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Abstract. We consider the global properties of nonnegative solutions of the

semilinear elliptic equations in the entire space. By employing Pohozaev

identity in the entire space and the results concerning the asymptotic behavior

of nonnegative solutions, we establish some theorems of Liouville type.

1. Introduction and statement of the results.

In this paper we consider the elliptic equations of the form

Du� K�x�us � 0 in R
n
;�1:1�

where nV 3 and s > 1 is a positive constant. In (1.1) we assume that K A C1�Rn� and

K�x�V 0 in R
n. We are concerned with the global properties of classical nonnegative

solutions of (1.1), and establish some results of Liouville-type.

The properties of radial solutions of (1.1) in the case K � K�jxj� have been in-

vestigated in full detail by [3], [8], [10], [7], [15], [16]. For a radial solution u � u�r�,

r � jxj, equation (1.1) is rewritten in the form

�rnÿ1ur�r � rnÿ1K�r�us � 0; r > 0;�1:2�

with the condition ur�0� � 0. Let ul be a solution of (1.2) satisfying the initial condition

u�0� � l and ur�0� � 0;�1:3�

where l is a positive parameter. De®ne Kn;s�r� as

Kn;s�r� �
n� 2ÿ s�nÿ 2�

2
K�r� � rKr�r�; r > 0:

Ding and Ni [3], and Kusano and Naito [8] proved the following: if Kn;s�r�U 0, 20, for
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r > 0 then ul remains positive on �0;y� and satis®es lim inf r!y r�nÿ2�=2ul�r� > 0 for all

l > 0, and if Kn;s�r�V 0, 20, for r > 0 then ul has a zero in �0;y� for all l > 0. For

more precise properties concerning the structure of positive solutions of the problem

(1.2)±(1.3), see Kawano et al. [7] and Yanagida and Yotsutani [15], [16].

Our main results are the following.

Theorem 1. Assume that

n� 2ÿ s�nÿ 2�

2
K�x� � x � `K�x�U 0;20; x A R

n:�1:4�

Let u A C2�Rn� be a nonnegative solution of (1.1) satisfying

u�x� � O�jxjÿa� as jxj ! y for some a >
nÿ 2

2
:�1:5�

Then u1 0 in R
n.

We consider the case where K satis®es the condition:

K�x� � O�jxjl� as jxj ! y for some l A R:�1:6�

Combining Theorem 1 and the asymptotic properties by Li and Ni [11, Theorem 3.2],

we obtain the following.

Theorem 2. Assume that (1.4) and (1.6) hold. Let u A C2�Rn� be a bounded

nonnegative solution of (1.1) satisfying

lim inf
jxj!y

u�x� � 0 if l < ÿ2

u�x� � o��log jxj�ÿ1=�sÿ1�� as jxj ! y if l � ÿ2

u�x� � o�jxjÿ�l�2�=�sÿ1�� as jxj ! y if l > ÿ2.

8

>

>

<

>

>

:

�1:7�

Then u1 0 in R
n.

Remark. For the case l < ÿ2, the result is proved by Li and Ni [10, Theorem

1.4].

Theorem 3. Assume that

n� 2ÿ s�nÿ 2�

2
K�x� � x � `K�x�V 0;20; x A R

n;�1:8�

and that there exist constants C1, C2, C3 > 0, and l A R such that

C1jxj
l
UK�x�UC2jxj

l
and j`K�x�jUC3jxj

lÿ1
for all large jxj:�1:9�
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Assume in addition that

1 < s < min
n� 2� 2l

nÿ 2
;
n� 2

nÿ 2

� �

:

Let u A C2�Rn� be a nonnegative solution of (1.1), then u1 0 in R
n.

Remark. For the case K � K�jxj�, Bianchi in [2] showed the radial symmetry of

positive solutions by employing the method of moving planes, and then obtained some

nonexistence results.

Example 1. Consider the equation (1.1) with

K�x� � 1� h�jxj� and s �
n� 2

nÿ 2
;�1:10�

where h A C 1�0;y� is a nonincreasing function satisfying hV 0, 20. By Theorem 1, if

there is a nonnegative solution u satisfying (1.5) then u1 0 in R
n. On the other hand, it

has been shown by [3], [8] that (1.1) with (1.10) has a positive radial solution u satisfying

0 < lim inf
r!y

r�nÿ2�=2u�r�U lim sup
r!y

r�nÿ2�=2u�r� < y:

Then the condition (1.5) in Theorem 1 is optimal.

Let us consider the Matukuma-type equation

Du�
1

1� jxjt
us � 0 in R

n; tV 0:�1:11�

Example 2. Consider the equation (1.11) with s > �n� 2�=�nÿ 2�. By Theorem 2,

if there is a bounded nonnegative solution u satisfying (1.7) with l � ÿt, then u1 0 in

R
n. On the other hand, it has been shown by [7], [10] that (1.11) has a positive radial

solution u satisfying

lim
r!y

u�r� � const > 0 if t > 2

lim
r!y

�log r�1=�sÿ1�
u�r� � const > 0 if t � 2

lim
r!y

r�l�2�=�sÿ1�u�r� � const > 0 if t < 2.

8

>

>

>

<

>

>

>

:

�1:12�

Therefore, the condition (1.7) in Theorem 2 is optimal.

Example 3. Consider the equation (1.11) with 1 < s < �n� 2ÿ 2t�=�nÿ 2�. By

Theorem 3, if there is a nonnegative solution u then u1 0 in R
n. On the other hand, it

has been shown by [7] that if s > �n� 2ÿ 2t�=�nÿ 2� and s > 1, then (1.11) has

positive radial solutions.
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In our proofs the key ingredient of the method is the Pohozaev identity in the

entire space R
n. In the work of Pohozaev [12] and in recent works [1], [4], [13], [14],

the Pohozaev identities are discussed which are useful for solving various questions

about elliptic di¨erential equations. In this paper we consider the Pohozaev identity for

the equation Du� f �x; u� � 0 in R
n, which plays an important role in the proofs of

Theorems 1±3.

2. Proofs of Theorems.

First we consider the Pohozaev identity for the equation

Du� f �x; u� � 0 in R
n
:�2:1�

We assume that f �x; u� A C�Rn � R� satis®es

u f �x; u�V 0 and f �x;ÿu� � ÿ f �x; u� for �x; u� A R
n � R:

Let

F�x; u� �

� u

0

f �x; t� dt:

We recall the following Pohozaev identity. For the proof, see, e.g., [3, Lemma 3.7].

Lemma 1. Let Br be the ball of radius r centered at the origin and let Sr � qBr. Let

u be a solution of (2.1). Then we have

�

Br

nF �x; u� ÿ
nÿ 2

2
u f �x; u� � x � `xF�x; u�

� �

dx�2:2�

�

�

Sr

�x � `u�
qu

qn
ÿ

r

2
j`uj2 � rF �x; u� �

nÿ 2

2
u
qu

qn

� �

ds;

where ds is the volume element of Sr and n is the unit outer normal of Sr.

De®ne P�x; u� as

P�x; u� � nF�x; u� ÿ
nÿ 2

2
u f �x; u� � x � `xF �x; u� for �x; u� A R

n � R:

For the case f �x; u� � K�x�jujsÿ1
u, we ®nd that

P�x; u� �
1

s� 1

n� 2ÿ s�nÿ 2�

2
K�x� � x � `K�x�

� �

jujs�1
:

We obtain the following.
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Proposition 1. Let u be a solution of (2.1) satisfying

F�x; u�; u f �x; u� A L1�Rn� and ju�x�j � O jxjÿ�nÿ2�=2
� �

as jxj ! y:�2:3�

Assume one of the following properties:

(i) x � `xF �x; u� A L1�Rn�;

(ii) P�x; u�V 0 or P�x; u�U 0 in R
n.

Then

�

Rn

P�x; u� dx � 0:�2:4�

Proof. First we show that

�

R n

j`uj2 dx < y:�2:5�

Assume to the contrary that

�

R n

j`uj2 dx � y:

Multiplying (2.1) by u and applying the divergence theorem in Br, we have

�

Sr

u
qu

qn
ds �

�

Br

j`uj2 dxÿ

�

Br

uf �x; u� dx; r > 0:

By u f �x; u� A L1�Rn�, we observe that there exists a constant R > 0 such that

�

Sr

u
qu

qn
dsV 0; rVR:

Set

U�r� �

�

Sr

u2 ds:

Then, we ®nd that

Ur ÿ
nÿ 1

r
U � 2

�

Sr

u
qu

qn
dsV 0; rVR:

It follows that �r1ÿnU�r��r V 0 for rVR, and

U�r�VR1ÿnU�R�rnÿ1; rVR:�2:6�

On the other hand, by the second of (2.3), we have
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U�r�UCr; rVR;

for some C > 0, which contradicts (2.6). Thus we conclude that (2.5) holds.

From (2.2) we have

�

Br

P�x; u� dx

�

�

�

�

�

�

�

�

U
3

2
r

�

Sr

j`uj2 ds� r

�

Sr

F �x; u� ds�
nÿ 2

2

�

Sr

uj`uj ds�2:7�

for r > 0. Using HoÈlder's inequality, we drive

�

Sr

uj`uj dsU

�

Sr

u2 ds

� �1=2 �

Sr

j`uj2 ds

� �1=2

�2:8�

� rÿ1

�

Sr

u2 ds

� �1=2

r

�

Sr

j`uj2 ds

� �1=2

:

We observe from the second of (2.3) that

rÿ1

�

Sr

u2 ds � O�1� as r ! y:�2:9�

From (2.5) and F�x; u� A L1�Rn�, we have

lim inf
r!y

r

�

Sr

�j`uj2 � F �x; u�� ds � 0:

Then there exists a sequence rj ! y such that

lim
j!y

rj

�

Srj

j`uj2 ds � 0 and lim
j!y

rj

�

Srj

F �x; u� ds � 0:�2:10�

We now put r � rj in (2.7) and let j ! y. Then, from (2.8), (2.9), and (2.10) we have

lim
j!y

�

Brj

P�x; u� dx � 0:�2:11�

If x � `xF�x; u� A L1�Rn�, then P�x; u� A L1�Rn�. By (2.11) we have (2.4). If

P�x; u�V 0 or P�x; u�U 0 in R
n, then

�

Br
P�x; u� dx is monotone in r > 0. By (2.11) we

have (2.4). This completes the proof of Proposition 1. r

Proof of Theorem 1. First we claim that

�

Rn

K�x�us�1 dx < y:�2:12�
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Set

H�r� � r�4ÿnÿs�nÿ2��=2

�

Sr

K�x� ds; r > 0:

We ®nd that H�R� > 0 for some R > 0 and

d

dr
H�r� � r�2ÿnÿs�nÿ2��=2

�

Sr

n� 2ÿ s�nÿ 2�

2
K�x� � x � `K�x�

� �

dsU 0; r > 0:

It follows that

�

Sr

K�x� dsUH�R�rÿ�4ÿnÿs�nÿ2��=2; rVR:�2:13�

From (1.5) and (2.13), we have

�

Rn

K�x�us�1 dx �

�

y

0

�

Sr

K�x�us�1 ds

� �

dr

UC1 � C2

�

y

R

rÿa�s�1�

�

Sr

K�x� ds

� �

dr

UC1 � C2H�R�

�

y

R

rÿ1ÿ�s�1��aÿ�nÿ2�=2� dr < y;

where C1 and C2 are positive constants.

Then, by Proposition 1, we have

�

R n

n� 2ÿ s�nÿ 2�

2
K�x� � x � `K�x�

� �

us�1dx � 0:�2:14�

From (1.4) we obtain u�x0� � 0 for some x0 A R
n. By the strong maximum principle, see

e.g., [6], we have u1 0 in R
n. r

Proof of Theorem 2. By the proof of Theorem 3.2 in [11], we have u�x� �

O�jxj2ÿn� as jxj ! y. By Theorem 1, we conclude that u1 0 in R
n. r

Proof of Theorem 3. From (1.9) we have

j`�logK�x��j �
j`K�x�j

K�x�
U

C

jxj
for all large jxj;

where C � C3=C1. Then by Theorem 3.6 in [5], we obtain

u�x� � O�jxjÿ�l�2�=�sÿ1�� as jxj ! y:
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Since K�x� � O�jxjl� as jxj ! y and s < �n� 2� 2l�=�nÿ 2�, we have (2.12) and

�l� 2�=�sÿ 1� > �nÿ 2�=2. By Proposition 1 we obtain (2.14). Then we conclude that

u1 0 in R
n. r
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