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Abstract. A generalized Calabi-Yau structure is a geometrical structure on a
manifold which generalizes both the concept of the Calabi-Yau structure and that of the
symplectic one. In view of a result of Lin and Tolman in generalized complex cases, we
introduce in this paper the notion of a generalized moment map for a compact Lie group
action on a generalized Calabi-Yau manifold and construct a reduced generalized Calabi-
Yau structure on the reduced space. As an application, we show some relationship
between generalized moment maps and the Bergman kernels, and prove the Duistermaat-
Heckman formula for a torus action on a generalized Calabi-Yau manifold.

1. Introduction.

Generalized Calabi-Yau structures introduced by Hitchin [7] were developed by
Gualtieri [4] as a special case of generalized complex structures. It is a geometrical
structure defined by a differential form, which generalizes both the concept of the
Calabi-Yau structure — a non vanishing holomorphic form of the top degree — and that
of the symplectic structure. In this paper, we consider a compact Lie group action on a
generalized Calabi-Yau manifold.

A compact Lie group action on a generalized complex manifold was studied by
Lin and Tolman in [8]. In [8], they introduced a notion of generalized moment maps for
a compact Lie group action on a generalized complex manifold by generalizing the
notion of moment maps for a compact Lie group action on a symplectic manifold. Using
this definition, they constructed a generalized complex structure on the reduced space,
which is natural up to a transformation by an exact B-field.

In the present paper, we apply the definition of a generalized moment map to a
compact Lie group action on a generalized Calabi-Yau manifold, and construct a
generalized Calabi-Yau structure on the reduced space. Moreover, we shall show that
the reduced generalized Calabi-Yau structure is unique and has the same type as the
original generalized Calabi-Yau structure (cf. Section 3).

THEOREM A. Let a compact Lie group G act on a generalized Calabi-Yau manifold
(M, ) in a Hamiltonian way with a generalized moment map p: M — g*. If G acts
freely on pu=1(0), then the quotient space My = u~'(0)/G is a smooth manifold, and
inherits a unique generalized Calabi- Yau structure @ which satisfies
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PoP = i,

where g : p~1(0) — M is the inclusion and py : p~1(0) — My is the natural projection.
Moreover, for each p € u=1(0),

type(p) = type(@p))-

The detailed definitions of the theorem are in Section 3. In particular, in the case
that the generalized Calabi-Yau structure is induced by a symplectic structure, the
reduced form is induced by the reduced symplectic form. In addition we construct an
example of a Hamiltonian action on a generalized Calabi-Yau structure which is not
induced by either a symplectic structure or a Calabi-Yau one. We then show some
relationship between generalized moment maps and Bergman kernels (cf. Example 3.3.2
and 3.3.3 in Section 3).

We next consider that a generalized Calabi-Yau structure ¢ on a connected
manifold M which has constant type k. Then there exists a natural volume form dm =
(V=1)"/(2""")){(p, @) defined by ¢, which generalizes the Liouville form on a
symplectic manifold. Indeed, if ¢ is a generalized Calabi-Yau structure induced by a
symplectic structure w, then dm coincides with the Liouville form for the symplectic
structure w. Further by assuming that a compact torus T" acts on M effectively. Under
the assumptions, we shall show the Duistermaat-Heckman formula for the volume form
dm (cf. Section 4).

THEOREM B. Let (M, ) be a 2n-dimensional connected generalized Calabi-Yau
manifold which has constant type k, and suppose that compact l-torus T acts on M
effectively and in o Hamiltonian way. In addition, we assume that the generalized
moment map [ is proper. Then the pushforward p.(dm) of the natural volume form dm
under p is absolutely continuous with respect to the Lebesgue measure on t* and the
Radon-Nikodym derivative f can be written by

fla) = /M dm, = vol(M,)

for each regular value a € t* of u, and dm, denotes the measure defined by the natural
volume form on the reduced space M, = u~*(a)/T.

This paper is organized as follows. In Section 2 we introduce background materials
and the definition of generalized Calabi-Yau structures. In Section 3 we define the
notion of generalized moment maps for a Lie group action on a generalized Calabi-Yau
manifold, and construct a generalized Calabi-Yau structure on the reduced space. In
addition, we discuss some relations between generalized moment maps and Bergman
kernels. At last Section, we proved the Duistermaat-Heckman formula for a Hamil-
tonian torus action on a generalized Calabi-Yau manifold.
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2. Generalized Calabi-Yau structures.

In this section we recall the definition of generalized Calabi-Yau structures. For the
detail, see [4] and [7].

2.1. Clifford algebras and the spin representation.
Let V be a real vector space of dimension n, and V* be the dual space of V. Then the
direct sum V @ V* admits a natural indefinite metric of signature (n, n) defined by

(B(X) + aY))

N | —

(X+a, Y+3)=

for X+a, Y+pBeVaV™. Let T(Ve V") =62, (®@"(V & V")) be the tensor algebra
of Ve V* and define .# to be the two-sided ideal generated by {(X +a)®
(X+a)— (X+a, X+a)| X+a€V @V} Then we call the quotient algebra

CLVO V) =T(Va V), s

the Clifford algebra of V@ V*. For each E,F e CL(V®V*), E-F denotes the
multiplication induced by the tensor product.

Consider the exterior algebra A*V* and a linear mapping V @ V* — End(A*V*)
defined by

(X+a)-p=1xp+ane.
Then we have

(X—l—a)Q-go:LX(a/\gp)—i—a/\Lch
= (txa)p
=(X+a X+ a),

so it can be extended to a representation of the Clifford algebra CL(V @ V*) —
End(A*V*). This is called the spin representation, and a element ¢ € A*V* is called a
spinor.

We define Pin(V & V*) and Spin(V & V*), subgroups of the group consists of
invertible elements of CL(V & V*) by

Pin(V & V*) = {Ey - Eg| k€ NU{0}, (B, E)=+1},
Spin(V @ V*) = {E; --- Ey| k€ NU{0}, (E;, E;) = £1}.

we call Pin(V @ V*) the pin group, and Spin(V @ V*) the spin group. The following
proposition says a geometrical meaning of the pin and spin group.

PROPOSITION 2.1.1 ([1], [4]). The pin group and the spin group have following
short exact sequences.
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1—Z/2Z — Pin(Ve V") — OVaeV") —1
1—Z/2Z — Spin(Ve V') — SOVeV) —1

Let Sping(V @ V*) denote the identity component of Spin(V @ V*). Then A*V* has
a Spiny(V @ V*)-invariant bilinear form defined by

(0, 0) = (o) AY),,

where (), indicates taking the n-th degree component of the form, and o : A*V* —
A*V* is an anti-homomorphism on A*V* defined by

U(SDI/\'ASDk):SDk/\/\SDI

for each 1, -+, € ALV,

2.2. Pure spinors and generalized Calabi-Yau structures on a vector
space.
Given a spinor ¢ € A*V*, we define the annihilator of ¢ by

E,={X+acVaV'| (X+a) ¢=0}

We also define the annihilator £, C (V @ V*) ® C of a complex spinor ¢ € A*V* ® C'in
a similar way. Since an element X + o € E, satisfies

(X+a,X+a)p=(X+a) ¢
=0,

we see that if ¢ is a non-zero spinor or a complex spinor, then F, is isotropic with
respect to the natural metric on (V @ V*) ® C. In particular, we have dim E, < n.

DEFINITION 2.2.1. A spinor ¢ € A*V* is called pure if E, is maximally isotropic,
which means that has the dimension equal to n. A complex spinor ¢ € A*V* ® C with
the maximal isotropic subspace £, is called a complex pure spinor.

REMARK 2.2.2. It is known that if ¢ € A*V* is a pure spinor, then ¢ € A®/°dV*,
where

/\evv*:/\(]v*@/\2v*@.._,
ANV = AV e AV g

and ¢ € A®/°1V* means that ¢ belongs in either A®V* or A°IV*,

EXAMPLE 2.2.3.  The spinor 1 € A’V* is pure, since E; = V.
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EXAMPLE 2.2.4. A non-zero vector ¢ € A"V* is also pure. The annihilator is
E,=V*
¢

EXAMPLE 2.2.5. If ¢ is a pure spinor on V and B is a 2-form, then

Lo
exp(B)p = 1+B+§B + ) Ap

is also pure. The annihilator is Eep,p), = {X+a+ LXB| X+ a € E,}, where E, is the
annihilator of ¢.

Gualtieri shows in his thesis [4] that every pure spinor can be written by a complex
2-form and a decomposable complex form as follows.

FACT 2.2.6 ([4]). Let ¢ be a complex pure spinor on V. Then there exists a
complex 2-form B+ v/—1w € A’V* ® C and a complex k-form Q such that
¢ = exp(B+ vV —1w)qQ.
Moreover, {2 can be written
Q=0"N---NO"
by some 1-forms 6',---,0* € N'V*® C, and w is nondegenerate on a subspace
W={XeV|xQ=0}.

The degree of the form {2 is called the type of the complex pure spinor ¢ and written
by type(y).

Now we give the definition of a generalized Calabi-Yau structure on a real vector
space V.

DEFINITION 2.2.7. Let V be a real vector space of dimension n =2m. A
generalized Calabi-Yau structure on V is a complex pure spinor ¢ € A®/°V* @ C
which satisfies that (p, @) # 0.

Fact 2.2.6 tells us if there exists a complex pure spinor on V which satisfies
(p, @) # 0, then V must be even dimensional. The condition (¢, @) # 0 has the following
geometrical meaning.

FAcT 2.2.8 ([1]). Let ¢ and 1 be pure spinors. Then they satisty (¢, 1) # 0 if and
only if their annihilators E, and E, satisfy E,N E, = {0}.

For the proof, see M.2.4 in [1].

EXAMPLE 2.2.9. For a symplectic form w on V, we put
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Yo =expV—1lw.

Then we have E, ={X —v-lixw| X € V® C} and dimE,, =n. Since w is non-
degenerate, we have (p,, @) = ((=2v—=1)""/m!w™ # 0. Hence ¢, is a generalized
Calabi-Yau structure on V. The type of ¢, is equal to 0.

EXAMPLE 2.2.10. If V has a complex structure J, then for the v/—1-eigenspace
VWofJ : V'@ C — V*® C, NV is one-dimensional complex vector space. Let
be a mnon-zero vector in A"V, Then, we have FEq = Voa @ V10 and (Q, Q) =
(=1)"QAQ#0. So Q is a generalized Calabi-Yau structure on V. The type of Q is
equal to m.

EXAMPLE 2.2.11. Let ¢ be a generalized Calabi-Yau structure on V. For each
B € A’V*, the previous example shows that exp(B)y is pure. Moreover, the bilinear
form gives (exp(B)y, exp(B)y) = (v, @) #0. Hence exp(B)p is also a generalized
Calabi-Yau structure on V. The type of exp(B)y coincides with that of .

EXAMPLE 2.2.12. If ¢; and ¢y are two generalized Calabi-Yau structures on
two vector spaces V; and V3, and p;, po are the projections from the direct sum Vi @ V5.
Then ¢ = piy1 A pip2 is a generalized Calabi-Yau structure on the product. The type
of ¢ is equal to the sum type(p1) + type(yp2).

2.3. Generalized Calabi-Yau structures on a manifold.

Let M be a smooth manifold of dimension 2n, and consider the direct sum TM &
T*M of the tangent bundle and the cotangent bundle. Then there is an indefinite metric
on the vector bundle TM & T*M defined by (X + o, Y + ) = 3 (B8(X) + «(Y)).

DEFINITION 2.3.1 ([7]). A generalized Calabi-Yau structure on a manifold M is a
closed differential form ¢ € Q°/°d @ C which satisfies the following conditions.

e For each p € M, ¢, is a complex pure spinor on (T,M & T, M) ® C.
e At each point, {p, @) # 0.

REMARK 2.3.2.  Generalized Calabi-Yau structures were defined by Hitchin in [7].
If a generalized Calabi-Yau structure ¢ is given, then the annihilator F, defines a
generalized complex structure in the sense of Hitchin [7]. This shows that a generalized
Calabi-Yau manifold is a special case of a generalized complex manifold. For the detail,
see Proposition 1 in [7].

EXAMPLE 2.3.3. Let M be a 2n-dimensional symplectic manifold with the
symplectic form w, and put

Y, =expV—lw.

Then we have E,, = {X — vV—Tiyw| X € T® C} and (¢, ¢u) = ((—2v/—1)" /nl)w" # 0.
Since w is closed, @, is also closed. Hence ¢, is a generalized Calabi-Yau structure on M.
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EXAMPLE 2.3.4. Let M be an n-dimensional complex manifold with a non-
vanishing holomorphic n-form €. Then (2 is pure since Eq = Ty @© T, In addition, the
bilinear form gives (Q, Q) = (—1)"Q A Q, which is non-vanishing. Since Q is closed, Q is a
generalized Calabi-Yau structure on M.

EXAMPLE 2.3.5. If B is a closed 2-form on a generalized Calabi-Yau manifold
(M, ), then exp(B)yp is also a closed form. By the previous example, exp(B)y is pure
and (exp(B)p, exp(B)y) # 0 at each point. So exp(B)y is also a generalized Calabi-Yau
structure on M. This is called the B-field transform of ¢.

EXAMPLE 2.3.6. If (Mj,¢1) and (Ma,¢2) are two generalized Calabi-Yau
manifolds and p;, po are the projections from the product manifold M; x Ms. Then
© = pjp1 A psps is a generalized Calabi-Yau structure on the product. In particular, a
product manifold of generalized Calabi-Yau manifolds is also a generalized Calabi-Yau
manifold.

The local expression of a generalized Calabi-Yau structure is given by the following
proposition by Gualtieri [4]. This helps us to prove the Duistermaat-Heckman formula
later.

FACT 2.3.7 ([4]). An element of a generalized Calabi-Yau manifold (M, ¢) is said
to be regular if it has a neighborhood where the type of ¢ is constant. If p € M is regular,
then for sufficiently small neighborhood U, of p, there exists a complex 2-form

B+ v—1w € Q*(U,) ® C such that

¢ = exp(B+ V—1w)g; on U,
where k is the type of ¢,. Moreover, ¢;, can be written
or=0"A---NO
by some 1-forms 0',--- 6% € QY(U,) ® C.

3. Reduction of generalized Calabi-Yau structures.

3.1. Generalized moment maps.

In this section we define the notion of generalized moment maps for a compact
Lie group action on a generalized Calabi-Yau manifold, and construct a generalized
Calabi-Yau structure on the reduced space. The definition of generalized moment maps
for generalized complex cases is given by Lin and Tolman [8].

DEFINITION 3.1.1. Let a compact Lie group G with its Lie algebra g act on a
generalized Calabi-Yau manifold (M, ¢) preserving ¢. A generalized moment map is a
smooth function y: M — g* which satisfies

e 4 is G-equivariant, and
o & —V—1dpt lies in E, for all € € g, where & denotes the induced vector field on
M and pf is the smooth function defined by ué(p) = u(p)(€).
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A G-action which preserves the generalized Calabi-Yau structure ¢ is called
Hamiltonian if a generalized moment map exists.

Here are some examples of generalized moment maps.

EXAMPLE 3.1.2. Let G act on a symplectic manifold (M,w) preserving w, and
u: M — g* be a moment map. Then G also preserves the generalized Calabi-Yau
structure ¢, = exp v —1lw, and p is also a generalized moment map.

EXAMPLE 3.1.3. Let G act on a connected Calabi-Yau n-fold (M, ), where Q is a
non-vanishing holomorphic n-form. If the G-action is Hamiltonian, £y, must be anti-
holomorphic for all £ € g. However induced vector fields must be real, so we have
&y = 0. In particular, the G-action is trivial and the generalized moment map is
regarded as a linear functional on the Lie algebra g.

EXAMPLE 3.1.4. If G acts on two generalized Calabi-Yau manifolds (M, ;) and
(Ms, ), preserving both ¢; and ¢s. Let g and ps are generalized moment maps for
these actions. Then the diagonal action of G on the product manifold M; x Ms preserves
the generalized Calabi-Yau structure ¢ = pjpi A pips, where p; and py are the
projections from the product M; x Ms. Moreover = pj o p1 + p2 o po is a generalized
moment map for this action.

3.2. Generalized Calabi-Yau structure on the reduced space.

Let a compact Lie group G act on a generalized Calabi-Yau manifold (M, ) in a
Hamiltonian way with a generalized moment map u: M — g*. Suppose that G acts
freely on p1(0). Then 0 is a regular value and the quotient space

Mo = p~'(0)/G

is a manifold. The purpose of 3.2 is to prove Theorem A in Introduction. By restricting
to an appropriate neighborhood of 1~1(0), we may assume that G acts freely on M. The
following lemmas are required for the proof of the theorem.

LEMMA 3.2.1.  Under the assumptions above, let g,; be the subbundle of TM
generated by the fundamental vector fields Eyr for & € g, and du be the subbundle of T* M
generated by the differential du" for n € g. Then we have

(1) T (0) = (du)),
(2) ker(pU*)p = (glﬂ)p; and
(3) Ty Mo = T,u™'(0)/(81), = (dﬂ)g/(gM)p;

where p € p~1(0) and (du)g ={X e T,M| (dpt),(X) =0 (£ € g)} is the annihilator of

PROOF. For each & €g, the smooth function p® vanishes on p~'(0). So
(dp®)(X) =0 for all X € T,u1(0). This implies that T,u"*(0) C (dﬂ)2~ In addition,

because dim T,u~"(0) = dim(dp),, the first claim holds. Since (g,), C ker(pp,), and

0
p p
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po: 1 (0) — M is a submersion, the second claim holds. Now it is easy to see the last
claim. g

The following lemma will help us to prove that the reduced form does not vanish
anywhere.

LEMMA 3.2.2.  Under the assumptions above, let m: (TM @ T*M)®@ C — TM ®
C be the natural projection. Then we have

dim¢(Tyu'(0) ® C) Nn(E,), = dim¢ n(E,), — dim G

for each p € u=1(0).

PROOF. For a subspace W C (TM @ T*M), ® C, we denote by W+ the annihi-
lator of W with respect to the natural metric on (I'M & T*M), ® C. Then, since Ej, is
maximal isotropic, we have

E, = E* and Wtn (Ep)p = (W + (Ew>p)l-

© b
If X € (T,u'(0) ® C)Nn(E,),, then it satisfies that

X en(B,),, and du*(X) =0

»?

for each £eg. Thus we have X €n((gy® C) N Ey,),. Conversely, if X¢€
(g ® C)" N E,),, then we also have dpt(X) =0 for each £€g. So we have
X e (T,p'(0) ® C)N7(E,), This shows that

(T (0) © €) N r(E,), = nl(ay ® C)" NE,),.
Since the kernel of 7: (TM & T*M),® C — T,M ® C'is equal to T;M @ C, we have

(g ® C), N(E,),NT;M® C=((gyy® C)+E,), NT;M® C
=7((gn ® C) + Ew)g
= W(Ew)o

p7

and thus

dimg (g, ® C)" N E,), = dime(gy ® C), N (E,), — dime (E,),

P

In addition, by (gy; ® C), N (E,), = {0}, we obtain the dimension

dime(gy ® C); N (L), = dime((gy ® C) + Ew);
=dim M — dim G.
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Hence we have

dim¢ (T, (0) ® C) Nw(E,), = dimc7((gy ® C)~ N (E,)),
=dime¢(gy @ C)j N(E,), —dimc 7T(E¢)2
=dim¢ 7m(E,), — dimG,

this completes the proof. O

PROOF OF THEOREM A.  For each p € u~'(0), we denote by (¢;), the s-th degree
component of ¢, € /\e"/OdT;M ® C. Then, by the definition of the generalized moment
map, we have

LeyPs — V=Ldp* Npy_y =0
for each ¢ € g. Moreover, the identity T,u~'(0) = (du)g in Lemma 3.2.1 tells us that the
(s — 1)-form Lew), (¢s), vanishes on T,17(0). So by identifying the tangent space T}, M

with T,u~"(0)/(ga), (see Lemma 3.2.1, (3)), we obtain a well-defined complex s-form
(@5)y) on Tjy Mo by

(@s)p ([Xa], -+, [X]) = (dges) (X1, -+, X)),

where X1,--+, X € T,u7'(0). Thus we have a complex form (@)[p] € /\eV/OdTE;]Mo ®C
defined by

(@) = (el + (Brrayy +--

where k is the type of ¢,. G-invariance of the form ¢ tells us that the definition of (¢) vl
does not depend on a representative p € u~'(0). So we get the reduced form
@ € Qv/°d® C. It is clear that ¢ satisfies that P = igw and dp = 0.

Next we shall show that (@), # 0. It is sufficient to show that (i5¢r), # 0. Suppose
that dim M = 2n and dim G = [. Then Lemma 3.2.2 tells us

dime(Tyu ' (0) ® C) Nw(E,), =2n—k—L.
So we can take a basis

€1y Con—f—1, ULy 0 Uk, V1, - 07, U

of T,M® C, where {ei, -, e _j1,ur, --,u;} is a basis of T,u '(0)® C, and
{er, - ezpp-1,v1, -, v} is a basis of m(E,). Since (¢), # 0, so we have

(r),(ur, - -+ ux) # 0.
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This shows that (igeyr), # 0. )

Now we say that an element X + & € (T'My & T" M),y ® C satisfies the compat-
ibility condition if there exists X € Top ' (0)® C and ae€T;M® C such that
(p0.),X =X, pya = iga, and that (io.),(X) + o € (E),. We denote by Ej the set of
elements X + o€ (TM, @ T*Mg)[p] ® C which satisfy the compatibility condition.
Then, for each X + & € Ej, we have

Poltx® +a @) =is(Li)xp +ahe)
—0.

So we can see Ey C E; because py is a submersion. Moreover, since Fg is isotropic,
we have dim¢ Ey < dime E; < 2(n —1). Let us show the equality dime Ey = 2(n — ).
Since dime(T,p(0) ® C) N m(Ey), = 2n — k — 1, we can take

Xi+oay, o, Xop gk +op i € By,

which are linearly independent and X; € T,u~'(0)Nn(E,), for i=1,---,2n -1 — k.
Since

ey = (i, &ar) = (X + oy, &y — dpt) =0

for each £ € g, a; descends to a form @; € /\eV/OdT[;‘}]MO ® C. If we take

Xi = (p(]*)pX7

then we have X; + &; € E,. Furthermore, since ker(po*)p = (gM)p has dimension [, and it
is contained in T,u~'(0) N m(E,),, so we may assume that

X +a,- - s Xo(n-t)—k T Qa(n—1)—k

are linearly independent.
On the other hand, by Fact 2.2.6, we can take 0, ---,6 € oM ® C which satisfy

(o), = 0" A---NO~.

Then, since (@), satisfies i, (¢x), = 0 for each £ € g, so does ¢ for i = 1,-- -, k. Hence ¢’
descends to a 1-form #° € /\eV/OdTG)]MO ® C. Then ¢ € E;, and

p@ A NG =@ (0 A A0
= ig((@k)p)
£0.
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This shows that él, cee 6% are linearly independent. Thus we have
dimc Eo = 2(n — l), and EO = E@,

in particular Ej is maximal isotropic.
Furthermore, since £, does not have a real vector except for 0, neither does Ey. So
we also have

() N (B = {05

This shows that ¢ is a generalized Calabi-Yau structure on M.
The last claim is clear because type(y,) = type((9),;) = k- O

REMARK 3.2.3. The reduction for other levels can be done by taking the coadjoint
orbit. The detailed statement is as follows. Let a compact Lie group G act on a
generalized Calabi-Yau manifold (M, ) Hamiltonian way with a generalized moment
map p: M — g*. For each a € g*, &, denotes the coadjoint orbit of a. Suppose that
G acts on p1(0,) freely. Then the quotient space M, = u~1(0,)/G is a manifold and
has unique generalized Calabi-Yau structure ¢ which satisfies that

Pap =g
and
type(p,) = type(®y,))

for all p € u=4(0,), where i, : p=1(0,) — M is the inclusion and p, : p=1(0,) — M, is
the natural projection. In addition, we have dim M, = dim M 4+ dim &, — 2dim G.

EXAMPLE 3.2.4. Let G act on a symplectic manifold (M,w) preserving w, and let
u: M — g* be a moment map. Then G also acts on (M, ¢,) Hamiltonian way and p is a
generalized moment map. Moreover if we assume that G acts freely on g~1(0), then we
get the reduced symplectic structure w and the reduced generalized Calabi-Yau
structure @, on the reduced space My. Then @, coincides with the generalized Calabi-
Yau structure ¢z induced by the reduced symplectic structure w.

EXAMPLE 3.2.5. Let G act on a Calabi-Yau manifold (M, Q). If the G-action is
Hamiltonian, then the action is trivial and the generalized moment map p is regarded as
a linear functional on the Lie algebra g. So the reduced space M coincides with either M
or the empty set.

REMARK 3.2.6. Lin and Tolman showed the existence of a generalized complex
structure on the reduced space in [8]. The generalized complex structure induced by
the reduced generalized Calabi-Yau structure coincides with the reduced generalized
complex structure from the generalized complex structure induced by the original
generalized Calabi-Yau structure.
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3.3. Relationship to Bergman kernels.

We introduce a Hamiltonian action on a generalized Calabi-Yau structure which is
not induced from either a symplectic structure or a Calabi-Yau one here. Let D ¢ C"™"
be a Reinhardt bounded domain, that is, a bounded domain which the standard action
of (m + n)-dimensional torus 7™*" on C™" leaves D invariant. For each w =
(wy,- -, wy) € C™, D, denotes the slice of D at w,

D, = {(217"‘;Zm+n) eD | zi=w; (j= 1,~~~,m)}.

If the slice D, is not empty, we can regard D,, as a Reinhardt bounded domain in C"
naturally. Let

Ky(2) = Ky(z,2) : Dy, — R

be the Bergman kernel function of D,,, and Q,, = ((v/—1)/2)881og K,, be the Kiihler form
of the Bergman metric on D,,. Then the natural action of S! on D,, preserves £, and

1 0
Hw = _§;Zj8_,zj(long)

is a moment map for this action. Note that the function y,, is real and S'-invariant since
the real function log K, is S'-invariant and the fundamental vector field ¢ induced by
the S'-action is given by

(9 9
=1 A
¢ ;{Z«’ 0z az]}

J

Now we assume that the Bergman kernel K, depends smoothly on w. Then we can
define a smooth function K on D by

K(w,z) = K,(2) : D — R,
and a complex form ¢ on D by
w=dwiy A Adwy NexpV—1€,

where Q = (v/—1/2)001log K. Tt is easy to see that the complex form ¢ is a generalized
Calabi-Yau structure on D, and the S'-action on D defined by

V=16 V=16

wla"'7wmazlv"'7zn):(wlv"';wmve 21,0, € Z»,,,),

e\/jlé(

preserves (.



1192 Y. NITTA
THEOREM 3.3.1.  Let pu be a smooth function on D defined by

1 0
u(wl,---,wm,zl,---,zn) :/1’10(217"')Zn) = __sz_ (IOgK)
2j:1 82’]'

Then the function u is a generalized moment map for the S' action on D defined above.

PROOF. Let ¢ be the fundamental vector field for this action. Then S'-invariance
of the function log K implies that p is a S'-invariant real-valued function. By simple
calculation, we have

J=1
vy s (YL Y (log K)
=V- Zi| — o
1 J 2 821-82]- &
=
0 1< 0
=—|—= Zi — (log K
02 ( 227 55, 8 )>
J=1 J
0 1& 0
=—|—= i— (log K
827; ( 2 1 ZJ 82]' ( 8 )>
=
_ ou
N BZZ ’
and LgQ( %) = d‘{i—l’j similarly. Hence we have du = 1:£2, and we can check easily that y is
a generalized moment map for this action. O

EXAMPLE 3.3.2.  Let D be an (m + n)-dimensional polydisc,
D= (Dl)m+n = {(Z17-~-,Zm+n) | ‘zjl <1l (4= 17"'7m+n)}'

For each w e (D)" ={(wi, -+, wn) € C" | lwj| <1 (j=1,---,m)}, D, denote the
slice of D at w,

Dw:{(zl7"'72n)€C”|\Zj|<1 (.7:1,771)}
Then D,, is a polydisc on C", and

1 1

Ko=— 55
™ [l (1= Iz

is the Bergman kernel function of D,,. Since the Bergman kernel K,, does not depend
on w,
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K(w,z) = K,(z): D — R,
is a smooth function on D, and thus we get a generalized Calabi-Yau structure on D,
w=dwi N Adwy NexpV—1€,

where () = @ 00log K. The natural S'-action defined above preserves ¢, and we have a
generalized moment map g for this action,

B |21
=2 1— |z

J=1

On the other hand, since the total space D and the parameter space (D')™ are also
Reinhardt bounded domains, they have Kéhler forms induced by their Bergman kernels.
So they have also generalized Calabi-Yau structures induced by their K&hler forms,
and they are preserved by the natural S'-actions on them. By simple calculations, we
get moment maps for their actions,

m |wi|2 n |Zj|2
KD == Z 7+ Z 2
| 1 — [z]

= 1w j=1

on D, and

m

i
MUpm = — Z 1_7|2

i=1
on D™. Then they satisfy the following additive relation;

HD = ppm + [
EXAMPLE 3.3.3. Let D be an (m + n)-dimensional complex ball

_ m+n __ m+n
D=D —{(wl,--~,wm,z1,---,zn)€C

m n
S lwiP+ ) Izl <1
=1 =1

For each we D" = {(wy,---,wy) € C™ ’ i |wj|2 <1}, D, denote the slice of D
at w,

Dw == {(zla"'v'zn) S Cn

n m
Sl <= |w.,~|2}.

j=1 j=1
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Then D,, is also a complex ball on C", and

. n! 1- 27:1 ‘wj|2
R 2 N+l
(1= 300 fwl® = 20 12"

is the Bergman kernel function of D,,. Since the Bergman kernel K, depends smoothly
on w,

K(w,z) = K,(2) : D — R,
is a smooth function on D, and thus we get a generalized Calabi-Yau structure on D,
o =dwiy A Adwy NexpV—1€,

where Q= g@glogK. The natural S'-action on D preserves ¢, and we have a
generalized moment map g for this action,

m 2

Sl 13 )
m 2 n AN
20 1= (2wl + 220 12l

As in the case of the previous example, we have moment maps for the natural
actions of S* on D and D™ which are derived from their Bergman kernels,

m+n+1 1
- m 2 n 2
2 1= wl” + 3 al)

fip =

on D, and

m+1 1
m 2
21— Zj:l |w;|

/,LDm = —

on D™. They have the following multiplicative relation;

o 2(m+n+1)
KD = (m+1)<n+1)ﬁb0m K-

4. The Duistermaat-Heckman formula.

4.1. The Duistermaat-Heckman measures and the reduced volumes.

Let (M, ) be a 2n-dimensional connected generalized Calabi-Yau manifold which
has constant type k, and suppose that compact I-torus T" acts on M effectively and in a
Hamiltonian way. In addition, we assume that the generalized moment map p is proper.
Then we have a natural volume form
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am =0,

The volume form dm defines a measure on M. Our second purpose is to prove the
Duistermaat-Heckman formula in this case.

Let t denote the Lie algebra of T', and t,, denote the subset of t* consisting of the
regular values of . If a € t* is a regular value of u and p € u~'(a), then the stabilizer

group
T,={geT|g-p=np}

is finite. So if T-action on p~'(a) is not free, the quotient space M, = u~'(a)/T is an
orbifold. In this case, There exists a complex differential form on M, which, in each local
representation is a generalized Calabi-Yau structure on R* ™Y, and satisfies

PP = 1,0,

where i, : p~!(a) — M is the inclusion and p, : p~'(a) — M, is the natural projection.
We call it a generalized Calabi-Yau structure on an orbifold M,.
Since p is proper, t;,, is a dense open subset, and t*\ t;,, has measure 0 because of

Sard’s theorem. The following lemma is due to Appendix B in [5].

LEMMA 4.1.1.  Suppose that M is connected and T acts on M effectively. Then the
set Mpee on which T acts freely is equal to the complement of a locally finite union of
submanifolds of codimension > 2. In particular Mye, is open, connected, dense, and
M\ Moo has measure 0. Also (u*)p is surjective for all p € M.

Now we consider the normalized Haar measure dt on T. Then the measure dt
induces the Lebesgue measure dX on its Lie algebra t, and we obtain the dual Lebesgue
measure d¢ on t*. The assumption that p is proper implies that the pushforward p., (dm)
of dm under p defines a measure in t*. We call it the Duistermaat-Heckman measure. In
view of Lemma 4.1.1, we obtain M \ Mpe. has measure 0 and ply, @ Mpee — t* is a
submersion. This shows that p.(dm) is absolutely continuous with respect to the
Lebesgue measure d(. So there exists a Borel measurable function f on t* which satisfies

jr.(dm) = fd.

The corresponding Duistermaat-Heckman formula is stated in Theorem B in Introduc-
tion. For the proof, we need the following lemma.

LEMMA 4.1.2.  For each regular point p € M of the generalized moment map p,
there exists a neighborhood U, of p and a complex 2-form B + v/ —1w € Q*(U,) ® C such
that ¢ = exp(B + V—1w)p on Uy, and t¢,w = du® for all £ € t.
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PROOF. By Fact 2.3.7, there exists a neighborhood U, and a complex 2-form
B+ V=10 € Q2(U,) ® C such that ¢ = exp(B + vV/—1@)¢p;, on U,. Moreover, there exists
a local frame @', - -, 6°" of A'T*M such that @ = 0 A--- A 6% on U,. So we may assume
that B + v/ —1& can be written

B+V-1o=>Y c0' A0,

i,j>k

where ¢;; is a smooth complex function on U,. In addition, since p is a regular point, so
(tM)p has dimension I. Hence we may assume that tj; has dimension [ on U,,.

Now consider the dual basis {X, -, Xo,} of {#,---,6*"}, and take an arbitrary
Riemannian metric on M. Then we can define a complex 1-forms 7', -+, 7" on U, defined
by

1 (éar) = V—-1dp(X;)

for &y € ty, and vanishes on the orthogonal complement of t;;. Then we define a
complex 2-form B + v/ —1lw on U, by

k
B+V-lw=B+V-1&+> n A6’
s=1

It is clear that ¢ = exp(B + v —1w)py, on U, and

tey (B+V=1w)(X)) = (Z cijf A 9J) (&, X, (Zn NG? ) (€nr, Xi)

i,j>k

k
(Z A 95) (&ar, X3)

s=1

k
=Y ()0 (X)

for each £ € t and i = 1,---,k. On the other hand, since &y — v/ —1dus € E, for each
& € t, so we have

(L&\J (B + \/__1("-)) - \/—_1d,u§) A =0.

Thus for : = k+1,---,2n, we obtain
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0 = v, ((1ey (B + V=1w) = V=1dps) A 1)
= (g (B+ V=1w) — V=1dp*)(Xi ),
and
tey (B4 V=1w)(X;) = V=1dp*(X;).
This shows that

ey (B+V—lw) =v _1dﬂgv

and in particular we have ¢, w = dpu. O

PROOF OF THEOREM B. Let a € t¥  be an arbitrary regular value of p and U be a

re;
convex neighborhood of a contained in tig. Since t;‘cg is an open set of t*, there exists
such a neighborhood. Now consider a 7T-invariant connection for the fibration
w:p t(U) — U. For each p € pu'(U), draw the horizontal curves lying over the
straight lines through a and b= u(p). This defines a T-equivariant projection @ :
w Y (U) — p~Y(a) such that for each b € U the restriction (I)‘;rl(b) cp () — pi(a)is a
T-equivariant diffeomorphism and

px @ (U) — U x p*(a)

is a trivialization. Using this trivialization and Fubini theorem, we have that f(a) is
equal to the volume of p~!(a) with respect to the quotient of dm by p*d¢. In addition, by
Lemma 4.1.2 dm/p*dC is locally given by the (2n — [)-form

% — 1 - \n—k—l
VN Y ——
io(Pr N 1) - (taw)

A,
where w is a 2-form given by the lemma above and 7 is an I-form which on the T-orbits
takes the value £1 on an I-tuple (X, --, X;) such that dX(Xy,---,X;) = 1.

Note that the complement of p,(Mpee N p~"(a)) = (Mpee), has measure 0 for the
projection p, : u~!(a) — M, because the complement of (Mpe.), is equal to the image of
a finite union of submanifolds (or suborbifolds) of p~1(a) of codimension > 2. Since
Pa : Miee N7 (@) — (Mpee), is a principle T-fibration and vol(T) = 1, we get that the
volume of Mg, N p~'(a) is equal to the volume of (Mpe.), With respect to the measure
dm, induced by the reduced generalized Calabi-Yau structure on M,. Because the
complement of (Mpee), has measure 0, we have proved the formula. |

REMARK 4.1.3. For the density function f, one can show that f is a piecewise
polynomial of degree at most n — [ — k. Moreover, in the case that M is compact, the
localization formula holds by applying the Atiyah-Bott-Berline-Vergne localization
theorem. Detailed statements and proofs can be seen in [9].
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