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Abstract. Let V' be a simple vertex operator algebra and G < AutV a finite
abelian subgroup such that V¢ is rational. We study the representations of ¥ based on
certain assumptions on V “-modules. We prove a decomposition theorem for irre-
ducible V-modules. We also define an induced module from V¢ to V and show that
every irreducible V-module is a quotient module of some induced module. In addition,
we prove that V' is rational in this case.

1. Introduction.

Let V be a vertex operator algebra (VOA) over the field of complex numbers
C and G a finite abelian subgroup of automorphism of V. The space of fixed
points of G in V, denoted by V¢, is often called an orbifold vertex operator
algebra. In [7], Dong and Mason proved that if V' is a simple VOA, then the
orbifold vertex operator algebra V¢ is also a simple VOA. Moreover, as a
V' G-module, V decomposes as

V=9 v’
xelirG
where V7 is the sum of all irreducible G-modules which afford the character
y €lrr G. They also showed that V% # 0 for any y € Irr G and V'“* is irreducible
as a V%module. In addition, certain general properties related to the inter-
twining operators among the ¢ modules V%, y € Irr G, were proved, which are
fundamental for our work.

In this paper, we shall study the representations of V based on certain
assumptions on V¢ and the V' %-modules V%, y e Irr G. Actually, we shall only
consider a very simple case:

(1) Vis a simple VOA (i.e.,, V is irreducible as a }V-module) over C;

(2) there exists a finite abelian subgroup G < AutV such that VO is
rational and for any irreducible ¥ ¢-module L, the tensor product V” ®;¢ L (cf.
Definition 2.10) is irreducible as a ¥ “-module where V'* is equal to the sum of
all irreducible G-modules affording the character y.
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Under these assumptions, we shall obtain a decomposition of an irreducible
V-modules into a direct sum of irreducible ¥ “-modules (see and
Theorem 3.11). An induced module will also be defined. In fact, we shall show
that the ¥ “-module

(1.1) Xo= ) V'®pelL

yelrG

has a natural V-module structure where L is an irreducible V¢ module and
VZ®yq L is the tensor product for V% and L. We call such a module X; an
induced module and show that every irreducible V-module is a quotient module of
some induced module. Moreover, we shall prove that V' is rational in this case.

One important example 1s the code VOA constructed by Miyamoto and
[13], which is also our main motivation. In fact, our main theorems (Theoreml
3.11 and [Theorem 4.4) are essentially generalizations for Theorem 5.1 and 5.2 of
[13]. See also [2] in which a class of VOAs called framed VOAs was studied.
The proof of the rationality theorem (Theorem 4.3) is basically taken from there.

This paper will be organized as follows: in Section 2, we shall review some
basic definitions and notation. We shall also state our assumptions. In Section
3, we shall study the representations of a VOA V based on the structure of a
finite abelian subgroup G < Aut ) of automorphisms and its fixed point space
VG, We shall also prove a decomposition theorem for irreducible ¥ modules.
In Section 4, an induced module will be defined. We shall show that every
irreducible V-module is a quotient module of some induced module. Finally, we
shall prove that V is rational under certain assumptions on the fusion rules of V' ¢.

2. Basic definitions.

In this section, we shall review some basic definitions and terminology.
Unless stated otherwise, we shall always work on the field of complex numbers
C.

DerFINITION 2.1 (cf. [9], [8]). A vertex operator algebra (VOA) is a Z-graded
vector space V = 11,2V, equipped with a linear map

Y(,z): V — End V|[[z,z71]]

v— Y(v,z) = Z vz

ieZ

such that the following conditions hold:
(1) (Vacuum condition) there is a vector 1 such that

Y(I,Z) = ld|Va
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(2) (Creation property) Y(v,z)-1¢€ V[[z]] and lim._o Y (v,z) - 1 = v for any
veV (ie., Y(v,z)-1 involves only non-negative integral powers of z and the
constant term is v);

(3) dimV, < oo and V, =0 for sufficiently small #;

(4) for any u,veV,

u,v =0 for n sufficiently large;

(5) (Virasoro condition) there is a vector « such that the operators
L; = w;, satisfy the Virasoro relation:
3

1
[er Ln] = (Wl - n)Lm—i—n + =

1

— M)Opin.0C

where ¢ 1s a scalar and is called the rank of V;
(6) Lov=nv= (wtv)v for ve Vy;
(7)  (L-,-derivative property)

Y(L_yv,z) = % Y(v,2);

(8) (Jacobi Identity) for any u,ve V,

2o (Z‘ _ 22> Y(u,21)Y (v,22) — 250 (_Zz—“l) Y (v,20) Y (1, 21)

Z0 Z0

=z;10 <Zl — ZO) Y(Y(u,zo)v,22).

)

REMARK 2.2. The Jacobi identity (8) can be equivalently replaced by the
following commutativity (see Dong and Lepowsky and Li [10}]):

(2.2) (z1 —22)"(Y(u,21) Y (v,22) — Y(v,22) Y (u,z1)) = 0

for a sufficiently large positive integer n. Here, n depends on both u and w.
We can define the notion of modules in a similar way.

DerINITION 2.3, A module for a VOA is a Q@-graded vector space
M =11, oM, equipped with a linear map

Yyv(,z): V — End M[[z,z7!]]

v— Yy(v,z) = Z vz

ieZ

such that all the conditions mentioned in Definition 2.1 also hold, provided that
they make sense.
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REMARK 2.4. As in remark 2.2, the Jacobi identity for modules can also be
equivalently replaced by the following conditions:
(1) (Commutativity) For any u,ve V,

(23) (Zl — 22)"(YM(u,21)YM(v,22) — YM(U,Zz) YM(u,Zl)) =0

for n sufficiently large.
(2) (Associativity) For any u,ve V,

(2.4) (22 + 20) Yo (Y (u, zo)v, z2)w

= (20 + 22) Vs (u, 20 + 22) Yau (v, z0)w

for some sufficiently large positive integer k.
We shall note that the factors (z, +z)* and (zo + z)* are to be expanded
as a formal power series in the second variable, i.e.,

k o
(z2 +20)" = Z( ; )zé"zé,

i>0

k o
(z20+22)" = ( _ )Z(l)“zé.
In general, (z; + zo)k # (zo + zz)k ; however, they agree with each other if k is a
positive integer.

REMARK 2.5. For computation, it is sometimes more convenient to use the
following form of the Jacobi Identity (also called the Borcherds Identity): For
any a,beV, ce M and m,n,qe Z,

25) (" ) @bhpinse = S0 (1 )t brise = 1) by st

i>0 i>0

DerINITION 2.6. Let V' be a vertex operator algebra. V is said to be
rational if the following conditions hold:

(1) V has only finitely many inequivalent irreducible modules;

(2) every V-module is a direct sum of irreducible ones.

REMARK 2.7. Our definition of rationality basically follows the definition
given by Zhu in [14]. For other definitions of rationality, please refer to Dong,
Li and Mason’s paper [4].

DEFINITION 2.8. Let (V,Y) be a VOA and let (W' Y'), (W?, Y?) and

: - wi .
(W3,Y?) be V-modules. An intertwining operator of type ( ) s a
linear map
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I(,z): W? — Hom(W?, Wl){z}

u—I(u,z) = g Upz~

neQ

satisfying:
(1) for any ue W? and ve W?3,

u,v =0 for n sufficiently large;

(2) I(L-yv,z) = (d/dz)I(v,z);
(3) (Jacobi Identity) for any ue V,ve W?

7,0 <Zl _ ZZ) Y (u,z) (v, 22) — 2516 <227+21)I(v, 22) Y3 (u, 1)

Z0 Z0

—15< ZO)I(Yz(u,ZO)v,zz).
5}

1
w w3

Wl
WZ

The set of all intertwining operators of type ( ) 1s denoted by

1
IV< 2W 3>. We shall often omit the V in IV(
w= W

simplify the notation.

W3> in order to

Wl

REMARK 2.9. Let NW 2 s = dlmIV( w2 Wz w3

W3)' These integers N7.

are usually called the “fusion rules”. For convenience, we shall often consider
the fusion product

2x W3 = ZN W

where W runs over the set of equivalence classes of irreducible V-modules.

DerFINITION 2.10 (cf. Li [11]). Let M) and M, be two V-modules. A tensor
product for the ordered pair (M;, M;) is a pair (M, F(-,z)) consisting of a V-

module M and an intertwining operator F(-,z) of type ( ) such that

M, M,
the following universal property holds: For any J-module W and any inter-

twining operator /(-,z) of type ( ), there is a unique J-homomorphism

My M,
Y : M — W such that I(-,z) =y o F(-,z). We shall denote the tensor product
for (M, M>) by M, ®p M, or simply by M; ® M.

ProrosiTION 2.11 (cf. [11]). If V is rational and M, and M, are irreducible
V-modules, then the tensor product for (M, M,) always exists. Moreover,
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~ -~ w
w

where W runs over the set of equivalence classes of irreducible V-modules. In this
case, the tensor product for (My, M>) agrees with the fusion product My x M,. By
abuse of notations, we may sometimes denote the tensor product by M| x M, also.

The following proposition is also quoted from Li [11].
ProposITION 2.12.  Let V be a rational VOA and
M= @i M il7
2 _ 2
M= M,

where M}, M Jz are irreducible V-modules. Then, the tensor product for (M', M?)
exists and

1 & 2 1 & 2
M ®VM :@I.JMZ- ®VA4]

In this paper, we shall consider a simple vertex operator algebra V" and a
finite abelian subgroup G < Aut V. By a theorem of Dong and Mason [7], we
know that the fixed point space V¢ is a simple VOA; moreover, as a ¥ “-module,

V= @;{elrrG Vs

where V7 is the sum of all irreducible G-submodules of V" affording the character
y and V7 is also irreducible as a V%-module. As we assume that G is abelian,
the set of all irreducible character Irr G also forms a group by pointwise mul-
tiplication. This group will be denoted by G*.

VG is always assumed to be rational in this paper. Moreover, we shall
assume that the fusion rules for V%, y e Irr G, satisty the condition:

Al: For any fixed y € Irr G and irreducible ¥ “-module L,

ZN;ZLzl
w

where W runs over the set all equivalence classes of irreducible ¥ ¢-modules.

RemMARK 2.13. By |Proposition 2.11, if M; and M, are irreducible,
M, ®V M, ~ (—BWN AV}/] wmW. T}lerefore, our assumption on the fusion rules is
equivalent to the fact that V* ®y¢ L is irreducible for any y € Irr G and irre-
ducible ¥ %-module L. Moreover, we have

w
N =dimI <1
yrL = GH (V% L)

for any y € Irr G and irreducible V%-modules L and W.
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3. V-modules.

In this section, we shall study the representations of J based on the
knowledge of V¢ and its representations. In particular, we shall prove our main
theorem which describes the structure of irreducible V-modules.

As in the last section, V' denotes a simple VOA and G < AutV a finite
abelian subgroup. We shall assume that V¢ is rational and for any fixed
g €lrr G and irreducible ¥ %-module L,

ZN;ZLzl.
w

The following proposition is very important to our discussion.
ProposSITION 3.1 (Proposition 11.9, [3]). Let W', W? and W? be V-modules
Wl 3W2)' Assume that W' and
W? are irreducible. Then, for any v' e W' and v* e W2,

and I be an intertwining operator of type (

I(w', 2)v* =0 implies I(-,z) = 0.

DEFINITION 3.2. Let M be an irreducible V-module and L a V %-submodule
of M. Define

V*.L=span{v,w|ve V* and we L}, yelirG.
For convenience, we shall often denote V*-L by yL or L”.
LemMA 3.3. VZ-L is a non-zero V Y-submodule of M.

PrOOF. Since both V' and M are irreducible V-modules, it is clear that
Vx.L #0 by |[Proposition 3.1.

Now, let ue VO ve V% and we L. By the Borcherds Identity (2.5) with
g =0, we have

o) = ) = 3 (" ) )

i>0

Since u,we L and w,v e V*, we obtain u,(v,w)e V*-L and thus V% L is a
V' G-submodule of M. n

ReMARK 3.4. Note that the module vertex operator Yu(-,z)|,, defines

: . Ve L
a nonzero V C-intertwining operator of type (Vf"’ L)' Therefore, by the
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definition of tensor product (cf. [Definition 2.10)), there exists a nonzero V-
homomorphism ¢ : V¥ ®,¢ L — VZ-L such that

Yu(,2)lye =¢goF

where (V% ®y ¢ L, F) is the tensor product for the pair (V% L).

Since V% - L = span{v,w|ve V¥ and we L}, ¢ is surjective. If L is also an
irreducible 7 %module, then V% ®,s L is an irreducible ¥ “-module, by our
assumptions. In this case, VZ-L must be irreducible as a ¥ °-module and
isomorphic to VZ ®y ¢ L.

The following lemma is an easy consequence of the Borcherds identity.

LEMMA 3.5. Let M be an irreducible V-module and L = M a V %-module.
Then, for y, /e lrr G,

(1) vr.(VA-L)y=(Vr-V*H-L,

2) V- (V*-L)y=V*-(VZ.L).

DErFINITION 3.6. Let M be an irreducible V-module and L an irreducible
V9 _submodule of M. Define L to be the sum of all irreducible submodules of
M isomorphic to L. L is called a V -homogeneous component of L in M.

THEOREM 3.7. Let V be a simple VOA, G < AutV a finite abelian subgroup
such that VO is rational and V¥ ®yc L is irreducible for any irreducible V °-
module L and y € Irr G. Let M be an irreducible V-module and L an irreducible
V G-submodule of M. Then,

(1) there exists {y;} = Irr G such that M = @, V% - L.

(2) Al VC-homogeneous components are permuted transitively by G* =

Irr G, ie., if L and L' are V %-homogeneous components in M, then there is a

v elrr G such that L=V*-L'.

(3) There is a subgroup H < G such that all V %-homogeneous components in

M are irreducible V" -modules. Moreover,

M= @ ;L
yelirH

where yL = V7. L.

(4) Let m(L) be the multiplicity of L in M, i.e., L=m(L)-L. Then, m(L)
=m(L") for any irreducible V¢ submodules L and L' in M. Moreover, we
have

M = @ m- (L)
where y; is defined as in (1) and m =m(L).
Proor. (1) Let
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V- L =span{u,v|ueV,veL}.

Then, M =V -L as M is an irreducible }J-module.
Since V = @Xemc V% (cf. Dong and Mason [7]), we have

M=V-L= ) V'L
xelrG

By our assumption, V¢ is rational and {V'% - L} are irreducible ¥ “-modules.
Hence, there exists a set of irreducible G-characters {y;}; < Irr G such that

M=@V%i. L

and we have (1).

(2) Let L and L’ be irreducible ¥ ®-submodules of M. Then, by (1), there
is a yelrrG such that L' ~ VZ.L. Thus, we also have L' = VX ®yc L (cf.
Remark 3.4).

Let S <L be an irreducible ¥ “-submodule. Then, S~ L and V*.S =~
ViQ®yeS~VIQysL~L. Hence, V2-Sc L' and V*-Lc L'

Let v '(9) =x(g7") for ge G. Then, y 'elrrGand y ' - y=y-y ' =l¢.
Thus, V% - L'~ L and we have

Vi.Lovi (vr L= wr.yry. L' =L

as desired.
(3) Let L be an irreducible submodule of M. We shall define

Co={yelrG|L=V*-L}.
Since
(V. L=V*.(V*. L)~ L, for any y,\eCy,
we have yie C, and W(L)=),_, V* is a subVOA of V.

XE CL
Let

H=H; ={geG|x(g)=1 for all ye Cr}.

Then, H is a subgroup of G and W(L) =D, ., V*=V".
Note that the fact W(L) = V¥ also follows immediately from Quantum
Galois theory (cf. [7]).

By the definition of C; and L, it is clear that

uwelL for all ue W(L) and ve L.

Therefore, L is a ¥V -module.
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Next, we shall show that H; = H;, for any irreducible ¥ “-submodules L
and L' of M. By (1), there is a A€ lrr G such that L' =~ 1L (or equivalently
I =il=vi0)

Now let yeCp. Then, yL' =V*.L'=V*. (V*.L)y=V*.(VZ.L)=
V*.L=1L' Hence, yeCy and we have C; = Cp..

By symmetry, we must also have C; > C;.. Therefore, C; = C;/ and
we have H; = H; = H. In particular, all ¥ “-homogeneous component are
V' H_modules.

Now let us show that L is an irreducible 7 *-module.

Suppose not. Then, there exists an irreducible V-module W such that
W < L. For any irreducible ¥ %-submodule L of W, set

N=V-L=)Y V:iL=> V/L+Y VL

xelrrG xeCr x¢Cr

Note that W =3 ., VZ-Land V*-L# L for all y ¢ C;. Thus, NNL=W.
As M is an irreducible V-module, N =M and thus NNL=L. It is a
contradiction and hence L is an irreducible 7 *-module.
Finally, we shall show that

M = C—Dﬂ,elrrH(V/1 ' L)
First, we shall note that
H={geG|gv=v for all ve W(L)} and Cp={yelrG|yly =1u}.

Let y;,7, € Irr G. Then,

Va . L=Vo.Le Vi L2V . Larn'neCanly=nn

Since V* = D yeliG,yl, = V* for any Aelr H, we have
v' L= Y V. L=V’.L
xelr G, y| =4

Hence, M =P, .., V" L.

(4) Suppose L=L'@® --- ® L™ where L' =~ L. Then, yL =3, yL". We
shall show that the sum is in fact a direct sum.

Clearly, yL' #0 and V7' - (VZ.L)y=(VZ' .yz).Li =L for all i.

Thus, yL'NyL/ =0 for all i#j and we have m(L)=m(yL) as
required. [

Next, we shall give a more precise structure of M.

DerFINITION 3.8 ([1]). Let G be a finite group and o a 2-cocycle. The
twisted group algebra associated with o is the algebra
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(CG)oc = C—BxeG Cuty
with the multiplication defined by
uyuy, = o(x, y)uy, for x,yeG.

DerNiTION 3.9 ([1]). Let G be a finite group. A projective representation
of G, with respect to a 2-cocycle o, is an algebra homomorphism T : (CG), —
GL(M) for some vector space M.

THEOREM 3.10. Let M be an irreducible V-module and let L be an irreducible
V 9-submodule. Suppose that M = L, that is, all irreducible V %-submodules of M
are isomorphic to L. Then, there is an irreducible projective representation Q of
G* =Irr G such that

M=Q0®cL

PrOOF. The basic idea of the proof comes from a paper of Dong, Li
and Mason [5]. We simply modify it to suit our case.

Let L” = VZ-L < M. Then, L’ ~ VX @y L~ L as V%modules and thus
there is a ¥ “-isomorphism f,+ L — L*. Without loss, we shall choose f; = Id|.

Let Y(-,z):V — End M[[z,z"!]] be the vertex operator for M. Then,

Ay

Y(-,z)f, defines an intertwining operator of type <V L) since V- (V7. L)

= (V*-V*)-L=V*.L for any A yelrrG.

As L* =~ V*®yc L, by the definition of tensor product, there is a ¥ ¢-
homomorphism f, ; : L* — L such that Y(a, 2)f,(u) = f,, Y(a,z)u for ae V4
and ue L. Note that if L* = L¢, we shall take Foi =1 e

Deﬁnef M—>Mbyf( )= f,..(u) for 2elrrG and ue L*. Then, f( )
is a well defined linear 1somorphlsm of M and Y(a, z)f (u) f Y(a,z)u for
uelL.

As Y(-,z) is the module vertex operator of V-module M, there is a positive
integer k > 0 such that the following associativities hold (cf. 2.4): For any
a,beV yelrrG and uelL,

(3.6) (2o + 22) Y (a,20 + 22) Y (b, z2)u = (z0 + 22) Y (Y (4, 20)b, 22 )u

and

A

(3.7) (z0 +22) Y (a,20 + 22) Y (b, 22)f,u = (20 + 22)* Y (Y (a, 20)b, 22) .

Thus, we have



552 C. H. Lam

A

(z0 +22)"F, Y (a, 20 + 22) Y (b, z2)u = (20 + 22) ", Y (Y (a,20)b, 22)u
= (20 +22) Y (Y (a,20)b, 22)f u

= (20 +22)" Y(a,20 + 22) Y (b, 22) fu
X

A~

= (z0 +22)" Y (a,20 + 22)f,(Y (b, 22)u)

Multiply the equation by (zg +22)_k , we obtain

A

f;Y(a, 20+ 22) Y(b, z22)u = Y(a,zo + 22)f, (Y (b, 22)u)

or

N

f,Y(a,20)Y (b,z2)u = Y(a,z1)f,(Y (b, 22)u).
Since M =V - L, we have

A

fY(a,zl)u— Y(a,z1)f,(u) for any aeV and ue M.

Thus, f is a V-isomorphism.
Since f fz| , and f/ ,|; are both V' C- homomorphism and L is an irreducible
V %-module, f fﬂ ; 1s a scalar multiple of j};| ;- In other words, we have a scalar

a(y, /) € C* such that flf( u) = oy, /l)f ,(u) for any ue L. On the other hand,
for any ae V and ue L, we have

LY (a2)u= Y(a,2)f, f(u) = Y(a,2)a(x, A (u) = a(x, 20/, Y (@, 2) (w).

Hence, fyﬂ = oc()(,i)fﬂ as an endomorphism of M.

Note that oy, AS)a(4, &) = aly, A)a(yA, &) and a(l,4) = a(4,1) =1. Thus,
o(x,4) is a 2-cocycle and {f,} defines an C(Irr G),-representation on M where
C(Irr G), is the twisted group algebra associated with o (cf. Definition 3.8).

Since f, commutes with Y(a,z) for all a e VO Mis, in fact, a C(Irr G), ®
V' 6-module. Thus,

M=0®L

where Q is a C(Irr G) -module and L is an irreducible ¥ “-module.
Since f,|;, = f,: L — L* is a V%module isomorphism, there is an inter-

twining operator
L
I%(- 1

Y(a,z) = f,I*(a,z) for aeV*

such that
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Thus, the module vertex operator of M can be rewritten as
Y(a,z) = f,®1*(a,z) for aeV*

where f, acts on Q and I%(-,z) acts on L.

Hence, O must be irreducible; otherwise there is a proper submodule
Qo < 0. In this case, Qy ® L will be closed under the action of Y(a,z). That
means Qy ® L is a proper V-submodule of M. It is impossible as M is irre-
ducible. [

THEOREM 3.11. Let M be an irreducible V-module and {L,,...,L,} be the
set of all inequivalence V ©-submodules of M. Then, there is a subgroup H < G
and irreducible (G/H)" =1TIrr(G/H) projective representations Q,...,Q, such
that

MZ@Q;’@L’-

Moreover, {Q; ® L;} are irreducible V™ -modules.

Proor. By Part (3) of Mheorem 3.7, there exist a subgroup H < G such that
M = @7:1£i where L; are V %homogeneous components of M and L; are
irreducible as V' -modules.

Since G is abelian, one can easily show

Ve =t

Now, by [Theorem 3.10, we know that

Li=0,®L
for some irreducible projective representations Q; of (G/H)". Hence,
M=@,0;® L
as desired. ]

4. Induced modules.

In this section, we shall study the problem of extending an irreducible
VG-module L to a V-module. In order to prevent some complicated technical
details, we shall only consider the case that L is contained in some V-module M.
An induced module X; will be defined. We shall show that every irreducible
J-module can be considered as a quotient module of some induced module.

As before, L denotes an irreducible ¥ “-module. Suppose that there is a
V-module M such that L < M.
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Denote L” = VZ®ycL. By our assumptions, L’ is irreducible as a
V' ¢-module; moreover, for any y € Irr G,

Vi.L~L

where V7* . L = span{u,v|ue V*,vel} c M.
Let Y™ (-,z) be the module vertex operator of M. Then, by restricting ¥ ¥
to V%, we obtain an intertwining operator

L

I"Ma,z)(u) = YM(a,z)(u) € 1< v [

) for ae V*,ueL*

As a V%module, we define

Xp=V® L= P V'®yclL.
xelrG

and Y(-,z):V — End X;[[z,z7']] by
Y (u,z)v = I**(u,z)v for ue V* velL"

Then, we have

A

THEOREM 4.1. (X, Y(-,2)) is a V-module.

We shall denote the module X; by IndIIfG L and call it an induced module of
L from V% to V.

REMARK 4.2. In [6], a general theory of induced modules for vertex
operator algebras has been developed by Dong and Lin. Our definition of
induced modules, on the other hand, follows the approach of Miyamoto in
which is slightly different from Dong and Lin’s definition.

Lemma 4.3. The definition of X is independent of the choice of the
V-module M.

Proor. Let (M, Y!(-,z)) and (M2 Y?(-,z)) be two V-modules such that
both contain L as an irreducible ¥ “-submodule. We shall show that X} defined
by using M!' and X} defined by using M? are isomorphic as V-modules.

Let Y!(-,z) and Y?(-,z) be the vertex operators of X} and X} respec-
tively. Then, both Y!(-,2)|,, and Y?(-,z)|,, are intertwining operators of type

L7 . , : : .
< pi L>' As L” = VX ®¢ L, there exists a unique V “-isomorphism Y, such
that

Yi(u,z)o= v, Y2 (u,z)v
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By identifying the L in X; and X7, we may choose {,} such that v, = idy.
Now, define y : X} — X7 by y(v) =, (v) if ve L% Clearly, y is a linear
isomorphism. We shall show that  is also a V-isomorphism. By definition,

(4.8) Y u, 2o =y ¥?(u,z)v for any ue V and ve L.

Since both X} and X} are V-modules, for any ae VZ be V* and ve L,
there is a k > 0 such that

49) (204 22) Y Na,z0 + 22) Y (b, 22)Wv = (20 + 22) Y (Y (4, 20)b, z2) v

and

(4.10) (20 +22) Y2(a, 20 + 22) Y2 (b, 22)0 = (20 + 22) V(Y (a, 20)b, 22 )0.
Now, by (4.8), (4.9) and [4.10], we have

(z0 + 22) W ¥ (a,20 + 22) Y2 (b, z2)v = (20 + 22) V' (a, 20 + 22) Y Y2 (b, 2)v

and hence
WY a, 20+ 22) Y2 (b, z2)v = Y(a, 20 + 22 Y2(b, 2)v
or
WY (a,20) V(b z2)v = Y'(a, 21y Y2(b, 22)0.
Thus,
WY (a,z)v=Y'(a,z;)yv for any ve V ®ycL
and y is a V-isomorphism. O

THEOREM 4.4. Let M be an irreducible V-module. Then, M is isomorphic to
a quotient module of Indch for some irreducible V ®-module L.

Proor. Let L be an irreducible V %-submodule of M. Then, by

Theorem 3.7,
M= >y VviL= )Y L

yelrG xelrG
Since V% ®pe L = L%, there is a ¥ “-homomorphism
'70% . in ®VGL — LX.

Define  : Indgc L — M such that |, &,6L = . By the same argument as in
[Cemma 4.3, one can show that y is a -homomorphism. As M is an irreducible
J-module,  must be surjective and hence M is isomorphic to a quotient module
of Indgg L. ]
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The next theorem is a generalization of the rationality of framed (and code)

VOA (cf. [2] and [13]).

THEOREM 4.5. Let V be a simple VOA and G < Aut V' a finite abelian group.
Suppose that V'S is rational and ", N}, =1 for any irreducible V ®-modules L.
Then, V is also rational.

Proor. We shall show that every J-module is completely reducible. Let
M be a V-module and choose a V-submodule W < M such that W is maximal
among all submodules of M which are direct sums of irreducible }J-submodules.
We shall show that W = M.

Suppose W # M. Then, there is an irreducible V -submodule L of M
such that WNL =0 as VY9 is rational. Let L be the sum of all irreducible
submodules of M isomorphic to L and U =V -L. By the proof of Theoren
3.11, there 1s an H < G such that

U=UNL~QQ®L as V7-modules

where Q is a projective representation of Irr(G/H) and V# =PyirrVh
z € Irr(G).

Since L & W, by [Theorem 3.11, there is a proper submodule O, of Q such
that

WNU' =~ Qy®L as V¥-modules.

Since C is an algebraically closed field, we have QO = Qy @ Q; for some Q.
By the proof of Mheorem 3.11, we know that O, ® L < U is a V*-module.
Now, let

X = Z Ve (Q1 ®L).

xelrG

Then, X is a V-module and by the definition of V¥, we have XNL =0, ® L.
Thus, XNWNL=0.
Since all ¥ %-homogeneous component of X are permuted transitivity by V7%

(cf. Mheorem 3.7), we have X N W = 0.
Now let Y be an irreducible V-submodule of X. Then,

MY W2W.

It contradicts the maximality of W. Hence, W = M.
Now, by [Theorem 4.4, it is easy to see that V' has only finitely many
inequivalent irreducible modules. ]
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REMARK 4.6. Since Indgg L is completely reducible, every quotient module

is isomorphic to some submodule. Hence, every irreducible V-module is iso-
morphic to some submodule of an induced module.
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