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Abstract. We study the non-linearlizability conjecture (NLC) for polynomials at

non-Brjuno irrationally indi¨erent ®xed points. A polynomial is n-subhyperbolic if

it has exactly n recurrent critical points corresponding to irrationally indi¨erent cycles,

other ones in the Julia set are preperiodic and no critical orbit in the Fatou set accu-

mulates to the Julia set. In this article, we show that NLC and, more generally, the

cycle-version of NLC are true in a subclass of n-subhyperbolic polynomials. As a

corollary, we prove the cycle-version of the Yoccoz Theorem for quadratic polynomials.

We also study several speci®c examples of n-subhyperbolic polynomials. Here

we also show the scaling invariance of the Brjuno condition: if an irrational number a

satis®es the Brjuno condition, then so do ma for every positive integer m.

1. Introduction.

In this paper, we always assume l � e2pia �a A RnQ�. We consider a

holomorphic germ f at z0 A C ®xing z0 with multiplier f 0�z0� � l. Then z0 is

called an irrationally indi¨erent ®xed point of f and a is called the rotation

number of f at z0. This name is derived from a rigorous relationship between

holomorphic dynamics near an irrationally indi¨erent ®xed point and that of

analytic circle homeomorphisms. For example, rotation numbers of holomor-

phic germs are topologically invariant. For more details, see [21].

We say f to be linearizable at z0 if there exists a neighborhood D of z0 and

a conformal map w � h�z� from D to the unit disk D with h�z0� � 0 such that

h � f � hÿ1 is a rotation w 7! lw on D.

Brjuno showed in [2] that if a satis®es the Brjuno condition, then such f

is always linearizable at z0. The Brjuno condition is de®ned in terms of the

continued fraction expansion. For the rigorous de®nition, see [23] or [16 ].

In fact the Brjuno condition is the best possible. Yoccoz proved in [23] that

if a quadratic polynomial is linearizable at an irrationally indi¨erent ®xed point
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whose multiplier is l, then a satis®es the Brjuno condition. It is not known

whether we can extend this result for polynomials of degree more than two.

The non-linearizability conjecture is the following (cf. [5] and [19]).

NLC. If a polynomial of degree db 2 is linearizable at an irrationally

indi¨erent ®xed point whose multiplier is l, then a satis®es the Brjuno condition.

It follows from the Yoccoz theorem that NLC is true in the class of qua-

dratic polynomials. In this paper, we shall prove NLC in the class of piecewise

1-subhyperbolic polynomials, which is a subclass of n-subhyperbolic polynomials

de®ned below.

Let P be a polynomial of degree db 2. For details and proofs of the basic

results of complex dynamics, see [16 ] and [17].

Notation. The Fatou set F �P� is the largest open set such that the iterates

fPnjF ; n A Ng form a normal family. The Julia set J�P� is the complement of

the Fatou set. The ®lled-in Julia set K�P� consists of those z A C such that its

orbit fPn�z�gnb0 is bounded.

The Julia set J�P� is equal to the boundary of K�P�.

Notation. For a point z A C , we call fPn�z�gnb0 the orbit. z is periodic

and fP i�z�gmÿ1
i�0 is a cycle if z;P�z�; . . . ;Pmÿ1�z� are distinct and Pm�z� � z for

some m A N .

Let Z � fzng
m
n�1 be a cycle. The multiplier of Z is de®ned by �Pm� 0�zn�,

and Z is irrationally indi¨erent if each zn is an irrationally indi¨erent ®xed point

of Pm. Moreover, if Pm is linearizable at each zn, or equivalently if ZHF�P�,

then Z is called a Siegel cycle and the Fatou component containing zn is called

the Siegel disk of P at zn. Otherwise Z is called a Cremer cycle. We call each

point of a Siegel cycle a Siegel ( periodic) point, and call each one of a Cremer

cycle a Cremer ( periodic) point.

Definition. For an irrationally indi¨erent cycle Z � fzng
m
n�1 of P, the

singular set S � S�Z� is de®ned by 6m

n�1
Sn (Sn is the Siegel disk at zn) if Z is

a Siegel cycle, and by Z itself if Z is a Cremer cycle.

Theorem 1.1 (ManÄeÂ [12]). For each singular set S of P, there exists a

recurrent critical point c such that o�c�I qS.

Here o�c� � fz A C ; there exists nk ! y such that z � limPnk �c�g is the

omega limit set of c, and c is recurrent if c A o�c�.

Definition. A recurrent critical point c corresponds to an irrationally in-

di¨erent cycle Z if o�c�I qS�Z�.

In this paper, we always count the number of critical points with multiplicity.
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Definition (n-subhyperbolicity). For a non-negative integer n, a polynomial

P is n-subhyperbolic if

(a) there exist exactly n recurrent critical points corresponding to irrationally

indi¨erent cycles,

(b) every critical point in J�P� other than the ones in (a) is preperiodic, and

(c) no critical orbit in F�P� accumulates to J�P�.

An n-subhyperbolic polynomial is n-hyperbolic if there is no preperiodic

critical point in J�P�.

By de®nition, a quadratic polynomial with an irrationally indi¨erent cycle is

1-hyperbolic. A 0-subhyperbolic polynomial is subhyperbolic in a classical sense.

For nb1, an n-subhyperbolic polynomial is obtained by ``blowing-up'' preperiodic

critical points of a 0-subhyperbolic polynomial in its Julia set.

We shall precisely state Main Theorem of this paper in Section 6, which

says that NLC is true in the class of piecewise 1-subhyperbolic polynomials. For

simplicity, we ®rst treat the class of 1-hyperbolic and 1-subhyperbolic polynomials.

Theorem 1 (NLC). If a 1-subhyperbolic polynomial is linearizable at an

irrationally indi¨erent ®xed point whose multiplier is l, then a satis®es the Brjuno

condition.

In particular, we also have the following earlier result.

Corollary 1 ([18]). Suppose that a cubic polynomial P is linearizable at

an irrationally indi¨erent ®xed point and let its rotation number be a. If there

exists a critical point of P iterated into a cyclic Fatou component which is a

superattractive or attractive basin or a Siegel disk, then a satis®es the Brjuno

condition.

More generally, we also have a positive answer for the cycle-version of NLC.

Theorem 2 (Cycle version of NLC). If a 1-subhyperbolic polynomial has a

Siegel cycle whose multiplier is l, then a satis®es the Brjuno condition.

As a corollary, we have the cycle-version of the Yoccoz Theorem.

Corollary 2. If a quadratic polynomial has a Siegel cycle whose multiplier

is l, then a satis®es the Brjuno condition.

By studying speci®c examples of n-subhyperbolic polynomials, we also have:

Theorem 3 (Scaling invariance of the Brjuno condition). If a satis®es the

Brjuno condition, then ma �m A N� also satis®es the Brjuno condition.

In the rest of this paper, we shall prove Main Theorem. We ®rst prove

Theorem 1 in 1-hyperbolic case. In Section 2, we consider the linearizability-
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preserving perturbations for an arbitrary polynomial P. Preserving the linear-

izability of P at every irrationally indi¨erent periodic point, this perturbation

increases the number of the foliated equivalence classes of acyclic critical points

in F �P�.

In Section 3, we shall survey the structure theorem of TeichmuÈller spaces of

polynomials and their uniformization in parameter spaces, and consider a local

lifting of this uniformization into the representation space of polynomials.

In Section 4, we shall apply linearizability-preserving perturbations to a 1-

hyperbolic polynomial in order to increase the dimension of its TeichmuÈller

spaces. We shall complete the proof of Theorem 1 in 1-hyperbolic case.

In Section 5, we shall de®ne weak renormalizations of polynomials by strong

separation and show that they are in fact strongly renormalizable under a certain

condition.

In Section 6, we shall de®ne a subclass of n-subhyperbolic polynomials,

that is, piecewise 1-subhyperbolic polynomials in terms of strong separation,

and state Main Theorem in this paper. Applying strong renormalizations to

piecewise 1-subhyperbolic polynomials, we complete the proof of Main Theorem

and Theorem 2.

In Section 7, we conclude with several examples of n-subhyperbolic poly-

nomials. We shall prove Theorem 3 here.
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sions and advices, and also to Prof. Anthony Manning, Prof. Oleg Kozlovski
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2. Linearizability-preserving perturbation.

Definition. Let P be a polynomial. A point is said to be acyclic if it is

neither periodic nor preperiodic point of P.

The grand orbit of x A C is

GO�x;P� :� fy A C ;Pn�x� � Pm�y� for some n;mb 0g:

Two points x; y A C are in the foliated equivalence class of P if GO�x;P� �

GO�y;P�.

NAC is the number of the foliated equivalence classes of acyclic critical points

of P in F�P�.

Main result in this section is the following:
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Theorem 2.1. Let P be an n-hyperbolic polynomial of degree db 2. Then

there exists an n-hyperbolic polynomial P̂ with the same degree as P such that

(i) If P is linearizable at an irrationally indi¨erent ®xed point whose

multiplier is l, then P̂ is also so, and

(ii) NAC�P̂� � d ÿ nÿ 1.

Notation. For r > 0 and x A C , we put D�x; r� :� fz A C ; jzÿ xj < rg and

Dr :� D�0; r�. For C A C and U HC , we set C �U :� fCz; z A Ug.

For a C1-function f , we set m� f � :� qf =qf . For an open set V HC , we

identify a Beltrami coe½cient on V with a function m A Ly�V� such that kmky
< 1, and for a C 1-function f : V ! W and a Beltrami coe½cient m on W, we

de®ne the pullback f �m of m on V by

� f �m��z� �
qf �z�m� f �z�� � qf �z�

qf �z�m� f �z�� � qf �z�
:

Theorem 2.1 follows from the three Lemmas below. We ®x a polynomial P

of degree db 2 arbitrarily.

Lemma 2.1. Let c be a non-periodic critical point in F �P� with multiplicity

kb 2. Then there exist an analytic Jordan neighborhood U of c in F �P�, a quasi-

conformal automorphism F of C and a polynomial P̂ with the same degree as P

such that
. U contains neither critical point other than c nor periodic point,
. P̂ has exactly k distinct critical points in F�U�, which are simple, and
. P � Fÿ1 � P̂ �F on C nU .

Proof. Let W be the component of F�P� containing c. Then it is not

a Siegel disk of P. By assumption, c is not a superattracting periodic point.

There exists an analytic Jordan neighborhood U of c in W such that
. U contains neither critical point other than c nor periodic point of P,
. for all n A N , Pn�U�VU � q, and
. PjU is a proper map onto a Jordan domain V.

We choose a quasiregular extension Q : U ! V of PjqU : qU ! qV so that
. QjqU � PjqU , and
. Q has exactly k distinct branch points in U, which are simple.

We set a quasiregular endomorphism of C :

~P :�
P �on C nU�

Q �on U�.

�
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In the above, we have chosen the neighborhood U so that

m�z� :�
�P�� im�Q��z� if P i�z� A U for some i A N U f0g,

0 otherwise,

�

becomes a ~P-invariant Beltrami di¨erential on C .

Let F be a quasiconformal automorphism of C with m�F� � m. Then we

have m�F � ~P� � m�F�, so P̂ :� F � ~P �Fÿ1 is holomorphic. By construction, we

have deg P̂ � degP. r

The ®rst and second lemma says that we can decompose a critical point c

with multiplicity k in F�P� to k distinct simple and non-periodic critical points

near c.

Lemma 2.2. Let c be a periodic critical point in F �P� (so it is a super-

attracting periodic point) with multiplicity kb 1. Then there exist an analytic

Jordan neighborhood U of c in F�P�, a quasiconformal automorphism F of C and

a polynomial P̂ with the same degree as P such that
. U contains no critical point other than c,
. P̂ has exactly k distinct critical points in F�U�, which are simple,
. F�c� is not a critical point of P̂, and
. P � Fÿ1 � P̂ �F on �C nU�U fcg.

The inverse of this perturbation is well-known (cf. [3] VI. 5). For readers'

convenience, we write the proof.

Proof. Let p be the period of c and W the component of F�P� containing c.

Then W is the superattractive ®xed basin of Pp. There exists an analytic Jordan

neighborhood U of c in W such that
. U contains no critical point other than c,
. Pp�U�FU , and
. PjU is a proper map onto a Jordan domain V.

We choose a quasiregular extension Q : U ! V of PjqU : qU ! qV so that
. Q � P on qU U fcg,
. Q is holomorphic on Pp�U�,
. Q has exactly distinct k critical points, which are simple, in Pp�U�nfcg,

and
. c is not a critical point of Q.

By the same way as that in the previous proof, we have such a polynomial P̂

in this Lemma. r

The third lemma says that we can move slightly each critical orbit of P in

F �P�.
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Lemma 2.3. Let c be a non-periodic and simple critical point in F �P�. Then

there exist an analytic Jordan neighborhood U of c in F�P�, a quasiconformal

automorphism F of C and a polynomial P̂ with the same degree as P such that
. U contains neither critical point other than c nor periodic point,
. P̂ has one and only one critical point F�c� in F�U�, which is simple,
. P � F

ÿ1 � P̂ �F on C nU , and
. F�c� is an acyclic critical point of P̂ and not foliated orbit equivalent to any

other critical point of P̂.

Proof. Let W be the component of F �P� containing c. By assumption, c is

not a superattracting periodic point of P and W is not a Siegel disk of P. Thus

there exists an analytic Jordan neighborhood U of c in W such that
. U contains no critical point other than c,
. for all n A N , Pn�U�VU � q, and
. PjU is a proper map onto a Jordan domain V.

There exists a small neighborhood V0 of the critical value P�c� such that for

every v A V0, there exists a quasiregular extension Q : U ! V of PjqU : qU ! qV

satisfying:
. QjqU � PjqU ,
. c is one and only one branch point of Q in U, which is simple, and
. Q�c� � v.

Let P̂ be a polynomial obtained by the same way as that in the proof of Lemma

2.1. We choose v A V0nfP�c�g so that for P̂, F�c� is acyclic and not foliated

orbit equivalent to any other critical point. r

Remark. In constructing the quasiregular extensions Q of PjqU appearing

in the above proofs, we can use, for example, the following lemma:

Lemma 2.4 ([9]). Let Sk �kb 1� be the quotient of Dk by the action of the

symmetric group Sk and we put the set of normalized Blaschke products (or proper

holomorphic maps of D onto itself ®xing 0, 1) of degree k � 1:

Bk :� z
Y

k

j�1

1ÿ aj

1ÿ aj

� �

zÿ aj

1ÿ ajz

� �

; jajj < 1 for 1a ja k

( )

:

The map Sk ! Sk which maps the set of zeros of B A Bd to the critical set of B is

a homeomorphism.

Proof of Theorem 2.1. Let P be an n-hyperbolic polynomial. We recall

that there exists d ÿ nÿ 1 critical points in F�P�.

The perturbations in the above Lemmas preserve the n-hyperbolicity. Thus

by applying Lemma 2.1 and 2.2 to every critical point in F�P� either periodic or

with multiplicity kb 2 and using Lemma 2.3 for simple critical points in F�P�
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®nite times, we have a polynomial P̂ with the same degree as P, a quasiconformal

automorphism F of C and an open set U HC which is relatively compact in

�F �P�n�Siegel disks of P�� such that
. P � Fÿ1 � P̂ �F on C nU , and
. P̂ is n-hyperbolic and NAC�P̂� � d ÿ nÿ 1.

Consequently, P̂ has desired properties. r

3. TeichmuÈller spaces of polynomials.

Let P be a polynomial of degree db 2 and have an irrationally indi¨erent

®xed point z0 whose multiplier is l. Then there exists an a½ne transformation A

with A�z0� � 0 such that A � P � Aÿ1 �: PA is a monic polynomial of degree d.

If P is 1-subhyperbolic and linearizable at z0, PA is also 1-subhyperbolic and

linearizable at the origin. Thus we assume that P A Pd and z0 � 0 without any

loss of generality. Here for db 2, we set

Pd :� fP�z� � lz� a2z
2 � � � � � adÿ1z

dÿ1 � zdgGC
dÿ2; and

~Pd :� fP�z� � lz� a2z
2 � � � � � adÿ1z

dÿ1 � adz
d �ad 0 0�gGC

dÿ2 � C �:

We ®x P A Pd arbitrarily.

Definition. The deformation space of P rel the origin is

Def�C ; 0;P� :� f

�

�

�

�

f is a quasiconformal automorphism of C

®xing 0 and f � P � fÿ1 �: Pf is a polynomial:

� �

=@;

where f1 @ f2 if there exists an a½ne transformation hc�z� :� cz such that

hc � f1 � f2. The equivalence class of f is also written by f so long as the

discussion is independent of the choice of representative.

We set H :� fhc; c A C
�g. Since rotation numbers of holomorphic germs

are topologically invariant, as we have stated in Introduction, we have Pf A
~Pd

for f A Def�C ; 0;P�.

By the Ahlfors-Bers measurable Riemann mapping theorem [1], the map

from Def�C ; 0;P� to the set M1�C ;P� of P-invariant Beltrami di¨erentials on C :

Def�C ; 0;P� C f 7! m�f� A M1�C ;P�

is bijective. Hence we identify Def�C ; 0;P� with M1�C ;P�, which has a structure

of a complex manifold.

Definition. The quasiconformal automorphism group of P rel the origin is

QC�C ; 0;P� :� o

�

�

�

�

o is a quasiconformal automorphism of C

®xing 0 and Po � P:

� �

:
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It acts on Def�C ; 0;P� by o�f� � f � oÿ1.

We set a normal subgroup of it:

QC0�C ; 0;P� :� o A QC�C ; 0;P�

�

�

�

�

�

�

There exists a uniformly quasiconformal

isotopy fot A QC�C ; 0;P�; 0a ta 1g

with o0 � o and o1 � idC :

8

<

:

9

=

;

:

Now we de®ne the TeichmuÈller space, and state its structure theorem and the

discreteness of its modular group. For the full account and proof, see [15].

Definition. The TeichmuÈller space is

Teich�C ;P� :� Def�C ; 0;P�=QC0�C ; 0;P�:

The equivalence class of f is written by �f�.

In McMullen-Sullivan [15], we de®ne the deformation space and so on

without ``rel the origin'' and write them by Def�C ;P�, QC�C ;P� and QC0�C ;P�.

By de®nition, we have

Def�C ; 0;P�GDef�C ;P� �GM1�C ;P�� and

QC0�C ; 0;P� � QC0�C ;P�;

so this Teich�C ;P� agrees with the TeichmuÈller space of P de®ned by the usual

way. In particular,

Teich�C ;P� � Def�C ; 0;P�=QC0�C ;P�:

Theorem 3.1 (The structure theorem [15]). Teich�C ;P� is a ®nite dimen-

sional connected and simply connected complex manifold whose complex dimension

is equal to

NAC �NLF ÿNP;

where
. NAC is the number of the foliated equivalence classes of acyclic critical

points in F�P�,
. NLF is the number of invariant line ®elds on the Julia set of P, and
. NP is the number of parabolic cycles.

Moreover, the canonical projection p : Def�C ; 0;P� ! Teich�C ;P� is a holomor-

phic submersion.

In Teich�C ;P�, the TeichmuÈ ller metric d is de®ned by

d��f1�; �f2�� :�
1

2
inf log

1� km�f 0 � f 00ÿ1�k
y

1ÿ km�f 0 � f 00ÿ1�k
y

; f 0
@ f1 and f 00

@ f2

( )

:
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Theorem 3.2 (Discreteness of modular group [15]). The modular group

rel the origin Mod�C ; 0;P� :� QC�C ; 0;P�=QC0�C ;P�, which is a subgroup of

the TeichmuÈ ller modular group Mod�C ;P� :� QC�C ;P�=QC0�C ;P�, acts on

�Teich�C ;P�; d� isometrically, biholomorphically and properly discontinuously.

We put M :� ~Pd=�H-conjugation�. By Theorem 3.2, we have:

Theorem 3.3 (Uniformization in the parameter space). The map

h : Teich�C ;P� C �f� 7! �Pf� A M;

is holomorphic, and every ®ber hÿ1��Pf�� is discrete for �Pf� A h�Teich�C ;P��.

Here �P� A M is the equivalence class of P A ~Pd .

Proof. Mod�C ; 0;P� is a covering transformation group of h : Teich�C ;P�

! h�Teich�C ;P�� and its action on Teich�C ;P� is properly discontinuous. r

In the rest of this section, we prepare a lemma needed later. Let p :
~Pd ! M be the canonical projection.

Lemma 3.1. If P�z� � lz� a2z
2 � � � � � adÿ1z

dÿ1 � zd A Pd �db 3� satis®es

that:

(*) for any c A C nf1g with cdÿ1 � 1, there exists j A f2; 3; . . . ; d ÿ 1g such

that aj 0 0 and c jÿ1 0 1,

then there exists a local holomorphic section s of p from a neighborhood of �P� into

Pd which maps �P� to P.

Proof. We ®x P A Pd satisfying (*). We write the j-th coe½cient of

P1 A Pd as aj�P1� � j � 2; 3; . . . ; d ÿ 1�. For each c A C nf1g with cdÿ1 � 1, we

®x such j � jc A f2; 3; . . . ; d ÿ 1g that aj�P�0 0 and c jÿ1 0 1 and choose such a

neighborhood Vj of aj�P� in C
� that Vj V �c jÿ1 � Vj� � q.

For c A C nf1g with cdÿ1 � 1, we set V�c� :� fP1 A Pd ; ajc�P1� A VjcgHPd

and set V :� 7
c dÿ1�1; c01

V�c�. If two distinct elements P1 and P2 of V satisfy

p�P1� � p�P2�, or equivalently P1�z� � P2�cz�=c for some c A C nf0; 1g, then this

c satis®es that cdÿ1 � 1 and aj�P1� � aj�P2�c
jÿ1 for all j � 2; . . . ; d ÿ 2. Thus

we have ajc�P2�c
jcÿ1 A �c jcÿ1 � Vjc�VVjc but it contradicts the de®nition of Vjc .

Therefore p is injective on V. We choose s :� �pjV�ÿ1. r

4. Proof of Theorem 1 in 1-hyperbolic case.

Lemma 4.1. If a 1-hyperbolic polynomial P A Pd �db 2� satis®es NAC �

d ÿ 2, then we have dimTeich�C ;P� � dimM � d ÿ 2.

Proof. Since no critical point in F �P� accumulates to J�P�, P has no par-

abolic periodic point. Thus we have NP � 0 and dimTeich�C ;P� � NIL � d ÿ 2.
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By Theorem 3.3, we have dimTeich�C ;P�a dimM � d ÿ 2. Therefore we have

dimTeich�C ;P� � d ÿ 2 and NIL � 0. r

Lemma 4.2. If P A Pd �db 3� satis®es the condition ��� and dimTeich�C ;P�

� d ÿ 2, then P is quasiconformally stable in Pd , i.e., there exists a neighborhood

U HPd of P such that every element of U is quasiconformally conjugate to P.

Proof. By Lemma 3.1, we have a local section s of p from a neighborhood

V HM of �P� into Pd which maps �P� to P. From dimTeich�C ;P� � dimM,

it follows that h�Teich�C ;P�� is an open neighborhood of �P�. We set U :�

s�h�Teich�C ;P��VV�. It is an open neighborhood of P in Pd , and every ele-

ment of U is quasiconformally conjugate to P by de®nition of the TeichmuÈller

space. r

Lemma 4.3. P A Pd �db 3� not satisfying ��� is not 1-hyperbolic.

Proof. From the assumption, it follows that P�cz�=c � P�z� for some c A

C nf0; 1g, and so P 0�cz� � P 0�z�. Thus if z0 is a critical point of P, then z0=c

�0 z0� is another one. Furthermore, if z0 is contained in J�P�, then z0=c is also

so.

Suppose that P is 1-hyperbolic. Then P has one and only one critical point

in J�P�. It is a contradiction. r

Combining the above lemmas and Theorem 4.1, we prove Theorem 1 in the

case where NAC � d ÿ 2.

Theorem 4.1 ([20], TheÂoreÁme IV.2.1). If a quasiconformally stable element

of Pd �db 2� is linearizable at the origin, then the rotation number a satis®es the

Brjuno condition.

For readers' convenience, we give a proof of Theorem 4.1 a little simpler

than PeÂrez-Marco's original one. In this proof, we only use the J-stability of

quasiconformally stable elements of Pd .

Proof. In the case d � 2, it trivially follows from the Yoccoz theorem.

We set db 3. We ®x a quasiconformally stable element P A Pd . Then Julia set

depends continuously at P in the Hausdor¨ topology (cf. [13]).

We assume that P is linearizable at the origin. Then 0 B J�P�. By the

continuity of Julia sets, we choose r > 0 and a neighborhood V of P in Pd

so that every element of V has a Siegel disk at the origin including Dr. Thus

there exists B > 0 such that P�b��z� :� P�z� � z2=b A V for jbj > B. We put, for

b A C ,

Qb�z� :�
1

b
P�b��bz� � lz� z2 �O�bz2� as z ! 0 �Q0�z� � lz� z2�:

Non-linearizability of n-subhyperbolic polynomials 857



Any element of fQb;B < jbj < 2Bg has a Siegel disk at the origin which includes

Dr1 �r1 :� r=2B�.

Suppose that J�Q0� intersects Dr1 . Then there exists z1 A D
�
r1
and q > 0 such

that Q
q
0�z1� � z1 since J�Q0� is the closure of the set of all repelling periodic

points of Q0. We set:

H�b; z� :�
z

Q
q
b�z� ÿ z

�b A D2B; z A Dr1�;

which meromorphically depends on each variables and is uniformly continuous

on �D2B �Dr1 �n�a small neighborhood of poles�.

Since Dr1 is included in the Siegel disk of Qb at 0 for B < jbj < 2B, Qb has

no periodic point in Dr1 for B < jbj < 2B. Thus H�b; z� is holomorphic on

fb;B < jbj < 2Bg �Dr1 . On the other hand, since H�b; 0� � 1=�lq ÿ 1� is a

bounded constant for every b A D2B, there exists 0 < r2 < r1 such that H�b; z� is

also holomorphic on D2B �Dr2 . See Figure 1.

By the Hartogs continuation theorem, H�b; z� is actually holomorphic on

D2B �Dr1 . It contradicts the assumption Q
q
0�z1� � z1 and z1 A D

�
r1
.

Thus Q0�z� � lz� z2 also has the Siegel disk at 0 including Dr1 . From the

Yoccoz theorem, it follows that a satis®es the Brjuno condition. r

Let us complete the proof of Theorem 1 in 1-hyperbolic case.

Let P be a 1-hyperbolic polynomial of degree db 2 and have an irrationally

indi¨erent ®xed point z0 whose multiplier is l.

Suppose that P is linearizable at z0. Let P̂ be the polynomial in Theorem

2.1 derived from P. By considering an a½ne conjugation of P̂, we assume

that P̂ A Pd and P̂ is linearizable at the origin. By applying Lemma 4.1±4.3

and Theorem 4.1 to P̂, we conclude that a satis®es the Brjuno condition since

NAC�P̂� � d ÿ 2. r

Figure 1. The Reinhardt domain where H is holomorphic.
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5. Renormalization of polynomials.

Throughout this section, we will assume the following.

Standing Hypothesis. P is a monic polynomial of degree db 2 and its

®lled-in Julia set K�P� is connected.

Then there exists the unique conformal map f : C nD ! C nK�P� such that

f�z�=z!1 as z!y. We have f�zd��P�f�z�� for z AC nD, and set G :� logjfÿ1j

which is a Green function of C nK�P� with the pole y.

For an angle t A R, an external ray Rt is de®ned by

Rt :� ff�exp�r� 2pit��; 0 < r < ygHC :

An external ray Rt lands at a point x A qK�P� � J�P� if

lim
r!�0

f�exp�r� 2pit�� � x:

We call x the landing point of Rt and t an external angle at x.

For any external ray Rt, its image P�Rt� � Rdt is again an external ray. An

external ray is periodic if Pn�Rt� � Rt, or equivalently d nt1 t modZ for some

n A N . Such n is the period of Rt and the least such n is the fundamental period.

The following result is assembled from contributions of Douady, Hubbard,

Sullivan and Yoccoz. For the proof, see, for example, [16 ].

Landing theorem. Every periodic external ray lands on a repelling or

parabolic periodic point of P. Conversely, let x be a repelling or parabolic

periodic point of P. Then x is a landing point, and every ray landing at x

is periodic with the same fundamental period.

An external ray is preperiodic if Pk�Rt� is periodic for some k A N . Any

external ray with rational angle is preperiodic. An external ray Rt lands at a

point x if and only if P�Rt� � Rdt lands at P�x�. By these facts, we have:

Corollary 5.1. Every external ray with rational angle lands on such a point

as is eventually mapped to either repelling or parabolic periodic point by P.

For n A N and k A N U f0g, the regular �n; k�-partition R
�k�
n is de®ned by

R
�k�
n � 6

d k�d nÿ1�ÿ1

t�0

Rt=�d k�d nÿ1��:

Definition (Strong separation). Let C be a closed subset of C nintK�P�.

Then C nC is a strong separation (of �P;K�P��) if

(i) P�C�HC,

(ii) Each component of C nC contains at most one cyclic Fatou component

or Cremer periodic point,
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(iii) Each component of C nC contains no preperiodic critical point even-

tually mapped to a repelling or parabolic periodic point,

(iv) Let C be a cyclic Fatou component or Cremer periodic point and c be

a critical point. If C and c are contained in a same component of

C nC, then for every n A N , Pn�C � and Pn�c� are also contained in a

same component of C nC, and

(v) Let p be the period of the above C and Ui be the component of C nC

containing P i�C � for i � 1; 2; . . . ; p. Then the union 6p

i�1
Ui contains

at least one critical point.

Let n0�P� < �y be the least common multiple of periods of:
. cyclic Fatou components,
. Cremer points, and
. repelling periodic points to which critical points are eventually mapped.

Lemma 5.1 (Kiwi-Geyer). Suppose that n � n0�P�. There exists a positive

integer K such that for every kbK, R
�k�
n gives a strong separation.

We ®x such a K as in Lemma 5.1. An integer k is said to be admissible if

kbK.

Proof. We follow Kiwi's argument in [10] and Geyer's one in [7].

Let S be the set of all cyclic Fatou components of P and Cremer periodic

points of P. We note that R
�0�
n is the union of the closures of the ®xed rays

of Pn, and that all elements of S are Pn-invariant. Therefore from Goldberg-

Milnor theorem ([8], Theorem 3.3), it follows that every component of C nR�0�
n

contains at most one element of S.

Let Uk�z� be the component of C nR�k�
n containing z �k AN U f0g; z AC nR�k�

n �.

Since P�R�0�
n � � R

�0�
n and R

�k�
n � Pÿk�R�0�

n �, we have: for k A N U f0g,

(a) R
�k�
n HR

�k�1�
n ,

(b) P�R�k�
n �HR

�k�
n ,

(c) Uk�1�z�HUk�z� �z A C nR�k�1�
n �, and

(d) P i�Uk�i�z�� � Uk�P
i�z�� �i A N U f0g; z A C nR�k�i�

n �.

Claim. For a critical point c and an element of C A S, there exists k�c;C� A

N U f0g such that for every lb k�c;C �,

(*) Ul�c� � Ul�C� ) Ul�P
i�c�� � Ul�P

i�C�� �i A N�.

Proof. If (*) holds for every lb 0, then we set k�c;C� � 0.

Suppose that for some l0 b 0, (*) does not hold. Then there exists ib 1

such that Ul0�P
i�c��0Ul0�P

i�C��, so we have Ul0�i�c�0Ul0�i�C � by (d). Thus

for every lb l0 � i, we have Ul�c�0Ul�C � by (c), and set k�c;C� � l0 � i.

Then (*) trivially holds for every lb k�c;C �. r
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We take a critical point c arbitrarily. If c satis®es that Pk�c� is a repelling

or parabolic periodic point for some k A N , we write the least such k by k�c�.

Otherwise, we put k�c� � 0.

We set

K :� maxfk�c�; k�c;C�;C A S and c is a critical point:g < �y:

For kbK, R
�k�
n satis®es (i) and (ii) by (b) and (a) respectively, and (iv) by

Claim. By de®nition of n � n0, R
�0�
n contains every repelling or parabolic

periodic point to which a critical point is eventually mapped. Thus by de®nition

of K, R
�k�
n satis®es (iii) for kbK.

We ®x C A S and kbK arbitrarily. If C is neither Siegel disk nor Cremer

point, then (v) follows from the well-known facts.

Suppose that C is a Siegel disk or Cremer point. Let p be the period of

it and z0 be the Siegel point in C if C is a Siegel disk, and C itself otherwise.

If 6pÿ1

i�0
Uk�P

i�C�� contains no critical point, PpjUk�p�C� : Uk�p�C� ! Uk�C � is

a conformal isomorphism between simply connected domains ®xing z0. Since

Uk�p�C�HUk�C � and j�Pp� 0�z0�j � 1, it follows that Uk�p�C� � Uk�C �.

However it contradicts Uk�C�NK�P�.

Consequently, (v) holds in every case. r

For an angle t A R and an opening Yb 0, an external sector St;Y is de®ned

by

St;Y :� ff�exp�r� 2pi�t� yr���; 0 < r < y; jyjaYgHC :

Let E be a bounded subset of C . Then we call l�E� :� maxz A qE G�z� the

level of E, and call a point z0 A qE with G�z0� � l�E� a top of E.

It is easy to check the following (see Figure 2):
. l�C nSt;Y� � 1=�2Y� and the top of C nSt;Y is f�ÿexp�1=�2Y� � 2pit��,
. St;YnSt;Y � RtnRt. In particular, for a rational angle, St;YnSt;Y agrees

with the landing point of Rt. It is called the landing point of St;Y, and
. P�St;Y� � Sdt;Y.

K(P)

Figure 2. External sector St;Y (t: rational)

Non-linearizability of n-subhyperbolic polynomials 861



An external sector St;Y is periodic if d nt1 t modZ for some n A N . Such n

is the period of it and the least such n is the fundamental period.

For n A N and k A N U f0g, the regular wedge �n; k�-partition S
�k�
n �Y� is

de®ned by

S
�k�
n �Y� � 6

d k�d nÿ1�ÿ1

t�0

St=�d k�d nÿ1��;Y:

Definition. A component of C nS�k�
n �Y� is called a puzzle piece of S�k�

n �Y�.

It is easy to check the following:
. P�S�k�

n �Y��HS
�k�
n �Y�, and

. Let V be a puzzle piece of S
�k�
n �Y�. Then Pÿ1�V� is a ®nite union

fUig
m
i�1 of puzzle pieces of S

�k�1�
n �Y� and PjUi : Ui ! V is proper for

i � 1; . . . ;m.

Definition. Let U be a puzzle piece. A point x A qU is a vertex of U if

x A J�P� or qU is not analytic at x. Such x is said landing if x A J�P�, and said

crossing otherwise. Each component of qUnfverticesg is called an edge of U.

For an angle t A R and a curvature y A R, an external y-logarithmic spiral

Rt;y is de®ned by

Rt;y :� ff�exp�r� 2pi�t� yr���; 0 < r < �ygHC :

It follows that P�Rt;y� � Rdt;y.

By construction of S
�k�
n �Y�, we have (see Figure 3):

Lemma 5.2 (Structure of puzzle pieces). Let U be a puzzle piece of S�k�
n �Y�

�Y > 0�. Then

(i) U is simply connected or equivalently, C nU is connected,

(ii) ]fcrossing verticesg � ]flanding verticesgb 1,

(iii) U has an angle 2 arctan�2pY� A �0; p� at each crossing vertex,

Figure 3. A puzzle piece U of a regular wedge �n; k�-partition S
�k�
n �Y�
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(iv) l�U� � 1=�2Yd k�d n ÿ 1��, and a point on qU is a top of U if and only if

it is a crossing vertex of U, and

(v) every edge of U is a subarc of an external y-logarithmic spiral (y � Y or

ÿY) between a landing vertex and a crossing vertex.

We also have:

Lemma 5.3 (Separation is independent of its opening.). Let U be a puzzle

piece of S�k�
n �Y� and U 0 that of S�k�

n �Y 0�. If 0aY < Y
0, then one and only one

of the following holds:
. U VU 0 � q, and
. U 0

PU and U VK�P� � U 0 VK�P�.

Corollary 5.2. Suppose that n � n0�P�. If k is admissible, then for all

Yb 0, S
�k�
n �Y� gives a strong separation.

From now on, we always assume that n � n0�P�. This regular wedge

partition induces a weak renormalization around each periodic point which is

neither repelling nor parabolic:

Definition. Let x be a periodic point of P which is neither repelling nor

parabolic and p the period of x. Suppose that k is admissible and Y > 0. Then

�PpjU;U;V� is a weak renormalization around x (induced by S
�k�
n �Y�) if U is the

puzzle piece of S�k�p�
n �Y� containing x and if V is that of S�k�

n �Y� containing x.

Proposition 5.1. A weak renormalization �PpjU;U;V� around x satis®es:

(i) x is the only non-repelling periodic point in U,

(ii) U contains no preperiodic critical point eventually mapped to a repelling

or parabolic cycle,

(iii) U HV and PpjU : U ! V is proper, and

(iv) The degree of PpjU is more than one.

Proof. Suppose that this weak renormalization is induced by S
�k�
n �Y�.

Noting that S
�k�p�
n �Y� also gives a strong separation, we have easily (i), (ii)

and (iv). Since S
�k�p�
n �Y� � Pÿp�S�k�

n �Y��, we have (iii). r

A weak renormalization �PpjU;U;V� around x is renormalizable if it is

topologically conjugate to a polynomial on U . If U FV , then �PpjU;U;V� is

renormalizable (cf. [6 ]). In general, we have:

Theorem 5.1 (Strong renormalization). Let �PpjU;U;V� be a weak re-

normalization around x. If every landing vertex of V is eventually mapped to a

repelling periodic point, then it is strongly renormalizable:

There exists a polynomial P0 without preperiodic critical point eventually

mapped to a repelling or parabolic cycle in J�P0� such that �PpjU;U;V� is hybrid
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quasiconformally conjugate to P0, i.e., there exists a quasiconformal automorphism

F of C satisfying:
. Pp � Fÿ1 � P0 �F on U ,
. m�F�1 0 on the ®lled-in Julia set of �PpjU;U;V�, which is de®ned by

K�PpjU;U;V� :� 7
n AN

�Pp�ÿn�U�, and
. F�K�PpjU;U;V�� � K�P0�.

Therefore P0 has the unique non-repelling periodic point F�x� (thus it is a

®xed point of P0).

P0 is called a strong renormalization of �PpjU;U;V�.

L. Geyer pointed out this theorem in his thesis [7], but at present, it has

not been published and his proof seems to have several gaps. For readers'

convenience, we will give a proof.

Proof of Theorem 5.1. We prove the following lemma to consider the

quasiconformal opening of Pp near landing points which are critical points of

Pp later.

Lemma 5.4. Let U be a puzzle piece of S
�k�
n �Y� �Y > 0�. If every landing

vertex of U is eventually mapped to a repelling periodic point, then U is a quasidisk.

Proof. We put L :� ftj :� exp�2pi � j=�d k�d n ÿ 1���; j � 0; 1; . . . ; d k�d n ÿ 1�

ÿ 1g. Let c be a continuous function on W :� fÿ1�qS�k�
n �Y�nflanding pointsg�

ULGS1:

c�x� :�
f�x� if x A WnL

landing point of Rarg tj=2p if x � tj A L:

�

Since c induces a continuous and injective map from S1 onto qU , qU is a Jordan

curve.

Let fvig
n
i�1 be the set of all landing vertices of U. By Lemma 5.2 (ii), we

have nb 1.

For fx; ygH qU , C�fx; yg� is the component of qUnfx; yg with smaller

diameter. We put ~C�fx; yg� :� qUnC�fx; yg�.

A set fgig
n
i�1 of open subarcs of qU is admissible if

. gi V fvig
n
i�1 � vi and diam gi < diam�qUngi� for i � 1; . . . ; n, and

. all elements of fgig
n
i�1 are mutually disjoint.

For an admissible fgig
n
i�1, it follows that C�fx; yg�H gi for every fx; ygH gi.

Since qU is Jordan and qUnfvig
n
i�1 is a ®nite union of quasiarcs (piecewise

analytic arcs without cusp), it follows that:

Lemma 5.5. If there exists an admissible fgig
n
i�1 and a positive constant

M > 0 such that

diamC�fx; yg�aMjxÿ yj

for every fx; ygH gi for some i A f1; . . . ; ng, then qU is a quasicircle.
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Proof. For each d > 0, there exists M1;M2 > 0 such that

(a.1) if jxÿ yjb d, then diam ~C�fx; yg�aM1jxÿ yj, and

(a.2) if either C or ~C is disjoint from fvig
n
i�1, then diamC�fx; yg�a

M2jxÿ yj.

For a moment, we only consider such an fx; ygH qU that C�fx; yg�V fvig
n
i�1 0

q but C�fx; yg�N gi for all i � 1; . . . ; n. Such fx; yg belongs to either A1 or

A2, where

A1 :� ffx; yg; ~C V fvig
n
i�1 0qg;

and

A2 :� ffx; yg; ~C V fvig
n
i�1 � qg:

If A1 0q, we put d1 :� inffjxÿ yj; fx; yg A A1g > 0 and set d � d1. Otherwise

we ®x d > 0 arbitrarily. From (a.1) and (a.2), it follows that

diamC�fx; yg�a
M1jxÿ yj if fx; yg A A1;

M2jxÿ yj if fx; yg A A2

�

for such an fx; ygH qU that C�fx; yg�V fvig
n
i�1 0q but C�fx; yg�N gi for all

i � 1; . . . ; n. Therefore under the assumption, we have

diamC�fx; yg�amaxfM1;M2;Mgjxÿ yj

for every fx; ygH qU . Thus qU is a quasicircle (cf. [22] or [11]). r

We will ®nd below an admissible fgig
n
i�1 satisfying the assumption of Lemma

5.5.

Case 1. Let vi be a landing vertex of U and a repelling periodic point of

P. Without any loss of generality, we assume that every external ray landing at

vi is ®xed by P. We write v � vi and put r :� P 0�v� A C nD.

We choose a linearizing chart �D; h� at v, i.e., h : D ! D is conformal,

h�v� � 0 and h�P�z�� � rh�z� �z A D�, such that v is the only vertex contained

in D.

Since D is a linearizing coordinate neighborhood of v, we have:

(*) for any k A N , a branch of Pÿk ®xing v is de®ned and univalent on D

and �Pÿk� 0�v� � rÿk.

We write this branch as Pÿk in below since we focus on a local dynamics of P

around v.

Choose r > 0 so that D�v; 3r�HD. Let g�0� be a component of qU VD�v; r�

containing v and put g�k� :� Pÿk�g�0�� for k A N . By taking r > 0 small enough,

we assume that diam g�0� < diam�qUng�0��.

Proposition 5.2. For any k A N , g�k� is an open subarc of qU containing v,

and g�k� P g�kÿ1�. Moreover, diam g�k� ! 0 as k ! y.
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Proof. g�0� is the union of v and two subarcs of external GY-logarithmic

spirals landing at v. By assumption, these spirals are also ®xed by P. On the

other hand, we have h�g�k�� � rÿk � h�g�0�� �k A N�. Combining Pÿ1-invariance

and Pÿ1-contractiveness of g�0�, we have g�k� P g�kÿ1�.

Since diam h�g�k�� ! 0 as k ! y, we have diam g�k� ! 0 as k ! y. r

Now we ®x an fx; ygH g�1� arbitrarily. Choose the least k A N such that

C�fx; yg�N g�k�1�. Setting X :� Pk�x� and Y :� Pk�y�, we have:
. Pk�C�fx; yg��H g�0�, and
. Pk�C�fx; yg�� � C�fX ;Yg�N g�1�.

Since Pÿk is conformal on D�v; 3r�, we have:

Claim.

diamC�fx; yg�

jxÿ yj
aM

diamC�fX ;Yg�

jX ÿ Y j
�M � 64�: �1�

Proof. By applying the Koebe distortion theorem to Pÿk�v� 3rw� on

w A D, we have

jPÿk�z� ÿ vja 3rrÿk jwj

�1ÿ jwj�2
�z � v� 3rw�:

Putting z A C�fX ;Yg� �Hg�0��HD�v; r�, we have jwja diamC�fX ;Yg�=�3r� and

so C�fx; yg�HD�v; �9=4�rÿk diamC�fX ;Yg��. Thus

diamC�fx; yg�a
9

2
rÿk diamC�fX ;Yg�: �2�

Next, since X ;Y AD�v; r�, D�X ; jXÿY j�HD�X ; 2r�HD�v; 3r�. By applying

the Koebe distortion theorem to Pÿk�X � 2rw� on w A D, we have

2rj�Pÿk� 0�X�j
jwj

�1� jwj�2
a jPÿk�z� ÿ xj �z � X � 2rw�:

Putting z � Y , we have

1

4
j�Pÿk� 0�X�j jX ÿ Y ja jxÿ yj: �3�

Finally, by applying Koebe distortion theorem to Pÿk�v� 3rw� on w A D, we

have

3rrÿk 1ÿ jwj

�1� jwj�3
a

d

dw
�Pÿk�z��

�

�

�

�

�

�

�

�

�z � v� 3rw�:
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Putting w � �X ÿ v�=3r, we have

9rÿk=25 a j�Pÿk� 0�X�j: �4�

Summing up (2), (3) and (4), we have the claimed inequality (1). r

We put gv :� g�1� in this case.

Case 2. Let vi be a landing vertex of U and not periodic. From the

assumption, there exists k A N such that Pk�vi� is a repelling periodic point.

Let k0 be the least such k. Without loss of generality, we assume that every

external ray landing at Pk0�vi� is ®xed by P. We write v � vi and put v0 :�

Pk0�vi�.

Choose two simply connected domains D C v and D0 C v0 such that Pk0 jD :

D ! D0 is proper and Dnfvg contains no critical point of Pk0 . By the same

way as that in Case 1, we can choose D0 so that it is a linearizing coordinate

neighborhood of v0 for P containing no other vertex than v0 in D0.

Let Q : D ! D be a lift of the branch of �PjD0�
ÿ1 ®xing v0, which is uni-

valent, by Pk0 jD. We have:

(**) for any k A N , Qk is de®ned and univalent on D with Qk�v� � v and

�Qk� 0�v� � ~rk, where Q 0�v� �: ~r A D
� (by the Schwarz lemma).

Choose r > 0 so that D�v; 3r�HD and let g�0� be a component of qU V

D�v; r� containing v. We can use Q as a substitute for Pÿ1 in Case 1 by choosing

Q such that Q�g�0��Hg�0�. Put g�k��Qk�g�0�� for k A N and assume that diam g�0�

< diam�qUng�0�� by taking r > 0 small enough.

By the argument similar to that in Case 1, it follows that for any k A N , g�k�

is an open subarc of qU containing v, g�k� P g�kÿ1� and diam g�k� ! 0 as k ! y.

We set X :� Qÿk�x� and Y :� Qÿk�y� for fx; ygH g1 by the least k A N with

C�fx; yg�N g�k�1�. Then C�fX ;Yg�N g�1� and Claim in Case 1 also holds in

this case.

We put gv :� g�1� in this case, too.

We have now de®ned the open subarc gv for each v A fvig
n
i�1. We write

gi :� gvi . If every gi is small enough, this fgig
n
i�1 is admissible. From the proof

of Lemma 5.5, the fX ;Yg in Case 1 and 2 satis®es that

diamC�fX ;Yg�

jX ÿ Y j
amaxfM1;M2g:

Therefore from Claim, it follows that fgig
m
i�1 satis®es the assumption in Lemma 5.5.

Now the proof of Lemma 5.4 is completed. r

Let �PpjU;U;V� be a weak renormalization around x such that every land-

ing vertex of V is eventually mapped to a repelling cycle. Since PpjU : U ! V is
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a proper map and every landing vertex of U is mapped to that of V, every one of

U is also eventually mapped to a repelling cycle. Thus U and V are quasidiscs

by Lemma 5.4 so have quasiconformal re¯ections lU of qU and lV of qV re-

spectively.

If qU V qV � q, then �PpjU;U;V� is a polynomial-like map of degree more

than one and K�PpjU;U;V�HU . Since U contains no preperiodic critical point

eventually mapped to a repelling or parabolic periodic point, Theorem 5.1 trivially

holds. Thus from now on, we assume that qU V qV 0q.

For each landing vertex v of U (resp. V ), let Vv �U� (resp. Vv �V�) be

the union of v and two edges of U (resp. V ) from v. Then it follows that

Pp�Vv �U�� � VP p�v��V�.

By Lemma 5.2 (iv), we choose a set fNv; v is a landing vertex of Ug,

where each Nv is a neighborhood of

Vv �U�VGÿ1 0;
l�U�

d p

� �� �

in C nU such that all elements of fNvg are mutually disjoint.

We ®x such fNvg. We consider the quasiconformal opening of P around

such landing vertices of U as are critical points of Pp: We put

f0 :�

Pp on U ,

lV � Pp � lU on Nv if v is a critical point of Pp,

Pp on Nv if v is not so.

8

<

:

Then every vertex of U is not a branch point of f0 which is a quasiregular map on

U U �6Nv�, and f0�Nv� is a neighborhood of VP p�v��U�VGÿ1��0; l�U��� in C nV .

The number of components of qU V qV is ®nite, and we write the set of

them as fWig
m
i�1. Each Wi contains one and only one landing vertex vi of U

and is written as Wi � Vvi�U�, and all elements of fWig
m
i�1 are mutually disjoint.

Proposition 5.3 (Straightening of opened polynomials). There exist fUig
m
i�1

and fVig
m
i�1 such that

(i) Ui H6Nv �HC nU�, Vi H f0�6Nv� �HC nV�, Ui FVi �i � 1; . . . ;m�,

and all elements of fVig
m
i�1 are mutually disjoint,

(ii) U0 :� U U �6m

i�1
Ui�U �6m

i�1
� f0�

ÿ1�Vi�� and V0 :� V U �6m

i�1
Vi�U

�6m

i�1
f0�Ui�� are simply connected domains and U0 FV0, and

(iii) f0jU0 : U0 ! V0 satis®es

(a) f0 is a proper map and has the same degree as �PpjU;U;V�,

(b) the ®lled-in Julia set K� f0jU0;U0;V0� :� 7
nb0

� f0�
ÿn�U0� agrees

with K�PpjU;U;V�, and

(c) � f0jU0;U0;V0� is renormalizable, and more strongly, hybrid

quasiconformally conjugate to a polynomial P0.
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Proof. First we ®nd fUig and fVig satisfying (i), (ii) and (iii)-(a).

Case 1. Suppose that all elements of fvig
m
i�1 are periodic points of Pp. By

assumption, they are repelling periodic points. Put f :� Pp. Without any loss

of generality, we assume that f �viÿ1� � vi �i � 1; . . . ;m� 1�, where v0 :� vm and

vm�1 :� v1. Then every vi is a repelling ®xed point of f m so not a critical point

of it. Thus we do not need the quasiconformal opening of P around fvig
m
i�1.

Lemma 5.6. It follows that:

(***) for i � 1; 2; . . . ;m� 1, f �Wiÿ1�IWi, where W0 :� Wm and Wm�1 :�

W1.

Proof. It follows from f �Wiÿ1� �Pp�Vviÿ1
�U�� �Vvi�V�GVvi�U� �Wi. r

Since vi is a repelling ®xed point of f m and l�� f m�ÿn�Wi�� � dÿpmn � l�Wi�

�i � 1; 2; . . . ;m� 1�, we have:

Corollary 5.3. There exists a neighborhood Vm of Wm in C nV and the

branch ~G of � f m�ÿ1
on Vm ®xing vm such that ~G�Vm�FVm and 7

nb0
~G n�Vm� �

fvmg.

If m � 1, we put U1 :� ~G�V1�FV1. Taking V1 small enough, we have

U0 � U U � f0�
ÿ1�V1�FV0 � V UV1 since � f0�

ÿ1�V1�nU1 FV .

If m > 1, we choose Ui HC nU and Vi HC nV �i � 1; . . . ;mÿ 1� by (***) so

that
. Ui :� Gi�1�Vi�1�, where Gi�1 is the branch of f ÿ1 on Vi�1 mapping vi�1

to vi,
. Vi is a neighborhood of Wi in C nV , and Ui FVi, and
. G1�V1�FVm, where G1 is the branch of f ÿ1 on V1 mapping v1 to vm.

We put Um :� G1�V1�. If V1; . . . ;Vm are small enough, we have U0 �

U U �6m

i�1
� f0�

ÿ1�Vi��FV0 � V U �6m

i�1
Vi� since � f0�

ÿ1�Vi�nUiÿ1 FV for all i.

Case 2. Suppose that some element of fvig
m
i�1 is not a periodic point of

Pp. We put f :� Pp. We write ``vi ! vj'' if f �Wi�VWj 0q. We have the

fact similar to (***) in Case 1:

(****) If vi ! vj, then f �Wi�IWj.

We recall that f0 1 f on qU .

For every cycle CH fvig
m
i�1 of f , we ®rst de®ne Uj and Vj for each vj A C

applying the argument in Case 1.

We ®x vi which is not a periodic point of f .

If vi ! q, or equivalently f �Wi�VWj � q for all j � 1; . . . ;m, then vi B

K� f jU;U;V�. We take a neighborhood Vi of Wi in C nV arbitrarily and set

Ui � q.
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If vi ! vj and vj has already had Uj and Vj, we de®ne Ui by the com-

ponent of f ÿ1
0 �Vj� intersecting Wi, and Vi by a neighborhood of Wi in C nV

satisfying Ui FVi.

Now every vi of fvig
m
i�1 has Ui and Vi. If every Vi is small enough,

fUig
m
i�1 and fVig

m
i�1 satisfy (i) and (ii). By de®nition of f0, U0 and V0, we

have (iii)-(a).

We put f :� Pp.

Lemma 5.7. K� f0jU0;U0;V0� � K� f jU;U;V�.

Proof. Suppose that K� f0jU0;U0;V0�nK� f jU;U;V�0q and take an

element x of it. Then there exists k1 A N such that f k1
0 �x� A U0nU since x B

K� f jU;U;V�, and there exists k2 b k1 such that f k2
0 �x� is contained in such an

intUi that vi is a repelling periodic point of f . Let pi be the period of vi. Then

f k2
0 �x� A 7

nb0
�� f0�

pi�ÿn�intUi�. On the other hand, by Corollary 5.3, we have

7
nb0

�� f0�
pi�ÿn�intUi� � q. It is a contradiction. r

By the above lemma, we have (iii)-(b).

Let ~U0 be the subset of U0nU where f0 is not conformal. If vi is a repel-

ling periodic point, then f0 is conformal on Ui. Therefore we have f ÿn
0 � ~U0�HU

for some n A N . Thus � f0jU0;U0;V0� is hybrid quasiconformally conjugate to a

polynomial P0. r

By the following facts:
. x is the only non-repelling periodic point in U,
. K�PpjU;U;V� � K� f0jU0;U0;V0�HU0, and
. every branch point of f0jU0 is contained in U,

P0 has desired properties in Theorem 5.1. Now we have completed the proof of

Theorem 5.1. r

6. Main theorem and proofs.

Let P be an n-subhyperbolic polynomial of degree db 2 whose Julia set is

connected and have an irrationally indi¨erent cycle Z � fzng
m
n�1.

By using the conformal map f� fP :C nD!C nK�P� with f�z�=z! a
1=�dÿ1�
d ,

where ad is the d-th coe½cient of P, we obtain the same results as those in the

case where P is monic.

We set n0 � n0�P�. For an admissible k and Yb 0, we write the puzzle

piece of S
�k�
n0 �Y� containing zn as U

�k�
n , and set U �k��Z� :� 6m

n�1
U

�k�
n and K �k��Z�

:� K�P�VU �k��Z�. We note that K �k��Z� is independent of the opening Y by

Lemma 5.3.
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Lemma 6.1. For every admissible k, K �k��Z� contains at least one recurrent

critical point corresponding to Z.

This lemma follows from Claim in the proof of Main Theorem.

Definition. Suppose that P is an n-subhyperbolic polynomial with con-

nected Julia set and has an irrationally indi¨erent cycle Z. Then P is piecewise

1-subhyperbolic for Z if there exists an admissible k such that K �k��Z� contains

only one recurrent critical point corresponding to Z.

Now we state Main Theorem in this paper.

Main Theorem (Cycle-version of NLC). If an n-subhyperbolic polynomial

with connected Julia set has a Siegel cycle whose multiplier is l and for which it is

piecewise 1-subhyperbolic, then a satis®es the Brjuno condition.

Proof. Suppose that P satis®es the assumption. Let Z � fzng
m
n�1 be a

Siegel cycle whose multiplier is l and for which P is piecewise 1-subhyperbolic,

and let c be the only recurrent critical point corresponding to Z which is con-

tained in K�k��Z�.

We ®x Y > 0. Without loss of generality, we assume that c A U
�k�
1 . By

de®nition, �PmjU
�k�m�
1 ;U

�k�m�
1 ;U

�k�
1 � is a weak renormalization around z1. Since

P is n-subhyperbolic, no critical point in F�P� accumulates to J�P� so P has no

parabolic cycle. Therefore every vertex of U
�k�
1 is eventually mapped to a repel-

ling cycle.

By applying Theorem 5.1 to �PmjU
�k�m�
1 ;U

�k�m�
1 ;U

�k�
1 �, we have a strong

renormalization P0 of it. Let F be a quasiconformal automorphism of C giving

the hybrid quasiconformal conjugacy between them in Theorem 5.1.

Claim. U
�k�m�
1 contains a recurrent critical point of P corresponding to Z.

Proof. By the ManÄeÂ Theorem, P0 has a recurrent critical point c0 corre-

sponding to the irrationally indi¨erent ®xed point F�z1�. Therefore F
ÿ1�c0� is a

recurrent critical point of Pm corresponding to the irrationally indi¨erent ®xed

point z1 of P
m in qK�PmjU

�k�m�
1 ;U

�k�m�
1 ;U

�k�
1 �HU

�k�m�
1 . Thus fP i�Fÿ1�c0��g

mÿ1
i�0

contains a recurrent critical point of P corresponding to Z. From the unique-

ness of c, it follows that F
ÿ1�c0� � c. r

Let us continue to prove Main Theorem. Thus F�c� is only one recurrent

critical point of P0 corresponding to F�z1�. Thus P0 is a 1-subhyperbolic poly-

nomial without critical point eventually mapped to a repelling or parabolic cycle.

Furthermore, since P0 is linearizable at F�z1�, P0 has no Cremer cycle. Thus P0

has no preperiodic critical point in J�P0�.

Consequently, P0 is a 1-hyperbolic polynomial and linearizable at the ir-
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rationally indi¨erent ®xed point F�z1� whose multiplier is l. From the result in

Section 4 (Theorem 1 in 1-hyperbolic case), it follows that a satis®es the Brjuno

condition. r

Proof of Theorem 2. Let P be a 1-subhyperbolic polynomial and have an

irrationally indi¨erent cycle Z � fzng
m
n�1 whose multiplier is l.

Suppose that K�P� is disconnected. Let K1 be the component of K�P�

containing z1 and k A N be the least such one that Pk�K1�VK1 0q. Then

Z
1
:� f�Pk� j�z1�g

m=kÿ1
j�0 is an irrationally indi¨erent cycle of Pk whose multi-

plier is l. Let G be a Green function of C nK�P� with its pole y and Ur be

the component of C nGÿ1�r� containing z1 for r > 0. It is known that for

su½ciently small r, �PkjUr;Ur;P
k�Ur�� is a polynomial-like map of degree more

than two whose ®lled-in Julia set agrees with K1.

Let P0 be a polynomial which is hybrid quasiconformal conjugate to

�PkjUr;Ur;P
k�Ur��. P0 is a polynomial whose Julia set is connected, and have

an irrationally indi¨erent cycle F�Z1� whose multiplier is l, where F is a quasi-

conformal automorphism of C giving the hybrid conjugacy Pk � F
ÿ1 � P0 �F

on Ur.

By the ManÄeÂ theorem, there exists a recurrent critical point c0 of P0 corre-

sponding to F�Z1�. Then c :� F
ÿ1�c0� is a recurrent critical point of Pk cor-

responding to Z
1. Thus fP i�c�gkÿ1

i�0 contains a recurrent critical point of P

corresponding to Z. Since P is 1-subhyperbolic, we assume, without loss of

generality, that c is the only recurrent critical point of P that corresponds to an

irrationally indi¨erent cycle of P. Then P0 is a 1-subhyperbolic polynomial with

connected Julia set.

If Z is a Siegel cycle of P, then F�Z1� is a Siegel cycle of P0. Clearly P0 is

piecewise 1-subhyperbolic for F�Z1�. Therefore from Main Theorem, it follows

that a satis®es the Brjuno condition. r

7. Examples and case studies.

We conclude with several examples of n-subhyperbolic polynomials.

Example 1. P�z� � lz�z2 is a typical example of 1-hyperbolic polynomials.

The only critical point of it corresponds to the origin.

Example 2. P�z� � lz�1� z�dÿ1 �db 3� has d ÿ 2 critical points eventually

mapped to the origin which is a ®xed point and another one corresponds to the

origin. Thus it is 1-hyperbolic.

Example 3. Pt�z� � lz�1ÿ �t� 1�=�2t�z� 1=�3t�z2� is a 1-hyperbolic poly-

nomial if jtj is su½ciently large (cf. [4] O18.2). We note that two critical points

are 1 and t and that t is contained in the superattractive basin of y at that time.
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Example 4. The family F � fPt; t A Cg of such polynomials as the above

is an algebraic family over t A C with bifurcations.

Let Md �db 2� be the connectedness locus of fzd � c; c A Cg.

Theorem 7.1 ([14], Theorem 1.3). Let ft be a holomorphic family of rational

maps with bifurcations. Then there is a db 2 such that for any c A Md and m > 0,

the family contains a polynomial-like map f n
t : U ! V hybrid conjugate to zd � c

with mod�VnU� > m.

By the above, F contains actually 1-subhyperbolic polynomial which is

not 1-hyperbolic. Furthermore, for every small e > 0, there exists such a 1-

subhyperbolic polynomial of F that the Hausdor¨ dimension of its Julia set

is more than 2ÿ e.

Example 5. By applying Theorem 7.1 to Pd �db 3�, we obtain completely

general examples of n-subhyperbolic polynomials with irrationally indi¨erent ®xed

points.

Example 6. P�z� � lz� zd �db 3� satis®es P�cz�=c � P�z�, where c is a

prime �d ÿ 1�-th root of unity, so it is �d ÿ 1�-hyperbolic. However P is semi-

conjugate to Q�w� � l
dÿ1w�1� w�dÿ1 by w � zdÿ1=l. Thus P is linearizable at

the origin if and only if so is Q. From Example 2 �db 3� and the Yoccoz

theorem �d � 2�, we have:

Theorem 7.2. If P�z� � lz� zd �db 2� is linearizable at the origin, then

�d ÿ 1�a satis®es the Brjuno condition.

Theorem 3 directly follows from the Brjuno theorem and Theorem 7.2.
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