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Abstract. In this article we study nonsingular rational open surfaces of logarithmic
Kodaira dimension zero with connected boundaries at infinity defined over an algebraically
closed field of arbitrary characteristic. We establish a classification theory of nonsingular
alfine surfaces of logarithmic Kodaira dimension zero and give a characterization of
$A_{*}^{1}\times A_{*}^{1}$ in arbitrary characteristic.

0. Introduction.

Let $k$ be an algebraically closed field. Let $S$ be a nonsingular (not neces-
sarily complete) algebraic surface defined over $k$ . Let $(X, B)$ be a pair of a non-
singular projective surface $X$ and a reduced simple normal crossing divisor $B$

on $X$ such that $S=X-B$ . We call such a pair an $SNC$-completion of $S$ .
Since $\dim S=2$ , SNC-completions of $S$ exist. We say that $S$ has a connected
boundary at infinity if $B$ is connected. Note that if $S$ is a nonsingular affine
surface then $S$ has a connected boundary at infinity.

In [13], when char(k) $=0$ , the author established a classification theory of
nonsingular rational open surfaces of logarithmic Kodaira dimension zero with
connected boundaries at infinity, which gives generalizations of Fujita’s results
concerning the classification of nonsingular affine surfaces of $\overline{\kappa}=0$ with finite
Picard groups (cf. [2, \S 8]). We can expect that the classification theory of such
surfaces works also in the case char(k) $>0$ because the minimal model theory of
open algebraic surfaces (cf. [15]) and the two-dimensional $\log$ abundance theorem
(cf. [10], [12] and [3]) are valid in the case char(k) $>0$ .

In the present article, we attempt to establish a classification theory of non-
singular rational open surfaces of logarithmic Kodaira dimension zero with con-
nected boundaries at infinity defined over an algebraically closed field of arbitrary
characteristic. In \S 1, following [13, \S \S 1 and 2], we construct an almost minimal
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model $(W, C)$ and a strongly minimal model $(V, D)$ of a nonsingular rational
open surface $S$ of $\overline{\kappa}(S)=0$ with a connected boundary at infinity. Further, we
prove that a normal affine surface of logarithmic Kodaira dimension zero is
rational (Theorem 1.10), which is a slight generalization of [13, Theorem 1.6]. In
\S 2, by improving the arguments as in [13, \S 4], we classify the strongly minimal
nonsingular rational open surfaces of $\overline{\kappa}=0$ with connected boundaries at infinity
(cf. Theorems 2.8, 2.10, 2.16 and 2.17). By using the results in \S \S 1 and 2, we
prove the following characterization of $A_{*}^{1}\times A_{*}^{1}$ in \S 3.

THEOREM 3.1. Let $S=Spec(A)$ be a normal afftne $su$ face deftned over an
algebraically closed field $k$ of arbitrary characteristic. Assume that $\overline{\kappa}(S)=0$ .
Then rank $zA^{*}/k^{*}\leq 2$ and the equality holds if and only if $S\cong A_{*}^{1}\times A_{*}^{1}$ , where
$A_{*}^{1}:=A_{k}^{1}-\{0\}$ .

REMARK 0.1. (1) For a ring $R$ we denote its multiplicative group consisting
of invertible elements by $R$ ”.

(2) For any algebraic variety $X$ defined over $k$, the group $\Gamma(X, \mathscr{O}_{X})^{*}/k^{*}$ is
a finitely generated, free abelian group by Nagata’s imbedding theorem (cf. [17]).

When char(k) $=0$ , Iitaka [6, Theorem $II$ ] obtained a characterization of
$A_{*}^{1}\times A_{*}^{1}$ as follows: a normal affine surface $S$ is isomorphic to $A_{*}^{1}\times A_{*}^{1}$ if and
only if $\overline{\kappa}(S)=0$ and $\overline{q}(S)=2$ (for definitions of $\overline{\kappa}(S)$ and $\overline{q}(S)$ , see Definition
1.9). The result [6, Theorem $II$ ] was generalized by Kawamata [11] in any
dimension. Iitaka’s proof used Kawamata’s addition formula on logarithmic
Kodaira dimension for a fibered variety (cf. [9]), which is not yet proved in the
case char(k) $>0$ .

The terminology is the same as the one in [15] and [13]. By a $(-n)$ -curve
$(n\geq 1)$ we mean a nonsingular complete rational curve with self-intersection
number $-n$ . A reduced effective divisor $D$ is called an $NC$-divisor (an SNC-
divisor, resp.) if $D$ has only normal crossings (simple normal crossings, resp.).

Let $V$ be a nonsingular projective surface and let $D,$ $D_{1}$ and $D_{2}$ be divisors
on $V$. We employ the following notation. For the definitions of $\overline{\kappa},\overline{p}_{g},\overline{P}_{m}$ and
$\overline{q}$, see [7] (see also [8] for the definitions in the case char(k) $>0$).

$K_{V}$ : the canonical divisor on $V$.
$\overline{\kappa}(S)$ : the logarithmic Kodaira dimension of a non-complete surface $S$ .

$\overline{p}_{g}(S)$ (or $\overline{P}_{1}(S)$ ): the logarithmic geometric genus of $S$ .
$\overline{P}_{m}(S)(m\geq 2)$ : the logarithmic $m$-genus of $S$ .
$\overline{q}(S)$ : the logarithmic irregularity of $S$ .
$\rho(V)$ : Picard number of $V$.
$F_{n}(n\geq 0)$ : Hirzebruch surface of degree $n$ .
$M_{n}(n\geq 0)$ : the minimal section of $F_{n}$ .
$\overline{M}_{n}(n\geq 0)$ : a section of the ruling on $F_{n}$ with $(\overline{M}_{n}\cdot M_{n})=0$ .
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$\# D$ : the number of all irreducible components in Supp(D).
$f^{*}(D)$ : total transform of $D$ .
$f_{*}(D)$ : direct image of $D$ .
$f^{\prime}(D)$ : proper transform of $D$ .
$[D^{I}]$ : the integral part of a $Q$-divisor $D^{I}$ .
$D_{1}$ - $D_{2}$ : $D_{1}$ and $D_{2}$ are linearly equivalent.
$D_{1}\equiv D_{2}$ : $D_{1}$ and $D_{2}$ are numerically equivalent.
The author would like to express his gratitude to Professor M. Miyanishi

who gave the author valuable advice and encouragement during the preparation
of the present article.

1. Preliminary results.

In this section we construct an almost minimal model and a strongly min-
imal model of a nonsingular rational open surface of $\overline{\kappa}=0$ with a connected
boundary at infinity. We will know that the results in [13, \S \S 1 and 2] are valid
in the case char(k) $>0$ by virtue of the two-dimensional $\log$ abundance theorem
due to Fujita [3].

We recall some basic notions in the theory of peeling (cf. [15, Chapter 1]).
Let $(X, B)$ be a pair of a nonsingular projective surface $X$ and an SNC-divisor
$B$ . We call such a pair $(X, B)$ an $SNC$-pair. A connected curve $T$ consisting of
irreducible components of $B$ (a connected curve in $B$, for short) is a twig if the
dual graph of $T$ is a linear chain and $T$ meets $B-T$ in a single point at one of
the end components of $T$, the other end of $T$ is called the tip of $T$. A connected
curve $R$ (resp. $F$ ) in $B$ is a rod (resp. fork) if $R$ (resp. $F$ ) is a connected component
of $B$ and the dual graph of $R$ (resp. $F$ ) is a linear chain (resp. the dual graph of
the exceptional curves of a minimal resolution of a non-cyclic quotient singu-
larity). A connected curve $E$ in $B$ is rational (resp. admissible) if each irreducible
component of $E$ is rational (resp. if there are no (-1)-curves in Supp(E) and
the intersection matrix of $E$ is negative definite). An admissible rational twig $T$

in $B$ is maximal if $T$ is not extended to an admissible rational twig with more
irreducible components of $B$ .

Let $\{T_{\lambda}\}$ (resp. $\{R_{\mu}\},$ $\{F_{v}\}$ ) be the set of all admissible rational maximal
twigs (resp. all admissible rational rods, all admissible rational forks), where no
irreducible components of $T_{\lambda}’ s$ belong to $R_{\mu}’ s$ or $F_{v}’ s$ . Then there exists a unique
decomposition of $B$ as a sum of effective $Q$-divisors $B=B^{I}+$ Bk(B) such that
the following two conditions i) and $ii$) are satisfied:

i) Supp(Bk(B)) $=(\bigcup_{\lambda}T_{\lambda})\cup(\bigcup_{\mu}R_{\mu})\cup(\bigcup_{v}F_{v})$ .

$ii)$ $(B^{I}+K_{X}\cdot Z)=0$ for every irreducible component $Z$ of Supp(Bk(B)).
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We call the divisor Bk(B) the bark of $B$ and say that $B^{I}+K_{X}$ is produced by the
peeling of $B$ .

We define the almost minimality of an SNC-pair.

DEFINITION 1.1 (cf. [15, \S 1.11]). An SNC-pair $(X, B)$ is almost minimal if,
for every irreducible curve $C$ on $X$, either $(B^{I}+K_{X}\cdot C)\geq 0$ or the intersection
matrix of $C+$ Bk(B) is not negative definite and $(B^{I}+K_{X}\cdot C)<0$ .

LEMMA 1.2 (cf. [15, Theorem 1.11]). Let $(X, B)$ be an $SNC$-pair. Then
there exists a birational morphism 71 : $X\rightarrow W$ onto a nonsingular projective $su$ face
$W$ such that the following four conditions (i) - (iv) are satisfted:

(i) $C$ $:=\mu_{*}(B)$ is an SNC-divisor.

(ii) $\mu_{*}Bk(B)$ $\leq Bk(C)$ and $\mu_{*}(B^{I}+K_{X})\geq C^{I}+K_{W}$ .

(iii)
$\overline{\kappa}(W-C)\overline{P}_{n}(X-B).=\overline{P}_{n}(W-C)$

for every integer $n\geq 1$ . In particular, $\overline{\kappa}(X-B)=$

(iv) The pair $(W, C)$ is almost minimal.

We call the pair $(W, C)$ an almost minimal model of $(X, B)$ .

We note the following result.

LEMMA 1.3. Let $(X, B)$ be an $SNC$-pair. Assume that $(X, B)$ is almost
minimal and $\overline{\kappa}(X-B)=0$ . Then $n(B^{I}+K_{X})$ – 0 for some integer $n>0$ . In
particular, $B^{I}+K_{X}\equiv 0$ .

PROOF. By the assumptions and [15, Theorem 2.11], we know that $B^{I}+$

$K_{X}$ is $nef$. Then $B+K_{X}\equiv(B^{I}+K_{X})+$ Bk(B) gives rise to the Zariski-Fujita
decomposition of $B+K_{X}$ (cf. [14, Chapter $I]$ ), where $B^{I}+K_{X}$ is the nef part.
Hence the assertion follows from the two-dimensional $\log$ abundance theorem
[3, Theorem (5.12)]. $[$

Now, let $S$ be a nonsingular open surface with a connected boundary at
infinity and let $(X, B)$ be an SNC-completion of $S$ . Let $(W, C)$ be an almost
minimal model of $(X, B)$ . We call the surface $W-C$ an almost minimal model
of $S=X-B$ .

LEMMA 1.4. With the same notation as above, the following assertions hold:
(1) $C$ is connected.
(2) If $S$ is afftne then $W-C$ is an afftne open subset of $S$ .

PROOF. By using the same argument as in the proof of [13, Lemma 1.4], we
obtain the assertions. $\square $



Open surfaces of logarithmic Kodaira dimension zero 937

Figure 1.

Figure 2. Figure 3. Figure 4.

LEMMA 1.5 (cf. [13, Proposition 1.5]). Let $S$ be a nonsingular rational open
$su$ face of $\overline{\kappa}(S)=0$ with a connected boundary at infinity and let $( W, C)$ be an almost
minimal model of an $SNC$-completion of S. Then the following assertions hold:

(1) If $\overline{p}_{g}(S)\geq 1$ then $\overline{p}_{g}(S)=1,$ $C+K_{W}$ – 0 and $C$ is a nonsingular elliptic
curve or a loop of nonsingular rational curves.

(2) If $\overline{p}_{g}(S)=0$ and $\overline{P}_{2}(S)\geq 1$ then $\overline{P}_{2}(S)=1$ . Furthermore, if $[C^{I}]=0$

then $C$ is either a single (-4)-curve or an admissible rational rod with
(-3)-curves as tip components and $n(0\leq n\leq 8)(-2)$ -curves as middle
components, and if $[C^{I}]\neq 0$ then the configuration of $C$ is given as in
Figure 1.

(3) If $\overline{p}_{g}(S)=\overline{P}_{2}(S)=0$ and $\overline{P}_{3}(S)\geq 1$ then $\overline{P}_{3}(S)=1$ and the config-
uration of $C$ is given as in Figure 2.

(4) If $\overline{P}_{n}(S)=0$ for $n=1,2,3$ and $\overline{P}_{4}(S)\geq 1$ then $\overline{P}_{4}(S)=1$ and the con-
figuration of $C$ is given as in Figure 3.

(5) If $\overline{P}_{n}(S)=0$ for $1\leq n\leq 4$ then $\overline{P}_{5}(S)=0,\overline{P}_{6}(S)=1$ and the config-
uration of $C$ is given as in Figure 4.

In Figures 1\sim 4, each line represents a nonsingular rational curve and each
number indicates the self-intersection number of the corresponding curve.

PROOF. Since $\overline{\kappa}(S)=0,\overline{P}_{n}(S)\leq 1$ for any $n\geq 1$ .
Suppose that $\overline{p}_{g}(S)=1$ . Then, since $h^{0}( W, [C^{I}+K_{W}])=h^{0}(W, [C^{I}]+K_{W})=$

$\overline{p}_{g}(S)=1$ by [15, Lemma 1.10], it follows from [14, Lemma I.2.1.3] that one of
the following two cases takes place.

(A) There exists an irreducible curve $A\leq[C^{I}]$ such that $p_{a}(A)\geq 1$ , where
$p_{a}(A)$ denotes the arithmetic genus of $A$ .

(B) Every irreducible curve of $[C^{I}]$ is rational and the dual graph of $[C^{I}]$

contains a loop, say $A$ , of nonsingular rational curves.
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Then $|A+K_{W}|\neq\emptyset$ (cf. [14, Lemma I.2. 1.3]). Since $C^{I}+K_{W}\equiv 0$ by
Lemma 1.3, we know that $C^{I}=[C^{I}]=A$ and $A+K_{W}\sim 0$ . Then $A$ is a con-
nected component of $C$ and hence $C=A$ . The assertion (1) thus follows.

Suppose that $\overline{p}_{g}(S)=0$ . Then, by virtue of Lemma 1.3, we know that [18,
Proposition 2.2] is valid in any characteristic. So the assertions (2) $\sim(5)$ follow
from [18, Proposition 2.2]. $[$

Let $S$ be a nonsingular rational open surface of $\overline{\kappa}(S)=0$ with a connected
boundary at infinity and let $(W, C)$ be an almost minimal model of an SNC-
completion $(X, B)$ of $S$ . Then, by contracting (-1)-curves $E$ with $(E\cdot C)\leq 1$

successively, we obtain a birational morphism $\mu$ : $W\rightarrow V$ such that $(F\cdot\mu_{*}(C))$

$>1$ for any (-1)-curve $F$ on $W$. Put $D=\mu_{*}(C)$ and $S^{\prime}:=V-D$ . The pair
$(V, D)$ is called a strongly minimal model of $(X, B)$ .

Note that our definition of a strongly minimal model differs slightly from the
definition in [4]. In fact, let $E$ be an irreducible curve such that $(E\cdot C^{I}+K_{W})=$

$0$ , $ E\subseteqq$ Supp(C) and the intersection matrix of $E+$ Bk(C) is negative definite.
Then $E$ is a(-1)-curve (if $(E\cdot C^{I})>0$) or a(-2)-curve (if $(E\cdot C^{I})=0$). In
our case, $E$ is contracted if $(E\cdot C^{I})>0$ and not contracted if $(E\cdot C^{I})=0$ .
Furthermore, we also contract (-1)-curves $E$ contained in Supp(C) provided
$(C\cdot E)=1$ .

LEMMA 1.6. With the same notation as above, the following assertions hold:
(1) $D$ is connected.
(2) If $S$ is afftne then $S^{\prime}$ is an afftne open subset of $S$ .

PROOF. The assertions are verified by the same argument as in the proof
of [13, Lemma 1.4]. $[$

LEMMA 1.7. With the same notation and assumptions as above, the following
assertions hold true.

(1) The divisor $D$ is an $SNC$-divisor or an irreducible rational curve with one
node. In particular, $D$ is an NC-divisor.

(2) $\overline{P}_{n}(S^{\prime})=\overline{P}_{n}(S)$ for any $n\geq 1$ . In particular, $\overline{\kappa}(S^{\prime})=0$ .
(3) If $\overline{p}_{g}(S)=0$ then $D$ is an $SNC$-divisor and $(V, D)$ is almost minimal.
(4) Assume that $\overline{p}_{g}(S)=0$ and $\overline{P}_{2}(S)=1$ . If $[D^{I}]=0$ then $D$ is either $a$

single (-4)-curve or an admissible rational rod with (-3)-curves as tip
components and $n(0\leq n\leq 8)(-2)$ -curves as middle components, and if
$[D^{I}]\neq 0$ then the configuration of $D$ is given as in Figure 1.

(5) If $\overline{p}_{g}(S)=\overline{P}_{2}(S)=0$ and $\overline{P}_{3}(S)=1$ then the configuration of $D$ is given
as in Figure 2.

(6) If $\overline{P}_{n}(S)=0$ for $n=1,2,3$ and $\overline{P}_{4}(S)=1$ then the configuration of $D$ is
given as in Figure 3.
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(7) If $\overline{P}_{n}(S)=0$ for $1\leq n\leq 4$ then the configuration of $D$ is given as in
Figure 4.

PROOF. By virtue of Lemmas 1.3 and 1.5, we know that [13, Lemma 2.4]
is valid in any characteristic. So we obtain the assertions. $\square $

We define the strongly minimality of a nonsingular rational open surface
with $\overline{\kappa}=0$ and with a connected boundary at infinity as follows.

DEFINITION 1.8. Let $S$ be a nonsingular rational open surface of $\overline{\kappa}(S)=0$

with a connected boundary at infinity. We say that $S$ is strongly minimal if there
exists a strongly minimal model $(V, D)$ of an SNC-completion of $S$ such that
$S=V-D$ . We then call such a pair $(V, D)$ an $SM$-completion of $S$ .

We shall give a slight generalization of [13, Theorem 1.6]. We give some
definitions needed later.

DEFINITION 1.9. Let $S$ be a normal (not necessarily complete) algebraic
surface and let $\pi$ : $\tilde{S}\rightarrow S$ be a resolution of singularities of $S$ . We define the
logarithmic Kodaira dimension $\overline{\kappa}(S)$ and the logarithmic irregularity $\overline{q}(S)$ of $S$ by
$\overline{\kappa}(S):=\overline{\kappa}(\tilde{S})$ and $\overline{q}(S):=\overline{q}(\tilde{S})$ .

Our definition of $\overline{\kappa}$ for a normal surface differs from the one in [4]. Note
that $\overline{\kappa}(S)$ and $\overline{q}(S)$ do not depend on the choice of $\pi$ .

We prove the following result.

THEOREM 1.10. Let $S$ be a normal afftne $su$ face of $\overline{\kappa}(S)=0$ . Then $S$ is $a$

rational $su$ face.
PROOF. Let $\pi$ : $\tilde{S}\rightarrow S$ be a resolution of singularities of $S$ . Let $(X, B)$ be

an SNC-completion of $\tilde{S}$ . Since $S$ is a normal affine surface, $B$ is connected and
$\kappa(B, X)=2$ , where $\kappa(B, X)$ denotes the $B$-dimension of $X$ (cf. [7]). Let $(W, C)$

be an almost minimal model of $(X, B)$ . Then there exists a birational morphism
$f$ : $X\rightarrow W$ such that $f_{*}(B)=C$ . We have $\kappa(C, W)=2$ because $B\leq f^{*}(C)$ .

Suppose to the contrary that $S$ is not a rational surface. Then, by using
Lemma 1.3 and the same argument as in the proof of [13, Theorem 1.6], we
know that the pair $(W, C)$ is one of the following (i) and (ii):

(i) $W$ is a minimal surface of Kodaira dimension zero and either $C=0$ or $C$

is an admissible rational rod or fork consisting entirely of (-2)-curves.
(ii) $W$ is a ruled surface with $h^{1}(W, \mathscr{O}_{W})=1$ (i.e., $W$ is an elliptic ruled

surface) and $C(\equiv-K_{W})$ is an irreducible nonsingular elliptic curve with
$(C^{2})\leq 0$ .

Both in the cases (i) and (ii), we have $\kappa(C, W)\leq 1$ . This is a contradiction.
$\square $
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2. Classification.

In this section we classify the strongly minimal nonsingular rational open
surfaces of $\overline{\kappa}=0$ with connected boundaries at infinity defined over an algebrai-
cally closed field $k$ of arbitrary characteristic. First of all, we give some examples
(Examples $2.1\sim 2.7$ ) of such surfaces for the case $\overline{p}_{g}=0$ .

EXAMPLE 2. 1 (cf. [13, Example 4. 1]). Let $V_{0}=P^{1}\times P^{1}$ . Let $C_{1}$ be an
irreducible curve with $ C_{1}\sim 2M_{0}+\ell$ , where 1 is a fiber of a fixed ruling $\pi$ on
$V_{0}$ . Assume that a morphism $\pi|_{C_{1}}$ ; $C_{1}\rightarrow P^{1}$ is separable. Let $\ell_{i}(i=1,2)$ be
a fiber of $\pi$ such that $\ell_{i}$ meets $C_{1}$ in two distinct points, say $P_{i}$ and $P_{i}^{\prime}$ .
Let $\mu_{0}$ : $V_{1}\rightarrow V_{0}$ be the blowing-up with centers $P_{1}$ and $P_{2}$ . Put $E_{i}:=\mu_{0}^{-1}(P_{i})$

$(i=1,2)$ . Let $\mu_{1}$ : $ V_{2}\rightarrow$ Fl be the blowing-up with centers $Q_{i}:=E_{i}\cap\mu_{0}^{\prime}(\ell_{i})$

$(i=1,2)$ . Put $V:=V_{2}$ and

$D:=\mu_{1}^{\prime}(E_{1}+E_{2}+\mu_{0}^{\prime}(C_{1}+\ell_{1}+\ell_{2}))$ .

Then $\overline{\kappa}(V-D)=\overline{p}_{g}(V-D)=0$ and $\overline{P}_{2}(V-D)=1$ . Further, the configura-
tion of $D$ is given as in Figure 1 where $r=1$ and $(D_{1}^{2})=2$ . We denote the
surface $S:=V-D$ by $X[2]$ . By the argument as in the proof of [13, Proposition
4.13], Pic(S) $\cong Z\oplus Z/4Z$ .

EXAMPLE 2.2 (cf. [2, \S 8.5], [13, Example 4.2]). Let $V_{0}=F_{n}(n\geq 1)$ and let
$\ell_{0},$ $\ell_{1}$ and $\ell_{2}$ be three distinct fibers of the ruling on $V_{0}$ . Put $P_{i}:=\ell_{i}\cap\overline{M}_{n}$

$(i=1,2)$ . Let $\mu_{0}$ : $V_{1}\rightarrow V_{0}$ be the blowing-up with centers $P_{1}$ and $P_{2}$ . Put
$E_{i}:=\mu_{0}^{-1}(P_{i})(i=1 , 2)$ . Furthermore, let $\mu_{1}$ : $V_{2}\rightarrow V_{1}$ be the blowing-up with
centers $Q_{i}$ $:=E_{i}\cap\mu_{0}^{\prime}(\ell_{i})(i=1 , 2)$ . Put $V$ $:=V_{2}$ and

$D:=\mu_{1}^{\prime}(E_{1}+E_{2}+\mu_{0}^{\prime}(\sum_{i=0}^{2}\ell_{i}+M_{n}+\overline{M}_{n}))$ .

Then $\overline{\kappa}(V-D)=\overline{p}_{g}(V-D)=0$ and $\overline{P}_{2}(V-D)=1$ . Further, the configura-
tion of $D$ is given as in Figure 1 where $r=3,$ $(D_{1}^{2})=-n,$ $(D_{2}^{2})=0$ and $(D_{3}^{2})=$

$n-2(n\geq 1)$ . Put $S:=V-D$ . If $n=1$ , this is Fujita’s $H[-1,0, -1]$ . If
$n>1$ , the elementary transformations with centers at $P_{0}:=\ell_{0}\cap\overline{M}_{n}$ and its
infinitely near points will reduce the case $n>1$ to the case $n=1$ . Hence, for
any $n\geq 1$ , the surface $S$ is $H[-1,0, -1]$ . By the argument as in [2, \S 8.6],
Pic(S) $\cong Z/2Z$ .

EXAMPLE 2.3 (cf. [2, \S 8.26], [13, Example 4.3]). Let $V_{0}=P^{1}\times P^{1}$ . Let $\ell_{0}$ ,
$\ell_{1}$ and $\ell_{2}$ be three distinct irreducible curves with $\ell_{i}\sim\ell(i=0,1,2)$ , where 1 is a
fiber of a fixed ruling on $V_{0}$ , and let $\ell_{0}^{-},$ $\ell_{1}^{-}$ and 12 be three distinct curves with
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$\ell_{j}^{-}\sim M_{0}$ $(j=0,1 , 2)$ . Put $P_{ij}:=\ell_{i}\cap\ell_{j}^{-}(1\leq i, j\leq 2)$ . Let $\mu_{0}$ : Fl $\rightarrow V_{0}$ be the
blowing-up with centers $P_{ij}(1\leq i, j\leq 2)$ . Put $V:=V_{1}$ and

$D:=\mu_{0}^{\prime}(\sum_{i=0}^{2}(\ell_{i}+\ell_{i}^{-}))$ .

Then $\overline{\kappa}(V-D)=\overline{p}_{g}(V-D)=0$ and $\overline{P}_{2}(V-D)=1$ . Further, the configura-
tion of $D$ is given as in Figure 1 where $r=2$ and $(D_{1}^{2})=(D_{2}^{2})=0$ . The surface
$S:=V-D$ is Fujita’s $H[0,0]$ . By the argument as in [2, \S 8.26] (see also [13,
Proposition 4.13]), Pic(S) $\cong Z$ .

EXAMPLE 2.4 (cf. [2, \S 8.26], [13, Example 4.4]). Let $V_{0}=F_{n}(n\geq 1)$ . Let
$C_{1}=M_{n}$ and $C_{2}$ a nonsingular irreducible curve with $C_{2}\sim M_{n}+$ $(n+1)$ ?, where
1 is a fiber of the ruling on $F_{n}$ . Let $\ell_{1}$ and 12 be fibers of the ruling with
$P_{i}:=\ell_{i}\cap C_{2}\not\in C_{1}\cap C_{2}(i=1,2)$ .

Let $\mu_{0}$ : $V_{1}\rightarrow V_{0}$ be the blowing-up with centers $P_{1}$ and $P_{2}$ . Put $E_{i}$ $:=$

$\mu_{0}^{-1}(P_{i})(i=1,2)$ , $\ell_{i}^{\prime}:=\mu_{0}^{\prime}(\ell_{i})(i=1,2)$ and $C_{i}^{\prime}:=\mu_{0}^{\prime}(C_{i})(i=1,2)$ . Let $\mu_{1}$ :
$ V_{2}\rightarrow$ $F1$ be the blowing-up with centers $Q_{i}:=E_{i}\cap\ell_{i}^{\prime}(i=1,2)$ . Put $V:=V_{2}$

and

$D:=\mu_{1}^{\prime}(\sum_{i=1}^{2}(E_{i}+\ell_{i}^{\prime}+C_{i}^{\prime}))$ .

Then $\overline{\kappa}(V-D)=\overline{p}_{g}(V-D)=0$ and $\overline{P}_{2}(V-D)=1$ . Further, the configura-
tion of $D$ is given as in Figure 1 where $r=2$ , $(D_{1}^{2})=-n$ and $(D_{2}^{2})$ $=n$

$(n\geq 1)$ . The surface $S:=V-D$ is Fujita’s $H[n, -n]$ . By the argument as
in [2, \S 8.26], Pic(S) $\cong Z/4nZ$ .

EXAMPLE 2.5 (cf. [2, \S 8.37], [13, Example 5.1]). Let $H_{i}(i=1,2,3)$ be three
non-concurrent lines on $V_{0}:=P^{2}$ . Put $P_{1}:=H_{1}\cap H_{2},$ $P_{2}:=H_{2}\cap H_{3}$ and $P_{3}$ $:=$

$H_{3}\cap H_{1}$ . Let $H_{4}$ be a fourth line not passing any of the $P_{i}(1\leq i\leq 3)$ . Let
$\mu_{0}$ : $V_{1}\rightarrow V_{0}$ be the blowing-up with centers $P_{i}(i=1,2,3)$ . Put $E_{i}:=\mu_{0}^{-1}(P_{i})$

$(i=1,2,3)$ . Let $\mu_{1}$ : $V_{2}\rightarrow V_{1}$ be the blowing-up with centers $ Q_{i}:=\mu_{0}^{\prime}(H_{i})\cap$

$E_{i}(i=1,2,3)$ . Put $V:=V_{2}$ and

$D:=\mu_{1}^{\prime}$ ($E_{1}+E_{2}+$ $E_{3}+\mu_{0}^{\prime}(\sum_{i=1}^{4}H_{i})$ ).
The surface $S:=V-D$ is Fujita’s $Y\{3,3,3\}$ . By the argument as in [2, \S 8.38],
$Pic(S)\cong Z/9Z$ .

EXAMPLE 2.6 (cf. [2, \S 8.53], [13, Example 5.2]). Let $V_{0}=P^{1}\times P^{1}$ . Let
$\ell_{1},$ $\ell_{2}$ and $\ell_{3}$ be three distinct irreducible curves with $\ell_{i}$ – 1, where 1 is a fiber
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of a fixed ruling on $V_{0}$ , and let $\ell_{1}^{-},$ $\ell_{2}^{-}$ , and $\ell_{3}^{-}$ be three distinct curves with $\ell_{i}^{-}$ -

$M_{0}$ . Put $P_{1}$ $:=\ell_{1}\cap\ell_{1}^{-},$ $P_{2}$ $:=\ell_{2}\cap\ell_{1}^{-},$ $P_{3}:=\ell_{2}\cap\ell_{3}^{-}$ and $P_{4}$ $:=\ell_{3}\cap\ell_{3}^{-}$ . Let $\mu_{0}$ :
Fl $\rightarrow V_{0}$ be the blowing-up with centers $P_{1},$

$\ldots,$
$P_{4}$ . Put $E_{1}:=\mu_{0}^{-1}$ $(P_{1} )$ and

$E_{4}:=\mu_{0}^{-1}(P_{4})$ . Let $\mu_{1}$ : $V_{2}\rightarrow V_{1}$ be the blowing-up with centers $ Q_{1}:=E_{1}\cap$

$\mu_{0}^{\prime}(\ell_{1})$ and $Q_{2}:=E_{4}\cap\mu_{0}^{\prime}(\ell_{3})$ . Put $V$ $:=V_{2}$ and

$D:=\mu_{1}^{\prime}(E_{1}+E_{4}+\mu_{0}^{\prime}(\sum_{i=1}^{3}(\ell_{i}+\ell_{i}^{-})))$ .

The surface $S:=V-D$ is Fujita’s $Y\{2,4,4\}$ . By the argument as in [2, \S 8.55],
Pic(S) $\cong Z/8Z$ .

EXAMPLE 2.7 (cf. [2, \S 8.59], [13, Example 5.3]). Put $V_{0}$
$:=P^{1}\times P^{1}$ . Let 1,

$(i=1,2,3)$ and $\ell_{j}^{-}(j=1,2,3)$ be the same as in Example 2.6. Put $ P_{1}:=\ell_{1}\cap$

$\ell_{2}^{-},$ $P_{2}:=\ell_{2}\cap\ell_{3}^{-},$ $P_{3}:=\ell_{3}\cap\ell_{1}^{-}$ and $P_{4}:=\ell_{1}\cap\ell_{3}^{-}$ . Let $\mu_{0}$ : $V_{1}\rightarrow V_{0}$ be the blowing-
up with centers $P_{1},$

$\ldots,$
$P_{4}$ . Put $E_{i}:=\mu_{0}^{-1}(P_{i}),$ $1\leq i\leq 3$ . Let $\mu_{1}$ : $V_{2}\rightarrow V_{1}$ be

the blowing-up with centers $Q_{1}:=E_{1}\cap\mu_{0}^{\prime}(\overline{\ell_{2}}),$ $Q_{2}:=$ $E_{2}\cap\mu_{0}^{\prime}(\ell_{2})$ and $ Q_{3}:=E_{3}\cap$

$\mu_{0}^{\prime}(\ell_{3})$ . Put $V:=V_{2}$ and

$D:=\mu_{1}^{\prime}(E_{1}+E_{2}+E_{3}+\mu_{0}^{\prime}(\sum_{i=1}^{3}(\ell_{i}+\ell_{i}^{-})))$ .

The surface $S:=V-D$ is Fujita’s $Y\{2,3,6\}$ . By the argument as in [2, \S 8.62],
Pic(S) $\cong Z/6Z$ .

Now, let $S$ be a strongly minimal nonsingular rational open surface of
$\overline{\kappa}(S)=0$ with a connected boundary at infinity and let $(V, D)$ be an SM-
completion of $S$ . We shall consider the following three cases I $\sim$ nt separately.

CASE $I$ : $\overline{p}_{g}(S)\geq 1$ . In this case, the proof of [13, Theorem 3.1] works in
positive characteristic case as well. Since $\overline{\kappa}(S)=0$ , we have $\overline{p}_{g}(S)=1$ . Lemmas
1.5 (1) and 1.7 (1) imply that $D$ is an $NC$-divisor and $D+K_{V}\sim 0$ . If there
exists a(-1)-curve $E$ on $V$ then $(E\cdot D)=-(K_{V}\cdot E)=1$ . This contradicts the
hypothesis that $(V, D)$ is a strongly minimal model of an SNC-completion of
$S$ . Hence $V\cong P^{2}$ or $F_{n},$ $n\neq 1$ . Then such pairs $(V, D)$ can be classified easily.
Namely, we have the following result.

THEOREM 2.8. Let $S$ be a strongly minimal nonsingular rational open $su$ face
of $\overline{\kappa}(S)=0$ with a connected boundary at infinity and let $(V, D)$ be an SM-
completion of S. Suppose that $\overline{p}_{g}(S)\geq 1$ . Then $\overline{p}_{g}(S)=1,$ $D$ is an NC-divisor
and the pair $(V, D)$ is one of the following $1$ ) $\sim 16$), where if $V=F_{n}$ we denote
by 1 a general fiber of the ruling on $F_{n}$ . Furthermore, if $S$ is afftne then $(V, D)$ is
one of $1$ ) $\sim 13n$).
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1) $(*(9))V=P^{2},$ $D$ is a nonsingular cubic curve.
2) $(O(9))V=P^{2},$ $D$ is a cubic curve with one node.
3) $(*(8))V=P^{1}\times P^{1}$ , $D$ $---K_{P^{1}\times P^{1}}$ is a nonsingular elliptic curve.
4) $(O(8))V=P^{1}\times P^{1}$ , $D$ – $-K_{P^{1}\times P^{1}}$ is a rational curve with one node.
5) (Fujita’s $O(4,0)$ ) $V=P^{1}\times P^{1}$ , $D=G+C$ , where $G\sim M_{0}$ and $ C\sim$

$ M_{0}+2\ell$ .
$6n)$ (Fujita’s $O(n+4,$ $-n)$ ) $V=F_{n}(n\geq 2)$ , $D=M_{n}+C$ , where $ C\sim$

$ M_{n}+(n+2)\ell$ .
7) (Fujita’s $O(4,1)$ ) $V=P^{2},$ $D=H+C$ , where $H$ is a line and $C$ is $a$

conic.
8) $V=P^{1}\times P^{1}$ , $D=H+G+C$ , where $H\sim M_{0}$ , $ G\sim\ell$ and $ C\sim$

$ M_{0}+\ell$ .
$9n)$ $V=F_{n}(n\geq 2),$ $D=F+M_{n}+C_{3}$ , where $F$ is a fiber of the ruling and

$ C_{3}\sim M_{n}+(n+1)\ell$ is a nonsingular rational curve.
10) $(O(2,2))V=P^{1}\times P^{1}$ , $D=C_{1}+C_{2}$ , where $C_{i}\sim M_{0}+\ell(i=1,2)$ .
11) (Fujita’s $O(1,1,1)$ ) $V=P^{2},$ $D=H_{1}+H_{2}+H_{3}$ , where $H_{i}$ are lines in

general position in $P^{2}$ .
12) $V=P^{1}\times P^{1}$ , $D=H_{1}+H_{2}+G_{1}+G_{2}$ , where $H_{i}\sim M_{0}(i=1 , 2)$ and

$G_{j}\sim\ell(j=1,2)$ .
1 $3n$) $V=F_{n}(n\geq 2),$ $D=M_{n}+\overline{M}_{n}+F_{1}+F_{2}$ , where $F_{1}$ and $F_{2}$ are fibers

of the ruling.
14) $(\overline{*}(8))V=F_{2},$ $D$ – $-K_{F_{2}}$ is a nonsingular elliptic curve.
15) $(\overline{O}(8))V=F_{2},$ $D$ – $-K_{F_{2}}$ is a rational curve with one node.
16) $(\overline{O}(2,2))V=F_{2},$ $D=C_{1}+C_{2}$ , where $C_{i}\sim\overline{M}_{2}(i=1,2)$ .

REMARK 2.9. If $(V, D)$ is one of 7), 8) and $9n$) in Theorem 2.8 then $S=$

$V-D$ is of type $O(4,1)$ . If $(V, D)$ is one of 11), 12) and $13n$) then $S=V-$
$D\cong A_{*}^{1}\times A_{*}^{1}$ .

CASE $II$ : $\overline{p}_{g}(S)=0$ and $\overline{P}_{2}(S)\geq 1$ . Then $\overline{P}_{2}(S)=1$ and $D$ is an SNC-
divisor by Lemma 1.7 (3). If $[D^{I}]=0$ then $D$ is either a single (-4)-curve or an
admissible rational rod with (-3)-curves as tip components and $n(0\leq n\leq 8)$

$(-2)$ -curves as middle components by Lemma 1.7 (4). We shall prove the fol-
lowing result (Theorem 2.10). When char(k) $=0$ , Theorem 2.10 is [13, Theorem
4.5]. The proof of [13, Theorem 4.5] used a covering method and the classi-
fication of Gorenstein $\log$ del Pezzo surfaces of rank one (cf. [16]), which do not
hold in the case char(k) $>0$ .

THEOREM 2.10. Let $S$ be a strongly minimal nonsingular rational open sur-
face of $\overline{\kappa}(S)=0$ with a connected boudary at infinity and let $(V, D)$ be an SM-
completion of S. Assume that $\overline{p}_{g}(S)=0,\overline{P}_{2}(S)\geq 1$ and $[D^{I}]\neq 0$ . Then the pair
$(V, D)$ is one of the pairs enumerated in Examples $2.1\sim 2.4$ .
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In what follows (-Lemma 2.15), we prove Theorem 2.10.
Since $[D^{I}]\neq 0$ , the configuration of $D$ is given as in Figure 1 by Lemma 1.7

(4). Then $D^{I}+K_{V}\equiv 0$ and $D^{I}$ is given as

$D^{I}=\sum_{i=1}^{r}D_{i}+\frac{1}{2}\sum_{j=1}^{4}C_{j}$ .

Put $D^{\prime}:=\sum_{j=1}^{4}C_{j}$ .

LEMMA 2.11. The pair $(V, D^{\prime})$ is almost minimal and $\overline{\kappa}(V-D)=-\infty$ .

PROOF (cf. [13, Lemma 4.6]). Since $D^{\prime}$ consists of disjoint four (-2)-curves,
we have $D^{\prime I}=0$ . Hence $\overline{\kappa}(V-D^{\prime})=-\infty$ because $V$ is a rational surface.
Suppose that $(V, D^{\prime})$ is not almost minimal. Since $D^{\prime I}=0$ , there exists a(-1)-
curve $E$ such that the intersection matrix of $E+$ Bk(D’) $=E+D^{\prime}$ is negative
definite. Then $(E\cdot D^{\prime})=O$ or 1. Assume that $(E\cdot D^{\prime})=0$ . Since $D^{I}+K_{V}\equiv 0$

and $D^{I}=\sum_{i=1}^{r}D_{i}+1/2D^{\prime}$ , we have

$(E\cdot D)=(E\cdot D^{I})=-(E\cdot K_{V})=1$ .

This contradicts that $(V, D)$ is a strongly minimal model of an SNC-completion
of $S$ . If $(E\cdot D^{\prime})=1$ then $1=-(E\cdot K_{V})=(E\cdot D^{I})=(E\cdot\sum_{i=1}^{r}D_{i})+1/2$ , which
is also a contradiction. Hence $(V, D^{\prime})$ is almost minimal. $\square $

LEMMA 2.12. With the above notation, we have $\rho(V)=5$ or 6.

PROOF (cf. [13, Lemma 4.7]). By [1], there exists a birational morphism
$\pi$ : $V\rightarrow\overline{V}$ which is the contraction of Supp(D $’$ ). Then $\overline{V}$ has four rational
double points of type $A_{1}$ as singularities and hence $ K_{V}\sim\pi$

’
$(K_{\overline{V}})$ . By Lemma

2.11 and [15, Theorem 2.11], $K_{\overline{V}}$ is not $nef$. Hence there exists an extremal
rational curve 1 on $\overline{V}$ (cf. [12], [15]). Let 1 be the proper transform of 1 on $V$.
Since $(V, D^{\prime})$ is almost minimal by Lemma 2.11, $\overline{V}$ is relatively minimal, i.e.,
there are no irreducible curves $\overline{C}$ on $\overline{V}$ with $(\overline{C}^{2})<0$ and $(\overline{C}\cdot K_{\overline{V}})<0$ (cf. [4,
p. 469]). Hence, by [15, Lemma 2.7], one of the following two cases takes place:

(A) The intersection matrix of $\ell+$ Bk(D $’$ ) is negative semi-definite, but not
negative definite. Furthermore, $(\ell^{-_{2}})=0$ .

(B) $\rho(\overline{V})=1$ and $-K_{\overline{V}}$ is ample.
If the case (A) takes place then $\rho(\overline{V})=2$ . A little explanation is desirable.

$\square $

LEMMA 2.13. There exists $a(-1)$ -curve $E$ such that $E$ is not a component of
$D$ and

$(E\cdot C_{i})=(E\cdot C_{j})=1$ ,

where $i\neq j$ if $r=1$ and $i\in\{1,2\}$ and $j\in\{3,4\}$ if $r\geq 2$ .
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PROOF. The proof consists of two steps (I) and (II) below.

STEP (I). We shall find a(-1)-curve which meets two of the $C_{i}(1\leq i\leq 4)$ .
The argument in this step is similar to [2, \S 8.24].

Since $\rho(V)\geq 5$ by Lemma 2.12, there exist (-1)-curves. Let $E$ be a(-1)-
curve. If $E\subset D$ then $r\geq 2$ . Indeed, if $r=1$ then $D_{1}=E$ is a(-1)-curve.
Since $D^{I}+K_{V}\equiv 0$ and $D^{I}=D_{1}+1/2D^{\prime},$ $(K_{V}^{2})=(D^{I})^{2}=1$ and hence $\rho(V)=$

$10-(K_{V}^{2})=9$ , which contradicts Lemma 2.12. Since $(V, D)$ is a strongly min-
imal model of an SNC-completion of $S$, we know that $E=D_{1}$ or $D_{r}$ . Thus,
we obtain a(-1)-curve meeting two of the $C_{i}(1\leq i\leq 4)$ .

Assume that $D$ contains no (-1)-curves. For any (-1)-curve $C$, we have
$(C\cdot D^{I})=1/2(C\cdot D^{\prime})+(C\cdot\sum_{i=1}^{r}D_{i})=-(C\cdot K_{V})=1$ . So $(C\cdot D)=(C\cdot D^{\prime})=2$

because $(V, D)$ is a strongly minimal model of an SNC-completion of $S$ .
Suppose that, for any (-1)-curve $C$, we have $(C\cdot D^{\prime})=(C\cdot C_{j})=2$ for some $j$ ,
$1\leq j\leq 4$ . Let $E_{1}$ be a(-1)-curve on $V$. We may assume that $(E_{1}\cdot C_{1})$

$=2$ . Let $\mu_{1}$ : $V\rightarrow V_{1}$ be the contraction of $E_{1}$ . Since $\rho(V_{1})=\rho(V)-1\geq 4$ ,
there exists a(-1)-curve, say $E_{2}$ . Then $(E_{2}\cdot\mu_{1*}(D^{I}))=1/2(E_{2}\cdot\mu_{1*}(D^{\prime}))+$

$(E_{2}\cdot\mu_{1*}(\sum_{i=1}^{r}D_{i}))=-(K_{V_{1}}. E2)=1$ . Since $\mu_{1*}(D)$ contains no (-1)-curves and
$(V, D)$ is a strongly minimal model of an SNC-completion of $S$, we have
$(E_{2}\cdot\mu_{1*}(D^{\prime}))=2$ . Then $(E_{2}\cdot\mu_{1*}(D^{\prime}))=(E_{2}\cdot\mu_{1*}(C_{\ell}))$ for some 1, $1\leq\ell\leq 4$ .
Indeed, if not, the proper transform of E2 on $V$ is a(-1)-curve meeting two of
the $C_{i}(1\leq i\leq 4)$ , which is a contradiction.

Assume that $\ell$ $\geq 2$ . The proper transform $\mu_{1}^{\prime}$ $(E_{2})$ of $E_{2}$ is then a (-1)-curve
with $(E_{1}\cdot\mu_{1}^{\prime}(E_{2}))=0$ . Then $(2E_{1}+C_{1})^{2}=(2\mu_{1}^{\prime}(E_{2})+C_{\ell})^{2}=2$ and $(2E_{1}+C_{1}\cdot$

$2\mu_{1}^{\prime}(E_{2})+C_{\ell})=0$ . This contradicts the Hodge index theorem. So $\ell=1$ . In
this way, we obtain a birational morphism $\mu$ : $V\rightarrow F_{m}$ onto a Hirzebruch surface
$F_{m}$ such that $\mu_{*}(C_{2}),$ $\mu_{*}(C_{3})$ and $\mu_{*}(C_{4})$ remain as (-2)-curves. This is a con-
tradiction. Hence we obtain a(-1)-curve meeting two of the $C_{i}(1\leq i\leq 4)$ .

STEP (II). Let $E$ be a(-1)-curve meeting two of the $C_{i}(1\leq i\leq 4)$ . Since
$D^{I}+K_{V}\equiv 0$ and $( V, D)$ is a strongly minimal model of an SNC-completion of
$S$, we may assume that one of the following three cases (a) - (c) occurs:

(a) $E=D_{1}$ or $D_{r}$ .

(b) $(E\cdot C_{1})=(E\cdot C_{2})=1$ and $E$ is not a component of $D$ .

(c) $(E\cdot C_{1})=(E\cdot C_{3})=1$ (and hence $E$ is not a component of $D$).

It suffices to show the assertion of Lemma 2.13 if the case (a) or (b) takes place.
We consider the cases (a) and (b) separately.

CASE (a). We may assume that $E=D_{1}$ . Note that $r\geq 2$ . Then a divisor
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$F:=2D_{1}+C_{1}+C_{2}$ moves to define a $P^{1}$ -fibration $\Phi:=\Phi_{|F|}$ : $V\rightarrow P^{1}$ and $D_{2}$

becomes a 2-section of O. We consider the following two subcases $(a)- 1$ and $(a)-$

$2$ separately.

SUBCASE $(a)- 1$ : $r\geq 3$ . Then $D_{3}+\cdots+D_{r}+C_{3}+C_{4}$ is contained in afiber
$G$ of O. Since $\rho(V)\leq 6$ by Lemma 2.12 and $\# G\geq 3$ , we know that $\rho(V)=6$ ,
$\# G=3$ and $\Phi$ has no singular fibers other than $F$ and $G$ . Then $r=3$ and
$D_{r}(=D_{3})$ is a(-1)-curve. Since $(K_{V}\cdot D+K_{V})=1/2(K_{V}\cdot D^{\prime})=0,$ $(K_{V}^{2})=$

$10-\rho(V)=4$ and $(D_{1}^{2})=(D_{3}^{2})=-1$ , we have $(D_{2}^{2})=0$ .
A complete linear system $|D_{2}|$ defines a $P^{1}$ -fibration $\Psi$ : $V\rightarrow P^{1}$ and $D_{1}$ and

$D_{3}$ become sections of $\Psi$ . Let $F_{i}(i=1,2)$ be a fiber of $\Psi$ containing $C_{i}$ .
Since $\rho(V)=6$ and $\# F_{i}\geq 3,$ $i=1,2$ , we may assume that there exist (-1)-curves
$E_{1}$ and E2 such that $F_{i}=C_{i}+E_{i}+C_{i+2}$ for $i=1,2$ . Then $(E_{i}\cdot C_{i})=(E_{i}\cdot C_{i+2})$

$=1,$ $i=1,2$ . In this subcase, Lemma 2.13 is thus verified.

SUBCASE $(a)- 2$ : $r=2$ . Let $G_{1}$ and $G_{2}$ be fibers of $\Phi$ containing $C_{3}$ and
$C_{4}$ , respectively. Since $\rho(V)\leq 6$ by Lemma 2.12 and $\# G_{i}\geq 3$ for $i=1,2$ , we
know that $\rho(V)=6,$ $G_{1}=G_{2}$ and there exists a(-1)-curve $E_{1}$ such that $G_{1}=$

$C_{3}+C_{4}+2E_{1}$ . Since $D^{I}=D_{1}+D_{2}+1/2D^{\prime}$ and $D^{I}+K_{V}\equiv 0$ , we have $(D_{1}^{2})+$

$(D_{2}^{2})=0$ . So $(D_{2}^{2})=1$ . Let $f$ : $V\rightarrow Y$ be the contraction of $E_{1},$ $C_{4},$ $D_{1}$ and
$C_{2}$ . Then $Y\cong F_{m}$ and $ f_{*}(D_{2})\sim 2M_{m}+(m+1)\ell$ , where 1 is a fiber of a $P^{1}-$

fibration $\Phi\circ f^{-1}$ : $Y\rightarrow P^{1}$ , because $(f_{*}(D_{2})^{2})=(D_{2}^{2})+3=4,$ $f_{*}(D^{I})\equiv-K_{Y}$ and
$ f_{*}(C_{1})\sim f_{*}(C_{3})\sim\ell$ . Since

$0\leq(M_{m}\cdot f_{*}(D_{2}))=1-m$ ,

we have $m\leq 1$ .
If $m=1$ then $(f_{*}(D_{2})\cdot M_{1})=0$ . Since the fundamental points of $f$ lie

on $f_{*}(D_{2})$ , the proper transform $f^{\prime}(M_{1})$ of $M_{1}$ on $V$ is a(-1)-curve with
$(f^{\prime}(M_{1})\cdot C_{1})=(f^{\prime}(M_{1})\cdot C_{3})=1$ . Suppose that $m=0$ . Then $f_{*}(D_{2})\sim 2M_{0}+$

$\ell$ . Let $L\sim M_{0}$ be an irreducible curve on $F_{0}=P^{1}\times P^{1}$ such that $Q:=$

$f(D_{1}+C_{2})\in L$ . Since $(L\cdot f_{*}(D_{2}))=1,$ $(L^{2})=0$ and $(L\cdot f_{*}(C_{3}))=1$ , the proper
transform $f^{\prime}(L)$ of $L$ on $V$ is a(-1)-curve with $(f^{\prime}(L)\cdot C_{2})=(f^{\prime}(L)\cdot C_{3})=1$ .
In this subcase, the assertion of Lemma 2.13 is thus verified.

CASE (b). If $r=1$ then Lemma 2.13 is clear. So we assume that $r\geq 2$ .
Put $F:=2E+C_{1}+C_{2}$ . Then a complete linear system $|F|$ defines a $P^{1}$ -fibration
$\Phi:=\Phi_{|F|}$ : $V\rightarrow P^{1}$ and $D_{1}$ becomes a 2-section of O. Let $G$ be a fiber of $\Phi$

containing $D_{2}+\cdots+D_{r}+C_{3}+C_{4}$ , where we note that $r\geq 2$ . Since $\# G\geq 3$

and $\rho(V)\leq 6$ by Lemma 2.12, we know that $\# G=3$ and $\rho(V)=6$ . Hence $r=2$

and $(D_{r}^{2})=-1$ . In this case, by using the same argument as in Subcase $(a)- 2$ ,
Lemma 2. 13 is verified. $\square $
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In Figure 1 we put $a_{i}:=(D_{i}^{2}),$ $i=1,$
$\ldots,$

$r$ .

LEMMA 2.14. Assume that $r=1$ . Then $a_{1}=2$ and $(V, D)$ is the pair
considered in Example 2. 1.

PROOF. By Lemma 2.13 there exists a(-1)-curve $E$ meeting two of the $C_{i}$

$(1\leq i\leq 4)$ . We may assume that $(E\cdot C_{1})=(E\cdot C_{3})=1$ . Then adivisor $F:=$

$2E+C_{1}+C_{3}$ defines a $P^{1}$ -fibration (I) $:=\Phi_{|F|}$ : $V\rightarrow P^{1},$ $D_{1}$ is a 2-section of $\Phi$

and $C_{2}$ and $C_{4}$ are contained in fibers of O. Let $G$ be a fiber of $\Phi$ containig $C_{2}$ .
Since $\# G\geq 3$ and $\rho(V)\leq 6$ by Lemma 2.12, we know that $\rho(V)=6,$ $\# G=3$ and
$G$ contains $C_{4}$ . Then we obtain a(-1)-curve $E^{\prime}$ such that $G=2E’+C_{2}+C_{4}$

and $(E^{\prime}\cdot C_{2})=(E^{\prime}\cdot C_{4})=1$ . Since $\rho(V)=6$ and $D^{I}+K_{V}\equiv 0$ , we have

$a_{1}+2=(D^{I})^{2}=(K_{V}^{2})=10-\rho(V)$ $=4$ .

So $a_{1}=2$ .
Let $h:V\rightarrow Y$ be the contraction of $E,$ $E^{\prime},$ $C_{3}$ and $C_{4}$ . Then $Y\cong F_{n}$ and

$(h_{*}(D_{1})^{2})$ $=a_{1}+2=4$ . Since $h_{*}(D_{1} )$ $\sim 2M_{n}+$ ctl, where $\alpha\in Z$ and 1 is a fiber
of a $P^{1}$ -fibration $\Phi\circ h^{-1}$ : $Y\rightarrow P^{1}$ , we have

$4=(h_{*}(D_{1})^{2})=4(\alpha-n)$ .

So $\alpha=n+1$ . Further, since $ 0\leq$ $(M_{n}\cdot h_{*} (D_{1} ))$ $=1-n$ , we have $n=0$ or 1.
If $n=1$ then $(M_{1}\cdot h_{*}(D_{1}))=0$ . So, by contracting $C_{2}$ instead of $C_{4}$ , we may
assume that $n=0$ , i.e., $Y=P^{1}\times P^{1}$ . Then $\overline{D}_{1}$ $:=h_{*}$ $(D_{1} )$ $\sim 2M_{0}+\ell$ . Note that
the morphism $\Phi\circ h^{-1}|_{\overline{D}_{1}}$ : $\overline{D}_{1}\rightarrow P^{1}$ is separable even if char(k) $=2$ . Hence we
obtain the case considered in Example 2.1. $[$

LEMMA 2.15. Assume that $r\geq 2$ . Then $(V, D)$ is one of the pairs enum-
erated in Examples 2.2\sim 2.4.

PROOF. Assume that $a_{1}\geq a_{r}$ . We consider the following two cases
separately.

CASE 1: $r=2$ . By Lemma 2.13 there exists a(-1)-curve $E$ such that
$(E\cdot C_{1})=(E\cdot C_{3})=1$ . Put $F:=2E+C_{1}+C_{3}$ . Then $F$ defines a $P^{1}$ -fibration
$\Phi:=\Phi_{|F|}$ : $V\rightarrow P^{1}$ and $D_{1}$ and $D_{2}$ become sections of O. Let $G$ be a fiber of
$\Phi$ containing $C_{2}$ . Since $\rho(V)\leq 6$ and $\# G\geq 3$ , we know that $\rho(V)=6,$ $\# G=3$

and $\Phi$ has no singular fibers other than $F$ and $G$ . Then there exists a(-1)-curve
$E^{\prime}$ such that $G=2E^{\prime}+C_{2}+C_{4}$ . Since $D^{I}=D_{1}+D_{2}+1/2D^{\prime},$ $D^{I}$ % $K_{V}\equiv 0$

and $\rho(V)=6$ , we have $a_{1}+$ a2 $=0$ . Let $h$ : $V\rightarrow Y$ be the contraction of $E,$
$E^{\prime}$ ,

$C_{3}$ and $C_{4}$ . Then $Y\cong F_{m},$ $m=$ -a2 and $h_{*}(D_{2})=M_{m}$ . Therefore, we obtain
the case considered in Example 2.4 if $m\geq 1$ .

We see that if $a_{1}=a_{2}=0$ then the pair $(V, D)$ is constructed in the fashion
as in Example 2.3. A complete linear system $|D_{2}|$ then defines a $P^{1}$ -fibration
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$\Phi:=\Phi_{|D_{2}|}$ : $V\rightarrow P^{1}$ and $D_{1},$ $C_{3}$ and $C_{4}$ become sections of O. Let $F_{i}(i=1,2)$

be a fiber of $\Phi$ containing $C_{i}$ . Then $F_{1}\neq F_{2}$ and $\# F_{i}\geq 3,$ $i=1,2$ . Since
$\rho(V)=6$ , we know that $\# F_{1}=\# F_{2}=3$ and $\Phi$ has no singular fibers other than
$F_{1}$ and $F_{2}$ . In particular, Supp(F7) $(i=1,2)$ consists entirely of (-1)-curves
and (-2)-curves. If Supp(F7) ($i=1$ or 2) contains a(-2)-curve $C_{i}^{\prime}$ other than
$C_{i}$ then $ C_{i}^{\prime}\cap D=\emptyset$ because $D^{I}+K_{V}\equiv 0$ and $D^{I}=D_{1}+D_{2}+1/2D^{\prime}$ . Then a
unique (-1)-curve in Supp(F7), which has the multiplicity 2 in $F_{i}$ , must meet $C_{3}$

and $C_{4}$ which are sections of O. This is a contradiction. Hence there exist four
(-1)-curves $E_{1},$ $E_{1}^{\prime},$ $E_{2}$ and $E_{2}^{\prime}$ such that $F_{i}=E_{i}+C_{i}+E_{i}^{\prime},$ $i=1,2$ . Since $C_{3}$

and $C_{4}$ are sections of $\Phi$ and $D^{I}+K_{V}\equiv 0$ , we may assume that $(E_{i}\cdot C_{3})=$

$(E_{i}^{\prime}\cdot C_{4})=1,$ $i=1,2$ . Let $h:V\rightarrow Y$ be the contraction of $E_{1},$ $E_{1}^{\prime},$ $E_{2}$ and
$E_{2}^{\prime}$ . Then $Y\cong F_{m}$ and $(h_{*}(D_{1})^{2})=0$ . So $Y\cong P^{1}\times P^{1}$ because $h_{*}(D_{1})$ is a
section of the $P^{1}$ -fibration $\Phi\circ h^{-1}$ : $Y\rightarrow P^{1}$ . Therefore, we obtain the case
considered in Example 2.3.

CASE 2: $r\geq 3$ . By Lemma 2.13 there exists a(-1)-curve $E$ such that
$(E\cdot C_{1})=(E\cdot C_{3})=1$ . Put $F$ $:=2E+C_{1}+C_{3}$ . Then $|F|$ defines a $P^{1}$ -fibration
$\Phi:=\Phi_{|F|}$ : $V\rightarrow P^{1}$ and $D_{1}$ and $D_{r}$ become sections of O. Let $G$ and $H$ be a
fiber of $\Phi$ containing $\{D_{2}, \ldots, D_{r-1}\}$ and $C_{2}$ , respectively. Then Supp(G) contains
none of the $C_{i}(1\leq i\leq 4)$ and $\# H\geq 3$ . Since $\rho(V)\leq 6$ , we know that $\rho(V)=6$

and $\# H=3$ . Then $G$ is an irreducible fiber and there exists a(-1)-curve $E^{\prime}$ such
that $H=2E’+C_{2}+C_{4}$ . In particular, $r=3$ and a$2=0$ .

Since $(K_{V}\cdot D+K_{V})=(K_{V}\cdot D^{I}+K_{V})=0$ and $\rho(V)=6$ , we have

$(K_{V}\cdot D_{1}+D_{2}+D_{3})=-(6+a_{1}+a_{2}+a_{3})=-(K_{V}^{2})=-4$ .

So, $a_{3}=-(a_{1}+2)$ . Then $a_{1}<0$ or $a_{3}<0$ . So we may assume that $a_{3}<0$ .
Let $h:V\rightarrow Y$ be the contraction of $E,$ $E^{\prime},$ $C_{1}$ and $C_{2}$ . Then $Y\cong F_{m},$ $m=$

$-a_{3},$ $h_{*}(D_{3})=M_{m}$ and $h_{*}(D_{1})\sim\overline{M}_{m}$ . Therefore, we obtain the case considered
in Example 2.2. $[$

The proof of Theorem 2.10 is thus completed.

CASE III: $\overline{P}_{2}(S)=0$ . The proof of [13, Theorem 5.4] works also in positive
characteristic case by virtue of Lemmas 1.3 and 1.7. So we have the following
result.

THEOREM 2.16. Let $S$ be a strongly minimal nonsingular rational open $su$ face
of $\overline{\kappa}(S)=\overline{P}_{2}(S)=0$ with a connected boundary at infinity and let $(V, D)$ be an
$SM$-completion of S. Then $\overline{P}_{i}(S)=1$ for $i=3,4$ or 6. Furthermore, the fol-
lowing assertions hold:

(1) If $\overline{P}_{3}(S)\geq 1$ then $\overline{P}_{3}(S)=1$ and $S$ is $Fujita^{\prime}sY\{3,3,3\}$ . The pair
$(V, D)$ can be constructed in the fashion as in Example 2.5.
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TABLE 1.

(2) If $\overline{P}_{3}(S)=0$ and $\overline{P}_{4}(S)\geq 1$ then $\overline{P}_{4}(S)=1$ and $S$ is $Fujita^{\prime}sY\{2,4,4\}$ .
The pair $(V, D)$ can be constructed in the fashion as in Example 2.6.

(3) If $\overline{P}_{3}(S)=\overline{P}_{4}(S)=0$ then $\overline{P}_{6}(S)=1$ and $S$ is $Fujita^{\prime}sY\{2,3,6\}$ . The
pair $(V, D)$ can be constructed in the fashion as in Example 2.7.

By using Theorems 2.8, 2.10 and 2.16, we obtain the following result.

THEOREM 2.17. Let $R$ be a nonsingular afftne $su$ face defined over an alge-
braically closed field $k$. Assume that $\overline{\kappa}(R)=0$ . Then there exists an afftne open
subset $S=Spec(A)\subset R$ such that

(i) $\overline{P}_{n}(S)=\overline{P}_{n}(R)$ for any $n\geq 1$ , in particular, $\overline{\kappa}(S)=\overline{\kappa}(R)=0$ , and
(ii) $S$ is strongly minimal in the sense of Deftnition 1.8.

Furthermore, the $su$ face $S$ is one of the $su$ faces in Table 1 where $m$ is the least
positive integer such that $\overline{P}_{m}(S)>0$ and $r:=$ rank $zA^{*}/k$ ’.

PROOF. Let $(V, D)$ be a strongly minimal model of an SNC-completion of
$R$ . Then the surface $S:=V-D$ is an affine open subset of $R$ by Lemma 1.6
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TABLE 2.

(2). By Lemma 1.7, $S$ satisfies the conditions (i) and (ii) in Theorem 2.17. Note
that if $\overline{p}_{g}(S)=0$ (then $D$ is an SNC-divisor by Lemma 1.7 (3)), $\overline{P}_{2}(S)=1$ and
$[D^{I}]=0$ then $V-D$ cannot be affine because $D$ is an admissible rational rod (cf.
Lemma 1.7 (4) $)$ . Hence $(V, D)$ is one of the pairs in Theorems 2.8, 2.10 and
2.16. When $\overline{p}_{g}(S)=1$ , the Picard group Pic(S) can be calculated easily. We
put $S:=Spec(A)$ . By using Lemma 3.4 in \S 3, we can calculate rank $zA^{*}/k^{*}$ .
Hence $S$ is one of the surfaces in Table 1. $[$

REMARK 2.18. When $k$ is the complex number field $C$ , we have the fol-
lowing list (Table 2) of the logarithmic irregularities $\overline{q}$, the Euler numbers $e$ and
the fundamental groups $\pi_{1}$ of the strongly minimal nonsingular affine surfaces of
$\overline{\kappa}=0$ . For details, see [13].

3. Characterization of $A_{*}^{1}\times A_{*}^{1}$ .

In this section we give a characterization of $A_{*}^{1}\times A_{*}^{1}$ in arbitrary charac-
teristic. A main result of this section is the following theorem.
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THEOREM 3.1. Let $S=Spec(A)$ be a normal afftne $su$ face deftned over an
algebraically closed field $k$ . Assume that $\overline{\kappa}(S)=0$ . Then rank $zA^{*}/k^{*}\leq 2$ and
the equality holds if and only if $S\cong A_{*}^{1}\times A_{*}^{1}$ .

We give a definition which we need later.

DEFINITION 3.2. Let $(X, B)$ be a pair of a nonsingular projective surface $X$

and a reduced effective divisor $B$ and let $B=\sum_{i=1}^{r}B_{i}$ be the decomposition of $B$

into irreducible components. We define $\overline{r}(X, B)$ as follows:

$\overline{r}(X, B):=$ rank $ zKer(\bigoplus_{i=1}^{r}Z[B_{i}]\rightarrow$ Pic $(X))$ ,

where $\oplus_{i=1}^{r}Z[B_{i}]\rightarrow$ Pic(X) is the natural mapping.

Now, let $S=Spec(A)$ be a normal affine surface defined over an algebraically
closed field $k$ . Let $\pi$ : $\tilde{S}\rightarrow S$ be a minimal resolution of $S$ and let $(X, B)$ be an
SNC-completion of $\tilde{S}$ . Then $B$ is connected. We note the following result.

LEMMA 3.3. With the above notation, we have $rank_{Z}A^{*}/k^{*}=\overline{r}(X, B)$ .

PROOF. An element $f\in A$ is invertible if and only if the divisor (f) on $X$

is supported by $B$ . Hence any element $f\in A^{*}$ gives rise to a relation among
the irreducible components of $B$ , and two such relations given by $f,$ $g\in A$

’ are
the same if and only if $g=cf$ with $c\in k’$ . $\square $

When char(k) $=0$ and $\overline{\kappa}(S)=0$ , we have the following result.

LEMMA 3.4. With the above notation, we assume further that char(k) $=0$

and $\overline{\kappa}(S)=0$ . Then $\overline{q}(S)=rank_{Z}A$ $’/k$ ’.

PROOF. Since $\overline{\kappa}(S)=0,$ $S$ is a rational surface by Theorem 1.10. So
$q(X)=h^{1}(X, \mathscr{O}_{X})=0$ . By [5, Lemma 2], we have $\overline{q}(S)=\overline{r}(X, B)$ . Hence the
assertion follows from Lemma 3.3. $[$

REMARK 3.5. The author does not know whether Lemma 3.4 is true or not
in the case char(k) $>0$ .

We assume that $\overline{\kappa}(S)=0$ . By Theorem 1.10, $S$ is a rational surface. Let
$(V, D)$ be a strongly minimal model of $(X, B)$ . Then there exists a birational
morphism $f$ : $X\rightarrow V$ such that $f_{*}(B)=D$ . Let $f=f_{\ell}\circ\cdots\circ f_{0}(\ell\geq-1)$ be a
decomposition of $f$ into blowing-ups at single points $f_{i}$ : $V$ $\rightarrow X_{i+1}$ , where we
define $f=id$ if $\ell=-1$ and put $X_{0}:=X$ and $X_{\ell+1}:=V$ . Put $B_{0}:=B$ and
$B_{i+1}:=f_{i_{*}}(B_{i}),$ $i=0,$

$\ldots,$

$\ell$ . It is then clear that

$\overline{r}(X_{i}, B_{i})\leq\overline{r}(X_{i+1}, B_{i+1})$

for $i=0,$
$\ldots,$

$\ell$ .
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LEMMA 3.6. Let $(V, D)$ be an $SM$-completion of a strongly minimal non-
singular rational open surface of $\overline{\kappa}=0$ with a connected boundary at infinity.
Then $\overline{r}(V, D)\leq 2$ and the equality holds if and only if $(V, D)$ is one of the
pairs 11), 12), and 1 $3n$) in Theorem 2.8. In particular, $V-D\cong A_{*}^{1}\times A_{*}^{1}$ if
$\overline{r}(V, D)=2$ .

PROOF. By using the classification of $SM$-completions of strongly minimal
nonsingular rational open surfaces of $\overline{\kappa}=0$ with connected boundaries at infinity
in \S 2 (Theorems 2.8, 2.10 and 2.16), we obtain the assertion. $\square $

PROOF OF THEOREM 3.1. We use the same notation and assumptions as
above. The first assertion easily follows from Lemma 3.6 and the above remark

rank $zA$ $’/k^{*}=\overline{r}(X, B)\leq\overline{r}(V, D)$ .

The “if” part of the second assertion is clear. We prove the “only if” part of
the second assertion.

If rank $zA^{*}/k^{*}=2$ then, by Lemma 3.6, $(V, D)$ is one of the pairs 11), 12)
and $13n$) in Theorem 2.8. The fundamental points of the birational morphism
$f$ : $X\rightarrow V$ lie on $D$ . Indeed, if there exists a fundamental point $Q\in V-D$

then $\tilde{S}$ contains a(-1)-curve, which is a contradiction because $S$ is affine and
the resolution of singularities $\pi$ : $\tilde{S}\rightarrow S$ is minimal. Hence $X_{i}-B_{i}\supseteq X_{i}-$

Supp $f_{i}^{*}$ $(B_{i+1} )$ for $i=0,$
$\ldots,$

$\ell$ .
If $X_{i}-B_{i}=X_{i}$ -Supp $f_{i}^{*}(B_{i+1})$ for all $i=0,$

$\ldots,$

$\ell$ then $\tilde{S}=X-B=V-D$ .
So $S=\tilde{S}=A_{*}^{1}\times A_{*}^{1}$ by Lemma 3.6. Suppose that there exists an integer
$j(0\leq j\leq\ell)$ such that $X_{j}-B_{j}\supseteqq X_{j}-$ Supp $f_{j}^{*}(B_{j+1})$ , i.e., $B_{j}<(J_{j}^{*}(B_{j+1}))_{red}$ .
We assume that $j$ is maximal among the integers $j^{\prime}$ $(0\leq j^{\prime}\leq ?)$ such that $B_{j^{\prime}}<$

$(f_{j^{\prime}}^{*} (B_{j}’+1 ))$ red. Let $P_{j+1}$ be the center of the blowing-up $f_{j}$ : $X_{j}\rightarrow X_{j+1}$ . Note
that $P_{j+1}\in B_{j+1}$ . Put $E_{j}:=f_{j}^{-1}(P_{j+1})$ . Then $E_{j}$ is not a component of $B_{j}$ .

CLAIM 1. $P_{j+1}$ is a nonsingular point of $B_{j+1}$ , i.e., there exists a unique
component of $B_{j+1}$ passing through $P_{j+1}$ .

PROOF. By Lemma 3.6, $B_{j+1}$ is an SNC-divisor and each component of
$B_{j+1}$ is a rational curve. Further, $B_{j+1}$ contains a unique loop of curves, say
$\tilde{B}_{j+1}$ .

Suppose that there exist two components $B_{j+1,1}$ and $B_{j+1,2}$ such that $P_{j+1}=$

$B_{j+1,1}\cap B_{j+1,2}$ . If one of $B_{j+1,1}$ and $B_{j+1,2}$ is not a component of $\tilde{B}_{j+1}$ then
$B_{j}=f_{j}^{\prime}(B_{j+1})$ is not connected. So $B=B_{0}$ is not connected, which is a con-
tradiction. Assume that both $B_{j+1,1}$ and $B_{j+1,2}$ are components of $\tilde{B}_{j+1}$ . Then
the dual graph of $B_{j}$ is a tree because there is a unique loop of curves in $B_{j+1}$ .
So $\overline{p}_{g}(X_{j}-B_{j})=0$ by [14, Lemma I.2.1.3]. On the other hand, $\overline{p}_{g}(X_{j}-B_{j})=$
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$\overline{p}_{g}(V-D)=1$ by Lemmas 1.7 (2) and 3.6. This is also a contradiction. This
proves Claim 1.

Let $B_{j+1}=\sum_{i=1}^{r}B_{j+1,i}$ be the decomposition of $B_{j+1}$ into irreducible com-
ponents. Assurne that $P_{j+1}\in B_{j+1,1}$ .

CLAIM 2. There exist integers $\alpha_{1}>0,$ $\alpha_{2},$

$\ldots,$
$\alpha_{r}$ such that

$\sum_{i=1}^{r}\alpha_{i}B_{j+1,i}\sim 0$ .

PROOF. Let $D_{1}$ be a component of $D$ such that $f_{\ell}\circ\cdots\circ f_{j+1}$ $(B_{j+1}, 1 )\subset D_{1}$ .
Since $(V, D)$ is one of the pairs 11), 12) and 1 $3n$) in Theorem 2.8, for any
irreducible curve $D_{2}\subset D$ adjacent to $D_{1}$ , we can find positive integers $\beta_{1}$ and $\beta_{2}$

and a divisor $D^{\prime}$ with Supp(D $’$ ) $\subseteq$ Supp(D $-(D_{1}+D_{2})$ ) such that $\beta_{1}D_{1}+\beta_{2}D_{2}+$

$D^{\prime}$ – 0. Then $(0\sim)(f_{j+1}\circ\cdots\circ f_{\ell})^{*}(\beta_{1}D_{1}+\beta_{2}D_{2}+D^{\prime})$ can be expressed as in
Claim 2, where we take $D_{2}$ so that $f_{\ell}\circ\cdots\circ f_{j+1}(B_{j+1,1})=D_{1}\cap D_{2}$ if $ f_{\ell}\circ\cdots\circ$

$f_{j+1}$ $(B_{j+1,1} )$ is a singular point of $D$ . This proves Claim 2.

The natural map $f_{j_{*}}$ : $Pic(X_{j})\rightarrow Pic(X_{j+1})$ induces an injection

$f_{j_{*}}$ : $Ker$ ( $\bigoplus_{i=1}^{r}Z[B_{j,i}]\rightarrow$ Pic $(X_{j}))\rightarrow Ker(\bigoplus_{i=1}^{r}Z[B_{j+1,i}]\rightarrow$ Pic $(X_{j+1} )$ $)$ ,

where $B_{j}=\sum_{i=1}^{r}B_{j,i}$ is the decomposition of $B_{j}$ into irreducible components.
Note that $\# B_{j}=\# B_{j+1}=r$ . For $m=j,$ $j+1$ , we define $K_{m}$ $:=Ker(\oplus_{i=1}^{r}Z[B_{m,i}]$

$\rightarrow Pic(X_{m}))$ . Let $\alpha_{1}>0$ , $\alpha_{2},$

$\ldots,$
$\alpha_{r}$ be integers specified as in Claim 2.

Then $f_{j}^{\prime}(\sum_{i=1}^{r}\alpha_{i}B_{j+1,i})=\sum_{i=1}^{r}\alpha_{i}f_{j}^{\prime}(B_{j+1,i})\not\in K_{j}$ because $0\sim f_{j}^{*}(\sum_{i=1}^{r}\alpha_{i}B_{j+1},i)=$

$f_{j}^{\prime}(\sum_{i=1}^{r}\alpha_{i}B_{j+1,i})+\alpha_{1}E_{1}$ by Claim 1. So, rank $Q(K_{j+1}/f_{j_{*}}(K_{j}))\otimes_{Z}Q\geq 1$ . Then

$2=\overline{r}(V, D)=\overline{r}(V_{j+1}, D_{j+1})>\overline{r}(V_{j}, D_{j})\geq rank_{Z}A^{*}/k^{*}=2$ ,

which is a contradiction.
The proof of Theorem 3.1 is thus completed.

As a consequence of Theorem 3.1, we have the cancellation theorem for
$A_{*}^{1}\times A_{*}^{1}$ (Theorem 3.8).

DEFINITION 3.7 (cf. [8, \S 1]). Let $Y$ be an algebraic variety defined over an
algebraically closed field $k$, not necessarily nonsingular or complete over $k$ . We
call $Y$ a resoluble variety if there exists a resolution of singularities $\pi$ : $X\rightarrow Y$

such that $X$ has an $NC$-completion $(V, D)$ , where $V$ is a nonsingular complete
algebraic variety and $D$ is an $NC$-divisor on $V$ such that $X=V-D$ .

Note that an algebraic variety $Y$ defined over $k$ is resoluble if char(k) $=0$ or
if $\dim Y\leq 2$ ; also if $\dim Y=3$ and char(k) $\geq 7$ .
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THEOREM 3.8. Let $S=Spec(A)$ be an afftne algebraic variety and $Ta$

resoluble algebraic variety, both deftned over an algebraically closed field $k$ .
Assume that there exists a $k$-isomorphism $S\times_{k}T\cong(A_{*}^{1}\times A_{*}^{1})\times_{k}$ T. Then $ S\cong$

$A_{*}^{1}\times A_{*}^{1}$ .

PROOF. By the same argument as in [8, \S 3.2], we know that $S$ is a non-
singular affine surface. By [8, Theorem 1.6], $\overline{\kappa}(S)=\overline{\kappa}(A_{*}^{1}\times A_{*}^{1})=0$ .

For normal algebraic varieties $V$ and $W$ defined over $k$, we have the fol-
lowing natural isomorphism

$\Gamma(V\times_{k}W, \mathscr{O}_{V\times_{k}W})^{*}/k^{*}\cong\Gamma(V, \mathscr{O}_{V})^{*}/k^{*}\oplus\Gamma(W, \mathscr{O}_{W})^{*}/k^{*}$

by virtue of [8, \S 4.5]. Let $N$ be the singular locus of $T$. Then, $ S\times_{k}T\cong$

$(A_{*}^{1}\times A_{*}^{1} )$ $\times_{k}T$ implies that $S\times_{k}(T-N)\cong(A_{*}^{1}\times A_{*}^{1})\times_{k}(T-N)$ . By the above
remark, we have $rank_{Z}A^{*}/k^{*}=2$ . Hence $S\cong A_{*}^{1}\times A_{*}^{1}$ by Theorem 3.1. $[$

REMARK 3.9. When char(k) $=0$ , we can drop the assumption that $S$ is
affine in Theorem 3.8. See [2, \S 9].
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