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Abstract. Let V be a simple vertex operator algebra and G < AutV a ®nite

abelian subgroup such that V G is rational. We study the representations of V based on

certain assumptions on V G-modules. We prove a decomposition theorem for irre-

ducible V-modules. We also de®ne an induced module from V G to V and show that

every irreducible V-module is a quotient module of some induced module. In addition,

we prove that V is rational in this case.

1. Introduction.

Let V be a vertex operator algebra (VOA) over the ®eld of complex numbers

C and G a ®nite abelian subgroup of automorphism of V. The space of ®xed

points of G in V, denoted by V G, is often called an orbifold vertex operator

algebra. In [7], Dong and Mason proved that if V is a simple VOA, then the

orbifold vertex operator algebra V G is also a simple VOA. Moreover, as a

V G-module, V decomposes as

V � 0
w A IrrG

V w

where V w is the sum of all irreducible G-modules which a¨ord the character

w A IrrG. They also showed that V w 0 0 for any w A IrrG and V w is irreducible

as a V G-module. In addition, certain general properties related to the inter-

twining operators among the V G modules V w, w A IrrG, were proved, which are

fundamental for our work.

In this paper, we shall study the representations of V based on certain

assumptions on V G and the V G-modules V w, w A IrrG. Actually, we shall only

consider a very simple case:

(1) V is a simple VOA (i.e., V is irreducible as a V-module) over C ;

(2) there exists a ®nite abelian subgroup G < AutV such that V G is

rational and for any irreducible V G-module L, the tensor product V w n̂V G L (cf.

De®nition 2.10) is irreducible as a V G-module where V w is equal to the sum of

all irreducible G-modules a¨ording the character w.
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Under these assumptions, we shall obtain a decomposition of an irreducible

V-modules into a direct sum of irreducible V G-modules (see Theorem 3.7 and

Theorem 3.11). An induced module will also be de®ned. In fact, we shall show

that the V G-module

XL :�
X

w A IrrG

V
w n̂V G L�1:1�

has a natural V-module structure where L is an irreducible V G module and

V w n̂V G L is the tensor product for V w and L. We call such a module XL an

induced module and show that every irreducible V-module is a quotient module of

some induced module. Moreover, we shall prove that V is rational in this case.

One important example is the code VOA constructed by Miyamoto [12] and

[13], which is also our main motivation. In fact, our main theorems (Theorem

3.11 and Theorem 4.4) are essentially generalizations for Theorem 5.1 and 5.2 of

[13]. See also [2] in which a class of VOAs called framed VOAs was studied.

The proof of the rationality theorem (Theorem 4.5) is basically taken from there.

This paper will be organized as follows: in Section 2, we shall review some

basic de®nitions and notation. We shall also state our assumptions. In Section

3, we shall study the representations of a VOA V based on the structure of a

®nite abelian subgroup G < AutV of automorphisms and its ®xed point space

V G. We shall also prove a decomposition theorem for irreducible V modules.

In Section 4, an induced module will be de®ned. We shall show that every

irreducible V-module is a quotient module of some induced module. Finally, we

shall prove that V is rational under certain assumptions on the fusion rules of V G.

2. Basic de®nitions.

In this section, we shall review some basic de®nitions and terminology.

Unless stated otherwise, we shall always work on the ®eld of complex numbers

C .

Definition 2.1 (cf. [9], [8]). A vertex operator algebra (VOA) is a Z-graded

vector space V � qn AZVn equipped with a linear map

Y�; z� : V ! EndV ��z; zÿ1��

v ! Y�v; z� �
X

i AZ

viz
ÿiÿ1

such that the following conditions hold:

(1) (Vacuum condition) there is a vector 1 such that

Y �1; z� � idj
V
;
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(2) (Creation property) Y�v; z� � 1 A V ��z�� and limz!0 Y�v; z� � 1 � v for any

v A V (i.e., Y �v; z� � 1 involves only non-negative integral powers of z and the

constant term is v);

(3) dimVn < y and Vn � 0 for su½ciently small n;

(4) for any u; v A V ,

unv � 0 for n su½ciently large;

(5) (Virasoro condition) there is a vector o such that the operators

Li � oi�1 satisfy the Virasoro relation:

�Lm;Ln� � �mÿ n�Lm�n �
1

12
�m3 ÿm�dm�n;0c

where c is a scalar and is called the rank of V;

(6) L0v � nv � �wt v�v for v A Vn;

(7) (Lÿ1-derivative property)

Y�Lÿ1v; z� �
d

dz
Y �v; z�;

(8) (Jacobi Identity) for any u; v A V ,

zÿ1
0 d

z1 ÿ z2

z0

� �

Y�u; z1�Y �v; z2� ÿ zÿ1
0 d

ÿz2 � z1

z0

� �

Y �v; z2�Y�u; z1�

� zÿ1
2 d

z1 ÿ z0

z2

� �

Y�Y�u; z0�v; z2�:

Remark 2.2. The Jacobi identity (8) can be equivalently replaced by the

following commutativity (see Dong and Lepowsky [3] and Li [10]):

�z1 ÿ z2�
n�Y�u; z1�Y�v; z2� ÿ Y�v; z2�Y�u; z1�� � 0�2:2�

for a su½ciently large positive integer n. Here, n depends on both u and v.

We can de®ne the notion of modules in a similar way.

Definition 2.3. A module for a VOA is a Q-graded vector space

M � qn AQMn equipped with a linear map

YM�; z� : V ! EndM��z; zÿ1��

v ! YM�v; z� �
X

i AZ

viz
ÿiÿ1

such that all the conditions mentioned in De®nition 2.1 also hold, provided that

they make sense.
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Remark 2.4. As in remark 2.2, the Jacobi identity for modules can also be

equivalently replaced by the following conditions:

(1) (Commutativity) For any u; v A V ,

�z1 ÿ z2�
n�YM�u; z1�YM�v; z2� ÿ YM�v; z2�YM�u; z1�� � 0�2:3�

for n su½ciently large.

(2) (Associativity) For any u; v A V ,

�z2 � z0�
k
YM�Y �u; z0�v; z2�w�2:4�

� �z0 � z2�
k
YM�u; z0 � z2�YM�v; z0�w

for some su½ciently large positive integer k.

We shall note that the factors �z2 � z0�
k and �z0 � z2�

k are to be expanded

as a formal power series in the second variable, i.e.,

�z2 � z0�
k �

X

ib0

k

i

� �

zkÿi
2 z i0;

�z0 � z2�
k �

X

ib0

k

i

� �

zkÿi
0 z i2:

In general, �z2 � z0�
k
0 �z0 � z2�

k; however, they agree with each other if k is a

positive integer.

Remark 2.5. For computation, it is sometimes more convenient to use the

following form of the Jacobi Identity (also called the Borcherds Identity): For

any a; b A V , c A M and m; n; q A Z,

X

ib0

m

i

� �

�aq�ib�m�nÿic �
X

ib0

�ÿ1� i
q

i

� �

�am�qÿibn�icÿ �ÿ1�qbn�qÿiam�ic�:�2:5�

Definition 2.6. Let V be a vertex operator algebra. V is said to be

rational if the following conditions hold:

(1) V has only ®nitely many inequivalent irreducible modules;

(2) every V-module is a direct sum of irreducible ones.

Remark 2.7. Our de®nition of rationality basically follows the de®nition

given by Zhu in [14]. For other de®nitions of rationality, please refer to Dong,

Li and Mason's paper [4].

Definition 2.8. Let �V ;Y � be a VOA and let �W 1
;Y 1�; �W 2

;Y 2� and

�W 3
;Y 3� be V-modules. An intertwining operator of type

W 1

W 2 W 3

� �

is a

linear map
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I� ; z� : W 2 ! Hom�W 3;W 1�fzg

u ! I�u; z� �
X

n AQ

unz
ÿnÿ1

satisfying:

(1) for any u A W 2 and v A W 3,

unv � 0 for n sufficiently large;

(2) I�Lÿ1v; z� � �d=dz�I�v; z�;

(3) (Jacobi Identity) for any u A V ; v A W 2

zÿ1
0 d

z1 ÿ z2

z0

� �

Y 1�u; z1�I�v; z2� ÿ zÿ1
0 d

ÿz2 � z1

z0

� �

I�v; z2�Y
3�u; z1�

� zÿ1
2 d

z1 ÿ z0

z2

� �

I�Y 2�u; z0�v; z2�:

The set of all intertwining operators of type
W 1

W 2 W 3

� �

is denoted by

IV
W 1

W 2 W 3

� �

. We shall often omit the V in IV
W 1

W 2 W 3

� �

in order to

simplify the notation.

Remark 2.9. Let NW 1

W 2;W 3 � dim IV
W 1

W 2 W 3

� �

. These integers NW 1

W 2;W 3

are usually called the ``fusion rules''. For convenience, we shall often consider

the fusion product

W 2 �W 3 �
X

W

NW
W 2;W 3W

where W runs over the set of equivalence classes of irreducible V-modules.

Definition 2.10 (cf. Li [11]). Let M1 and M2 be two V-modules. A tensor

product for the ordered pair �M1;M2� is a pair �M;F �� ; z�� consisting of a V-

module M and an intertwining operator F�� ; z� of type
M

M1 M2

� �

such that

the following universal property holds: For any V-module W and any inter-

twining operator I�� ; z� of type
W

M1 M2

� �

, there is a unique V-homomorphism

c : M ! W such that I�� ; z� � c � F �� ; z�. We shall denote the tensor product

for �M1;M2� by M1 n̂V M2 or simply by M1 n̂M2.

Proposition 2.11 (cf. [11]). If V is rational and M1 and M2 are irreducible

V-modules, then the tensor product for �M1;M2� always exists. Moreover,

Induced modules for orbifold vertex operator algebras 545



M1 n̂V M2 G 0
W

NW
M1;M2

W

where W runs over the set of equivalence classes of irreducible V-modules. In this

case, the tensor product for �M1;M2� agrees with the fusion product M1 �M2. By

abuse of notations, we may sometimes denote the tensor product by M1 �M2, also.

The following proposition is also quoted from Li [11].

Proposition 2.12. Let V be a rational VOA and

M 1 � 0
i
M 1

i ;

M 2 � 0
j
M 2

j

where M 1
i ;M

2
j are irreducible V-modules. Then, the tensor product for �M 1;M 2�

exists and

M 1 n̂V M 2 � 0
i; j
M 1

i n̂V M 2
j :

In this paper, we shall consider a simple vertex operator algebra V and a

®nite abelian subgroup G < AutV . By a theorem of Dong and Mason [7], we

know that the ®xed point space V G is a simple VOA; moreover, as a V G-module,

V � 0
w A IrrG

V w

where V w is the sum of all irreducible G-submodules of V a¨ording the character

w and V w is also irreducible as a V G-module. As we assume that G is abelian,

the set of all irreducible character IrrG also forms a group by pointwise mul-

tiplication. This group will be denoted by G �.

V G is always assumed to be rational in this paper. Moreover, we shall

assume that the fusion rules for V w; w A IrrG, satisfy the condition:

A1: For any ®xed w A IrrG and irreducible V G-module L,

X

W

NW
V wL � 1

where W runs over the set all equivalence classes of irreducible V G-modules.

Remark 2.13. By Proposition 2.11, if M1 and M2 are irreducible,

M1 n̂V M2 G0
W
NW

M1;M2
W . Therefore, our assumption on the fusion rules is

equivalent to the fact that V w n̂V G L is irreducible for any w A IrrG and irre-

ducible V G-module L. Moreover, we have

NW
V wL � dim I

W

V w L

� �

a 1

for any w A IrrG and irreducible V G-modules L and W.
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3. V-modules.

In this section, we shall study the representations of V based on the

knowledge of V G and its representations. In particular, we shall prove our main

theorem which describes the structure of irreducible V-modules.

As in the last section, V denotes a simple VOA and G < AutV a ®nite

abelian subgroup. We shall assume that V G is rational and for any ®xed

w A IrrG and irreducible V G-module L,

X

W

NW
V wL � 1:

The following proposition is very important to our discussion.

Proposition 3.1 (Proposition 11.9, [3]). Let W 1;W 2 and W 3 be V-modules

and I be an intertwining operator of type
W 3

W 1 W 2

� �

. Assume that W 1 and

W 2 are irreducible. Then, for any v1 A W 1 and v2 A W 2,

I�v1; z�v2 � 0 implies I�� ; z� � 0:

Definition 3.2. Let M be an irreducible V-module and L a V G-submodule

of M. De®ne

V w � L � spanfvnw j v A V w and w A Lg; w A IrrG:

For convenience, we shall often denote V w � L by wL or Lw.

Lemma 3.3. V w � L is a non-zero V G-submodule of M.

Proof. Since both V and M are irreducible V-modules, it is clear that

V w � L0 0 by Proposition 3.1.

Now, let u A V G; v A V w and w A L. By the Borcherds Identity (2.5) with

q � 0, we have

un�vmw� ÿ vm�unw� �
X

ib0

m

i

� �

�uiv�m�nÿiw:

Since unw A L and uiv A V w, we obtain un�vmw� A V w � L and thus V w � L is a

V G-submodule of M. r

Remark 3.4. Note that the module vertex operator YM�� ; z�jV w de®nes

a nonzero V G-intertwining operator of type
V w

V w � L

L

� �

. Therefore, by the
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de®nition of tensor product (cf. De®nition 2.10), there exists a nonzero V G-

homomorphism f : V w n̂V G L ! V w � L such that

YM�� ; z�jV w � f � F

where �V w n̂V G L;F� is the tensor product for the pair �V w;L�.

Since V w � L � spanfvnw j v A V w and w A Lg, f is surjective. If L is also an

irreducible V G-module, then V w n̂V G L is an irreducible V G-module, by our

assumptions. In this case, V w � L must be irreducible as a V G-module and

isomorphic to V w n̂V G L.

The following lemma is an easy consequence of the Borcherds identity.

Lemma 3.5. Let M be an irreducible V-module and LHM a V G-module.

Then, for w; l A IrrG,

(1) V w � �V l � L� � �V w � V l� � L,

(2) V w � �V l � L� � V l � �V w � L�.

Definition 3.6. Let M be an irreducible V-module and L an irreducible

V G-submodule of M. De®ne ~L to be the sum of all irreducible submodules of

M isomorphic to L. ~L is called a V G-homogeneous component of L in M.

Theorem 3.7. Let V be a simple VOA, G < AutV a ®nite abelian subgroup

such that V G is rational and V w n̂V G L is irreducible for any irreducible V G-

module L and w A IrrG. Let M be an irreducible V-module and L an irreducible

V G-submodule of M. Then,

(1) there exists fwigH IrrG such that MG0
i
V wi � L.

(2) All V G-homogeneous components are permuted transitively by G � �

IrrG, i.e., if ~L and ~L 0 are V G-homogeneous components in M, then there is a

w A IrrG such that ~L � V w � ~L 0.

(3) There is a subgroup H < G such that all V G-homogeneous components in

M are irreducible V H -modules. Moreover,

M � 0
w A IrrH

w~L

where w~L � V w � ~L.

(4) Let m�L� be the multiplicity of L in M, i.e., ~L � m�L� � L. Then, m�L�

� m�L 0� for any irreducible V G submodules L and L 0 in M. Moreover, we

have

M � 0
i

m � �wiL�

where wi is de®ned as in (1) and m � m�L�.

Proof. (1) Let
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V � L � spanfunv j u A V ; v A Lg:

Then, M � V � L as M is an irreducible V-module.

Since V � 0
w A IrrG

V w (cf. Dong and Mason [7]), we have

M � V � L �
X

w A IrrG

V w � L:

By our assumption, V G is rational and fV w � Lg are irreducible V G-modules.

Hence, there exists a set of irreducible G-characters fwigi H IrrG such that

M � 0
i

V wi � L

and we have (1).

(2) Let L and L 0 be irreducible V G-submodules of M. Then, by (1), there

is a w A IrrG such that L 0 GV w � L. Thus, we also have L 0 � V w n̂V G L (cf.

Remark 3.4).

Let SH ~L be an irreducible V G-submodule. Then, SGL and V w � SG
V w n̂V G SGV w n̂V G LGL 0. Hence, V w � SH ~L 0 and V w � ~LH ~L 0.

Let wÿ1�g� � w�gÿ1� for g A G. Then, wÿ1 A IrrG and wÿ1 � w � w � wÿ1 � 1G.

Thus, V wÿ1
� L 0 GL and we have

V w � ~LIV w � �V wÿ1

� ~L 0� � �V w � V wÿ1

� � ~L 0 � ~L 0

as desired.

(3) Let L be an irreducible submodule of M. We shall de®ne

CL � fw A IrrG jLGV w � Lg:

Since

�V wl� � L � V w � �V l � L�GL; for any w; l A CL;

we have wl A CL and W�L� � 0
w ACL

V w is a subVOA of V.

Let

H � HL � fg A G j w�g� � 1 for all w A CLg:

Then, H is a subgroup of G and W�L� � 0
w ACL

V w � V H .

Note that the fact W�L� � V H also follows immediately from Quantum

Galois theory (cf. [7]).

By the de®nition of CL and ~L, it is clear that

unv A ~L for all u A W�L� and v A ~L:

Therefore, ~L is a V H-module.
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Next, we shall show that HL � HL 0 for any irreducible V G-submodules L

and L 0 of M. By (1), there is a l A IrrG such that L 0 G lL (or equivalently
~L 0 � l~L � V l � ~L).

Now let w A CL. Then, w~L 0 � V w � ~L 0 � V w � �V l � ~L� � V l � �V w � ~L� �

V l � ~L � ~L 0. Hence, w A CL 0 and we have CL HCL 0 .

By symmetry, we must also have CL ICL 0 . Therefore, CL � CL 0 and

we have HL 0 � HL � H. In particular, all V G-homogeneous component are

V H -modules.

Now let us show that ~L is an irreducible V H -module.

Suppose not. Then, there exists an irreducible V H -module W such that

W P ~L. For any irreducible V G-submodule L of W, set

N � V � L �
X

w A IrrG

V w � L �
X

w ACL

V w � L�
X

w B CL

V w � L:

Note that W �
P

w ACL
V w � L and V w � LlL for all w B CL. Thus, N V ~L � W .

As M is an irreducible V-module, N � M and thus N V ~L � ~L. It is a

contradiction and hence ~L is an irreducible V H -module.

Finally, we shall show that

M � 0
l A IrrH

�V l � L�:

First, we shall note that

H � fg A G j gv � v for all v A W�L�g and CL � fw A IrrG j wjH � 1Hg:

Let w1; w2 A IrrG. Then,

V w1 � ~L � V w2 � ~L , V w1 � LGV w2 � L , wÿ1
1 w2 A CL , w1jH � w2jH :

Since V l �
P

w A IrrG;wjH�l V
w for any l A IrrH, we have

V l � ~L �
X

w A IrrG;wjH�l

V w � ~L � V w � ~L:

Hence, M � 0
l A IrrH

V l � ~L.

(4) Suppose ~L � L1 l � � � lLm where L i GL. Then, w~L �
P

i wL
i. We

shall show that the sum is in fact a direct sum.

Clearly, wL i 0 0 and V wÿ1
� �V w � L i� � �V wÿ1

� V w� � L i � L i for all i.

Thus, wL i V wL j � 0 for all i0 j and we have m�L� � m�wL� as

required. r

Next, we shall give a more precise structure of M.

Definition 3.8 ([1]). Let G be a ®nite group and a a 2-cocycle. The

twisted group algebra associated with a is the algebra
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�CG�a � 0
x AG

Cux

with the multiplication de®ned by

uxuy � a�x; y�uxy for x; y A G:

Definition 3.9 ([1]). Let G be a ®nite group. A projective representation

of G, with respect to a 2-cocycle a, is an algebra homomorphism T : �CG�a !

GL�M� for some vector space M.

Theorem 3.10. Let M be an irreducible V-module and let L be an irreducible

V G-submodule. Suppose that M � ~L, that is, all irreducible V G-submodules of M

are isomorphic to L. Then, there is an irreducible projective representation Q of

G � � IrrG such that

MGQnC L:

Proof. The basic idea of the proof comes from a paper of Dong, Li

and Mason [5]. We simply modify it to suit our case.

Let Lw � V w � LHM. Then, Lw GV w n̂V G LGL as V G-modules and thus

there is a V G-isomorphism fw : L ! Lw. Without loss, we shall choose f1 � IdL.

Let Y�� ; z� : V ! EndM��z; zÿ1�� be the vertex operator for M. Then,

Y �� ; z� fw de®nes an intertwining operator of type
Llw

V l L

� �

since V l � �V w � L�

� �V l � V w� � L � V lw � L for any l; w A IrrG.

As Ll GV l n̂V G L, by the de®nition of tensor product, there is a V G-

homomorphism fw;l : L
l ! Lwl such that Y�a; z� fw�u� � fw;lY �a; z�u for a A V l

and u A L. Note that if Ll � Lx, we shall take fw;l � fw;x.

De®ne f̂w : M ! M by f̂w�u� � fw;l�u� for l A IrrG and u A Ll. Then, f̂w�u�

is a well de®ned linear isomorphism of M and Y �a; z�f̂w�u� � f̂wY�a; z�u for

u A L.

As Y�� ; z� is the module vertex operator of V-module M, there is a positive

integer k > 0 such that the following associativities hold (cf. 2.4): For any

a; b A V ; w A IrrG and u A L,

�z0 � z2�
k
Y �a; z0 � z2�Y �b; z2�u � �z0 � z2�

k
Y �Y�a; z0�b; z2�u�3:6�

and

�z0 � z2�
k
Y �a; z0 � z2�Y�b; z2�f̂wu � �z0 � z2�

k
Y �Y�a; z0�b; z2�f̂wu:�3:7�

Thus, we have
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�z0 � z2�
k
f̂wY �a; z0 � z2�Y �b; z2�u � �z0 � z2�

k
f̂wY�Y�a; z0�b; z2�u

� �z0 � z2�
k
Y �Y�a; z0�b; z2�f̂wu

� �z0 � z2�
k
Y �a; z0 � z2�Y �b; z2� f̂wu

� �z0 � z2�
k
Y �a; z0 � z2� f̂w�Y �b; z2�u�

Multiply the equation by �z0 � z2�
ÿk, we obtain

f̂wY �a; z0 � z2�Y �b; z2�u � Y �a; z0 � z2� f̂w�Y�b; z2�u�

or

f̂wY�a; z1�Y �b; z2�u � Y �a; z1� f̂w�Y�b; z2�u�:

Since M � V � L, we have

f̂wY �a; z1�u � Y �a; z1� f̂w�u� for any a A V and u A M:

Thus, f̂w is a V-isomorphism.

Since f̂w f̂ljL and f̂wljL are both V G-homomorphism and L is an irreducible

V G-module, f̂w f̂ljL is a scalar multiple of f̂wljL. In other words, we have a scalar

a�w; l� A C � such that f̂w f̂l�u� � a�w; l� f̂wl�u� for any u A L. On the other hand,

for any a A V and u A L, we have

f̂w f̂lY �a; z�u � Y�a; z� f̂w f̂l�u� � Y�a; z�a�w; l� f̂wl�u� � a�w; l� f̂wlY�a; z��u�:

Hence, f̂w f̂l � a�w; l�f̂wl as an endomorphism of M.

Note that a�w; lx�a�l; x� � a�w; l�a�wl; x� and a�1; l� � a�l; 1� � 1. Thus,

a�w; l� is a 2-cocycle and f fwg de®nes an C�IrrG�a-representation on M where

C�IrrG�a is the twisted group algebra associated with a (cf. De®nition 3.8).

Since fw commutes with Y�a; z� for all a A V G, M is, in fact, a C�IrrG�a n

V G-module. Thus,

M � QnL

where Q is a C�IrrG�a-module and L is an irreducible V G-module.

Since f̂wjL � fw : L ! Lw is a V G-module isomorphism, there is an inter-

twining operator

I w�� ; z� A I
L

V w L

� �

such that

Y�a; z� � fwI
w�a; z� for a A V w

:
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Thus, the module vertex operator of M can be rewritten as

Y �a; z� � f
w
n I w�a; z� for a A V w

where f
w
acts on Q and I w�� ; z� acts on L.

Hence, Q must be irreducible; otherwise there is a proper submodule

Q0 PQ. In this case, Q0 nL will be closed under the action of Y�a; z�. That

means Q0 nL is a proper V-submodule of M. It is impossible as M is irre-

ducible. r

Theorem 3.11. Let M be an irreducible V-module and fL1; . . . ;Lng be the

set of all inequivalence V G-submodules of M. Then, there is a subgroup H < G

and irreducible �G=H�� � Irr�G=H� projective representations Q1; . . . ;Qn such

that

M � 0
i

Qi nLi:

Moreover, fQi nLig are irreducible V H -modules.

Proof. By Part (3) of Theorem 3.7, there exist a subgroup H < G such that

M � 0n

i�1
~Li where ~Li are V G-homogeneous components of M and ~Li are

irreducible as V H -modules.

Since G is abelian, one can easily show

V G � �V H�G=H :

Now, by Theorem 3.10, we know that

~Li � Qi nLi

for some irreducible projective representations Qi of �G=H��. Hence,

M � 0
i
Qi nLi

as desired. r

4. Induced modules.

In this section, we shall study the problem of extending an irreducible

V G-module L to a V-module. In order to prevent some complicated technical

details, we shall only consider the case that L is contained in some V-module M.

An induced module XL will be de®ned. We shall show that every irreducible

V-module can be considered as a quotient module of some induced module.

As before, L denotes an irreducible V G-module. Suppose that there is a

V-module M such that LHM.
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Denote Lw � V w n̂V G L. By our assumptions, Lw is irreducible as a

V G-module; moreover, for any w A IrrG,

V w � LGLw

where V w � L � spanfunv j u A V w
; v A LgHM.

Let YM�� ; z� be the module vertex operator of M. Then, by restricting YM

to V w, we obtain an intertwining operator

I w;l�a; z��u� � YM�a; z��u� A I
Lwl

V w Ll

� �

for a A V w
; u A Ll

As a V G-module, we de®ne

XL � V n̂V G L � 0
w A IrrG

V w n̂V G L:

and Ŷ�� ; z� : V ! EndXL��z; z
ÿ1�� by

Ŷ�u; z�v � I w;l�u; z�v for u A V w
; v A Ll

:

Then, we have

Theorem 4.1. �XL; Ŷ�� ; z�� is a V-module.

We shall denote the module XL by IndV
V G L and call it an induced module of

L from V G to V.

Remark 4.2. In [6], a general theory of induced modules for vertex

operator algebras has been developed by Dong and Lin. Our de®nition of

induced modules, on the other hand, follows the approach of Miyamoto in [13]

which is slightly di¨erent from Dong and Lin's de®nition.

Lemma 4.3. The de®nition of XL is independent of the choice of the

V-module M.

Proof. Let �M 1
;Y 1�� ; z�� and �M 2

;Y 2�� ; z�� be two V-modules such that

both contain L as an irreducible V G-submodule. We shall show that X 1
L de®ned

by using M 1 and X 2
L de®ned by using M 2 are isomorphic as V-modules.

Let Ŷ 1�� ; z� and Ŷ 2�� ; z� be the vertex operators of X 1
L and X 2

L respec-

tively. Then, both Ŷ 1�� ; z�jV w and Ŷ 2�� ; z�jV w are intertwining operators of type

Lw

V w L

� �

. As Lw � V w n̂V G L, there exists a unique V G-isomorphism cw such

that

Ŷ 1�u; z�v � cwŶ
2�u; z�v
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By identifying the L in X 1
L and X 2

L , we may choose fcwg such that c1 � idL.

Now, de®ne c : X 1
L ! X 2

L by c�v� � cw�v� if v A Lw. Clearly, c is a linear

isomorphism. We shall show that c is also a V-isomorphism. By de®nition,

Ŷ 1�u; z�cv � cŶ 2�u; z�v for any u A V and v A L:�4:8�

Since both X 1
L and X 2

L are V-modules, for any a A V w; b A V l and v A L,

there is a k > 0 such that

�z0 � z2�
k
Ŷ 1�a; z0 � z2�Ŷ

1�b; z2�cv � �z0 � z2�
k
Ŷ 1�Y �a; z0�b; z2�cv�4:9�

and

�z0 � z2�
k
Ŷ 2�a; z0 � z2�Ŷ

2�b; z2�v � �z0 � z2�
k
Ŷ 2�Y �a; z0�b; z2�v:�4:10�

Now, by (4.8), (4.9) and (4.10), we have

�z0 � z2�
k
cŶ 2�a; z0 � z2�Ŷ

2�b; z2�v � �z0 � z2�
k
Ŷ 1�a; z0 � z2�cŶ

2�b; z�v

and hence

cŶ 2�a; z0 � z2�Ŷ
2�b; z2�v � Ŷ 1�a; z0 � z2�cŶ

2�b; z�v

or

cŶ 2�a; z1�Ŷ
2�b; z2�v � Ŷ 1�a; z1�cŶ

2�b; z2�v:

Thus,

cŶ 2�a; z1�v � Ŷ 1�a; z1�cv for any v A V n̂V G L

and c is a V-isomorphism. r

Theorem 4.4. Let M be an irreducible V-module. Then, M is isomorphic to

a quotient module of IndV
V G L for some irreducible V G-module L.

Proof. Let L be an irreducible V G-submodule of M. Then, by

Theorem 3.7,

M �
X

w A IrrG

V w � L �
X

w A IrrG

Lw

Since V wi n̂V G LGLw, there is a V G-homomorphism

cw : V
wi n̂V G L ! Lw

:

De®ne c : IndV
V G L ! M such that cjV w n̂

V G L � cw. By the same argument as in

Lemma 4.3, one can show that c is a V-homomorphism. As M is an irreducible

V-module, c must be surjective and hence M is isomorphic to a quotient module

of IndV
V G L. r
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The next theorem is a generalization of the rationality of framed (and code)

VOA (cf. [2] and [13]).

Theorem 4.5. Let V be a simple VOA and G < AutV a ®nite abelian group.

Suppose that V G is rational and
P

W NW
V wL � 1 for any irreducible V G-modules L.

Then, V is also rational.

Proof. We shall show that every V-module is completely reducible. Let

M be a V-module and choose a V-submodule W HM such that W is maximal

among all submodules of M which are direct sums of irreducible V-submodules.

We shall show that W � M.

Suppose W 0M. Then, there is an irreducible V G-submodule L of M

such that W VL � 0 as V G is rational. Let ~L be the sum of all irreducible

submodules of M isomorphic to L and ~U � V � L. By the proof of Theorem

3.11, there is an H < G such that

U 0 � ~U V ~LGQnL as V H -modules

where Q is a projective representation of Irr�G=H� and V H � 0
V w�LGL

V w,

w A Irr�G�.

Since LPW , by Theorem 3.11, there is a proper submodule Q0 of Q such

that

W VU 0 GQ0 nL as V H -modules:

Since C is an algebraically closed ®eld, we have Q � Q0 lQ1 for some Q1.

By the proof of Theorem 3.11, we know that Q1 nLH ~U is a V H -module.

Now, let

X �
X

w A IrrG

V w � �Q1 nL�:

Then, X is a V-module and by the de®nition of V H , we have X V ~L � Q1 nL.

Thus, X VW V ~L � 0.

Since all V G-homogeneous component of X are permuted transitivity by V w

(cf. Theorem 3.7), we have X VW � 0.

Now let Y be an irreducible V-submodule of X. Then,

MIY lW QW :

It contradicts the maximality of W. Hence, W � M.

Now, by Theorem 4.4, it is easy to see that V has only ®nitely many

inequivalent irreducible modules. r
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Remark 4.6. Since IndV
V G L is completely reducible, every quotient module

is isomorphic to some submodule. Hence, every irreducible V-module is iso-

morphic to some submodule of an induced module.
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