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Abstract. In the first paper of the same title, we introduced the concept of singular
inner functions of L'-type and obtained results for singular inner functions which are
reminiscent of the results for weak infinite powers of Blaschke products. In this paper,
we investigate singular inner functions for discrete measures. We give equivalent
conditions on a measure for which it is a Blaschke type. And we prove that two
discrete measures are mutually singular if and only if the associated common zero sets of
singular inner functions of /-type do not meet.

1. Introduction.

Let H* be the Banach algebra of bounded analytic functions on the open
unit disc 4. We denote by .# = M(H®) the maximal ideal space of H®, the
space of nonzero multiplicative linear functionals of H® with the weak*-
topology. We view 4 as 4 = ./, and 4 is an open subset of .#. By Carleson’s
corona theorem [2], 4 is dense in .#. Identifying a function in H® with its
Gelfand transform, we view H*® as the closed subalgebra of C(.#), the space of
continuous functions on #. We also identify a function in H® with its
boundary function and view H® as an (essentially) supremum norm closed
subalgebra of L®, the usual Lebesgue space on the unit circle 4. Then we view
the maximal ideal space M(L*) of L™ as a subset of .# and M(L®) is the
Shilov boundary of H*. A function f in H® is called inner if |f| =1 on
M(L*). For a function f in H®, we put

{IfI<1}={xe\4;|f(x)| <1} and Z(f) = {xe.u\4;f(x) = 0}.

We note that these sets are considered in .#\4. For e edd, let M=
{x e M;z(x) = e?}, where z is the identity function on 4. Then MN\A =
(J{A,0;e® € 04}. For a subset E of .4, we denote by E the weak*-closure of E
in 4. See [4], [9], for studies of the structure of H® and ..
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For a sequence {z,}, in 4 satisfying >~ (1 — |zs|) < o, we have a Blaschke
product

We denote by 2(b) the set of sequences of positive integers p = (py, p,,...) such
that 3°°, p,(1 — |z4]) < o0 and p, — o0 as n — o0. For p = (p, p,,...) € P(b)
we have an associated Blaschke product defined by

0 5 Pn
—Zy Z— 2y
bp(Z)=H<—|%—n—|l—Z_nZ) y zeAd.

n=1

In [13], the author called Blaschke products b7, p € 2(b), weak infinite powers of
b and studied them.

In [14], we obtained results for singular inner functions which are reminiscent
of the results for Blaschke products in [13]. This paper is a continuation of these
papers and we use the same notations as in them. We denote by M(04) the
Banach space of bounded Borel measures on 04 with the total variation norm.
Since M(04) is the dual space of C = C(04), the space of continuous functions
on 04, we can consider the weak*-topology on M(04). Let M be the set of
positive (nonzero) singular measures in M (04) with respect to the Lebesgue
measure on 04.

For each pe M}, let

ei0+z

¥,(z) = exp (-—LA pr dy(eia)), ze 4.

Then y, is inner and called a singular inner function. We note that

o) = exp(~[ e du(e")), ze4

where P, is the Poisson kernel. Hence if 0 <v < pu,v,ue M}, then || < |¢,|
on /. Let

LY (u)={ve MS;0 <v«puv+#0}.

Then we have a family of singular inner functions {y,;ve L. (x)}. In [14], we
call these functions singular inner functions of L'-type for the measure u. Let

() = {{l] < 1};ve Li(w)} and Ro(w) = U{Z(W);v e LL(w)}. In[14], we
study #(u) and Ro(u), and obtain similar theorems as in [13].

In [13], the author proved that
(o) {Iol < 13 = N{{Ip?| < 1};p € 2(b)} = ({Z(¥F); p € 2(b)}
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for every Blaschke product 5. In this paper, we investigate similar type
of theorems for singular inner functions. It is not difficult to show that
| <1}ve LL(w)} = & for pe M with p # cd,», where J,» is the unit
point mass at e” and c is a positive number. So to have similar theorems like
(), we need to consider subclasses of L!(u).

In this paper, we concentrate on discrete measures. We denote by M:d the
set of positive discrete measures in M. We call y,,ue MS 4> discrete singular
functions. When ue M 54 1s a sum of finitely many point measures, it is easy to
study properties of . So in this paper, we assume that x is a sum of infinitely
many point measures, and we can write

Zan it 5 Za,, < o0, a, >0 for every n, and e # ¢ for n # k.

n=1 n=1

Then

[e0)
H e"’" Z)|an ze d.
n=1

As an analogy of 2(b), where b is a Blaschke product, we define 2(u) as the
set of sequences of positive numbers p = (p;, p,,...) such that > 7 p,a, <
w, p,=1, and p, - 0 as n — co. For pe P(u), we put

0
wh = Z Dn@nOpitn .
n=1

Measures Y, p € #(u), are called weak infinite powers of y,. Then u” € L ()
and it is expected that the set {y,,; p€ 2(u)} acts as {b?; p e 2(b)}.
In Section 2, we prove

{{lwl <1};pe 2(0)} = (Q{Ilﬁml < 1}> U (ﬂ{Z(%p);p € 9’(#)})

In Section 3, we give equivalent conditions on u e Ms"* 4 for which
{ll <1} = N{lw! < 1}sp e 2(1)}.

For every Blaschke product b, (x) holds. Hence, when the above condition is
satisfied, we say that y, is a discrete singular inner function of Blaschke type.

Since p € M ,, we can consider another subclass of Li(p). Let I® be the
set of sequences of bounded and positive numbers. For u= 3., a,0,s € Ms'fd
and p = (p;,py,...) €IP, we have Y >, p,a, < oo, so that we can define ux? in
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the same way as before. And we have

{lw| <1} = {lYul <1} and  Z() = Z(ye)

for every p e lP and g€ 2(u). We call y,,, p € I, discrete singular functions of
IP-type.

In Section 4, we study the sets (\{Z(Y,);pel?} and ({{|Y.| < 1};
pelP}. We prove that the both sets can be described only using {e}, and are

strictly smaller than (\{Z(¥,,); pe 2(1)} and ({{|Y,| < 1};p € 2(0)}, re-
spectively. And we prove that if uld,u,Ae M;r , then

(Nt < thpe 2} N (Nl < 1igeiF}) = 2.

2. Weak infinite powers of discrete singular functions.

Let 4= > a,0,s € M, such that a, >0 for every n and e # ¢ for
n#k. Put

oy

W, = Zakéemk for every n.
k=n

Then u; = p, ft, = pyr1, and [jp,]| — 0 as n — oco. Recall that 2(u) is the set of
sequences of positive numbers p = (p;,p,,...) such that > 7, p,a, < oo,
p, =1, and p, > 0 as n— oo. Then u < u? for every pe P(u). We note
that {|ys | <1} = M0, and use this fact without mentioning it. In this section,
we prove the following two theorems.

THEOREM 2.1. Let u= Zf:la,,éem,, € Ms‘fd such that a, > 0 for every n and
e # e for n# k. Put p, =3 1,0, for every n. Then

NZ():p € P} = (Q zw(se,.g")) U, <1} = THI<T)

THEOREM 2.2. Let p=3.." | axd,in € M, such that a, >0 for every n and
et £ e for n#£k. Put p,=> re, W, for every n. Then

O NWwl<i}pe2(w)} = (Ql{hpéeie,, <1}) U (ﬂ{Z(t//,,p);pe?(u)})

- ( Q{W/aem"

(i) {ll <1} pe 2w} = N {{lel <1}spe 2} = {lY| < 1}.

To prove our theorem, we need some lemmas.

<1}) U fjl{|wn|<1} < ToI<1}.
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LEMMA 2.1. Let u=>_," @nlon eM+d such that a, >0 for every n and
eon £ e for n#k. Put u,=> po,%0,s. Then

() 2(h) = (@ 20, )) U (ﬁl zwﬂ")).

(i) W <13 = (Ui, | < 1}) U ((‘jlw,ln; < 1}>.

I

Proor. We have

n—1

u= Zakéemk + U,

k=1

Then

lkun H I/15 ) ity

Hence y,(x) = 0 if and only if either x € Z(y;,, ) for some n or x e Z(y, ) for
every n. Also |y, (x)] <1 if and only if either |lp5 o (X)| <1 for some n or
¥, (x)] <1 for every n.

LemMmA 2.2. Let p=>3 " @nO,im eM;fd such that a, >0 for every n and
en £ e for n#k. Put p,=Y 4., 0,s. Then

@) W |<W,,| on A for every n.

(@) Wyl < Wyl < Wy, <1, | on A for every pe () and n.

{i)  (Vomy W, < 1} = ({Z0Wwi p e 2(1)}-

Proor. (i) and follow from &, < p, < p,_y <u<pP for every pe
P(u) and n.

(ii1) Let x € .#\4 satisfying

(2.1) [, (x)| <1 for every n,

and p=(p),py,...) € P(p). Put p, =inf{p;k>n}. Then p’'=(p},p3,...) €
P(u) and

o0 0
/ /
Pulty < Z D, K0, < Z Drai0,i0, < pP.
k=n k=

Hence

(2.2) W] < |l//ﬂn|p"' on ./ for every n.
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Let no be the smallest positive integer such that x ¢ () . W5, | <1} Then we
have |y, (x)| = |t//"0 (x)| for n > ny. Since p, — oo as n — oo, by (2.1) and (2.2)
we have y,,(x) = 0.

For fe H®, we put {f # 0} = {x e #\4; f(x) # 0}.

LEMMA 2.3. Let u=Y ., andyen € M}, such that a, >0 for every n and
e £ e for n#k. Then we have the following.

(i) For each qe€P(u), there exists peP(u) such that |y,|=1 on
W # ONUZ (s, | < 1),

(i) Let xe #M\A. If x¢ U:;l{]c//(;eien| <1} and p,(x) #0 for some qe
P(u), then there exists p € P(u) such that x ¢ {|Y,,| < 1}.

ProOF. (i) Let x € .#\4 such that y,.(x) #0 and x¢ (), {l¥;, | <1}
Since q € 2#(u), there exists a sequence of increasing positive numbers {#,}, such

that peP(u) and 1, — o0, where p=(p,py..-.)=(q/t,q/t,...).
Then

n—1 00
tn/lp =1, Z pkakée,-ek -+ Z t,,pkak5e.~ok
k=1

k=n

n—1 0

<t Zpkakéeiek + Z qkakéemk
k=1 k:n
n—1

<ty pkakéeiok + ul.
k=1

Iy

Since |y, (x)| =1 for every n, by the above we have |y, (x)| < [y,»(x)]|™.
Yue(x) #0 and #, — co, we have |y, (x)| = 1.
(1) By our assumption, there exists an open subset V' of .#\4 such that

Since

o0
xeV and VN {lYs, | <1} =0

n=1

Let U= {yeV;[y(»)| > [¥,e(x)|/2}. Then U is an open subset of .#\4 and
xe U. By (i), there exists p € #(u) such that |,,| =1 on U. This implies our
assertion.

Now we give the proofs of Theorems 2.1 and 2.2,
ProoF oF THEOREM 2.1. By [Lemma 2.2(ii) and [{ii}, we have

23) (@1 zwaewn)) 0 (1] < 1} = (1ZW)ip € 20}
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To prove

(24) (HZW);p e 2(W)} = (@1 Z(l//«zian)> U a{ll//ﬂ,,l <1},

let x € #\4 such that

2.5) x¢ (@1 Z(zp@,ﬁ)) 0 <1}
We shall prove the existence of
(2.6) v=uf peP(u), such that y,(x) #0.
By and [Lemma 2.1(i),
(2.7) Y, (x) # 0
and by the corona theorem [2] there exists an open subset U of 4 such that
(2.8) xeU
and
_
(2.9) 00 (W) <1} =2

Here we show that
(2.10) Y| — 1 uniformly on U as n— 0.

To prove this, suppose not. Then there exist 0 <J < 1 and a sequence {z,}, in
U such that

(2.11) ¥, (z2)] <J for every n.

Since ||,|| — 0, |, | — 1 uniformly on compact subsets of 4 as n — oo. Hence
by (2.11), |zs| — 1. By Lemma 2.%(i), |y, (zx)| <J for every positive integer k
and n with k >n. Let ye {zc},\{zx},- Then [y, (y)| <6 for every n. Since
y € U, this contradicts [2.9). Thus we get (2.10).

Let {e}, be a sequence of positive numbers such that

o0
(2.12) [[ex>0 and 0O<a <1
k=1

For each k, by (2.10) there exists a positive integer n; such that
(2.13) lw#"k| >¢ on U.
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Since ||u,|| — 0 as n — oo, taking a sufficiently large n; we may assume moreover
that

o0
>l I < 0.
k=1
Put
o0
(2.14) J=Z,u,,k and v=pu+o.
k=1

Then v = p? for some p e #(u). We have y,(x) = ,(x)¥,(x). Hence to prove
(2.6), by it is sufficient to prove

(2.15) Ya(x) #0
By (2.13) and (2.14), we have

Wl =H|l//”k| > Hek on U.
k=1 k=1
Hence by (2.12),
o0
[W,(2) Hsk >0 for every ze U.
k=1

Thus by we have [2.15), so that (2.6) holds. Therefore holds.

By [2.3] and [2.4),
NZ W) p € 2(0)} = (U Z(s,, ) UalUARD
By Lemma 2.1(ii), we have
(Q zw(;e,,,")) 0 (1| <1} = THI<TE

This completes the proof.
ProoF OF THEOREM 2.2. (i) By [Lemma 2.2(ii),

(2.16) {l < 1} « N{lww| < 1350 2(w)}.

We shall prove that

@17 (Nl < 15 € 2@H\II < 1} = ({Z(W); p € 2(0)}.
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Let
xe (Nl < 1} € 2(0)}) Iyl < 1}

Then |y, (x)| =1 for every n and |y, (x)| < 1 for every p e Z(u). By
2.3(i), we have xe (\{Z(Y,); p€ P(1)}. Thus we get (2.17).
Now we have

Nl < 1ip e (W)} = ) < U (({ZWw)ipe 2(1)}) by (217)
= ({{lw! <1} pe2(w)} by [2.16).
Hence by and Theorem 2.1, we have

Nl < i p e 2} = {0 < 11U ({Z0W) p € 2(1)})
- ( @l{lww < 1}) U fjl{wﬂni <1}
We have

WI<1 = (C__O)lw@,.gnl < 1}) U (é{wﬂnr < 1}) by

= N{{lYwl <1}pe 2w} by (i)
< (W{lVwl < 1};pe 2(u)}.

To prove

(2.18) Nl <1t pe2(w)} < {IWl <1},

let x¢{[y,]<1}. Then by Mheorem 2.1, x¢ N{Z(y,);pecP(x)}. Hence
there exists g€ #(u) such that y,(x) #0. Since x¢ (J;2 {¥s, | <1}, by
Lemma 2.3(ii), there exists pe P(u) such that x¢ {|y,,] <1}. Therefore
x ¢ ({{l¥pwl <1};peP(w)}, so that (2.18) holds. Thus holds. This
completes the proof.

3. Discrete singular functions of Blaschke type.

Recall that for a Blaschke product b,

{I6] <1} = N{{Ip*I < 1} p e 2(b)} = ({Z(b"); p € 2(b)}.
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A measure u e M, satisfying {|y,| <1} = {{lY| < 1}; p € ()} is called a
Blaschke type. In this section, we study discrete singular measures of Blaschke
type. The following is our theorem.

THEOREM 3.1. Let p= 3,2, and,0, € M, such that a, >0 for every n and
e #e% for n#k. Put p,=3 1o, ab,s for every n. Then the following
conditions are equivalent.

(a) <13 = N{{lwl < 130 € 2(1)}.

(b) <7 = (ZW);p € 2(w)}.

© WI<1) = é{"“ <1},

(@) Nl < 132 € 2(0)} = ZW)i 0 € 2w}
(©) Nl < 130 € 2(w)} = fjl{wﬂnl <1},
() N2k )ip € 2} = ({1 < 1)

® Q’lﬂwe,.,,,J <l}e Fjl{w,‘J <1}

(h) N{{l¥w| < 1};peP(w)} is closed.

Hence if ue Mj ; is of Blaschke type then each subset appeared in conditions
(@)—(f) coincides with the others.

To prove [Theorem 3.1, we need some lemmas.

LemMma 3.1. Let p= Y12, andon € M, such that a, >0 and e # e for
n#k. Put pu,=3 p,ab,s. Then we have the following.
(i) (a) holds if and only if

U, | < 1}\(@%6,.9"1 < 1}) < (| < 13-
n=1 n=1 n=1
(ii) (c) holds if and only if

031 <13 = (Y] <13
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(i) (d) holds if and only if

0 (g < 1N200) < (V] < 13

(iv) (e) holds if and only if

Ul <1h e (i, <1}

(v) (f) holds if and only if

@1 ﬂ{ldf |<1}.

PROOF (i) follows Lemma 2.1(ii) and — (i). [if) follows Lemmal
2.1(ii). ([ii)] follows Theorems 2.1 and (iv) follows [T i). (v)
follows Theorem 2.1.

Let QC=(H®+ C)N(H® + C), where C is the space of continuous
functions on 94 and H® + C={f;f e H® + C}. For {e M(L®), let Q=
{€e M(L®); f(&) = f({) for every fe QC}. This set Q is called a QC-level
set. For x € #, there is a unique probability measure x4, on M(L*) such that
fM( L=) fdu, = f(x) for every f € H*. We denote by supp u, the closed support
set of u,. It is known that for x € .#\4 and a QC-level set Q, suppu, < Q or
suppu, NQ =&. And there exists a unique QC-level set O, such that
supp 4, = Q. See [11], [12], [15] for the study of QC-level sets.

LEMMA 3.2. Let ¢ be an inner function and x a point in M\A such that
|p(x)| < 1. Then we have the following.

(i) There exists y € M such that suppu, = suppu, and 0 < |p(y)| < 1.

(ii) There exists (e .M such that suppu, < suppu, and (e {|p| <1}\

{lol <1}

SKETCH OF PROOF. See [3] in detail. Let Hg\p,, be the restriction alge-
bra on suppu,. Then HX

lsupp is a closed subalgebra of C(suppu,). Let

M(Hg,,,, ) be the maximal ideal space of Hg . Then we view M (Higpp )
as

M(Hg,,,, ) = {n € #;sapp u, < suppp,}.

Since |p(x)| <1 and xe M(H®

|supp 4 ), @ is not invertible in H®
1 on supp U, we have

lsupp Since |p| =

o(M(Hgpp,,) = {lzl < 1}.
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By this fact, (i) is clear. By Shilov’s idempotent theorem, {#e M (Hﬁppﬂ )
lo(n)| < 1} is not closed in M(HZ, ). Hence we get [(if).

For an inner funcition ¢, let

(3.1) N(@) = U{supp s lo(x)] < 1}

The properties of N(@) are studied in [11], [12]. The following two lemmas are
keys to prove [Theorem 3.1.

LemMa 3.3. Let ¢ be an inner function. Then
D) N@) = U{QuxeZ(p)} = U{Qxxe{lol <1}}.
(i) N@) =U{Qsxe{lol <T}}.
(i) N(@) = U{Quxe{lol <INZ(9)}.
(iv) N@) = U{Qsxe {lo] <TI\{lol < 1}}.

Proor. (i) is proved in [11].
(i) Let xe{|p| <1}. Then there is a net {x,}, in {|¢| <1} such that

Vi

xq — x. Then u, — p, in the weak*-topology of the space of bounded Borel
measures on M(L*®), see [4, p. 375]. By [3.1), suppu,, = N(p) and N(p) is a
closed subset of M(L®), so that we have suppu, = N(¢). By (i), N(p) is a
union set of QC-level sets, so that we have Qx = N(p). Thus we get ().
Let xe Z(p). Then by Lemma 3.2(i), there is ye.# such that

supp 4, < supp, and 0 < |p(y)| < 1. Then Q) = Oy, s0 that by (i) we get (iii).
Let x € {|p| < 1}. Then by Lemma 3.2(ii), there is y € .# such that

suppu, < supp , and y € {|p| < 1}\{lg| < 1}. Then Q) = Q, so that by [ii] we
get [iv).

The following lemma follows from [11, Corollary 4].

LeEMMA 3.4. Let ¢ and Y be inner functions. Then {|y| <1} = {|g| <1} if
and only if N(¥) = N(9).

Applying Lemmas and B.4, we have the following.

LEMMA 3.5. Let ¢ and \y be inner functions. Then the following conditions
are equivalent.

@ {lwl <1} ={lol <1}
i) {lyl <1} ={lol <1}
(i) Z() = {lol <1}
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(iv) {Wl <INZW) = {lo| < 1}.

) AWl <1yl <1} ={lo| <1}.

Proof. (i) = (ii) = (iii), (ii) = (iv), and [{ii] = (v) are trivial.

(i) = (i) By condition and Lemma 3.3(i), we have N(J) = N(§).
Hence by we get (i).

(iv) = (i) By condition and [Lemma 3.%(ii) and [iii), we have N(y) =
N(p). Hence by we get (i).

(v) = (i) By condition (v) and Lemma 3.3(ii) and [iv), N(¢) = N(@). Also
by we get (i).

LEMMA 3.6. Let u= > ", axd,s, be a measure on 04 such that a, >0 for
every n and e # % for n #k. Put p, =3 o, @,0.. Then for each positive
integer k, the following conditions are equivalent.

@) {Wsu | <1} e Nali{l,l <13
(i) s, | <13 = Ml {l,] <1}
(i) ZWs,,) = Nam (¥, | <1}
(@) {Ws, | < INZWs,) = oz {lt,| <1}
V) W o | < T\, 1 <13 = N2 {10, < 13-

Proor. Put {=e%. Then we have |y, | =y, | on A for n>k+1.
Hence

(.2) ()Wl < 0= (1| < 1}

By Frostman’s theorem, see @, there exists a Blaschke product b such that

(3.3) {lys | <1} ={Ib] <1}.

Then for p e #(b) we have

(3.4) {b] < 1} = Z(?),

see [9], [13] Since [p?| =1 on U{M¢ ¢ # (¢ €dd}, by and [3.4),
(3.5) {lVs ] <BNUMeE#0 = .

We have

(i, <1 = (éwﬂnl < 1}ﬂMc> U (fjl{w <10 (UM # a))
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and

Wl < 1= ({ly, | < 130 U (L, | < 10 (U{Ae5€ % 03)).
Hence by (3.2) and [3.5),

(Wa <1} = (VI <1} if and only if (1] <1} = (| < 1)

We also have

(A <11 = (41| < 1p0 U (F_’ﬂl{twﬂnn <10 (UM # c}))

and

W] < 13 = Ty, ] < TENACU (g, | < 10 (L€ % 0))).
Let E be a subset of {|y;| < 1}. Then by (3.2) and [3.5), we have

0
Ec (\{l,| <1} if and only if Ec{Jy, |<T1}.

n=1

Thus we may replace ()~ ¥, | <1} with {Jy;, | <1} in conditions (i) through
(v) above and apply to obtain the result.

Proor oF THeOREM 3.1. By Theorems 2.1 and 2.2,

(W] <1} = 120k 2 € 20} < (ol < 150 € 2(0} < TRISTT

Hence we have (c) = (b) = (a). By Lemmas .1 and B.6, we have that con-
ditions (c), (d), (e), (f), and (g) are equivalent.
(a) & (h) By i), (h) holds if and only if

U | < H\(Oﬂl//@,.,,nl < 1}) < (I, 1 < 13-
n=1 n=1 n=1

Hence by [Lemma 3.1(i), we have (a) < (h).
(a) = (c) Suppose that (a) holds. By Lemma 3.1(i), we have

{'l//aewkl < 1}\{W‘li€k| <l}c é{h//ﬂJ <1} for every k.

Then by
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Ot <1h e (il <1}

Hence by Lemma 3.1(ii), (c) holds. Thus we get our theorem.

In [14, Theorem 5.1], we gave equivalent conditions on u € M;’r 4 for which
the following condition is satisfied.

() There exists ve L (1) such that Wl <1} = Z(y,).

We note that if ue M; , satisfies (fi1), then A also satisfies (f;) for every
Ae M}, with A« u and p« A InTheorem 3.1, we give equivalent conditions
on pe M, for which the following condition is satisfied.

(#2) {Wl <1} = (H{ZWw); pe 2(W)}-
Since w? e LL(y), we have (f2) = (1). In [14, Example 5.2], we show the

existence of a measure u satisfying condition (g) in [Theorem 3.1, so that this U
satisfies (ff2).

Here we have the following.

PROPOSITION 3.1. Let A€ M, satisfying condition (§1). Then there exists
peLl(A) such that p satisfies (f1) but does not satisfy (#2).

Proor. Since A satisfies (#;), by [14, Corollary 4.1 and Theorem 5.1], the
closed support set of A, denoted S(4), does not have an isolated point. Hence 4
is not a finite sum of point measures, so that we can write 4 as A =) _,° | au0,,
where a, > 0 for every n and e # e for n # k. It is not difficult to find a
measure T =Y ., cu0,0 € L1(4) such that ¢, > 0 for every n>2 and

(3.6) o, l=1 on Z(y,).

Let ¢; =1 and p= Y2 (cn/n)d,m. Since A« pu, u< 4, and A satisfies (f1), u
satisfies (f1). We let po = (1,2,...). Then py e Z(u) and pP = J,0, + 1. Then
Z(u) = Z(yy, JUZ(Y,). Hence by (36), (W, <1} & Z(u?). But we
have {W‘Z"BII <1} = {|y,| <1}. Therefore u does not satisty (f2).

4. Discrete singular functions of /°-type.

Let y= 312 @b € M, such that a, >0 for every n and e # e for
n#k. LetI® be the set of bounded sequences p = (py, p,,.-.) such that p, >0
for every n. Then {|y,,| <1} = {|y,| <1} for every pely and

N{{Wwl < 1350 €12} = N{{IW| < 1} 0 € 2(1)}.
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In this section, we study the sets (\{{[y,| < 1};p€lP} and ({Z(Y,); p € 7}
We prove the following.

THEOREM 4.1. Let u=73 .| nb,ion € MS+ 4 Such that a, >0 for every n and
e £ e for n#k. Then we have the following.

0 NZWoipelz) = U Z0s,,)

@ Ml < 1pel?) = (@l{w(sem < 1}) 0 U 20,

i) (VT < €123 = (W T < Thipe 12} = Uiy, | <11

To prove this theorem, we need a lemma. In the same way as the proof of

Lemma 2.3, we have the following.

Lemma 4.1, Let p= )" and,io. € M, such that a, >0 for every n and
e # e for n #k. Then we have the following.

(i) For each qely, there exists pel? such that |{,| =1 on {y,, # 0}\
Ui1{|'//5e,-9,,| <1}

(i) Let xe #\A. Ifx¢ Uf:l{lll’rlw,.
then there exists p € I such that x ¢ {|y,,| < 1}.

<1} and p,q(x) # 0 for some q €I,

Proor oF THEOREM 4.1. (i) Let £ be a closed subset of 4 such that

o0
(4.1) EN 2(,,) = @
n=|
Let {e,}, be a sequence of positive numbers such that
0
(4.2) Han >0 and O0<eg <1 for every n.
n=1

By [4.1), for each n we have
inf{||//5ei9n (z2)l;ze E} > 0.
Then we can take a small positive number p, such that
inf{[y,,, ()| z € E} 2 &

We may assume that p = (p;, p,,...) €. Hence by (4.2) we have

inf{|y,(2);z € E} = [ & > 0.
n=1
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This implies that ENZ(y,,) = . Therefore we have

Nizwypei=y < U 2w,y ).

n=1

The reverse inclusion is obvious. Thus we get Theorem 4.1(i).
It is clear that

(Q{I%efﬂn| < ”) J @1 ZWs,,) = Nl < 1spell}).

To prove the reverse inclusion, let x € #\4 such that

x ¢ (@1{|¢(5€f@" < 1}) U @1 Z(Ys,,)-

Then by [Theorem 4.1(i) there exists g € [ such that y,,(x) #0. By
4.1(i), there exists p € [ such that |,,(x)] =1. Thus we get Theorem 411(ii).
(iiff By [Theorem 4.1|(ii),

0 —_—
UI{I%,,,-G" <1} =N{Wwl <1 pel2} =« N{lw| <1} pelf}.
n=
To prove the reverse inclusion, let
00
x¢ U1{|W5ei0,, < 1}'
Then
o
X ¢ U] Z(‘P&g,’g,,)?

so that by (i) there exists ¢ € [ such that y,,(x) # 0. Hence by [Lemma 4.1(ii),
x ¢ {|s| <1} for some pely. Therefore x¢ (V{{l¥.| <1};pelf}. Thus
we get [Theorem 4.1(iii).

In Section 3, we show that for some u e M}, (\{{l¥,] <1};peP(n)} is a
closed subset of .#. But we have the following.

PROPOSITION 4.1. Let =" @, € M;r 4 Such that a, >0 for every n
and e # e for n # k. Then we have the following.
G {{lwl <1};pel?} is not a closed subset of M.

(@) N{Wwl <1ipelf} # ({ZWw)pelf}
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Proor. By [Theorem 4.1(ii), we have
Nl < 1ipe P} = (Q{m,o,,l < 1}) u@ Z(s,).
By [3.3], we have
Wi <10 U 20,) = 2003,

Hence
Won T<TF & (ol < 1hip 12},
so that (V{{|Y,,| < 1}; p€lP} is not closed.

THEOREM 4.2. Let p= Y7 andoin € M, such that a, >0 for every n and
en # % for n#k. Then

(1) (MZW)ipell} g ({ZWw);p e 2(1)}-
(ii) Nl <13 pel?} 2 N {{IWel < 1};p € 2(0)}-
(ii) MWl <1}pelf} s IVl <1} pe 2(p)}.

Let {z,}, be a sequence in 4 such that

Zy — 2k -1

lim
ko0 n#k

1 — Zxz,

Such a sequence and an associated Blaschke product are called sparse (or
thin). By [5], for every sequence {w,}, in 4 with |w,| — 1 there exists a sparse
subsequence of {w,},. See, [7], [8] for the study of sparse Blaschke products.

ProoF OF THEOREM 4.2. We note that by our assumption, u is an infinite
sum of point measures. Let e® be a cluster point of {e?}, in 4. Put

t = p— u({e™})om.

Then we have |y, | = [{,| on A,q for sufficiently large n. Hence
o
ﬂl{|'/’,4,,| < 1} n‘//ie”’o = {W’rl < l}n'ﬂei%
n=

and

{|W1| < l}n'//{e'vo < {N’,ul < l}n'/”e""o < ({N’tl < l}n‘/lleioo)u{llpée,-gol < 1}
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Therefore by Theorems 2.1, 2.2, and 4.1, to show our assertions it is sufficient to
prove that

(4.3) {Y| <1} N M) \U{Il//a,gnl <1} # 2.

n=0

Since e is a cluster point of {e},, there exists a point x € .#,4, such that

(44) sy (@] =1 and y,(x)=0.

For, take x, € M0, such that s  (x,) =0, then take x e {Xn}, N M,i,. This x
satisfies (4.4). Then by the corona theorem, there exists a sequence {z,}, in 4
such that |x//5 . (zo)| = 1,¥,(zs) = 0, and z, — e® as n— o0. Moreover we
may assume ‘that {z.}, is sparse. Let b be the associated Blaschke product.
Then by [9, p. 205], Z(b) = {zn},\{zx},, and V5,1 =1 and ¥, =0 on Z(b).
Since b is sparse, we have

(4.5) hp,;m |=1 and ¥,=0 on {|b] <1},

see [1], [6], [8] Then {|b| < l}ﬂ{h//(;g | <1} = &. Hence by [11], {|b] < 1} N
{||//5'8 | < 1} . Since z, — e as n — oo, also by (4.5) we have

{lo| <1}N QO{I%,.,,"! <1l}=¢ and {|b| <1} = {[Y. <1} N Mm,.

Hence we obtain [4.3], completing the proof.
The following is the last theorem in this paper.

THEOREM 4.3. Let ,u,/leMsfd be sums of infinitely many point measures.
Then pl A if and only if

(Nl < 115p e 12}) N (NWasl < g e 1)) =
This theorem follows from and the following proposition.

PROPOSITION 4.2. Let {e™*}, and {e™}, be sequences in 0A such that
{e¥}, N{e"},=F. Then

k@} Z(45,)N Q Z(y,) = B

PrROOF. We may assume that e* # ¢™ and e’ # e" for n # k. For each
positive integer n, let

1, 1
(46) 4, = {Z; IZ —ie""l < 5}
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Then 04,N 04 = {e"™}. Let {e,}, be a sequence of positive numbers such that
o0

(4.7) & >0 and 0<eg, <1 for every n.
n=1

Since {e®}, N{e™}, = &, for positive integers k and j we have

(4.8) |1,b(;bk (2)l =1 as |zl —1 and z€ 4,.

Hence there exists a; > 0 such that

k
|* > on (J4.
=1

(4.9) Vs

eISk

Taking sufficiently small ax, we may assume that > ., ax < co. Put

0

(4.10) p=Y @b

k=1

Then for each positive integer n, by (4.9) we have

n—1 0 n—1 0
411) |yl = (H ]'ﬁ(se,»sklak) (Hw,se,.sk;“k) > (Hw%;“k) [[e on 4.

By [4.6), Z(d,m) = 4,, so that by (4.8) and (4.11) we have

| = Hsk on Z(&,m).

k=n
Hence by (4.7),

O R
W{uI = H‘gk >0 on U Z(&eitn).
k=1 n=1
By (4.10),
¥, =0 on () Z(d,u).
k=1

Therefore we obtain

025,00 U 205,,) = &

This completes the proof.

We remark that there exist u,4 € M;f 4 such that x4 1 A and

12)  ((HZWw)ip e 2W}) N ({ZW1)iae P} # 2.
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For, let v=>Y"" a,0,4 € M}, satisfying conditions of and put
u=>7al,q. Then it is not difficult to see that u also satisfies conditions of
and we have

@13)  ZWs, ) e {hl <1} ={Wl <1} = ({Z(w); p e 2(W)}.

Let A =G0, + Y pey buden € M}, such that {e™}, N{e™}, = . Since &0 L u,
pLd. Since duo <4, Z(Ys, )< (M{Z(y,4);q € 2(2)}. Hence by (4.13), we
have (4.12). ’ :
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