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Abstract. We study the non-linearlizability conjecture (NLC) for polynomials at
non-Brjuno irrationally indifferent fixed points. A polynomial is n-subhyperbolic if
it has exactly n recurrent critical points corresponding to irrationally indifferent cycles,
other ones in the Julia set are preperiodic and no critical orbit in the Fatou set accu-
mulates to the Julia set. In this article, we show that NLC and, more generally, the
cycle-version of NLC are true in a subclass of n-subhyperbolic polynomials. As a
corollary, we prove the cycle-version of the Yoccoz Theorem for quadratic polynomials.

We also study several specific examples of n-subhyperbolic polynomials. Here
we also show the scaling invariance of the Brjuno condition: if an irrational number o
satisfies the Brjuno condition, then so do moa for every positive integer m.

1. Introduction.

In this paper, we always assume A= e”™* (xe R\Q). We consider a
holomorphic germ f at zy € C fixing zy with multiplier f'(zy) = A. Then z; is
called an irrationally indifferent fixed point of f and o is called the rotation
number of f at zy. This name is derived from a rigorous relationship between
holomorphic dynamics near an irrationally indifferent fixed point and that of
analytic circle homeomorphisms. For example, rotation numbers of holomor-
phic germs are topologically invariant. For more details, see [21].

We say f to be linearizable at z; if there exists a neighborhood D of zy, and
a conformal map w = h(z) from D to the unit disk D with /(zp) =0 such that
hofoh ! is a rotation w+ Aw on D.

Brjuno showed in that if o satisfies the Brjuno condition, then such f
is always linearizable at zy. The Brjuno condition is defined in terms of the
continued fraction expansion. For the rigorous definition, see or [16].

In fact the Brjuno condition is the best possible. Yoccoz proved in that
if a quadratic polynomial is linearizable at an irrationally indifferent fixed point
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whose multiplier is A, then o satisfies the Brjuno condition. It is not known
whether we can extend this result for polynomials of degree more than two.
The non-linearizability conjecture is the following (cf. and [19]).

NLC. If a polynomial of degree d > 2 is linearizable at an irrationally
indifferent fixed point whose multiplier is 4, then o satisfies the Brjuno condition.

It follows from the Yoccoz theorem that NLC is true in the class of qua-
dratic polynomials. In this paper, we shall prove NLC in the class of piecewise
1-subhyperbolic polynomials, which is a subclass of n-subhyperbolic polynomials
defined below.

Let P be a polynomial of degree d > 2. For details and proofs of the basic
results of complex dynamics, see and [17].

NotaTiON. The Fatou set F(P) is the largest open set such that the iterates
{P"|F;ne N} form a normal family. The Julia set J(P) is the complement of
the Fatou set. The filled-in Julia set K(P) consists of those z € C such that its
orbit {P"(2)},s, is bounded.

The Julia set J(P) is equal to the boundary of K(P).

NotaTION. For a point ze C, we call {P"(z)},., the orbit. z is periodic
and «{P"(z)]»l.’igl is a cycle if z, P(z),...,P""!(z) are distinct and P"(z) = z for
some m e N.

Let & = {z,}", be a cycle. The multiplier of % is defined by (P™)'(z,),
and & s irrationally indifferent if each z, i1s an irrationally indifferent fixed point
of P™. Moreover, if P™ is linearizable at each z,, or equivalently if & < F(P),
then Z is called a Siegel cycle and the Fatou component containing z, is called
the Siegel disk of P at z,. Otherwise & i1s called a Cremer cycle. We call each
point of a Siegel cycle a Siegel (periodic) point, and call each one of a Cremer
cycle a Cremer (periodic) point.

DerINITION.  For an irrationally indifferent cycle & = {z,},", of P, the
singular set & = (%) is defined by | )/, S, (S, is the Siegel disk at z,) if Z is
a Siegel cycle, and by & itself if & is a Cremer cycle.

Taeorem 1.1 (Mané [12]). For each singular set ¥ of P, there exists a
recurrent critical point ¢ such that w(c) > 0.

Here w(c) = {z € C; there exists ny — oo such that z=1im P"(c)} is the
omega limit set of ¢, and c is recurrent if ¢ € w(c).

DErFINITION. A recurrent critical point ¢ corresponds to an irrationally in-
different cycle & if w(c) 2 0F(%).

In this paper, we always count the number of critical points with multiplicity.
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DErFINITION (n-subhyperbolicity). For a non-negative integer n, a polynomial
P is n-subhyperbolic if

(a) there exist exactly n recurrent critical points corresponding to irrationally

indifferent cycles,

(b) every critical point in J(P) other than the ones in (a) is preperiodic, and

(c) no critical orbit in F(P) accumulates to J(P).

An n-subhyperbolic polynomial is n-hyperbolic if there is no preperiodic
critical point in J(P).

By definition, a quadratic polynomial with an irrationally indifferent cycle is
1-hyperbolic. A 0-subhyperbolic polynomial is subhyperbolic in a classical sense.
For n>1, an n-subhyperbolic polynomial is obtained by ‘““blowing-up’ preperiodic
critical points of a 0-subhyperbolic polynomial in its Julia set.

We shall precisely state Main Theorem of this paper in Section 6, which
says that NLC is true in the class of piecewise 1-subhyperbolic polynomials. For
simplicity, we first treat the class of 1-hyperbolic and 1-subhyperbolic polynomials.

THEOREM 1 (NLC). If a 1-subhyperbolic polynomial is linearizable at an
irrationally indifferent fixed point whose multiplier is 1, then o satisfies the Brjuno
condition.

In particular, we also have the following earlier result.

CoroLLARY | ([18]). Suppose that a cubic polynomial P is linearizable at
an irrationally indifferent fixed point and let its rotation number be o. If there
exists a critical point of P iterated into a cyclic Fatou component which is a
superattractive or attractive basin or a Siegel disk, then o satisfies the Brjuno
condition.

More generally, we also have a positive answer for the cycle-version of NLC.

THEOREM 2 (Cycle version of NLC). If a l-subhyperbolic polynomial has a
Siegel cycle whose multiplier is A, then o satisfies the Brjuno condition.

As a corollary, we have the cycle-version of the Yoccoz Theorem.

COROLLARY 2. If a quadratic polynomial has a Siegel cycle whose multiplier
is A, then o satisfies the Brjuno condition.

By studying specific examples of n-subhyperbolic polynomials, we also have:

THEOREM 3 (Scaling invariance of the Brjuno condition). If o satisfies the
Brjuno condition, then mo. (m € N) also satisfies the Brjuno condition.

In the rest of this paper, we shall prove Main Theorem. We first prove
in 1-hyperbolic case. In Section 2, we consider the linearizability-
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preserving perturbations for an arbitrary polynomial P. Preserving the linear-
izability of P at every irrationally indifferent periodic point, this perturbation
increases the number of the foliated equivalence classes of acyclic critical points
in F(P).

In Section 3, we shall survey the structure theorem of Teichmiiller spaces of
polynomials and their uniformization in parameter spaces, and consider a local
lifting of this uniformization into the representation space of polynomials.

In Section 4, we shall apply linearizability-preserving perturbations to a 1-
hyperbolic polynomial in order to increase the dimension of its Teichmiiller
spaces. We shall complete the proof of [Theorem 1 in 1-hyperbolic case.

In Section 5, we shall define weak renormalizations of polynomials by strong
separation and show that they are in fact strongly renormalizable under a certain
condition.

In Section 6, we shall define a subclass of n-subhyperbolic polynomials,
that 1s, piecewise 1-subhyperbolic polynomials in terms of strong separation,
and state Main Theorem in this paper. Applying strong renormalizations to
piecewise 1-subhyperbolic polynomials, we complete the proof of Main Theorem
and Theorem 2.

In Section 7, we conclude with several examples of n-subhyperbolic poly-
nomials. We shall prove here.

ACKNOWLEDGEMENT. The author would like to express his gratitude to Prof.
Masahiko Taniguchi and Prof. Toshiyuki Sugawa for many valuable discus-
sions and advices, and also to Prof. Anthony Manning, Prof. Oleg Kozlovski
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thank Prof. Caroline Series for inviting him as a long term visitor to Warwick
university and the referee for reading the draft carefully and giving him many
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2. Linearizability-preserving perturbation.

DerINITION.  Let P be a polynomial. A point is said to be acyclic if it is
neither periodic nor preperiodic point of P.
The grand orbit of xe C is

GO(x,P):={ye C;P"(x) = P"(y) for some n,m > 0}.

Two points x,y e C are in the foliated equivalence class of P if GO(x,P) =
GO(y, P).
N, 1s the number of the foliated equivalence classes of acyclic critical points

of P in F(P).

Main result in this section is the following:
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THEOREM 2.1. Let P be an n-hyperbolic polynomial of degree d > 2. Then

there exists an n-hyperbolic polynomial P with the same degree as P such that

(i) If P is linearizable at an irrationally indifferent fixed point whose
multiplier is 1, then P is also so, and

N

(i) Nyc(P)=d-n-—1.

NotaTioN.  For r >0 and x e C, we put D(x,r) :={ze C;|z — x| <r} and
D, :=D(0,r). For CeC and U< C, we set C-U :={Cz;ze U}.

For a C'-function f, we set u[f]:=df/0f. For an open set V < C, we
identify a Beltrami coefficient on V' with a function x e L* (V') such that |y,
<1, and for a C'-function f: ¥V — W and a Beltrami coefficient # on W, we
define the pullback f“u of u on V by

TS () + ()
o Dulf )+ (2)

(f1)(z) =

follows from the three Lemmas below. We fix a polynomial P
of degree d > 2 arbitrarily.

LemMA 2.1. Let ¢ be a non-periodic critical point in F(P) with multiplicity
k >2. Then there exist an analytic Jordan neighborhood U of ¢ in F(P), a quasi-
conformal automorphism ® of C and a polynomial P with the same degree as P
such that
U contains neither critical point other than ¢ nor periodic point,
P has exactly k distinct critical points in @(U), which are simple, and
P=d"'"oPod on C\U.

Proor. Let 2 be the component of F(P) containing c¢. Then it is not
a Siegel disk of P. By assumption, ¢ is not a superattracting periodic point.
There exists an analytic Jordan neighborhood U of ¢ in € such that
U contains neither critical point other than ¢ nor periodic point of P,
for all ne N, P"(U)NU = &, and
P|U is a proper map onto a Jordan domain V.
We choose a quasiregular extension Q: U — V of P|oU : 0U — 0V so that
Q|0U = P|oU, and
QO has exactly k distinct branch points in U, which are simple.
We set a quasiregular endomorphism of C:

. {P (on C\U)
Q (on U).
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In the above, we have chosen the neighborhood U so that

[ (P'u[Q](z) if Pi(z) e U for some i e NU{0},
pu(z) = 0 :
otherwise,

becomes a P-invariant Beltrami differential on C.
Let @ be a quasiconformal automorphism of C with u[®] =u. Then we

have u[® o P| = u[®], so P:=® o Pod ! is holomorphic. By construction, we
have deg P = deg P. ]

The first and second lemma says that we can decompose a critical point ¢
with multiplicity k& in F(P) to k distinct simple and non-periodic critical points
near c.

LEmMMA 2.2. Let ¢ be a periodic critical point in F(P) (so it is a super-
attracting periodic point) with multiplicity k > 1. Then there exist an analytic
Jordan neighborhood U of ¢ in F(P), a quasiconformal automorphism ® of C and
a polynomial P with the same degree as P such that

U contains no critical point other than c,

P has exactly k distinct critical points in @(U), which are simple,
@(c) is not a critical point of P, and

P=d""oPo® on (C\U)U{c}.

The inverse of this perturbation is well-known (cf. [3] VI. 5). For readers’
convenience, we write the proof.

Proor. Let p be the period of ¢ and Q the component of F(P) containing c.
Then Q is the superattractive fixed basin of P?. There exists an analytic Jordan
neighborhood U of ¢ in Q such that

U contains no critical point other than c,
PP(U) € U, and
P|U is a proper map onto a Jordan domain V.
We choose a quasiregular extension Q: U — V of P|oU :0U — dV so that
Q=P on o0UU{c},
Q is holomorphic on P?(U),
Q has exactly distinct k critical points, which are simple, in P?(U)\{c},
and
¢ i1s not a critical point of Q.
By the same way as that in the previous proof, we have such a polynomial P
in this Lemma. [

The third lemma says that we can move slightly each critical orbit of P in
F(P).
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LemMaA 2.3.  Let ¢ be a non-periodic and simple critical point in F(P). Then
there exist an analytic Jordan neighborhood U of ¢ in F(P), a quasiconformal
automorphism @ of C and a polynomial P with the same degree as P such that

U contains neither critical point other than ¢ nor periodic point,

P has one and only one critical point d(c) in ®(U), which is simple,
P=d"'oPod on C\U, and

@(c) is an acyclic critical point of P and not foliated orbit equivalent to any
other critical point of P.

Proor. Let Q2 be the component of F(P) containing ¢. By assumption, c is
not a superattracting periodic point of P and Q2 is not a Siegel disk of P. Thus
there exists an analytic Jordan neighborhood U of ¢ in Q such that

U contains no critical point other than c,

for all ne N, P"(U)NU = &, and

P|U is a proper map onto a Jordan domain V.
There exists a small neighborhood ¥} of the critical value P(c) such that for
every v € Vp, there exists a quasiregular extension Q : U — V of P|oU : 0U — dV
satisfying:

Q|oU = P|oU,

c is one and only one branch point of Q in U, which is simple, and

. Q)=
Let P be a polynomial obtained by the same way as that in the proof of [Lemmal
2.1. We choose ve Vo\{P(c)} so that for P, &(c) is acyclic and not foliated
orbit equivalent to any other critical point. ]

REMARK. In constructing the quasiregular extensions Q of P|0U appearing
in the above proofs, we can use, for example, the following lemma:

LemMa 2.4 ([9)). Let Xy (k> 1) be the quotient of D* by the action of the
symmetric group Sy and we put the set of normalized Blaschke products (or proper
holomorphic maps of D onto itself fixing 0, 1) of degree k + 1:

k _
l—a\[(z—aq ,
= s ail <1 1<j<k;.
% {zH(laj)(lde),a]< for —]—k}

J=1

The map Xy — X} which maps the set of zeros of B € %, to the critical set of B is
a homeomorphism.

Proor oF THEOREM 2.1. Let P be an n-hyperbolic polynomial. We recall
that there exists d —n — 1 critical points in F(P).

The perturbations in the above Lemmas preserve the n-hyperbolicity. Thus
by applying and 2.2 to every critical point in F(P) either periodic or
with multiplicity £ > 2 and using for simple critical points in F(P)
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finite times, we have a polynomial P with the same degree as P, a quasiconformal
automorphism @ of C and an open set U < C which is relatively compact in
(F(P)\(Siegel disks of P)) such that

P=®'oPod on C\U, and

P is n-hyperbolic and Nyc(P)=d —n—1.
Consequently, P has desired properties. ]

3. Teichmiiller spaces of polynomials.

Let P be a polynomial of degree d > 2 and have an irrationally indifferent
fixed point zy whose multiplier is 4. Then there exists an affine transformation 4
with A(z9) =0 such that Ao Po A~! =: P; is a monic polynomial of degree d.
If P 1s I-subhyperbolic and linearizable at z,, P; is also 1-subhyperbolic and
linearizable at the origin. Thus we assume that P e #; and zy = 0 without any
loss of generality. Here for d > 2, we set

Py ={P(2)=dz+az* +- a1z +2z9 =", and
Py = {P(z) = Jz+arz>+ - +ag 1z + ayz? (ag #0)} = C?x C*.
We fix Pe %, arbitrarily.

DerINITION.  The deformation space of P rel the origin is

Def(C,0, P) := {¢

¢ 1s a quasiconformal automorphism of C y
fixing 0 and goPog ! =: P4 is a polynomial. ’

where ¢, ~ ¢, if there exists an affine transformation /.(z) :=cz such that
h.o¢, = ¢,. The equivalence class of ¢ is also written by ¢ so long as the
discussion is independent of the choice of representative.

We set # :={h;;ce C*}. Since rotation numbers of holomorphic germs
are topologically invariant, as we have stated in Introduction, we have Py € 2,
for ¢ € Def(C,0, P).

By the Ahlfors-Bers measurable Riemann mapping theorem [I], the map
from Def(C,0, P) to the set M,(C, P) of P-invariant Beltrami differentials on C:

Def(C,0,P) 5 ¢ — ul¢] € Mi(C, P)

is bijective. Hence we identify Def(C, 0, P) with M;(C, P), which has a structure
of a complex manifold.

DerINITION.  The quasiconformal automorphism group of P rel the origin is

w 1s a quasiconformal automorphism of C }
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It acts on Def(C,0,P) by w(¢) =dow!.
We set a normal subgroup of it:

There exists a uniformly quasiconformal
QCy(C,0,P) :=< we QC(C,0,P)| isotopy {w, e QC(C,0,P); 0 << 1}
with wy = w and w; = 1dc.

Now we define the Teichmiiller space, and state its structure theorem and the
discreteness of its modular group. For the full account and proof, see [15].

DEerINITION.  The Teichmiiller space is
Teich(C, P) := Def (C, 0, P)/QC,(C,0, P).
The equivalence class of ¢ is written by [4].

In McMullen-Sullivan [15], we define the deformation space and so on
without “re/ the origin” and write them by Def(C, P), QC(C, P) and QC,(C, P).
By definition, we have

Def(C,0, P) =~ Def(C,P) (=M;(C,P)) and
QCO(CaoaP) = QCO(Ca P)7

so this Teich(C, P) agrees with the Teichmiiller space of P defined by the usual
way. In particular,

Teich(C, P) = Def(C,0, P)/QC,(C, P).

THEOREM 3.1 (The structure theorem [15]). Teich(C,P) is a finite dimen-
sional connected and simply connected complex manifold whose complex dimension
is equal to

Nyc+ Nrr — Np,

where
Nyc is the number of the foliated equivalence classes of acyclic critical
points in F(P),
Ny is the number of invariant line fields on the Julia set of P, and
Np is the number of parabolic cycles.
Moreover, the canonical projection n: Def(C,0, P) — Teich(C, P) is a holomor-
phic submersion.

In Teich(C, P), the Teichmiiller metric d is defined by

L+ Jllg’ o " "l ¢ ~ ¢, and ¢" ~ ¢2}-

d((¢], [42]) = % jnf{logl —|lulg" o 6" M
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THEOREM 3.2 (Discreteness of modular group [15]). The modular group
rel the origin Mod(C,0, P) := QC(C,0,P)/QCy(C, P), which is a subgroup of
the Teichmiiller modular group Mod(C, P) := QC(C, P)/QCy(C,P), acts on
(Teich(C, P),d) isometrically, biholomorphically and properly discontinuously.

We put ./ := P;/(# -conjugation). By MTheorem 3.7, we have:
THEOREM 3.3 (Uniformization in the parameter space). The map
1 : Teich(C, P) o [¢] — [Py| € M,

is holomorphic, and every fiber n='([P4]) is discrete for [Py € n(Teich(C, P)).
Here [P| € M is the equivalence class of P e %,.

Proor. Mod(C,0, P) is a covering transformation group of # : Teich(C, P)
— n(Teich(C, P)) and its action on Teich(C, P) is properly discontinuous. []

In the rest of this section, we prepare a lemma needed later. Let p:
P; — M be the canonical projection.

LemMA 3.1. If P(z) =iz +axz®> + - +ag_1z97" +z9e P; (d > 3) satisfies
that:
(*)  for any ce C\{1} with ¢?=' =1, there exists je{2,3,...,d — 1} such
that a; #0 and ¢/~ # 1,
then there exists a local holomorphic section s of p from a neighborhood of [P] into
P, which maps [P] to P.

Proor. We fix Pe %, satisftying (*). We write the j-th coefficient of
Pie?; as aj(Py) (j=2,3,...,d—1). For each ce C\{1} with ¢/ ! =1, we
fix such j=j.€{2,3,...,d — 1} that ¢;(P) #0 and ¢/~! # 1 and choose such a
neighborhood ¥ of a;(P) in C* that V;N(c/71- V) = &.

For ce C\{1} with ¢! =1, we set V(c) :={P1e Py a,(P1)eV,} =Py
and set V := ﬂcdq:hc 1 V(e). If two distinct elements Py and P, of V' satisfy
p(P1) = p(P,), or equivalently P;(z) = Py(cz)/c for some ¢ € C\{0,1}, then this
¢ satisfies that ¢?~! =1 and a;(P)) = a;j(P,)c/! for all j=2,...,d —2. Thus
we have a; (Py)c’~ e (c/71- V)NV, but it contradicts the definition of V.
Therefore p is injective on V. We choose s:= (p|V) " O]

4. Proof of Theorem 1 in 1-hyperbolic case.

Lemma 4.1. If a l-hyperbolic polynomial Pe #; (d >2) satisfies Nyc =
d —2, then we have dimTeich(C, P) =dim.#Z =d — 2.

Proor. Since no critical point in F(P) accumulates to J(P), P has no par-
abolic periodic point. Thus we have Np = 0 and dim Teich(C, P) = Njp +d — 2.
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By Theorem 3.3, we have dim Teich(C, P) < dim.# = d — 2. Therefore we have
dim Teich(C,P) =d — 2 and Nj =0. O]

Lemma 4.2. If Pe 2, (d > 3) satisfies the condition (x) and dim Teich(C, P)
=d — 2, then P is quasiconformally stable in %, i.e., there exists a neighborhood
Uc P; of P such that every element of U is quasiconformally conjugate to P.

Proor. By [Lemma 3.1, we have a local section s of p from a neighborhood
V < Ml of [P] into #; which maps [P] to P. From dim Teich(C, P) = dim .Z,
it follows that x(Teich(C,P)) is an open neighborhood of [P]. We set U :=
s(n(Teich(C, P))N V). It is an open neighborhood of P in #,;, and every ele-
ment of U is quasiconformally conjugate to P by definition of the Teichmiiller
space. L]

Lemma 4.3. Pe 2, (d = 3) not satisfying (x) is not 1-hyperbolic.

Proor. From the assumption, it follows that P(cz)/c = P(z) for some c €
C\{0,1}, and so P'(cz) = P'(z). Thus if zy is a critical point of P, then z,/c
(# zo) is another one. Furthermore, if zy is contained in J(P), then z/c is also
50.

Suppose that P is 1-hyperbolic. Then P has one and only one critical point
in J(P). It is a contradiction. ]

Combining the above lemmas and [Theorem 4.1, we prove [Theorem 1 in the
case where Nyc =d — 2.

THEOREM 4.1 ([20], Théoreme IV.2.1). If a quasiconformally stable element
of ?; (d = 2) is linearizable at the origin, then the rotation number o satisfies the
Brjuno condition.

For readers’ convenience, we give a proof of a little simpler
than Pérez-Marco’s original one. In this proof, we only use the J-stability of
quasiconformally stable elements of #;.

Proor. In the case d =2, it trivially follows from the Yoccoz theorem.
We set d > 3. We fix a quasiconformally stable element P € ;. Then Julia set
depends continuously at P in the Hausdorff topology (cf. [13]).

We assume that P is linearizable at the origin. Then 0¢ J(P). By the
continuity of Julia sets, we choose r >0 and a neighborhood V of P in %,
so that every element of J has a Siegel disk at the origin including D,. Thus
there exists B > 0 such that P[b](z) := P(z) +z?/be V for |b| > B. We put, for
beC,

Oy(z) := %P[b] (bz) = dz+ 2>+ 0(bz*) as z— 0 (Qo(z) = Az +z%).
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Figure 1. The Reinhardt domain where H is holomorphic.
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Any element of {Qy; B < |b| < 2B} has a Siegel disk at the origin which includes
D, (r:=r/2B).

Suppose that J(Qy) intersects D,,. Then there exists z; € D and g > 0 such
that Qf(z1) =z since J(Qo) is the closure of the set of all repelling periodic
points of Qp. We set:

H(b,z) = ﬁ (beDap, zeD,),

which meromorphically depends on each variables and is uniformly continuous
on (D>p x D, )\(a small neighborhood of poles

Since D,, is included in the Siegel disk of Q, at 0 for B < |b| < 2B, Q) has
no periodic point in D, for B < |b| <2B. Thus H(b,z) is holomorphic on
{b;B < |b| < 2B} x D,,. On the other hand, since H(b,0)=1/(29—1) is a
bounded constant for every b € D,p, there exists 0 < r, < ry such that H(b,z) is
also holomorphic on D,g x D,,. See Figure 1.

By the Hartogs continuation theorem, H(b,z) is actually holomorphic on
D>p x D,,. It contradicts the assumption Qg(zl) =z and z; € D;‘l.

Thus Qo(z) = Az + z? also has the Siegel disk at 0 including D,,. From the
Yoccoz theorem, it follows that o satisfies the Brjuno condition. ]

~—

Let us complete the proof of [Theorem 1 in 1-hyperbolic case.

Let P be a 1-hyperbolic polynomial of degree d > 2 and have an irrationally
indifferent fixed point z; whose multiplier is /.

Suppose that P is linearizable at zy. Let P be the polynomial in Theorem
2.1 derived from P. By considering an affine conjugation of P, we assume
that Pe #, and P is linearizable at the origin. By applying Lemma 4.1-4.3
and MTheorem 4.1 to P, we conclude that « satisfies the Brjuno condition since
Nyc(P)=d —-2. O
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5. Renormalization of polynomials.

Throughout this section, we will assume the following.

STANDING HYPOTHESIS. P is a monic polynomial of degree d > 2 and its
filled-in Julia set K(P) is connected.

Then there exists the unique conformal map ¢ : C\D — C\K(P) such that
¢(z)/z—1 as z— 0. We have ¢(z¢)=P(¢(z)) for ze C\D, and set G:=log|¢'|
which is a Green function of C\K(P) with the pole oo.

For an angle 1€ R, an external ray R, is defined by

R; = {p(exp(r + 27it));0 <r < 0} < C.
An external ray R, lands at a point x € 0K(P) = J(P) if
limo P(exp(r + 2zit)) = x.
r— -+

We call x the landing point of R, and t an external angle at x.

For any external ray R,, its image P(R,) = Ry is again an external ray. An
external ray is periodic if P"(R,;) = R,, or equivalently d"t = ¢t mod Z for some
ne N. Such n is the period of R, and the least such n is the fundamental period.

The following result is assembled from contributions of Douady, Hubbard,
Sullivan and Yoccoz. For the proof, see, for example, [16].

LANDING THEOREM. Every periodic external ray lands on a repelling or
parabolic periodic point of P. Conversely, let x be a repelling or parabolic
periodic point of P. Then x is a landing point, and every ray landing at x
is periodic with the same fundamental period.

An external ray is preperiodic if P*(R,) is periodic for some k€ N. Any
external ray with rational angle is preperiodic. An external ray R; lands at a
point x if and only if P(R;) = R4 lands at P(x). By these facts, we have:

COROLLARY 5.1.  Every external ray with rational angle lands on such a point
as is eventually mapped to either repelling or parabolic periodic point by P.

For ne N and ke NU{0}, the regular (n,k)-partition 2% is defined by

:%}Sk) — U Rl/(d"(d”—l))'

DErFINITION (Strong separation). Let % be a closed subset of C\int K(P).
Then C\% is a strong separation (of (P,K(P))) if
i) P(%)cé,
(i) Each component of C'\% contains at most one cyclic Fatou component
or Cremer periodic point,
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(iii) Each component of C\% contains no preperiodic critical point even-
tually mapped to a repelling or parabolic periodic point,

(iv) Let C be a cyclic Fatou component or Cremer periodic point and ¢ be
a critical point. If C and ¢ are contained in a same component of
C\%, then for every ne N, P"(C) and P"(c) are also contained in a
same component of C\%, and

(v) Let p be the period of the above C and U; be the component of C\%
containing P'(C) for i=1,2,...,p. Then the union Uf:lU,- contains
at least one critical point.

Let no(P) < +oo be the least common multiple of periods of:

cyclic Fatou components,
Cremer points, and
repelling periodic points to which critical points are eventually mapped.

Lemma 5.1 (Kiwi-Geyer). Suppose that n = ny(P). There exists a positive
integer A~ such that for every k > A, %’,Sk) gives a strong separation.

We fix such a " as in [Lemma 5.1. An integer k is said to be admissible if
k>

Proor. We follow Kiwi’s argument in and Geyer’s one in [7].

Let & be the set of all cyclic Fatou components of P and Cremer periodic
points of P. We note that f@,go) is the union of the closures of the fixed rays
of P", and that all elements of ¥ are P"-invariant. Therefore from Goldberg-
Milnor theorem ([8], Mheorem 3.3), it follows that every component of C\%\"
contains at most one element of ..

Let Uy (z) be the component of C\#¥) containing z (ke N U {0},ze C\2¥).
Since P(2") = 2% and 2% = P*(2\"), we have: for ke NU{0},

@) 2,9 <A,

b) P(2Y) <2l

(©) Uii(z) € U(2) (ze C\2%*Y), and

(d) P'(Uiri(z) = Ue(P'(2)) (ie NU{0},ze C\#/H).

CLAM. For a critical point ¢ and an element of C € &, there exists k(c,C) €
NUA{0} such that for every | > k(c,C),
(*) Ulle) = Ui(C) = U(P'(c)) = U(P'(C)) (ieN).

Proor. If (*) holds for every / >0, then we set k(c, C) = 0.

Suppose that for some /y >0, (*) does not hold. Then there exists i > 1
such that U, (P'(c)) # U, (P'(C)), so we have U, (c) # Uj,+:(C) by (d). Thus
for every /> 1Iy+i, we have U(c) # U;(C) by (c), and set k(c,C) =1y +1i.
Then (*) trivially holds for every / > k(c, C). (]
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We take a critical point ¢ arbitrarily. If ¢ satisfies that P¥(c) is a repelling
or parabolic periodic point for some k € N, we write the least such k by k(c).
Otherwise, we put k(c) = 0.

We set

A :=max{k(c),k(c,C); Ce ¥ and c is a critical point.} < +o0.

For k >, 2% satisfies (i) and (ii) by (b) and (a) respectively, and (iv) by
Claim. By definition of n = ny, 9?,50) contains every repelling or parabolic
periodic point to which a critical point is eventually mapped. Thus by definition
of A, 2" satisfies (iii) for k > A"

We fix C e ¥ and k >  arbitrarily. If C is neither Siegel disk nor Cremer
point, then (v) follows from the well-known facts.

Suppose that C is a Siegel disk or Cremer point. Let p be the period of
it and zo be the Siegel point in C if C is a Siegel disk, and C itself otherwise.
If Uf:_ol Ux(P'(C)) contains no critical point, P?|Uyi,(C) : Uxip(C) — Ui(C) is
a conformal isomorphism between simply connected domains fixing zy. Since
Ukip(C) = Up(C) and |(PP)(z0)| =1, it follows that Uy ,(C)= Ux(C).
However it contradicts Ui (C) ¢ K(P).

Consequently, (v) holds in every case. O

For an angle 7 € R and an opening @ > 0, an external sector S; ¢ 1s defined
by

Sio = {p(exp(r+2mi(t+0r)));0 < r < 0, |0 <O} < C.

Let E be a bounded subset of C. Then we call /(E) := max,.qg G(z) the
level of E, and call a point zy € E with G(z9) =I(E) a top of E.

It is easy to check the following (see Figure 2):

- I(C\S.9) =1/(20) and the top of C\S, e is ¢(—exp(l/(20)+ 2xit)),
S.o\S.0 = R,\R;. In particular, for a rational angle, S, o\S; ¢ agrees
with the landing point of R,. It is called the landing point of S; ¢, and
P(S.0)=Sue.

Tw . Rw = I1 /(20) ©-logarithmic spiral

Figure 2. External sector S;¢ (f: rational)
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An external sector S; ¢ is periodic if d"t = t mod Z for some ne N. Such n
is the period of it and the least such n is the fundamental period.

For ne N and ke NU{0}, the regular wedge (n,k)-partition &*(0) is
defined by

F9@)= U Syaran-iy,e

DEFINITION. A component of C\.%%)(0) is called a puzzle piece of %% (6).

It is easy to check the following:

. P0(6)) = %1(6), and
Let V be a puzzle piece of % (@). Then P~'(V) is a finite union
(U}, of puzzle pieces of V(@) and P|U;: U; — V is proper for
i=1,...,m.

DerINITION.  Let U be a puzzle piece. A point x € 0U is a vertex of U if
x € J(P) or dU is not analytic at x. Such x is said landing if x € J(P), and said
crossing otherwise. Each component of dU\{vertices} is called an edge of U.

For an angle e R and a curvature 6 € R, an external 0-logarithmic spiral
R, 1s defined by

R; g = {¢(exp(r+2ni(t+ 0r))); 0 <r < +o0} c C.

It follows that P(R,¢) = R,
By construction of #*)(@), we have (see Figure 3):

LeEmMA 5.2 (Structure of puzzle pieces). Let U be a puzzle piece of y;(k)(@)
(0@ >0). Then

(1) U is simply connected or equivalently, C\U is connected,

(ii)  #{crossing vertices} = §{landing vertices} > 1,

(ii1) U has an angle 2arctan(2n0) € (0,7) at each crossing vertex,

\\_.‘ _’,’ A
{FZT=expl(U)=exp@m} S~

Figure 3. A puzzle piece U of a regular wedge (n,k)-partition 5’;@(@)
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(iv) I(U) =1/(260d*(d" —1)), and a point on 0U is a top of U if and only if
it is a crossing vertex of U, and

(v) every edge of U is a subarc of an external 0-logarithmic spiral (0 = O or
—0) between a landing vertex and a crossing vertex.

We also have:

LemMA 5.3 (Separation is independent of its opening.). Let U be a puzzle
piece of X(0) and U’ that of M (@'). If0 < O < @', then one and only one
of the following holds:

Unu' =g, and
U' < U and UNK(P) = U'NK(P).

COROLLARY 5.2. Suppose that n=no(P). If k is admissible, then for all
0 >0, %(0) gives a strong separation.

From now on, we always assume that n =no(P). This regular wedge
partition induces a weak renormalization around each periodic point which is
neither repelling nor parabolic:

DEerFINITION.  Let x be a periodic point of P which is neither repelling nor
parabolic and p the period of x. Suppose that k is admissible and ® > 0. Then
(PP|U, U, V) is a weak renormalization around x (induced by %% (@)) if U is the
puzzle piece of & **7)(@) containing x and if V is that of #*) (@) containing x.

PrOPOSITION 5.1. A weak renormalization (PP|U, U, V) around x satisfies:

(i)  x is the only non-repelling periodic point in U,

(i) U contains no preperiodic critical point eventually mapped to a repelling
or parabolic cycle,

(ii) UcV and P?|U:U — V is proper, and

(iv) The degree of PP|U is more than one.

PROOF. Suppose that this weak renormalization is induced by %) (@).
Noting that #**7)(@) also gives a strong separation, we have easily (i), (ii)
and (iv). Since L% (@) = P7(£ ¥ (@), we have (iii). ]

n

A weak renormalization (P?|U, U, V) around x is renormalizable if it is
topologically conjugate to a polynomial on U. If U EV, then (P?|U, U, V) is
renormalizable (cf. [6]). In general, we have:

THEOREM 5.1 (Strong renormalization). Let (PP|U,U,V) be a weak re-
normalization around x. If every landing vertex of V is eventually mapped to a
repelling periodic point, then it is strongly renormalizable:

There exists a polynomial Py without preperiodic critical point eventually
mapped to a repelling or parabolic cycle in J(Py) such that (PP|U, U, V) is hybrid
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quasiconformally conjugate to Py, i.e., there exists a quasiconformal automorphism
@ of C satisfying:
PP=¢loPyod on U,
U@ =0 on the filled-in Julia set of (PP|U,U,V), which is defined by
K(PP\U, U V) =),y (PP)"(U), and
S(K(PP|U, U, V)) = K(Py).
Therefore Py has the unique non-repelling periodic point ®(x) (thus it is a
fixed point of Py).
Py is called a strong renormalization of (PP|U,U, V).

L. Geyer pointed out this theorem in his thesis [7], but at present, it has
not been published and his proof seems to have several gaps. For readers’
convenience, we will give a proof.

ProoF OF THEOREM 5.1. We prove the following lemma to consider the
quasiconformal opening of PP near landing points which are critical points of
P? Tlater.

LeMMA 5.4. Let U be a puzzle piece of 9 (0) (0 >0). If every landing
vertex of U is eventually mapped to a repelling periodic point, then U is a quasidisk.

ProOF. We put L := {t; := exp(2ni - j/(d*(d" — 1))); j = 0,1,...,d"(d" - 1)
—1}. Let y be a continuous function on W := ¢~ ' (0.%%(0)\{landing points})
UL xS

P(x) if xe W\L
)= {

landing point of Ry, 1If x=1€L.

Since ¥ induces a continuous and injective map from S' onto dU, dU is a Jordan
curve.
Let {v;}, be the set of all landing vertices of U. By [Lemma 5.2 (i), we
have n > 1.
For {x,y} coU, C({x,y}) is the component of dU\{x, y} with smaller
diameter. We put C({x, y}) :== dU\C({x, y}).
A set {y;};L, of open subarcs of dU is admissible if
yiN{v;}_; = v; and diamy; < diam(oU\y,;) for i=1,...,n, and
all elements of {y;}, are mutually disjoint.
For an admissible {y,}",, it follows that C({x, y}) =y, for every {x, y} = y;.
Since AU is Jordan and dU\{v;}_, is a finite union of quasiarcs (piecewise
analytic arcs without cusp), it follows that:

LEMMA 5.5. If there exists an admissible {y;}"_, and a positive constant

M >0 such that
diam C({x, y}) < M|x — y|

for every {x,y} <y, for some ie€{l,... ,n}, then 0U is a quasicircle.
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Proor. For each 0 > 0, there exists My, M, > 0 such that
(a.1) if |x —y| >0, then diam C({x, y}) < M;|x — y|, and
(a.2) if either C or C is disjoint from {v;}/,, then diam C({x,y}) <
Ms|x — y).
For a moment, we only consider such an {x, y} = dU that C({x, y}) N{v;}._, #
g but C({x,y}) ¢y, for all i=1,...,n. Such {x, y} belongs to either 4; or
A,, where

A= {{x, 1 Cn{v}, # T},
and

A= {{x, yh CN{u} L, = @)

If A, # &, we put 6; := inf{|x — y|; {x, v} € 4;} > 0 and set 6 =J;. Otherwise
we fix 0 > 0 arbitrarily. From (a.l) and (a.2), it follows that

M|x —y| if {x,y} e A,

diam C({x, < :
(10 3)) {M2|X—J’| if {x, 1) € 42

for such an {x, y} = dU that C({x, y})N{v;}, # & but C({x, y}) £y, for all
i=1,...,n. Therefore under the assumption, we have

diam C({x, y}) < max{M;, M>, M }|x — y|
for every {x,y} = dU. Thus U is a quasicircle (cf. or [11]). ]

We will find below an admissible {y;};_, satisfying the assumption of
5.5.

Case 1. Let v; be a landing vertex of U and a repelling periodic point of
P. Without any loss of generality, we assume that every external ray landing at
v; is fixed by P. We write v =v; and put p := P'(v) € C\D.

We choose a linearizing chart (D,h) at v, i.e., h: D — D is conformal,
h(v) =0 and h(P(z)) = ph(z) (z€ D), such that v is the only vertex contained
in D.

Since D i1s a linearizing coordinate neighborhood of v, we have:

(*) for any k € N, a branch of P~* fixing v is defined and univalent on D

and (P7%)'(v) = p7*.
We write this branch as P~* in below since we focus on a local dynamics of P
around v.

Choose r > 0 so that D(v,3r) = D. Let % be a component of U ND(v,r)
containing v and put %) := P=%(y() for k e N. By taking r > 0 small enough,
we assume that diamy® < diam(aU\y?).

PROPOSITION 5.2. For any ke N, y is an open subarc of 0U containing v,
and Y% < y&=1 " Moreover, diamy®) — 0 as k — oo.
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Proor. y is the union of v and two subarcs of external +@-logarithmic
spirals landing at v. By assumption, these spirals are also fixed by P. On the
other hand, we have h(y¥)) =p=*.h(y¥) (ke N). Combining P~'-invariance
and P~'-contractiveness of y*), we have y%) < k=1,

Since diamA(y¥)) — 0 as k — oo, we have diamy*) — 0 as k — 0. [

Now we fix an {x, y} < y(1) arbitrarily. Choose the least k € N such that
C({x,y}) ¢ y**1_ Setting X := P¥(x) and Y := P¥(y), we have:
P*(C({x,y})) =9, and
+ PN(C({x, 7)) = C({X, Y}) & »1V.
Since P~* is conformal on D(v,3r), we have:

CLAIM.

diam C({x, y}) - Mdiam CH{X,Y})

DT S W

Proor. By applying the Koebe distortion theorem to P~%(v+ 3rw) on
w e D, we have

[wl

1P *(z) — o < 3rpF—L
(1= |w])>

(z=0v+43rw).
Putting ze C({X, Y}) (c=y%) = D(v,r), we have |w| < diam C({X, Y})/(3r) and
so C({x,y}) = D(v,(9/4)p~* diam C({X, Y})). Thus

diam C({x, y}) < gp_k diam C({X, Y}). (2)

Next, since X,Y € D(v,r), D(X,|X—Y|) < D(X,2r) = D(v,3r). By applying
the Koebe distortion theorem to P~%(X +2rw) on we D, we have

[wl

200(P7Y (X)) | ————
[(P75)( )|(1—|-|WD2

<|P*z) = x| (z=X+2w).
Putting z =Y, we have

1
P (XX = Y] < =y (3)

Finally, by applying Koebe distortion theorem to P~*(v + 3rw) on w € D, we
have

d

e 1=l a
~ ldw

3rp

(P_k(z))' (z=0v+3rw).
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Putting w = (X —v)/3r, we have
9p7*/2° < |(P7H)'(X)]. (4)
Summing up (2), (3) and (4), we have the claimed inequality (1). O]
We put y, := 1) in this case.

Case 2. Let v; be a landing vertex of U and not periodic. From the
assumption, there exists k € N such that P¥(v;) is a repelling periodic point.
Let ky be the least such k. Without loss of generality, we assume that every
external ray landing at P (v;) is fixed by P. We write v =uv; and put vy :=
P ko (U,‘).

Choose two simply connected domains D 3 v and Dy 3 vy such that P¥|D :
D — Dy is proper and D\{v} contains no critical point of P%. By the same
way as that in Case 1, we can choose Dy so that it is a linearizing coordinate
neighborhood of vy for P containing no other vertex than vo in Dy.

Let O:D — D be a lift of the branch of (P|D,)”"' fixing v, which is uni-
valent, by P%|D. We have:

(**) for any k e N, QF is defined and univalent on D with Q*(v) = v and

(0" (v) = p*, where Q'(v) =: pe D* (by the Schwarz lemma).

Choose r >0 so that D(v,3r) = D and let ¥ be a component of AU N
D(v,r) containing v. We can use Q as a substitute for P~! in Case 1 by choosing
QO such that Q(y9) =y, Put y*) = k() for k € N and assume that diam y(©)
< diam(aU\y") by taking r > 0 small enough.

By the argument similar to that in Case 1, it follows that for any k € N, y%)
is an open subarc of 0U containing v, Y < y*~1 and diamy*) — 0 as k — oo.
We set X := Q%(x) and Y := Q7 %(y) for {x,y} =y, by the least k e N with
C({x,y}) ¢ y**V. Then C({X,Y}) ¢y and Claim in Case 1 also holds in
this case.

We put y, :=y() in this case, too.

We have now defined the open subarc y, for each ve {v;}.,. We write
yi =7, If every y; is small enough, this {y;};, is admissible. From the proof
of [Lemma 5.5, the {X,Y} in Case 1 and 2 satisfies that

diam C({X, Y})
X =Y

< max{Ml, Mz}.

Therefore from Claim, it follows that {y;}", satisfies the assumption in Lemma 3.3.
Now the proof of Lemma 5.4 is completed. ]

Let (P?|U,U, V) be a weak renormalization around x such that every land-
ing vertex of V is eventually mapped to a repelling cycle. Since P?|U : U — V' is
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a proper map and every landing vertex of U is mapped to that of V, every one of
U is also eventually mapped to a repelling cycle. Thus U and V' are quasidiscs
by so have quasiconformal reflections Ay of 0U and Ay of oV re-
spectively.

If oUNOV = &, then (PP|U, U, V) is a polynomial-like map of degree more
than one and K(P?|U, U, V) < U. Since U contains no preperiodic critical point
eventually mapped to a repelling or parabolic periodic point, [Theorem 3.1 trivially
holds. Thus from now on, we assume that dU NV # (.

For each landing vertex v of U (resp. V), let #,(U) (resp. 7,(V)) be
the union of v and two edges of U (resp. V) from v. Then it follows that
PP (U)) = Vni (V).

By (iv), we choose a set {N,; v is a landing vertex of U},
where each N, is a neighborhood of

)

in C\U such that all elements of {N,} are mutually disjoint.
We fix such {N,}. We consider the quasiconformal opening of P around
such landing vertices of U as are critical points of P”: We put

P? on U,
0: =< AyoPPoiy on N, if visa critical point of P?,
p
pr on N, if v is not so.

Then every vertex of U is not a branch point of f; which is a quasiregular map on
UU(|JN,), and fy(N,) is a neighborhood of #p,,)(U)NG~1([0,£(U)]) in C\V.

The number of components of JUNAJV 1is finite, and we write the set of
them as {W;}”,. Each W; contains one and only one landing vertex v; of U
and is written as W; = ¥,,(U), and all elements of {W;}", are mutually disjoint.

PrROPOSITION 5.3 (Straightening of opened polynomials). There exist {U;}.",
and {V;}X, such that
() UcUN, (cC\U), Vicfi JN,) (cC\V), U,€V; (i=1,...,m),
and all elements of {Vi};", are mutually disjoint,
i) Uo:=vUJ",upuJ", () () and Vo= VUl ViU
(UL, fo(Uy)) are simply connected domains and Uy € Vo, and
(lll) f()|U0 Uy — V) SdliSﬁéS
(@) fo is a proper map and has the same degree as (PP|U,U, V),
(b) the filled-in Julia set K(fo|Uo, Up, Vo) := (),0(f0) " (To) agrees
with K(PP\U,U, V), and
() (folUo, Uo, Vi) is renormalizable, and more strongly, hybrid
quasiconformally conjugate to a polynomial Py.
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Proor. First we find {U;} and {V;} satisfying (i), (ii) and (iii)-(a).

Cast 1. Suppose that all elements of {v;}!", are periodic points of P”. By
assumption, they are repelling periodic points. Put f := P?. Without any loss
of generality, we assume that f(v;_;) =v; (i=1,...,m+ 1), where vy := v,, and
Ums1 := 1. Then every v; is a repelling fixed point of /™ so not a critical point
of it. Thus we do not need the quasiconformal opening of P around {v;}.",.

Lemma 5.6. It follows that:
(**%) fori=1,2,....m+1, f(Wi_\) o W;, where Wy := W,, and Wy, =
wh.

Proor. It follows from f(W;_1)=P?(¥;_ (U))="7:(V)D Y

1

Since v; is a repelling fixed point of f” and I((f™) ™ "(W;)) = d =" - I(W;)
(i=1,2,...,m+1), we have:

COR~OLLARY 5.3. There exists a neighborhqod Vi of Wy, in C \VN and the
branch G of (f™)"" on V,, fixing vy, such that G(Vy)) € Vi, and ﬂnzoGn(Vm) —
{vm}.

If m=1, we put Uy := G’(Vl) € Vi. Taking V7 small enough, we have
Up=UU(fo) ' (") € Vo= VUV since (fo) ' (V1)\Ui € V.
If m > 1, we choose U; =« C\U and V; = C\V (i=1,...,m —1) by (¥***) so
that
U; .= Giy1(Viy1), where Gy is the branch of f_1 on Vi1 mapping vy
to v,
V; is a neighborhood of W; in C\V, and U; € V;, and
G(V) € V,,, where G is the branch of 77! on V; mapping v; to vy,
We put U, :=G(V). If 1,...,V, are small enough, we have U, =
vu (U, (o) (7)) EVo = VU, Vi) since (fo)” (Vi)\Uit €V for all i.

Cast 2. Suppose that some element of {v;}, is not a periodic point of

PP, We put f:=PF. We write “v; »v;” if f(W;)NW;# . We have the
fact similar to (***) in Case 1:

(***%) If v; — v;, then f(W;) > W,.
We recall that fy =f on 0U.

For every cycle C = {v;};2, of f, we first define U; and V; for each v; e C
applying the argument in Case 1.

We fix v; which is not a periodic point of f.

If v = &, or equivalently f(W;)NW;=(J for all j=1,...,m, then v; ¢
K(f|U,U, V). We take a neighborhood V; of W; in C\V arbitrarily and set
U=gJ.
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If v — v, and v; has already had U; and V), we define U; by the com-
ponent of fy!(V;) intersecting W;, and V; by a neighborhood of W; in C\V
satisfying U; € V;.

Now every v; of {v;}", has U; and V;. If every V; is small enough,
{U}", and {V;}”, satisfy (i) and (ii). By definition of fy, Uy and Vp, we
have (iii)-(a).

We put f := P?.

LEmMmaA 5.7. K(f0|U0, U, V()) = K(f‘U, U, V).

Proor. Suppose that K(fo|Usy, Up, Vo)\K(f|U,U, V) # & and take an
element x of it. Then there exists k; € N such that fok1 (x) € Up\U since x ¢
K(f|U,U,V), and there exists ky > k; such that fok2 (x) is contained in such an
int U; that v; 1s a repelling periodic point of f. Let p, be the period of v;. Then

(x) e (Vp=0((f0)”)"(int U;). On the other hand, by [Corollary 5.3, we have
(V,20((f0)")™(int U;) = &. It is a contradiction. ]

By the above lemma, we have (iii)-(b).

Let U, be the subset of Up\U where fj is not conformal. If v; is a repel-
ling periodic point, then f; is conformal on U;. Therefore we have fg"(ﬁo) cU
for some ne N. Thus (fy|Uo, Uy, Vy) is hybrid quasiconformally conjugate to a
polynomial Py. [

By the following facts:

x 1s the only non-repelling periodic point in U,

K(PP|U, U, V) = K(fo|Uo, Uy, V) = Uy, and

every branch point of fy|Uj is contained in U,
Py has desired properties in [Theorem 5.1. Now we have completed the proof of
Mheorem 5.1. O

6. Main theorem and proofs.

Let P be an n-subhyperbolic polynomial of degree d > 2 whose Julia set is
connected and have an irrationally indifferent cycle 2 = {z,}",.

By using the conformal map ¢ = ¢p: C\D — C\K(P) with ¢(z)/z — acl/(dfl),
where a; 1s the d-th coefficient of P, we obtain the same results as those in the
case where P is monic.

We set ng =no(P). For an admissible k and @ >0, we write the puzzle
piece of S,S{f)(@) containing z, as U®, and set U W(z) =", U® and K& (%)
= K(P)NU®(Z). We note that K*¥)(%) is independent of the opening @ by
[Lemma 5.3.
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LEmMA 6.1.  For every admissible k, KX)(%) contains at least one recurrent
critical point corresponding to Z.

This lemma follows from Claim in the proof of Main Theorem.

DErFINITION.  Suppose that P is an n-subhyperbolic polynomial with con-
nected Julia set and has an irrationally indifferent cycle 2. Then P is piecewise
1-subhyperbolic for % if there exists an admissible k such that K¥)(%) contains
only one recurrent critical point corresponding to Z.

Now we state Main Theorem in this paper.

MaIN THeEOREM (Cycle-version of NLC). If an n-subhyperbolic polynomial
with connected Julia set has a Siegel cycle whose multiplier is . and for which it is
piecewise 1-subhyperbolic, then o satisfies the Brjuno condition.

PrOOF. Suppose that P satisfies the assumption. Let 2 ={z,})', be a
Siegel cycle whose multiplier is 4 and for which P is piecewise 1-subhyperbolic,
and let ¢ be the only recurrent critical point corresponding to Z which is con-
tained in K (%).

We fix ©® > 0. Without loss of generality, we assume that ce Ul(k). By
definition, (P"|U*™ U**™ UMY is a weak renormalization around z;. Since
P is n-subhyperbolic, no critical point in F(P) accumulates to J(P) so P has no

parabolic cycle. Therefore every vertex of Ul(k) is eventually mapped to a repel-
ling cycle.
By applying to (P’”|U1(k+m), Ul(k+m), Ul(k)), we have a strong

renormalization Py of it. Let @ be a quasiconformal automorphism of C giving
the hybrid quasiconformal conjugacy between them in [Theorem 3.1.

CLAIM. Ul(k+m) contains a recurrent critical point of P corresponding to %.

Proor. By the Mané Theorem, P, has a recurrent critical point ¢y corre-
sponding to the irrationally indifferent fixed point ®(z;). Therefore @ !(cy) is a
recurrent critical point of P™ corresponding to the irrationally indifferent fixed
point z; of P in 3K (P"|U™ U™ UMy <« U™ Thus {P(D (o))}
contains a recurrent critical point of P corresponding to Z. From the unique-
ness of ¢, it follows that @ !(¢cq) = c. O

Let us continue to prove Main Theorem. Thus @(c) is only one recurrent
critical point of Py corresponding to @(z;). Thus Py is a 1-subhyperbolic poly-
nomial without critical point eventually mapped to a repelling or parabolic cycle.
Furthermore, since Py is linearizable at ®@(z;), Py has no Cremer cycle. Thus Py
has no preperiodic critical point in J(Py).

Consequently, Py is a l-hyperbolic polynomial and linearizable at the ir-
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rationally indifferent fixed point @(z;) whose multiplier is A. From the result in
Section 4 in 1-hyperbolic case), it follows that o satisfies the Brjuno
condition. ]

PrROOF OF THEOREM 2. Let P be a 1-subhyperbolic polynomial and have an
irrationally indifferent cycle 2 = {z,}_, whose multiplier is A.

Suppose that K(P) is disconnected. Let K; be the component of K(P)
containing z; and ke N be the least such one that P¥(K;)NKj # . Then
7! .= {(PK)/ (21)};7:’/01(71 is an irrationally indifferent cycle of P¥ whose multi-
plier is .. Let G be a Green function of C\K(P) with its pole oo and U, be
the component of C\G~!(r) containing z; for > 0. It is known that for
sufficiently small r, (P*|U,, U,, P*(U,)) is a polynomial-like map of degree more
than two whose filled-in Julia set agrees with K.

Let Py be a polynomial which i1s hybrid quasiconformal conjugate to
(PX|U,, U., P*(U,)). Py is a polynomial whose Julia set is connected, and have
an irrationally indifferent cycle @(Z') whose multiplier is 4, where @ is a quasi-
conformal automorphism of C giving the hybrid conjugacy P¥ = @' o Pjo @
on U,.

By the Mafié theorem, there exists a recurrent critical point ¢y of Py corre-
sponding to @(Z!). Then c¢:= & (cy) is a recurrent critical point of P* cor-
responding to Z'. Thus {Pi(c)}f:()1 contains a recurrent critical point of P
corresponding to %. Since P is l-subhyperbolic, we assume, without loss of
generality, that ¢ is the only recurrent critical point of P that corresponds to an
irrationally indifferent cycle of P. Then Py is a 1-subhyperbolic polynomial with
connected Julia set.

If 7 is a Siegel cycle of P, then @(Z!) is a Siegel cycle of Py. Clearly Py is
piecewise 1-subhyperbolic for ®@(#!). Therefore from Main Theorem, it follows
that o satisfies the Brjuno condition. ]

7. Examples and case studies.
We conclude with several examples of n-subhyperbolic polynomials.

EXAMPLE 1. P(z)=Jz+z% is a typical example of 1-hyperbolic polynomials.
The only critical point of it corresponds to the origin.

EXAMPLE 2. P(z) = 4z(142)*"" (d > 3) has d — 2 critical points eventually
mapped to the origin which is a fixed point and another one corresponds to the
origin. Thus it is I-hyperbolic.

EXAMPLE 3. Pi(z) = Az(1 — (¢t +1)/(2t)z 4+ 1/(31)z%) is a 1-hyperbolic poly-
nomial if |¢| is sufficiently large (cf. [4] §18.2). We note that two critical points
are 1 and ¢ and that ¢ is contained in the superattractive basin of oo at that time.
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ExamPLE 4. The family # = {P,;t € C} of such polynomials as the above
is an algebraic family over t € C with bifurcations.
Let M, (d >2) be the connectedness locus of {z¢ + ¢;c e C}.

THEOREM 7.1 ([14], Theorem 1.3). Let f; be a holomorphic family of rational
maps with bifurcations. Then there is a d > 2 such that for any c € My and m > 0,
the family contains a polynomial-like map f": U — V hybrid conjugate to z¢ + ¢
with mod(V\U) > m.

By the above, # contains actually 1-subhyperbolic polynomial which is
not 1-hyperbolic. Furthermore, for every small & > 0, there exists such a 1-
subhyperbolic polynomial of # that the Hausdorff dimension of its Julia set
is more than 2 —e.

ExaMPLE 5. By applying [Theorem 7.1 to %, (d > 3), we obtain completely
general examples of n-subhyperbolic polynomials with irrationally indifferent fixed
points.

EXAMPLE 6. P(z) = Az +z? (d > 3) satisfies P(cz)/c = P(z), where ¢ is a
prime (d — 1)-th root of unity, so it is (d — 1)-hyperbolic. However P is semi-
conjugate to Q(w) = A% w(1 +w)" by w=2z9"1/4. Thus P is linearizable at
the origin if and only if so is Q. From Example 2 (d > 3) and the Yoccoz
theorem (d =2), we have:

TaeOREM 7.2. If P(2) = Az +z¢ (d > 2) is linearizable at the origin, then
(d — 1)o satisfies the Brjuno condition.

Theorem 3 directly follows from the Brjuno theorem and [Theorem 7.2.
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