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Abstract. We establish the universality theorem for the first four symmet-
ric power L-functions of automorphic forms and their associated Rankin-Selberg
L-functions. This generalizes some results of Laurinčikas and Matsumoto and
of Matsumoto, respectively.

1. Introduction.

The automorphic L-function is a powerful tool to study arithmetic, algebraic and
geometric objects. Many results will follow from the known or conjectured analytic prop-
erties of automorphic L-functions. It is therefore important to explore an L-function in
various analytic aspects. Here, we are concerned with the universality property. Roughly
speaking, a function f has the universality property if every non-vanishing analytic func-
tion can be approximated uniformly on compact subsets in the half critical strip D( 1

2 )
by translations of this function f , where D( 1

2 ) denotes

D(σ0) := {s ∈ C : σ0 < <e s < 1} (1.1)

for any σ0 < 1. According to Linnik-Ibragimov, it was conjectured that the universality
property is intrinsic to all Dirichlet series which can be analytically continued to left of
their abscissa of absolute convergence.

The universality of the Riemann zeta-function ζ(s) was first discovered by Voronin
[23]. More precisely he proved the following: Let K be a closed disc of radius r < 1

4

centered at s = 3
4 , and ϕ(s) a non-vanishing analytic function in the interior of K and

continuous on K. Then for any ε > 0, there is a real number t such that

sup
s∈K

∣∣ζ(s + it)− ϕ(s)
∣∣ < ε. (1.2)

In 1981, Bagchi [1] developed a new method to deduce the universality property of ζ(s)
and obtained a result stronger than (1.2), as follows. Let K be a compact subset of D( 1

2 )
with connected complement and ϕ(s) a non-vanishing analytic function in the interior of
K and continuous on K. Then for any ε > 0, we have
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lim inf
T→∞

1
T

meas
{

t ∈ [0, T ] : sup
s∈K

∣∣ζ(s + it)− ϕ(s)
∣∣ < ε

}
> 0, (1.3)

where meas(·) is the Lebesgue measure. This result was generalized by different authors
to many other L-functions such as Dirichlet L-functions, Dedekind L-functions, Hurwitz
L-functions, Lerch L-functions, etc. A detailed historical account can be found in [15].

In this paper we are interested in the universality of automorphic L-functions. For
a positive even integer k such that k = 12 or k ≥ 16(2), we denote by H∗k the set of all
Hecke primitive eigencuspforms of weight k for the full modular group SL(2,Z). The
Fourier series expansion of f ∈ H∗k at the cusp ∞ is

f(z) =
∞∑

n=1

λf (n)n(k−1)/2e2πinz (=mz > 0),

where λf (n) is the nth (normalized) Fourier coefficient of f , verifying

λf (m)λf (n) =
∑

d|(m,n)

λf

(
mn

d2

)
(1.4)

for any integers m ≥ 1 and n ≥ 1. In particular it is a multiplicative function of n.
According to Deligne, for any prime number p there is αf (p) such that

λf (pν) = αf (p)ν + αf (p)ν−2 + · · ·+ αf (p)−ν (ν ≥ 1) (1.5)

and

|αf (p)| = 1. (1.6)

In particular λf (1) = 1 and λf (n) is real.
For m ∈ N , the symmetric mth power L-function attached to f ∈ H∗k and its

Rankin-Selberg L-function are defined as

L(s, symmf) :=
∏
p

∏

0≤j≤m

(
1− αf (p)m−2jp−s

)−1 (1.7)

and

L(s, symmf × symmf) :=
∏
p

∏

0≤i, j≤m

(
1− αf (p)2(m−i−j)p−s

)−1 (1.8)

for σ > 1, respectively. Here and in the sequel, we define implicitly the real number σ

and τ by the relation s = σ + iτ . The products over primes in (1.7) and (1.8) admit
Dirichlet series representation

(2)For k ∈ {2, 4, 6, 8, 10, 14}, there is no cusp forms of weight k for the full modular group SL(2,Z)

(see [21]).
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L(s, F ) =
∞∑

n=1

λF (n)n−s (1.9)

for σ > 1, where F = symmf or symmf×symmf , and λF (n) is a multiplicative function.
Following from (1.6), we have for n ≥ 1,

|λF (n)| ≤
{

dm+1(n) if F = symmf,

d(m+1)2(n) if F = symmf × symmf,
(1.10)

where dz(n) is the nth coefficient of the Dirichlet series ζ(s)z. The case F = sym1f in
(1.10) is commonly known as Deligne’s inequality.

According to [3, Section 3.2.1] and [10, Proposition 2.1], the gamma factors of
L(s, symmf) and L(s, symmf × symmf) are, respectively,

L∞(s, symmf) :=





n∏
ν=0

ΓC

(
s + (ν + 1

2 )(k − 1)
)

if m = 2n + 1

ΓR(s + δ2-n)
n∏

ν=1

ΓC

(
s + ν(k − 1)

)
if m = 2n

(1.11)

and

L∞(s, symmf × symmf) =





ΓC(s)n+1
m∏

ν=1

ΓC

(
s + ν(k − 1)

)m−ν+1 if m = 2n + 1

ΓR(s)ΓC(s)n
m∏

ν=1

ΓC

(
s + ν(k − 1)

)m−ν+1 if m = 2n,

(1.12)

where ΓR(s) := π−s/2Γ(s/2), ΓC(s) := 2(2π)−sΓ(s) and

δ2-n =

{
1 if 2 - n,

0 otherwise.

For F = symmf or F = symmf × symmf where f ∈ H∗k and m = 1, 2, 3, 4, it is known
that the function Λ(s, F ) := L∞(s, F )L(s, F ) is entire on C and satisfies the functional
equation

Λ(s, F ) = εF Λ(1− s, F ) (1.13)

with εF = ±1 (see [5], [7], [8], [9] for F = symmf and [10], [20] for F = symmf×symmf).
For the universality property of L(s, F ), we have the following result.

Theorem 1. Let 1 ≤ m ≤ 4, 2 | k such that k = 12 or k ≥ 16, f ∈ H∗k and
F = symmf or F = symmf × symmf . Define
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σF :=

{
1− (m + 1)−1 if F = symmf,

1− (m + 1)−2 if F = symmf × symmf.
(1.14)

Let K be a compact subset of D(σF ) with connected complement and ϕ(s) a non-
vanishing analytic function in the interior of K and continuous on K. Then for any
ε > 0, we have

lim inf
T→∞

1
T

meas
{

t ∈ [0, T ] : sup
s∈K

∣∣L(s + it, F )− ϕ(s)
∣∣ < ε

}
> 0.

Remark.

(i) The particular case F = sym1f = f of Theorem 1 was first investigated by
Kačėnas and Laurinčikas [6] and established completely by Laurinčikas and Matsumoto
[13]. Another particular case F = sym1f×sym1f = f×f was considered by Matsumoto
[16] recently.

(ii) Theorem 1 is established only for 1 ≤ m ≤ 4 due to the lack of knowledge about
the high symmetric powers.

(iii) The reason why Theorem 1 holds only for D(σF ) instead of D( 1
2 ) is that the

estimate

∫ T

1

∣∣L(s, F )
∣∣2dτ ¿f T (∀ T ≥ 1)

is only achieved for σ > σF (see (5.3) below), where σF is defined as in Theorem 1. It
seems interesting to improve this estimate further so that Theorem 1 can hold for D( 1

2 ).
(iv) It is possible to generalize (without too much difficulty) Theorem 1 to the case

of the congruence subgroup Γ0(N) with square-free N , as what Laurinčikas, Matsumoto
and Steuding [15] did for L(s, f).

Like [13] and [16], we shall use Bagchi’s method to prove Theorem 1. (Interested
readers are referred to [11] for an excellent paradigm on Bagchi’s method.) One of their
main tools is Rankin’s asymptotic formula

∑

p≤x

|λf (p)|2 ∼ x

log x

for x → ∞ (see [18, Theorem 2]). However, such a prime number theorem for the
symmetric mth power L-function with m ≥ 2 is not available. In Section 2, we shall
establish this result based on [20] and [10], which is clearly of independent interest and
may have many other applications.

As in [14], we can deduce the following as simple consequences of Theorem 1.

Corollary 2. Let m, k, f , F and σF be as in Theorem 1. For σF < σ < 1 and
any positive integer J , define a mapping ψ : R → CJ by

ψ(τ) :=
(
L(σ + iτ, F ), L′(σ + iτ, F ), . . . , L(J−1)(σ + iτ, F )

)
.
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Then ψ(R) is dense in CJ .

Corollary 3. Let m, k, f , F and σF be as in Theorem 1, and J be a non-negative
integer. If the continuous functions gj : CJ → C (0 ≤ j ≤ J) satisfy

J∑

j=0

sjgj

(
L(s, F ), L′(s, F ), . . . , L(J−1)(s, F )

) ≡ 0

for all s ∈ C, then gj ≡ 0 (0 ≤ j ≤ J).

Acknowledgement. We began working on this paper in April 2004 during the
visit of the second author to Shanghai Jiaotong University, and finished in February 2005
when the first author visited l’Université Henri Poincaré (Nancy 1). We are indebted
to both institutions for invitations and support. The second author would like to thank
the GRD de Théorie des Nombres au CNRS for support. We would express our sincere
gratitude to K. Matsumoto for his kind help in our study of his joint paper with
Laurinčikas [13]. Finally the authors wish to thank the referee for pointing out a mistake
in the earlier version.

2. The prime number theorem for symmetric power L-functions.

Let m ∈ N , 2 | k such that k = 12 or k ≥ 16 and f ∈ H∗k. From (1.6), the product
(1.8) is absolutely convergent for σ > 1. Thus we can define Λsymmf×symmf (n) by the
relation

−L′

L
(s, symmf × symmf) =

∞∑
n=1

Λsymmf×symmf (n)
ns

(2.1)

for σ > 1. The aim of this section is to prove the following result.

Proposition 2.1. Let 1 ≤ m ≤ 4, 2 | k such that k = 12 or k ≥ 16 and f ∈ H∗k.
Then for x →∞, we have

∑

n≤x

Λsymmf×symmf (n) ∼ x, (2.2)

∑

p≤x

∣∣λf (pm)
∣∣2 log p ∼ x, (2.3)

∑

p≤x

∣∣λf (pm)
∣∣2 ∼ x

log x
. (2.4)

This proposition will be referred as the prime number theorem for the coefficients of
symmetric power L-functions associated with newforms. It plays a key role in our proof
of Theorem 1 and is of independent interest. The case m = 1 was considered by Rankin
[18]. We shall prove this proposition with the non-vanishing property on σ = 1 in
standard way. To this end, we firstly prove two preliminary lemmas.
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Let m ∈ N , 2 | k such that k = 12 or k ≥ 16 and f ∈ H∗k. We define

Ψf,m(s) :=
∏
p

∏

0≤`<m

{(
1− αf (p)2(m−`)p−s

)(
1− αf (p)−2(m−`)p−s

)}−(`+1) (2.5)

for σ > 1 and

Λf,m(n) =

{
2

∑m
j=1(m + 1− j) cos[2jθf (p)ν] log p if n = pν ,

0 otherwise,
(2.6)

where αf (p) is determined by (1.5)–(1.6) and θf (p) ∈ [0, π] is chosen such that αf (p) =
eiθf (p).

Lemma 2.1. Let m ∈ N , 2 | k such that k = 12 or k ≥ 16 and f ∈ H∗k. Then for
σ > 1, we have

−Ψ′f,m

Ψf,m
(s) =

∞∑
n=1

Λf,m(n)
ns

, (2.7)

log Ψf,m(s) =
∞∑

n=2

Λf,m(n)
ns log n

. (2.8)

Proof. By the Deligne inequality, the Euler product Ψf,m(s) converges absolutely
for σ > 1. Taking logarithmic derivative on both sides of (2.5), we have, for σ > 1,

−Ψ′f,m

Ψf,m
(s) =

∑
p

∑

0≤`<m

(` + 1)
(

αf (p)2(m−`)p−s log p

1− αf (p)2(m−`)p−s
+

αf (p)−2(m−`)p−s log p

1− αf (p)−2(m−`)p−s

)

=
∑

p

∑

ν≥1

∑

0≤`<m

(` + 1)
[αf (p)2(m−`)ν + αf (p)−2(m−`)ν ] log p

psν
,

which is equivalent to (2.7).
Integrating (2.7) on the half-line {s + t : t ≥ 0}, we obtain (2.8). ¤

Lemma 2.2. Let 1 ≤ m ≤ 4, 2 | k such that k = 12 or k ≥ 16 and f ∈ H∗k. Then
for σ ≥ 1 and s 6= 1, we have

L(s, symmf × symmf) 6= 0.

Proof. Noticing that

∑

0≤i, j≤m
i+j=`

1 =

{
` + 1 if 0 ≤ ` ≤ m

2m− ` + 1 if m < ` ≤ 2m
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and using (1.8), we can write, for σ > 1,

L(s, symmf × symmf) = ζ(s)m+1Ψf,m(s). (2.9)

As usual we denote by Λ(n) von Mangoldt’s function. Following from (2.6), (2.7),
(2.9) and the classical relations

−ζ ′

ζ
(s) =

∞∑
n=1

Λ(n)
ns

, log ζ(s) =
∞∑

n=2

Λ(n)
ns log n

(σ > 1),

we infer that

Λsymmf×symmf (n) = (m + 1)Λ(n) + Λf,m(n) (n ≥ 1) (2.10)

and

log L(s, symmf × symmf) =
∞∑

n=2

Λsymmf×symmf (n)
ns log n

(σ > 1). (2.11)

Next we calculate Λsymmf×symmf (pν). Write ϑν = θf (p)ν for notational convenience,
we get

Λf,m(pν)(log p)−1 = 2
∑

1≤`≤m

∑

1≤j≤m−`+1

cos(`2ϑν)

= 2
∑

1≤j≤m

∑

1≤`≤m−j+1

cos(`2ϑν),

by (2.6). On the other hand, we have

∑

1≤`≤m−j+1

cos(`2ϑν) = <e

( ∑

1≤`≤m−j+1

ei`2ϑν

)

= <e

(
ei(m−j+2)2ϑν − ei2ϑν

ei2ϑν − 1

)

= <e

(
ei(m−j+2)ϑν

ei(m−j+1)ϑν − e−i(m−j+1)ϑν

eiϑν − e−iϑν

)

=
cos[(m− j + 2)ϑν ] sin[(m− j + 1)ϑν ]

sinϑν
.

Inserting it into the preceding formula and applying the identity

2 cos α sinβ = sin(α + β)− sin(α− β),
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it follows that

Λf,m(pν)(log p)−1 =
1

sinϑν

∑

1≤j≤m

(
sin{[2(m− j + 1) + 1]ϑν} − sinϑν

)

=
1

sinϑν

∑

1≤`≤m

sin[(2` + 1)ϑν ]−m.

Similarly, we have

∑

1≤`≤m

sin[(2` + 1)ϑν ] = =m

( ∑

1≤`≤m

ei(2`+1)ϑν

)

= =m

(
eiϑν

ei(m+1)2ϑν − ei2ϑν

ei2ϑν − 1

)

= =m

(
ei(m+2)ϑν

eimϑν − e−imϑν

eiϑν − e−iϑν

)

=
sin[(m + 2)ϑν ] sin(mϑν)

sinϑν

=
sin2[(m + 1)ϑν ]− sin2 ϑν

sinϑν
.

Combining this with the previous relation, we deduce that

Λf,m(pν)(log p)−1 =
(

sin[(m + 1)ϑν ]
sinϑν

)2

−m− 1,

which implies, via (2.10),

Λsymmf×symmf (pν) =
(

sin[(m + 1)ϑν ]
sinϑν

)2

log p. (2.12)

In particular, we obtain with (1.5) that

Λsymmf×symmf (p) =
(

sin[(m + 1)θf (p)]
sin θf (p)

)2

log p

=
( ∑

0≤j≤m

ei(m−2j)θf (p)

)2

log p

=
∣∣λf (pm)

∣∣2 log p. (2.13)

Now we are ready to prove Lemma 2.2. Suppose L(s, symmf × symmf) has a zero
at 1 + iτ0 of order ` ≥ 1, where τ0 6= 0. Consider the function
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g(s) := L(s, symmf × symmf)3L(s + iτ0, symmf × symmf)4

× L(s + i2τ0, symmf × symmf)2.

Since L(s, symmf × symmf) is holomorphic except for a simple pole at s = 1, g(s) is
holomorphic for σ ≥ 1 and the zero at s = 1 is of order ≥ 4`− 3 ≥ 1.

But from (2.11), we have for σ > 1,

log g(s) =
∑

n≥2

Λsymmf×symmf (n)
ns log n

(
3 + 4n−iτ0 + 2n−i2τ0

)
.

Together with (2.6), (2.10) and (2.12), we deduce, for σ > 1,

log |g(σ)| =
∑

n≥2

Λsymmf×symmf (n)
nσ log n

(
3 + 4 cos(τ0 log n) + 2 cos(2τ0 log n)

)

=
∑

n≥2

Λsymmf×symmf (n)
nσ log n

(
1 + 2 cos(τ0 log n)

)2

≥ 0.

Thus |g(σ)| ≥ 1 for σ > 1, and g cannot have a zero of order 4`− 3 (≥ 1) at σ = 1. This
contradiction completes our proof. ¤

Next we shall apply Theorem II.7.11 of [22] to prove Proposition 2.1. Define

G(s) := −L′

L
(s + 1, symmf × symmf)

1
s + 1

− 1
s
.

Since Λ(s, symmf × symmf) is holomorphic except for simple poles at s = 0, 1, the
function G(s) is analytically continued to a meromorphic function on C. By Lemma 2.2,
we have

L(1 + iτ, symmf × symmf) 6= 0.

Thus G(s) is holomorphic in an open set containing the half-plane σ ≥ 0. In particular
we have

∣∣G(2σ + iτ)−G(σ + iτ)
∣∣ ≤ σ sup

0≤θ≤1, |τ |≤T

|G′(θ + iτ)|

for T > 0, 0 ≤ σ ≤ 1
2 and |τ | ≤ T . From this we deduce

∫ T

−T

∣∣G(2σ + iτ)−G(σ + iτ)
∣∣dτ = o(1) (σ → 0+)
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for each fixed T > 0. Now Theorem II.7.11 of [22] is applied with F = −L′/L, a = c = 1
and w = 0 to yield the asymptotic formula (2.2).

From (2.13), we can write

∑

n≤x

Λsymmf×symmf (n) =
∑

p≤x

∣∣λf (pm)
∣∣2 log p + R,

where we have, via (2.6) and (2.10),

R :=
∑

pν≤x, ν≥2

Λsymmf×symmf (pν)

≤
∑

p≤x1/2

∑

ν≤log x/ log p

(m + 1)2 log p

≤ (m + 1)2
∑

p≤x1/2

log x

¿m x1/2.

Thus (2.2) implies (2.3). Finally (2.4) follows from (2.3) by integration by parts. ¤

3. Bagchi’s method and proof of Theorem 1.

In this section, we present Bagchi’s method in our case and first formulate it as three
propositions. At the end of this section, we shall apply Propositions 3.2 and 3.3 to prove
Theorem 1. The proof of these three propositions will be given in sections 4, 5 and 6,
respectively.

Let 1 ≤ m ≤ 4, 2 | k such that k = 12 or k ≥ 16, f ∈ H∗k, F = symmf or
symmf × symmf . Let σF and D(σF ) be defined as in (1.14) and (1.1), respectively.
Denote by HF the space of analytic functions on D(σF ) equipped with the topology of
uniform convergence on compact subsets of D(σF ).

Let γ := {s ∈ C : |s| = 1} be the unit torus and

Ω :=
∏
p

γp,

where γp = γ for all prime numbers p. With the product topology and componentwise
multiplication, Ω is a compact abelian topological group. Hence there is a unique prob-
ability Haar measure µh on (Ω,B(Ω))(3) and we have µh =

∏
p µh,p, where µh,p is the

Haar measure on (γp,B(γp)) (see [19, Theorem 5.14]). For every ω = {ωp} ∈ Ω, we
extend it to a completely multiplicative function, by defining

ωn :=
∏

pν‖n
ων

p .

(3)For any space X, we denote by B(X) the class of all Borel subsets of X.
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In view of (1.10), we can prove, similar to Lemma 5.1.6 and Theorem 5.1.7 of [11], that
there is a subset Ω̃ ⊂ Ω with µh(Ω̃) = 1 such that for any ω̃ ∈ Ω̃ the series

∑

n≥1

ω̃nλF (n)n−s

and the product

∏
p

∑

ν≥0

ω̃ν
pλF (pν)p−νs

are uniformly convergent on compact subsets of the half-plane σ > 1
2 , and the equality

L(s, F ; ω̃) :=
∑

n≥1

ω̃nλF (n)n−s =
∏
p

∑

ν≥0

ω̃ν
pλF (pν)p−νs (3.1)

holds. Clearly for σ > 1
2 and ω̃ ∈ Ω̃, we have

L(s, F ; ω̃) =
∏
p

(
1 + ω̃pλF (p)p−s + O(p−2σ)

)
.

Therefore for any ω̃ ∈ Ω̃, the series

L†(s, F ; ω̃) := −
∑

p

log
(
1− ω̃pλF (p)p−s

)
(3.2)

L[
p0

(s, F ; ω̃) := −
∑
p>p0

ω̃p log
(
1− λF (p)p−s

)
(3.3)

are uniformly convergent on compact subsets of the half-plane σ > 1
2 , where p0 ≥ 3 is an

arbitrarily fixed constant. Moreover, we introduce two subsets of HF :

L †
F :=

{
L†(s, F ; ω̃) : ω̃ ∈ Ω̃

}
and L [

F,p0
:=

{
L[

p0
(s, F ; ω̃) : ω̃ ∈ Ω̃

}
. (3.4)

The first auxiliary result of Bagchi’s method is the denseness of L †
F , which is im-

portant in the proof of Proposition 3.3 below.

Proposition 3.1. Let 1 ≤ m ≤ 4, 2 | k such that k = 12 or k ≥ 16, f ∈ H∗k and
F = symmf or symmf × symmf .

(i) For any fixed p0 ≥ 3, the set L [
F,p0

is dense in HF .
(ii) The set L †

F is dense in HF .

Define three probability measures on (HF ,B(HF ))
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PF,T (A) :=
1
T

meas
{
t ∈ [0, T ] : L(s + it, F ) ∈ A

}
, (3.5)

PF (A) := µh

({ω ∈ Ω : L(s, F ;ω) ∈ A}), (3.6)

QF (A) := µh

({ω ∈ Ω : log L(s, F ;ω) ∈ A}), (3.7)

for A ∈ B(HF ). The next limit theorem is one of the keys of Bagchi’s method.

Proposition 3.2. Let 1 ≤ m ≤ 4, 2 | k such that k = 12 or k ≥ 16, f ∈ H∗k and
F = symmf or symmf × symmf . Then the probability measure PF,T converges weakly
to PF as T →∞.

The third key step of Bagchi’s method is to determine the support of the probability
measure PF on (HF ,B(HF )). By definition, a point s ∈ S is said to be in the support
of a probability measure P on (S, B(S)) if and only if every open neighborhood of s

has strictly positive measure. The set of all such points is called the support of P ,
denoted by S(P ). Clearly S(P ) is the smallest closed subset of S such that P (S(P )) = 1
(see [2, Chapter 1]). The support of an S-valued random variable Y on the probability
space (X, B(X), µ) is the support of the probability measure PY on (S, B(S)) where
PY (A) = µ(Y ∈ A) (A ∈ B(S)), called the distribution of Y .

Proposition 3.3. Let 1 ≤ m ≤ 4, 2 | k such that k = 12 or k ≥ 16, f ∈ H∗k
and F = symmf or symmf × symmf . With the previous notation, we have the following
results:

(i) The support of the probability measure QF on (HF ,B(HF )) is the whole space
HF .

(ii) The support of the probability measure PF on (HF ,B(HF )) is

S0 :=
{
ϕ(s) ∈ HF : ϕ(s) 6= 0 for any s ∈ D(σF ) or ϕ(s) ≡ 0

}
.

Now we apply Propositions 3.1, 3.2 and 3.3 to prove Theorem 1.
Let K be a compact subset of D∞(σF ) with connected complement. Let ϕ(s) be

a non-vanishing continuous functions on K which is analytic in the interior of K. By
Lemma 11 of [13], for any ε > 0 we can find a polynomial p(s) such that p(s) 6= 0 on K

and

sup
s∈K

|ϕ(s)− p(s)| < 1
4
ε. (3.8)

Since p(s) has only finitely many zeros, we can find a region G1 such that K ⊂ G1 and
p(s) 6= 0 on G1. We choose log p(s) to be analytic in the interior of G1. Applying Lemma
11 of [13] to log p(s) again, we find another polynomial q(s) such that

sup
s∈K

∣∣p(s)− eq(s)
∣∣ <

1
4
ε. (3.9)

From (3.8) and (3.9), we deduce, for any T > 0,
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{
t ∈ [0, T ] : sup

s∈K

∣∣L(s + it, F )− eq(s)
∣∣ <

ε

2

}

⊂
{

t ∈ [0, T ] : sup
s∈K

∣∣L(s + it, F )− ϕ(s)
∣∣ < ε

}
. (3.10)

On the other hand, the set

G :=
{

g ∈ HF : sup
s∈K

∣∣g(s)− eq(s)
∣∣ <

1
2
ε

}

belongs to B(HF ) and is open in HF , thus we have

PF,T (G) =
1
T

meas
{
t ∈ [0, T ] : L(s + it, F ) ∈ G

}

=
1
T

meas
{

t ∈ [0, T ] : sup
s∈K

∣∣L(s + it, F )− eq(s)
∣∣ <

1
2
ε

}
. (3.11)

By Proposition 3.1, the measure PF,T (G) converges weakly to PF (G) as T → ∞. With
(3.10) and (3.11), Theorem 1.1.8 of [11] leads to

lim inf
T→∞

1
T

meas
{

t ∈ [0, T ] : sup
s∈K

|L(s + it, F )− ϕ(s)| < ε
}

≥ lim inf
T→∞

1
T

meas
{

t ∈ [0, T ] : sup
s∈K

∣∣L(s + it, F )− eq(s)
∣∣ <

1
2
ε

}

≥ PF (G).

Obviously eq(s) ∈ S0 = S(PF ) and G is a neighbourhood of eq(s). Therefore PF (G) >

0. This completes the proof of Theorem 1.

4. Proof of Proposition 3.1.

In order to prove Proposition 3.1, we first apply our result in Section 2 to establish
a preliminary lemma, which is a generalization of the key lemma in Laurinčikas and
Matsumoto [13].

Lemma 4.1. Let 1 ≤ m ≤ 4, 2 | k such that k = 12 or k ≥ 16 and f ∈ H∗k. For
every δ ∈ [0, 1), define

Pδ = Pδ(symmf) :=
{
p : p is prime such that |λf (pm)| ≥ δ

}
.

Let η > 0 and c > 1 + η be two fixed constants. For any a ≥ 2 and (1 + η)a < b ≤ ca, we
have

∑

p∈Pδ
a<p≤b

1
p
≥

{
1− δ2

(m + 1)2 − δ2
+ oc,δ,η(1)

} ∑

a(1+η)<p≤b

1
p
,
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where oc,δ,η(1) is a quantity tending towards 0 as a →∞.

Proof. Define

πδ(x) := #{p ≤ x : p ∈ Pδ}.

In particular we have P0 = P (the set of all prime numbers) and π0(x) = π(x) :=
#([1, x] ∩P).

Clearly it is sufficient to prove that for any (1 + η)a < u ≤ b,

πδ(u)− πδ(a) ≥
{

1− δ2

(m + 1)2 − δ2
+ oc,δ,η(1)

}(
π(u)− π(a)

)
, (4.1)

since the desired inequality follows from (4.1) via a simple integration by parts.
For a ≤ u ≤ b, the Deligne inequality |λf (pm)| ≤ m + 1 allows us to write

∑

a<p≤u

∣∣λf (pm)
∣∣2 ≤ (m + 1)2

∑

a<p≤u, p∈Pδ

1 + δ2
∑

a<p≤u, p/∈Pδ

1

≤ [
(m + 1)2 − δ2

][
πδ(u)− πδ(a)

]
+ δ2

[
π(u)− π(a)

]
. (4.2)

According to (2.4) of Proposition 2.1, we have

∑

a<p≤u

∣∣λf (pm)
∣∣2 = π(u){1 + o(1)} − π(a){1 + o(1)}

= π(u)− π(a) + o
(
π(u)

)
.

Since (1+η)a < u ≤ ca, a simple calculation shows, via the prime number theorem, that

π(u)− π(a) =
u

log u
{1 + o(1)} − a

log a
{1 + o(1)}

≥ ηa

log a
{1 + oc,η(1)}

≥ η

2c
π(u).

Combining these two estimates yields

∑

a<p≤u

∣∣λf (pm)
∣∣2 =

[
π(u)− π(a)

]{1 + oc,η(1)}. (4.3)

Now the desired inequality (4.1) follows from (4.2) and (4.3). ¤

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Fix a ω̃0 = {ω̃0
p} ∈ Ω̃, then the series
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L[
p0

(s, F ; ω̃0) := −
∑
p>p0

ω̃0
p log

(
1− λF (p)p−s

)
(4.4)

converges in HF . To prove assertion (i), we shall apply Lemma 4 of [13] to this series. In
fact, it suffices to verify the condition (a) there, since conditions (b) and (c) are plainly
satisfied.

Let µ be a complex measure on (C,B(C)) with compact support in D(σF ) such
that

∑
p

∣∣∣∣
∫

C

log
(
1− λF (p)p−s

)
dµ(s)

∣∣∣∣ < ∞. (4.5)

Since σF > 1
2 , we see easily

∑
p

|λF (p)||ρ(log p)| < ∞ (4.6)

with

ρ(z) :=
∫

C

e−szdµ(s).

We shall prove that (4.6) leads to

ρ(z) ≡ 0, (4.7)

which implies the validity of condition (a) in Lemma 4 of [13] since for any non-negative
integer r,

∫
C

srdµ(s) = 0 by differentiating (4.7) r-times with respect to z and taking
z = 0. Noticing that

L[
p0

(s, F ; ω̃) = L[
p0

(
s, F ; (ω̃/ω̃0)ω̃0

)
and ω̃/ω̃0 =

{
ω̃p/ω̃0

p

} ∈ Ω,

Lemma 4 of [13] shows that L [
F,p0

is dense in HF .
It remains to prove (4.7). Firstly we write

ρ(z) =
∫

C

ezsdµ−(s),

where the measure µ− is defined by µ−(A) = µ(−A) for A ∈ B(C) with −A := {−a :
a ∈ A}. Clearly µ− supports in {s ∈ C : −1 < σ < − 1

2}. Thus ρ(z) verifies all conditions
of Lemma 5 of [13]. If ρ(z) 6≡ 0, then this lemma implies

lim sup
r→∞

log |ρ(r)|
r

> −1. (4.8)
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Next we shall apply Lemma 7 of [13] to deduce an opposite inequality. This follows
a contradiction, and hence (4.7) holds true.

Since the support of µ is compact and is contained in D(σF ), we have

|ρ(±iy)| ≤ eMy

∫

C

|dµ(s)| (y > 0),

where M = Mµ is a positive constant such that µ supports in (σF , 1)× [−M, M ]. Thus
ρ(z) satisfies condition (a) of Lemma 7 of [13] with α = M . Fix a positive number
β < π/M , which assures condition (d) of Lemma 7 of [13].

A similar calculation to (2.13) allows us to obtain

λF (p) =

{
λf (pm) if F = symmf,
∣∣λf (pm)

∣∣2 if F = symmf × symmf.
(4.9)

Define

L :=
{

` ∈ N : ∃ r ∈
((

`− 1
4

)
β,

(
` +

1
4

)
β

]
such that |ρ(r)| ≤ e−r

}
.

By using (4.6) and (4.9), we can deduce, for any fixed δ ∈ [0, 1),

∞ >
∑

p

|λF (p)||ρ(log p)| ≥ δ2
∑

p∈Pδ

|ρ(log p)|

≥ δ2
∑

`/∈L

∑

p∈Pδ

(`− 1
4 )β<log p≤(`+ 1

4 )β

|ρ(log p)|

≥ δ2
∑

`/∈L

∑

p∈Pδ

(`− 1
4 )β<log p≤(`+ 1

4 )β

p−1.

Now we apply Lemma 4.1 with

a := exp
{(

`− 1
4

)
β

}
, b := exp

{(
` +

1
4

)
β

}
, c := exp

{
1
2
β

}

and η > 0 such that 1 + η < c. It follows that

∞ >

{
δ2(1− δ2)

(m + 1)2 − δ2
+ oc,δ,η(1)

} ∑

`/∈L

∑

(1+η)a<p≤b

1
p

≥
{

δ2(1− δ2)
(m + 1)2 − δ2

+ oc,δ,η(1)
} ∑

`/∈L

{(
1
2
− log(1 + η)

β

)
1
`

+ O

(
1
`2

)}
,

which implies
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∑

`/∈L

1
`

< ∞. (4.10)

If we write L = {a1, a2, . . . } with a1 < a2 < · · · , it is easy to see that

lim
n→∞

an

n
= 1. (4.11)

In fact we have [x] = |L ∩ [1, x]|+ |(NrL ) ∩ [1, x]|. But (4.10) implies

|NrL ∩ [1, x]| ≤ √
x +

∑
√

x<`≤x, `/∈L

1 ≤ √
x + x

∑

`>
√

x, `/∈L

1/` = o(x).

Thus |L ∩ [1, x]| ∼ x, which is equivalent to (4.11).
By the definition of L , there exists a sequence {rn} such that

(
an − 1

4

)
β < rn ≤

(
an +

1
4

)
β and |ρ(rn)| ≤ e−rn .

Then

lim
n→∞

rn

n
= β and lim sup

n→∞
log |ρ(rn)|

rn
≤ −1.

This shows that condition (c) of Lemma 7 of [13] is satisfied.
For any integers m and n such that m > n ≥ 1, we have

rm − rn ≥
(

am − an − 1
2

)
β ≥ 1

2
(am − an)β ≥ 1

2
(m− n)β.

Thus the condition (b) of Lemma 7 of [13] is also satisfied.
Now we can apply Lemma 7 of [13] to write

lim sup
r→∞

log |ρ(r)|
r

= lim sup
n→∞

log |ρ(rn)|
rn

≤ −1.

This contradicts to (4.8), and the proof of assertion (i) completes.
Next we shall use the result in assertion (i) to prove (ii). Let K be a compact subset

of D(σF ) and ϕ ∈ HF . For any ε > 0, we take p0 ≥ 3 such that

sup
s∈K

∑
p>p0

∑

ν≥2

|λF (p)|ν
νpνσ

<
ε

2
. (4.12)

Since

ϕ(s) +
∑

p≤p0

log
(
1− λF (p)p−s

) ∈ HF ,
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assertion (i) shows that there is ω̃ = {ω̃p} ∈ Ω such that

sup
s∈K

∣∣∣∣ϕ(s) +
∑

p≤p0

log
(
1− λF (p)p−s

)− L[
p0

(s, F ; ω̃)
∣∣∣∣ <

ε

2
. (4.13)

Taking

ω̃′p :=

{
1 if p ≤ p0

ω̃p if p > p0

and ω̃′ = {ω̃′p},

the inequalities (4.12) and (4.13) imply

sup
s∈K

∣∣ϕ(s)− L†(s, F ; ω̃′)
∣∣ ≤ sup

s∈K

∣∣∣∣ϕ(s) +
∑

p≤p0

log
(
1− λF (p)p−s

)− L[
p0

(s, F ; ω̃)
∣∣∣∣

+ sup
s∈K

∑
p>p0

∣∣ log
(
1− ω̃pλF (p)p−s

)− ω̃p log
(
1− λF (p)p−s

)∣∣

<
ε

2
+ sup

s∈K

∑
p>p0

∑

ν≥2

|λF (p)|ν
νpνσ

< ε.

This completes the proof. ¤

5. Proof of Proposition 3.2.

Obviously Proposition 3.2 is a particular case of Theorem 2 of [12]. Thus it suffices
to verify all assumptions there, that is, to show that there is a positive constant c for
which

L(s, F ) ¿f |τ |c (σ > σF , |τ | ≥ 1), (5.1)

and

∫ T

1

∣∣L(s, F )
∣∣2dτ ¿f T (σ > σF , T ≥ 1). (5.2)

By using (1.11), (1.12) and (1.13), a standard Phragmén-Lindelöf argument allows
us to obtain the convex bound for L(s, F ), i.e. (5.1) with c = (m + 1 + δ2-m)/4 if
F = symmf and c = (m + 1)2/4 if F = symmf × symmf . A detailed proof can be found
in [10].

In order to verify (5.2), we can apply theorem 4 of Perelli [17], where an estimate of
this type was established for a general class of L-functions. In view of (1.11) and (1.12),
it is easy to see that L(s, F ) lies in the class considered in Perelli [17] with evident choice
of parameters. Therefore Theorem 4 of Perelli [17] gives
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∫ T

1

∣∣L(s, F )
∣∣2dτ ¿f,ε T (1−σ)/(1−σF )+ε (5.3)

uniformly for 1
2 ≤ σ < 1 and T ≥ 1, which implies (5.2). This completes the proof. ¤

6. Proof of Proposition 3.3.

By the definition, {ωp} is a sequence of independent random variables defined on the
probability space (Ω,B(Ω), µh), and the support of each ωp is the unit circle γ. Hence

{
log

( ∑

ν≥0

ων
pλF (pν)p−νs

)}

is a sequence of independent HF -valued random elements, and the set

{
ϕ ∈ HF : ϕ(s) = log

( ∑

ν≥0

aνλF (pν)p−νs

)
, a ∈ γ

}

is the support of HF -valued random element log
( ∑

ν≥0 ων
pλF (pν)p−νs

)
. Consequently,

by Theorem 1.7.10 of [11] (see also [13, Lemma 10]), the support of the HF -valued
random element

log L(s, F ;ω) =
∑

p

log
( ∑

ν≥0

ων
pλF (pν)p−νs

)

is the closure of L †
F , i.e. the whole space HF by Proposition 3.1(ii). This proves the first

assertion.
Now we consider any element ϕ = ϕ(s) of S0r{0} and its neighbourhood G in

S0r{0}. Since the map exp : HF → S0r{0} is onto and continuous, we see that
exp−1(ϕ) ∈ HF exists, and exp−1(G) is a neighbourhood of exp−1(ϕ) in HF . According
to (i), HF is the support of log L(s, F ;ω), so QF (exp−1(G)) > 0, where QF is the
distribution of log L(s, F ;ω), defined by (3.7). But

QF (exp−1(G)) = PF (G),

where PF is the distribution of L(s, F ;ω) given by (3.6). Hence PF (G) > 0. This implies
that any ϕ ∈ S0r{0} is an element of the support of L(s, F ;ω). Thus

S0r{0} ⊂ S(PF ).

By Lemma 9 of [13], we have S0r{0} = S0. Since S(PF ) is closed, we deduce

S0 ⊂ S(PF ). (6.1)

Let Ω̃ ⊂ Ω be described as in Section 3. Then for any ω̃ ∈ Ω̃, we have



390 H.-Z. Li and J. Wu

L(s, F ; ω̃) =





∏
p

∏

0≤j≤m

(
1− ω̃pαf (p)m−2jp−s

)−1 if F = symmf,

∏
p

∏

0≤i, j≤m

(
1− ω̃pαf (p)2(m−i−j)p−s

)−1 if F = symmf × symmf.

(6.2)

Since every factor on the right-hand side of (6.1) is non-zero, the function L(s, F ; ω̃) is
also non-vanishing. Thus

{
L(s, F ; ω̃) : ω̃ ∈ Ω̃

} ⊂ S0r{0}

and

PF (S0r{0}) = µh

({ω ∈ Ω : L(s, F ;ω) ∈ S0r{0}}
) ≥ µh(Ω̃) = 1 ⇒ PF (S0) = 1.

Since S(PF ) is the smallest closed subset of HF such that PF

(
S(PF )

)
= 1 and S0 is

closed, we must have

S(PF ) ⊂ S0. (6.3)

Now the required result follows from (6.1) and (6.3). ¤

7. Proofs of Corollaries 2 and 3.

The proofs of Corollaries 2 and 3 will follow closely those of Theorems 2 and 3 of
[14], but we reproduce here the details for the convenience of readers.

Let s0, . . . , sJ−1 be complex numbers such that s0 6= 0. Inductively on J , we easily
see that there is a polynomial p(s) =

∑J−1
j=0 bjs

j such that

(
ep(s)

)(j)∣∣
s=0

= sj (0 ≤ j ≤ J − 1).

Let σF < σ1 < 1, and K be a compact subset of D(σF ) with connected complement
such that σ1 is contained in the interior of K. We denote by δ the distance of σ1 from
the boundary of K. Then for any ε > 0, Theorem 1 assures that we find a real τ for
which

sup
s∈K

∣∣L(s + iτ, F )− ep(s−σ1)
∣∣ <

εδJ

2JJ !

holds. Then, using Cauchy’s integral formula we have

∣∣L(j)(σ1 + iτ, F )− sj

∣∣ =
j!
2π

∣∣∣∣
∫

|s−σ1|=δ/2

L(s + iτ, F )− ep(s−σ1)

(s− σ1)j+1
ds

∣∣∣∣
< ε
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for 0 ≤ j ≤ J − 1, which implies Corollary 2. ¤

Next we prove Corollary 3. Without loss of generality, we suppose gJ 6≡ 0. Then
there exists a bounded region G ⊂ CJ and a constant B0 > 0 such that |gJ | ≥ B0 in G.

Let σ ∈ D(σF ). According to Corollary 2, we can find a sequence of real numbers
τn →∞ such that

Xn =
(
L(σ + iτn, F ), L′(σ + iτn, F ), . . . , L(J−1)(σ + iτn, F )

) ∈ G.

By the assumption of Corollary 3, we have

J−1∑

j=0

sjgj

(
L(s, F ), L′(s, F ), . . . , L(J−1)(s, F )

)

= −sJgJ

(
L(s, F ), L′(s, F ), . . . , L(J−1)(s, F )

)

for all s ∈ C. Letting s = σ + iτn and dividing both sides by (σ + iτn)J , we obtain

J−1∑

j=0

(σ + iτn)j−Jgj(Xn) = −gJ(Xn).

Since G is bounded, |gj(Xn)| is bounded (0 ≤ j ≤ J − 1). Hence the left-hand side
of above tends to zero as n → ∞. On the other hand, |gJ(Xn)| ≥ B0 > 0. This
contradiction finishes the proof of Corollary 3. ¤
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[12] A. Laurinčikas, On limit distribution of the Matsumoto zeta-function II, Liet. Mat. Rink., 36

(1996), 464–485 = Lithuanian Math. J., 36 (1996), 371–387.
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