νj +

√
1 + 2ν2

j,1 + 2ν2
j

νj +
√

1 + 2ν2
j,1 + ν2

j

)
.
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In the same way we get

∫ tj,3

tj,2

b′k(s)
c(s, ξ)

ds ≤ log

(
νj−1 +

√
1 + ν2

j,2 + ν2
j−1

√
2νj +

√
1 + ν2

j,2 + 2ν2
j

)
.

Here we note that

νj ≤ νN =
(

κ(tN )
Kκ(tξ)

) p−k
p

≤ K− p−k
p

for any j ≤ N ; thus one can suppose that νj is small for large K. Therefore, by
straightforward calculations we get

(√
2νj +

√
1 + 2ν2

j,1 + 2ν2
j

)(
νj−1 +

√
1 + ν2

j,2 + ν2
j−1

)

−
(
νj +

√
1 + 2ν2

j,1 + ν2
j

)(√
2νj +

√
1 + ν2

j,2 + 2νj

)

≤ −
√

2− 1
2

ν2
j−1νj + O(ν4

j ) ≤ −
√

2− 1

22− k
p

ν3
j + O(ν4

j ),

where we used the inequalities

(
νj

νj−1

) p−k
p

=
(

j

j − 1

) 1
γ+1

exp
(
j

1
γ+1 − (j − 1)

1
γ+1

)
≤ 2

for any large j. Therefore, we obtain

∫ tj−1

tj

b′k(s)
c(s)

ds ≤ log
(

1−
√

2− 1

22− k
p

ν3
j + O(ν4

j )
)
≤ −ρ0ν

3
j

for a positive constant ρ0. ¤

Lemma 3.6. With a positive constant C0 we define in ZH the functions
ηj = ηj(ξ) and θ(t, ξ) as follows:
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ηj(ξ) :=

∫ tj−1

tj

([
b′k(s)
c(s,ξ)

]
+

+ C0q(s, ξ)
)

ds

−
∫ tj−1

tj

[
b′k(s)

c(s,ξ)

]
−

ds

,

where [f ]+ = f (f > 0), = 0 (f ≤ 0) and [f ]− = f − [f ]+. Then ψ(t, ξ) ≥ 0 in
ZH and the estimate (3.46) is valid under the following choice of θ:

θ(t, ξ) := −1
2

(
ηj(ξ)

[
b′k(t)
c(t, ξ)

]

−
+

[
b′k(t)
c(t, ξ)

]

+

+ C0q(t, ξ)
)

for t ∈ [tj , tj−1].

Proof. Recalling the proof of Lemma 3.5 we have

ηj = 1−
−

∫ tj−1

tj

b′k(s)
c(s,ξ) ds−

∫ tj−1

tj

C0q(s, ξ) ds

−
∫ tj,3

tj,2

b′k(s)

c(s,ξ) ds

≤ 1−
(
ρ0 − q0K

− k
p

)
ν2

j + O
(
ν3

j

)
,

where we used the estimates

∫ tj−1

tj

q(s, ξ) ds = q0|ξ|−3p+2k

∫ tj−1

tj

κ(s)
4p−2k

p ds ≤ q0

(
κ(tj)
|ξ|p

) 3p−2k
p

≤ q0K
− k

p ν3
j .

Therefore we have ηj ≤ 1 by choosing K sufficiently large. On the other hand, for
t ∈ [tj , tj−1] we have

∣∣∣∣
∫ T

t

θ(s, ξ) ds

∣∣∣∣ =
∣∣∣∣
∫ tj−1

t

θ(s, ξ) ds

∣∣∣∣ ≤ 1,

it follows that Θ2 + Θ−2 ≤ 2e2. Consequently, by choosing C0 = 2e2 we obtain

ψ(t, ξ) ≥ − b′k(t)
c(t, ξ)

+ ηj(ξ)
[

b′k(t)
c(t, ξ)

]

−
+

[
b′k(t)
c(t, ξ)

]

+

+ (C0 − 2e2)q(t, ξ)

= −(
1− ηj(ξ)

)[ b′k(t)
c(t, ξ)

]

−
≥ 0. ¤
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Proof of Proposition 3.2. By the previous arguments it holds

∫ tN−n

tN

ψ(s, ξ) ds ≥ −
∫ tN−n

tN

(
b′k(s)
c(s, ξ)

+ 2θ(s, ξ) + C0q(s, ξ)
)

ds

≥
(
ρ0 − C0q0K

− k
p

) N∑

j=N−n

ν3
j ≥ ρ1

N∑

j=N−n

ν3
j

for a positive constant ρ1 by choosing K satisfying K > (C0q0/ρ0)p/k. Then,
denoting r = 3(p− k)/p we conclude

N∑

j=N−n

ν3
j ≥

(
1

Kκ(tξ)

)r ∫ N

N−n−1

s
rγ

γ+1 exp
(
rs

1
γ+1

)
ds

≥ γ + 1
2r

(
1

Kκ(tξ)

)r[
s

rγ
γ+1+ γ

γ+1 exp
(
rs

1
γ+1

)]N

N−n−1

≥ γ + 1
4r

(
1

Kκ(tξ)

)r

N
rγ

γ+1+ γ
γ+1

[
exp

(
rs

1
γ+1

)]N

N−n−1

≥ γ + 1
8r

(
1

Kκ(tξ)

)r

N
rγ

γ+1+ γ
γ+1 (n + 1)N− γ

γ+1 exp
(
rN

1
γ+1

)

≥ C

(
κ(tN )
Kκ(tξ)

)r

N
γ

γ+1 ≥ C

(
κ(tN )

Kκ(tN+1)

)r

N
γ

γ+1

≥ CN
γ

γ+1 ≥ C(log〈ξ〉)γ .

This proves the statement of Proposition 3.2. ¤

3.3. Does the loss of regularity really appear?
Up to now we have shown for several examples that the Cauchy problem

cannot be H∞ well-posed with the loss of regularity exp(C(log〈Dx〉)γ0), γ0 < γ.
But our strategies Floquet’ theory or interaction of Lyapunov and energy functional
do not answer the question if the γ loss does really appear. Therefore we recall
a method to prove counter-examples which originated from the paper [6]. Using
an instability argument this method was developed in [2] to show for hyperbolic
Cauchy problems that a loss of regularity really appears. In the following we
generalize these ideas to apply them to p-evolution type models.

Let us consider the Cauchy problem
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D2
t u−D2p

x u− ak(t)Dk
xu = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (3.48)

k ∈ {p + 1, . . . , 2p− 1}, with 2π-periodic data u0, u1.
All the derivatives Dl

tak of the coefficient ak, l ∈ N , will be estimated by
means of the exponents

δlk =
((l + 1)p− k)(1− δ0k) + k − p

k − p
, 0 ≤ δ0k ≤ 2p− k

p
. (3.49)

Comparing with the exponents σlk, l = 0, 1, 2, in Theorem 2.1, we have that δ0k

and σ0k can be chosen in the same interval [0, 2p−k
p ]. If we make such a choice

δ0k = σ0k, then we have

δ1k ≤ σ1k, δ2k = σ2k.

The inequality for l = 1 becomes an equality if and only if σ0k = 2p−k
p , so we

have

δlk = σlk, l = 0, 1, 2,

in the critical singular case (see Section 2.3.2).
For a 2π-periodic solution u = u(t, x) in the x variable, we introduce the

energies

Ės(u(t)) := ‖u(t)‖2
Ḣs + ‖ut(t)‖2Ḣs−p , s ∈ R, (3.50)

where Ḣs denotes the homogeneous Sobolev space of exponent s on the torus
T = R/2πZ.

Theorem 3.5. Let ω = ω(t) : (0, T ] → (0,+∞) be a given continuous
decreasing function with limt→0+ ω(t) = +∞. There exists a sequence {akm =
akm(t)}, m ∈ N , of real coefficients from C∞(0, T ] such that

sup
m
|akm(t)| .

(
1
t

(
log

1
t

)γ)δ0k

, (3.51)

sup
m

∣∣Dl
takm(t)

∣∣ . ω(t)
(

1
t

(
log

1
t

)γ)δlk

for all l ≥ 1, (3.52)

where the exponents δlk are given by (3.49), and a sequence {um = um(t, x)} of
solutions from C∞([0, T ]× T ) of



858 M. Cicognani, F. Hirosawa and M. Reissig

D2
t um −D2p

x um − akm(t)Dk
xum = 0

such that

sup
m

Ėp(um(0)) ≤ 2, (3.53)

but

sup
m

Ėp

(
exp

(− C(log〈Dx〉)γ
)
um(t)

)
= +∞ (3.54)

for all t ∈ (0, T ] and all C > 0, where the energies Ės are given by (3.50).

Proof. The proof is inspired by the constructions of counter-examples in
[6], [2], [3], [5]. For ε > 0, let us define

αε(t) := 1− 4εϕ(t) sin(2t)− 2εϕ′(t) sin2 t− 4ε2(t)ϕ2(t) sin4 t, (3.55)

wε(t) := sin t exp
(

2ε

∫ t

0

ϕ(τ) sin2 τ dτ

)
, (3.56)

where ϕ is a real non-negative 2π-periodic C∞ function on R which is identically
0 in a neighborhood of t = 0 and such that

∫ 2π

0

ϕ(t) sin2 t dt = π.

The functions αε and wε belong to C∞(R) and satisfy

w′′ε (t) + αε(t)wε(t) = 0, wε(0) = 0, w′ε(0) = 1. (3.57)

We consider then three monotone sequences {εm}, {νm}, {%m} of positive
real numbers such that

εm → 0, νm → +∞, %m → 0, (3.58)

νm,

(
8πνm

%m

) 1
p

∈ N for all m ∈ N , (3.59)

and, after setting
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tm :=
3%m

4
, Im :=

[
tm − %m

4
, tm +

%m

4

]
,

we define

a0m(t) :=





αεm

(
8πνm(t− tm)

%m

)
for t ∈ Im,

1 for t ∈ R \ Im.

(3.60)

Since a0m is identically equal to 1 in a neighborhood of the boundary of Im, we
have a0m ∈ C∞(R). Moreover, from εm → 0 we have

1
2
≤ a0m(t) ≤ 3

2
(3.61)

for all m sufficiently large.
The sequence of coefficients {akm} is then defined by

akm(t) := (a0m(t)− 1)h2p−k
m , (3.62)

where the hm’s are the positive integers given by

hm :=
(

8πνm

%m

) 1
p

. (3.63)

From (3.55), (3.60), (3.62) and (3.63), we make the conditions (3.51) and (3.52)
to be satisfied by fixing the parameters in such a way that

νm

%m
∼ log(ω(%m))

(
1

%m

(
log

1
%m

)γ) (1−δ0k)p

k−p

, (3.64)

εm ∼ (log(ω(%m)))−
2p−k

p

(
1

%m

(
log

1
%m

)γ) k−p−(1−δ0k)p

k−p

. (3.65)

Then, we look for a sequence {um} of solutions of the type

um(t, x) = vm(t)eihmx, (3.66)

where hm is still the integer defined by (3.63). We have



860 M. Cicognani, F. Hirosawa and M. Reissig

D2
t um −D2p

x um − akm(t)Dk
xum = 0

if and only if

v′′m(t) + h2p
m v(t) + hk

makm(t)v(t) = 0,

that is, from (3.62), if and only if

v′′m(t) + h2p
m a0m(t)v(t) = 0. (3.67)

If we take the solution vm of (3.67) with initial values

vm(tm) = 0, v′m(tm) = 1,

then, from (3.57), (3.60) and (3.63), we have

vm(t) =
%m

8πνm
wεm

(
8πνm(t− tm)

%m

)
for t ∈ Im. (3.68)

In particular, by (3.56), we have

vm

(
tm − %m

4

)
= 0, v′m

(
tm − %m

4

)
= e−2πεmνm , (3.69)

vm

(
tm +

%m

4

)
= 0, v′m

(
tm +

%m

4

)
= e2πεmνm . (3.70)

Now, let us define

Em(t) := |v′m(t)|2 + h2p
m a0m(t)|vm(t)|2. (3.71)

From (3.67) and (3.60), we have

E′
m(t) = 0 for t ∈ R \ Im,

so

Em(t) = e−2πεmνm , for t ≤ %m

2
, (3.72)

Em(t) = e2πεmνm , for t ≥ %m, (3.73)
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by taking also (3.69) and (3.70) into account.
We get the first desired inequality (3.53) for um from (3.66), (3.72) and (3.61).
By (3.64) and (3.65), we have

εmνm ∼ (
log(ω(%m))

) k−p
p

(
log

1
%m

)γ

, (3.74)

so, from (3.63) and (3.64), we obtain

lim
m→∞

εmνm − C(log hm)γ = +∞ (3.75)

for any C > 0.
We get also the last desired estimate (3.54) for um from (3.75) by taking

(3.66), (3.73) and (3.61) into account. ¤

Remark 3.2. If we take instead of the function ω = ω(t) a positive con-
stant function ω(%) = C0 in Theorem 3.5, then the coefficients akm satisfy all the
assumptions of Theorem 2.1. All the choices of the parameters %m, εm, νm in the
proof are still possible provided that δ0k < 2p−k

p (now we need this condition in
(3.64) and (3.65) in order to have still νm → +∞, εm → 0). So, now (3.73) and
(3.74) with ω(%) = C0 (C0 > 1) show that in this case the Cauchy problem (3.48)
is H∞ well-posed, where the loss of derivatives exp(C(log〈Dx〉)γ) really occurs.
Thus this loss cannot be avoided in Theorem 2.1, at least in the non-critical case
δ0k < 2p−k

p . This proves the optimality of the classification of loss of regularity
for p-evolution operators (for p = 1 see [2], [7]).

4. Concluding remarks.

Remark 4.1. An interesting question is that for the proof of optimality
of conditions in the non-critical singular case or in the bounded case. Here the
question if the loss of regularity really occurs is of special interest.

Remark 4.2. We formulated our main result for C2 coefficients aα, |α| =
p + 1, . . . , 2p and for C2 coefficients bα, |α| = 1, . . . , p − 1. Special regularization
methods introduced in the papers [10] and [12] might be open an opportunity to
weaken these regularity conditions in t to a “bit more regular ones” than C1.
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