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Abstract. The purpose of this paper is to formulate the notion of quantum ergodicity

at a finite energy level for certain quantum mechanics, by using the method of Sunada

[Su1]. Under some assumptions on the corresponding classical mechanics, we obtain a

necessary and su‰cient condition in terms of semi-classical asymptotic behaviour of

eigenfunctions of a quantum Hamiltonian so that the classical mechanics is ergodic. We

also obtain a result on quantum weak mixing at a finite energy level which is a semi-

classical analogue of the notion introduced in [Z4].

1. Introduction.

The eigenfunctions of a quantum Hamiltonian with ergodic classical counterpart

have remarkable asymptotic behaviour. For instance, it is well-known that any or-

thonormal basis of eigenfunctions of the Laplacian on a compact Riemannian manifold

with ergodic geodesic flow is, roughly speaking, asymptotically uniformly distributed

([Sn], [Z1], [CdV]).

In a recent paper [Su1], Sunada obtained a necessary and su‰cient condition in

terms of asymptotic behaviour of the eigenfunctions so that the corresponding classical

dynamical system is ergodic. He introduced the notion of quantum ergodicity at infinite

energy level for quantum mechanics, and his result is obtained by studying the rela-

tionship between classical ergodicity and quantum ergodicity. That is, he showed that

classical ergodicity is equivalent to quantum ergodicity at infinite energy level with an

additional condition on the quantum mechanics. This notion introduced by Sunada is

a natural quantum analogue of Boltzmann’s ergodic hypothesis. In fact, he also noted

that a notion of ergodicity at infinite energy level can be defined for certain classical

systems.

The classical system investigated in the above works is homogeneous Hamilton flow,

that is the flow which commutes with Rþ-action on the cotangent bundle. However,

there are natural classical systems which are not homogeneous. For example, the

magnetic flow under the uniform magnetic field on a compact Riemann surface with

constant negative curvature ÿ1 has di¤erent behaviour on di¤erent energy surfaces

([G-U1], [Su2]). This phenomenon arises from the fact that the magnetic flow is not

homogeneous. Ergodicity of such dynamical systems a¤ects semi-classical asymptotic

behaviour of the eigenfunctions of corresponding quantum Hamiltonian ([H-M-R],

[S-T], [Z2]).
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Our purposes of this note are to formulate a notion of quantum ergodicity for the

quantum mechanics corresponding to such a classical system as the above example using

the method of Sunada, and investigate the relationship between classical and quantum

ergodicity. We call the notion introduced in this paper quantum ergodicity at a finite

energy level because we take the dependence of dynamical behaviour on the energy level

into consideration.

We will give a brief account of the dynamical system discussed in this paper. The

precise formulation of the dynamical system, which is the same as in [Z2], is described in

the next section.

We note that the magnetic flow is obtained as a reduction of the geodesic flow on

a compact S1 bundle with a connection 1-form and with Riemannian metric which is

invariant under S1-action. In this case the magnetic field is represented by the cur-

vature 2-form of the connection form. Therefore, in general, we consider the reduced

dynamical system of the Hamilton flow generated by the Hamiltonian which is invariant

under group action on the cotangent bundle over a compact principal bundle. The

corresponding quantum mechanics is generated by a first order positive elliptic pseu-

dodi¤erential operator (cDO for short) which commutes with group action. However,

as the case of classical mechanics, we need to consider a reduced quantum mechanics.

More precisely, we consider the operator restricted to a ladder subspace associated

with a fixed irreducible representation of the structure group as a reduced quantum

Hamiltonian. We will define the notion of quantum ergodicity at a finite energy level

for the quantum mechanics generated by the reduced Hamiltonian. To study the

relationship between classical and quantum ergodicity, we will use the trace formula

due to Guillemin-Uribe [G-U2] and Zelditch [Z2].

We mention the contents of this paper. Our main theorems will be stated in section

3. In section 4, we will define the notion of quantum ergodicity at a finite energy level,

and the main theorems will be proved in section 5 and section 6. Recently, Zelditch [Z4]

introduced the notion of quantum weak mixing. As a semi-classical analogy of this

notion, we will introduce the notion of quantum weak mixing at a finite energy level in

section 7. In section 8, we will mention the example of the magnetic flow on a

Riemann surface.

2. Formulation of dynamical systems.

In this section, we will describe the formulation of dynamical systems discussed in

this paper, and mention some properties of it.

Let p : P ! M be a compact connected principal bundle over a compact Riemannian

manifold M with structure group G, a compact connected Lie group. Choosing a

biinvariant metric on G and a connection 1-form on P, we have a unique G-invariant

metric on P which makes the bundle p : P ! M into a Riemannian submertion, with

fibers isometric to G. We fix such a metric.

Let ĤH be a positive elliptic cDO of order one on P commuting with G-action and

let H ¼ s1ðĤH Þ be its principal symbol. Since ĤH commutes with G-action, H is a G-

invariant smooth function on the punctured cotangent bundle T �Pn0. The (left) action

of G on T �P is Hamiltonian and its equivariant moment map F : T �P ! G
� is given by
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hFðp; zÞ;Ai ¼ zðA�
p Þ; ðp; zÞ A T �P; A A G;

where G
� is the dual space of the Lie algebra G of G. Let ðpl;VlÞ be an irreducible

representation of G with the highest weight l in the positive Weyl chamber of a dual

Cartan subalgebra, and let Ol be the coadjoint orbit through l.

Since the di¤erential map dF of F at each point is surjective, Fÿ1ðOlÞ is a

submanifold in T �P, and G acts freely on it. The leaves of the null-foliation of the

G-invariant closed 2-form i�lWP ÿF�ol on Fÿ1ðOlÞ are just the G-orbits, where WP is

the canonical symplectic form on T �P and ol is the Kostant-Kirillov symplectic

form on Ol, and hence it induces the symplectic form Wl on Xl ¼ Fÿ1ðOlÞ=G. The

symplectic manifold ðXl;WlÞ is called the reduced phase space.

The G-invariant Hamiltonian H descends to the Hamiltonian Hl on Xl. Let jl
t

denote the restriction of the Hamilton flow of ðHl;WlÞ on the energy surface Sl
e ¼

Hÿ1
l ðeÞ, which preserves the Liouville measure ol

e . We thus obtain the classical dy-

namical system CDl
e ¼ ðSl

e ; j
l
t ;o

l
e Þ. A quantum counterpart of the dynamical system

CDl
e will be described as follows:

The action of G breaks L2ðPÞ, the Hilbert space of square integrable functions on P,

into a direct sum of Hilbert spaces,

L2ðPÞ ¼ 0
m

Lm;

the sum taken over isotypical subspaces Lm associated to the irreducible representation

ðpm;VmÞ corresponding to the dominant integral weight m. More precisely, the Hilbert

space Lm is the closure of the image of the evaluation map, HomGðVm;L
2ðPÞÞnVm !

L2ðPÞ. The Hilbert space Lm is also obtained by the following way: Since

the operator ĤH is elliptic and the manifold P is compact, the Hilbert space L2ðPÞ is the

direct sum of finite dimensional eigenspaces of ĤH. Since the operator ĤH commutes

with G-action, G acts on each eigenspace, and hence each eigenspace is decomposed

into irreducible representations. The Hilbert space Lm is the direct sum of the irre-

ducible representations obtained in this manner which is equivalent to the irreducible

representation corresponding to m. We set

Vl ¼ 0
y

m¼1

LmlðHL2ðPÞÞ:

The subspace Vl is called the ladder space associated to l ([G-S2], [G-U2]). Let

e1ðmÞU e2ðmÞU � � � be the eigenvalues of the restriction of the operator ĤH to Lml and

let fnmj gj AN be the orthonormal basis for Lml of the eigenfunctions of ĤH, ĤHnmj ¼

ejðmÞnmj .

Now we set up the triple QDl ¼ ðVl; ĤHl;C
l
0 Þ as a quantum dynamical system

where ĤHl is the restriction of ĤH to Vl;C0 is the algebra consisted of all cDO of

order zero commuting with G-action and C l
0 is the algebla of operators which are the

restriction of the elements in C0 to the Hilbert space Vl. We consider the algebra C0

as the algebra of quantum observables. We will call the dynamical system QDl the

reduced quantum dynamical system.
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Before going to discussion of quantum ergodicity, we must mention some properties

of the classical dynamical system CDl
e .

Let Ze be the energy surface of H, the principal symbol of ĤH, at energy e, and let ft
be the Hamilton flow generated by H and the canonical symplectic form WP on T �P.

The flow ft commutes with G-action, and hence it induces a flow on Xl. Note that the

flow induced by ft just coincides with the flow jl
t .

We consider the following condition:

(H1) The Hamiltonian vector field, XH , of H is not tangent to the G-orbit through any

point in ~SSl
e :¼ Ze VFÿ1ðOlÞ.

Note that, for example, the Laplacian on P with respect to the fixed metric (see Section

1) satisfies the condition (H1) if e > jlj. The assumtion (H1) makes us to obtain the

following lemmas.

Lemma 1. Under the assumption (H1), the subset ~SSl
e is a submanifold in T �P, and

thus ~SSl
e is a principal G-bundle over Sl

e .

Proof. Since the di¤erential map dFz at z A ~SSl
e is surjective, we have TzF

ÿ1ðOlÞ ¼

dFÿ1
z ðTFðzÞOlÞ. By the equivariance of F, we obtain

dFÿ1
z ðTFðzÞOlÞ ¼ GðzÞ þ GðzÞ?;

where GðzÞ ¼ fA�
z A TzT

�P; A A Gg and ‘‘?’’ denotes the annihilator of GðzÞ with respect

to WP. Since H is G-invariant, we have GðzÞH ðXHÞ
? ¼ TzZe. Therefore we obtain

TzZe þ TzF
ÿ1ðOlÞ ¼ ðXHÞ

? þ GðzÞ?;

and hence

ðTzZe þ TzF
ÿ1ðOlÞÞ

? ¼ ðXHÞVGðzÞ:

By the assumption (H1), the right hand side of the above expression is zero. So

the submanifolds Ze and Fÿ1ðOlÞ intersect transversally. Thus we conclude the

assertion. r

Lemma 2. For each smooth function f on Sl
e , there exists a smooth function F on

T �Pn0 which is G-invariant, homogeneous of degree zero such that

q�
l f ¼ F on ~SSl

e ;

where ql is the projection from ~SSl
e onto Sl

e .

Proof. The function q�
l f is a G-invariant smooth function on ~SSl

e , and it can be

extended to a smooth function F0 on Ze. Averaging F0 on G and extending to a smooth

function on T �Pn0 of degree zero, we obtain a desired function. r

We also note that a G-invariant smooth function a on T �Pn0 descends to a smooth

function on Xl. Then we will continue to denote by a the function on Xl induced by a.

Next, we will review the ergodicity of the classical dynamical system CDl
e .

T. Tate870



For each square integrable function f A L2ðSl
e Þ, let f t be the time average of f up

to time t, f t ¼ ð1=tÞ
Ð t

0 f � jl
t dt. Birkho¤ ’s ergodic theorem says that the (long) time

average f ¼ limt!y f t exists a.e. The dynamical system CDl
e is said to be ergodic if

the time average f identically equals the space average h f il
e ¼ volðSl

e Þ
ÿ1 Ð

S l
e
f dol

e , or

equivalently

hj f j2il
e ¼ jh f il

e j
2 ð1Þ

for all smooth function f A CyðSl
e Þ.

Lemma 3. For all f A CyðSl
e Þ, we have the following:

(1) limt!yhj f tj
2
il
e ¼ hj f j2il

e ,

(2) hj f j2il
e V jh f il

e j
2.

Proof.

(1) This is a direct consequence of Lebesgue’s convergence theorem.

(2) By Birkho¤ ’s ergodic theorem, we have h f il
e ¼ h f il

e . Therefore

hj f j2il
e ÿ jh f il

e j
2 ¼ hj f ÿ h f il

e j
2
il
e V 0: r

3. Statement of main theorems.

To state our main theorems, we prepare some notation. For a fixed constant c > 0,

let

Nmðe; cÞ ¼ f j A N ; jejðmÞ ÿmejU cg;

Nmðe; cÞ ¼ ]Nmðe; cÞ:

Then our first theorem can be stated as follows. (See Section 4 for the assumption

(H2).)

Theorem 1. Assume that the dynamical system CDl
e satisfies the conditions (H1),

(H2). Then the dynamical system CDl
e is ergodic if and only if the following two

conditions hold.

(1) For every A A C0 and for every orthonormal basis fnmj g
y
j;m¼1 of Vl of eigen-

functions of ĤH, we have

lim
m!y

Nmðe; cÞ
ÿ1

X

j;k ANmðe; cÞ
ejðmÞ¼ekðmÞ

jhAnmj ; n
m
k ij

2 ¼

�

�

�

�

volðSl
e Þ

ÿ1

ð

S l
e

s0ðAÞ do
l
e

�

�

�

�

2

: ð2Þ

(2) For every A, fnmj g as above, the following holds:

lim
d#0

lim sup
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
0<jejðmÞÿekðmÞj<d

jhAnmj ; n
m
k ij

2 ¼ 0: ð3Þ

This theorem is a semi-classical analogy of [Su1]. Before proceeding our second

theorem, we refer to Zelditch’s result [Z2].
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Theorem 2 (Zelditch). Assume that the dynamical system CDl
e is ergodic. Then for

every orthonormal basis fnmj g and for every cDO A of order zero, we have

lim
m!y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

�

�

�

�

hAnmj ; n
m
j iÿ

ð

~SS l
e

~ss0ðAÞ dm
l
e

�

�

�

�

¼ 0: ð4Þ

We will give a brief explanation for the integral appeared in (4). For details, see

[G-S2], [G-U2], [Z2]. Let ðT �PÞCðOlÞ
be the space of the leaves of the null-foliation

on Fÿ1ðCðOlÞÞ, where CðOlÞ is the cone through the orbit Ol, CðOlÞ ¼

fr f ; f A Ol; r > 0g. Note that the orbit Ol is integral, that is, for f A Ol, there is a

character wf : Gf ! S1 (Gf is the stabilizer of f ) such that dwf ðAÞ ¼ 2pih f ;Ai for every

A A Gf (Gf is the Lie algebra of Gf ). Then the leaf of the null-foliation through z A

Fÿ1ðCðOlÞÞ is the orbit through z under the action of the identity component of the

kernel, ker wf , of wf . The function ~ss0ðAÞ is the function on ðT �PÞCðOlÞ
obtained by

integration of s0ðAÞ over the fibers. The natural action of G on the symplectic manifold

ðT �PÞCðOlÞ
is Hamiltonian. Let C : ðT �PÞCðOlÞ

! G
� be the moment map of the above

action, and let p ¼ jC j. Then the Hamilton flow of p on ðT �PÞCðOlÞ
is periodic with

constant period, and hence it induces an S1-action on ðT �PÞCðOlÞ
. This S1-action is

obtained by regarding S1 as G=ker wf . The level surface pÿ1ðjljÞ is a S1-bundle over the

Kazhdan-Kostant-Sternberg reduction X
]
l with respect to the orbit Ol. The surface ~SS l

e

appeared in (4) is the intersection ~SS l
e ¼ pÿ1ðjljÞV ~HHÿ1ðeÞ in ðT �PÞCðOlÞ

, where the

function ~HH is the function induced by G-invariant Hamiltonian H on T �P. The measure

ml
e in (4) is the normalized Liouville measure on ~SS l

e .

In the case where the function s0ðAÞ is invariant under the action of G, the integral

in (4) is reduced to the integral over Sl
e HXl of the function induced by the function

s0ðAÞ. We explain this as follows: The level surface ~SS l
e is a S1-bundle over the level

surface S l
e ¼ ðH ]

l Þ
ÿ1ðeÞ in X

]
l , where the function H

]
l is the function on X

]
l induced by

H. Note that X ]
l is symplectically di¤eomorphic to the product X ]

l ¼ Xl � Ol and the

action of G on X
]
l is interpreted as the action only on the second component of the

product. Since H
]
l is G-invariant, we have S l

e ¼ Sl
e � Ol. Therefore the integral in (4)

is reduced to the integral over Sl
e in case where the function s0ðAÞ is G-invariant.

Before going to state our second theorem, which relates Theorem 1 to the above

theorem, we need to prepare some notations.

For every quantum observable A A C0, we define the (quantum) space average hAil
e

of A by

hAil
e ¼ lim

m!y
Nmðe; cÞ

ÿ1
X

j ANmðe; cÞ

hAnmj ; n
m
j i:

The existence of the above limit and independence of the choice of the constant c are

guaranteed by the semi-classical trace formula due to V. Guillemin-A. Uribe ([G-U2])

and S. Zelditch ([Z2]) under the assumption (H2). (See Section 4.) We also define the

(quantum) time average A of A A C0 by

A ¼ w-lim
t!y

1

t

ð t

0

e itĤHAeÿitĤH dt:

Now we can state our second theorem as follows.
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Theorem 3. Assume the condition (H2). Then the following three conditions are

equivalent:

(S) For every A A C0,

lim
m!y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

kðAÿ hAil
e Þn

m
j k

2 ¼ 0; ð5Þ

where k � k is the L2-norm.

(Z) For every A A C0 and for every orthonormal basis fnmj gj;m for Vl of eigen-

functions of ĤH,

lim
m!y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

�

�

�

�

hAnmj ; n
m
j iÿ volðSl

e Þ
ÿ1

ð

S l
e

s0ðAÞ do
l
e

�

�

�

�

¼ 0: ð6Þ

(C) For every A, fnmj g as in (Z), there exists a family fJmgm AN of subsets of

Nmðe; cÞ satisfying

lim
m!y

]Jm

Nmðe; cÞ
¼ 1 ð7Þ

such that

lim
m!y

max
j A Jm

�

�

�

�

hAnmj ; n
m
j iÿ volðSl

e Þ
ÿ1

ð

S l
e

s0ðAÞ do
l
e

�

�

�

�

¼ 0: ð8Þ

We remark that the conditions (1) in Theorem 1 and (S) in Theorem 3 are

equivalent to quantum ergodicity of QDl at energy level e defined in Section 4. Note

also that the conditions (Z) and (C) in Theorem 3 are equivalent without assuming the

condition (H2).

4. Quantum ergodicity at a finite energy level.

This section is devoted to define quantum ergodicity of QDl at energy level e > 0,

following the method in [Su1]. Let A be a bounded operator on L2ðPÞ which commutes

with G-action. Then the quantum time average of A is defined by

A ¼ w-lim
t!y

At; At ¼
1

t

ð t

0

e itĤHAeÿitĤH dt: ð9Þ

The above weak limit exists, and the bounded operators At, A commute with G-action.

By the spectral theorem, we have

ĤH ¼
X

m

X

eðmÞ

eðmÞPeðmÞ; e itĤH ¼
X

m

X

eðmÞ

e iteðmÞPeðmÞ; ð10Þ

where m runs over irreducible representations of G, eðmÞ runs over eigenvalues of the

restriction of ĤH to Lm, and PeðmÞ is the projection onto the eigenspace corresponding to

the eigenvalue eðmÞ. Using the expression (10), we obtain that the time average A of A

has the form

A ¼
X

m

X

eðmÞ

PeðmÞAPeðmÞ: ð11Þ
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On the other hand, the quantum space average of A is defined by

hAil
e ¼ lim

m!y
Nmðe; cÞ

ÿ1
X

j ANmðe; cÞ

hAnmj ; n
m
j i; ð12Þ

if the above limit exists, where Nmðe; cÞ, Nmðe; cÞ and nmj are as in the previous sections.

Note that hAil
e ¼ hAil

e if the left hand side exists. To guarantee the existence of the

space average of A in C0, we need the following condition.

(H2) The set of periodic points of jl
t on Sl

e has Liouville measure zero.

Under the condition (H2), the semi-classical asymptotic formula due to Guillemin-Uribe

[G-U2] and Zelditch [Z2] holds. That is to say, for every A A C0 we have the following

formula,

X

j ANmðe; cÞ

hAnmj ; n
m
j i ¼ 2c

m

2p

� �nþdÿ1ð

S l
e

s0ðAÞ do
l
e þ oðmnþdÿ1Þ: ð13Þ

where n ¼ dimM and 2d ¼ dimOl. (We refer to [B-U ], [G-U2] and [Z2] for the proof

of this formula.) The following lemma is the direct consequence of Egorov’s theorem

[T ] and the above formula (13).

Lemma 4. (1) If A A C0 then At A C0, and the principal symbol of At is given by

s0ðAtÞ ¼
1

t

ð t

0

s0ðAÞ � ft dt:

(2) If the condition (H2) is fulfilled, then for every A A C0 we have hAile ¼ hs0ðAÞi
l
e .

Now we will define quantum ergodicity, which is an analogy of Boltzmann’s ergodic

hypothesis in a weak sense. (See [Su1].)

Definition 1. The reduced quantum dynamical system QDl is said to be quantum

ergodic at energy level e if for every observable A A C0, hA
�
Ail

e and hAil
e exist and

satisfy

hA
�
Ail

e ¼ hAil
e : ð14Þ

The next lemma is the direct consequence of the Definition 1.

Lemma 5. Assume the condition (H2). Then the reduced quantum mechanics QDl

is quantum ergodic at energy level e if and only if the condition (S) in the statement of

Theorem 2 holds.

Furthermore, we obtain the following proposition, which can be proved by using

(11).

Proposition 1. Assume the condition (H2). Then QDl is quantum ergodic at energy

level e if and only if the condition (1) in Theorem 1 holds.

In order to prove Theorem 1, we shall prepare the following proposition.

Proposition 2. Assume the condition (H2). Then every quantum observable A A C0

satisfies
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lim
t!y

hA�
t Ati

l

e ¼ hA
�
Ail

e ð15Þ

if and only if the condition (2) in Theorem 1 holds.

Proof. This proposition is obtained by essentially the same way as the proof

of Lemma 2-2 in [Su1]. However, we recall it just to make sure. Note that, by the

assumption (H2) and Lemma 3, limt!yhA�
t Ati

l

e exists. A direct computation leads us

to

Atn
m
j ¼

1

t

X

k
ekðmÞ0ejðmÞ

ðe itðekðmÞÿejðmÞÞ ÿ 1Þ

iðekðmÞ ÿ ejðmÞÞ
hAnmj ; n

m
k in

m
k þ Anmj ; ð16Þ

and hence

hA�
t Atn

m
j ; n

m
j i ¼

1

t2

X

k
ekðmÞ0ejðmÞ

je itðekðmÞÿejðmÞÞ ÿ 1j2

jekðmÞ ÿ ejðmÞj2
jhAnmj ; n

m
k ij

2 þ hA
�
Anmj ; n

m
j i: ð17Þ

We set SðxÞ ¼ xÿ2je ix ÿ 1j2 ¼ 2xÿ2ð1ÿ cos xÞ and

St ¼ lim sup
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
ejðmÞ0ekðmÞ

SðtðejðmÞ ÿ ekðmÞÞÞjhAmn
m
j ; n

m
k ij

2:

We observe that (15) holds if and only if limt!y St ¼ 0. Note that there exists a > 0

such that SðxÞV 1=2 if jxj < a. Then we have

StV lim sup
m"y

Nmðe; cÞ
ÿ1 �

X

j ANmðe; cÞ

X

k
0<jejðmÞÿekðmÞjUa=t

SðtðejðmÞ ÿ ekðmÞÞÞjhAnmj ; n
m
k ij

2

V
1

2
lim sup

m"y
Nmðe; cÞ

ÿ1
X

j ANmðe; cÞ

X

k
0<jejðmÞÿekðmÞjUa=t

jhAnmj ; n
m
k ij

2: ð18Þ

Therefore limt!y St ¼ 0 implies the condition (2) in Theorem 1.

Conversely, we assume the condition (2) in Theorem 1. For any e > 0, there exists

T > 0 such that SðxÞ < e if jxj > T . Then we have

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
ejðmÞ0ekðmÞ

SðtðejðmÞ ÿ ekðmÞÞÞjhAnmj ; n
m
k ij

2

U eNmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
jejðmÞÿekðmÞj>T=t

jhAnmj ; n
m
k ij

2

þNmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
0<jejðmÞÿekðmÞjUT=t

jhAnmj ; n
m
k ij

2

U ekAk2 þNmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
0<jejðmÞÿekðmÞjUT=t

jhAnmj ; n
m
k ij

2: ð19Þ
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Therefore we have

StU ekAk2 þ lim sup
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
0<jejðmÞÿekðmÞjUT=t

jhAnmj ; n
m
k ij

2: ð20Þ

Letting t ! y, we have lim supt"y StU ekAk2. Since e > 0 is arbitrary, we conclude

limt!y St ¼ 0, and hence (15). r

5. Proof of Theorem 1.

In the preceding section, we defined quantum ergodicity of the reduced quantum

dynamical system QDl at a finite energy level. This notion plays an important role in

the proof of Theorem 1 (stated in Section 3). In fact, in view of Propositions 1, 2, we

only need to prove the following proposition for the proof of Theorem 1.

Proposition 3. Assume the conditions (H1) and (H2). Then the dynamical system

CDl

e is ergodic if and only if the following two conditions hold:

(1) The reduced quantum dynamical system QDl is quantum ergodic at energy

level e.

(2) For every observable A A C0, we have

lim
t!y

hA�
t Ati

l

e ¼ hA
�
A

�
il

e :

Proof. We take an arbitrary A A C0. Then we have

jhAil

e j
2 ¼ jhs0ðAÞi

l

e j ðLemma 4Þ

¼ hjs0ðAÞj
2
il

e ðergodicityÞ

¼ lim
t!y

hjs0ðAÞtj
2
il

e ðLemma 3; ð1ÞÞ

¼ lim
t!y

hs0ðA
�
t AtÞi

l

e ðLemma 4Þ

¼ lim
t!y

hA�
t Ati

l

e ðLemma 4Þ:

By (17), we have hA�
t Atn

m
j ; n

m
j iV hA

�
Anmj ; n

m
j i, and hence

hA�
t Ati

l

e V lim sup
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

hA
�
Anmj ; n

m
j i:

On the other hand,

0U lim inf
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

kðAÿ hAil

e Þn
m
j k

2

¼ lim inf
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

hA
�
Anmj ; n

m
j iÿ jhAil

e j
2:
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Therefore we have

jhAil
e j

2 ¼ lim
t!y

hA�
t Ati

l
e

V lim sup
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

hA
�
Anmj ; n

m
j i

V lim inf
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

hA
�
Anmj ; n

m
j i

V jhAil
e j

2
:

This implies that hA
�
Ail

e exists and

jhAil
e j

2 ¼ lim
t!y

hA�
t Ati

l
e ¼ hA

�
Ail

e :

We will prove the converse. Let A A C0. Then we have

jhAil
e j

2 ¼ jhs0ðAÞi
l
e j

2 ðLemma 4Þ

U hjs0ðAÞj
2
il
e ð Lemma 3, (2))

¼ lim
t!y

hjs0ðAÞtj
2
il
e ð Lemma 3, (1))

¼ lim
t!y

hs0ðA
�
t AtÞi

l
e ðLemma 4Þ

¼ lim
t!y

hA�
t Ati

l
e ðLemma 4Þ

¼ hA
�
Ail

e ðAssumption ð1ÞÞ

¼ jhAil
e j

2 ðAssumption ð2ÞÞ:

Thus for every s0ðAÞ of A A C0, the equation (1) in section 2 holds. Now, by Lemma 2,

for every f A CyðSl
e Þ there exists a smooth function F on T �Pn0 which is G-invariant,

homogeneous of degree zero and q�
l f ¼ F on ~SSl

e . Let A0 be the cDO of order zero

whose principal symbol is F. Then the operator A ¼
Ð
G
gA0g

ÿ1 dg is in C0 whose

principal symbol is F, and hence hjs0ðAÞj
2
il
e ¼ hj f jil

e . Therefore the dynamical system

CDl
e is ergodic. r

6. Proof of Theorem 3.

Now we will proceed to the proof of Theorem 3. For this sake, we will define

auxiliary notions.

Definition 2. (1) A family fSm; Sm H smðe; cÞg of subsets of smðe; cÞ ¼

fl A sðĤHj
Lml

Þ; jlÿmejU cg is said to satisfy the condition (D1) if it satisfies

lim
m!y

Nmðe; cÞ
ÿ1

X

l ASm

ðdimVlÞ ¼ 1; ð21Þ

where Vl is the eigenspace of an eigenvalue l of ĤHj
Lml

.
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(2) A family fJm; Jm HNmðe; cÞg of subsets of Nmðe; cÞ ¼ f j A N ; ejðmÞ A smðe; cÞg is

said to satisfy the condition (D2) if we have

lim
m!y

Nmðe; cÞ
ÿ1
]Jm ¼ 1: ð22Þ

Let x ¼ fxmgm AZ
be a family of sequences xm ¼ fxm

j gj ANmðe; cÞ
of nonnegative

numbers such that 0U xm
j UK for all m, j, for some constant K > 0. For each l A

smðe; cÞ, we set

xm
l
¼ ðdimVlÞ

ÿ1
X

j
ejðmÞ¼l

xm
j ;

so that

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

xm
j ¼ Nmðe; cÞ

ÿ1
X

l A smðe; cÞ

ðdimVlÞx
m
l
:

Lemma 6. The following holds,

lim
m!y

Nmðe; cÞ
ÿ1

X

l A smðe; cÞ

ðdimVlÞx
m
l
¼ 0; ð23Þ

if and only if there exists a family fSm; Sm H smðe; cÞg satisfying the condition (D1) such

that

lim
m!y

max
l ASm

xm
l
¼ 0: ð24Þ

Proof. Since ‘‘if ’’ part is obvious, we will only give a proof of ‘‘only if ’’ part.

Assume that (23) holds. Then one can find a sequence flmg of natural numbers which

is monotone increasing and goes to infinity as m ! y such that

Nmðe; cÞ
ÿ1

X

l A smðe; cÞ

ðdimVlÞx
m
l
<

K

2 lm

for every m A N . We define

Sm ¼ l A smðe; cÞ; x
m
l
<

1

lm

� �

:

It is clear that Sm satisfies (24). Furthermore fSmg satisfies (D1). Indeed we have

K

2 lm
> Nmðe; cÞ

ÿ1
X

l A smðe; cÞ

ðdimVlÞx
m
l
V flmNmðe; cÞg

ÿ1
X

l A smðe; cÞnSm

ðdimVlÞ;

and hence

1ÿNmðe; cÞ
ÿ1

X

l ASm

ðdimVlÞ < K
lm

2 lm
:

This implies (21). r

T. Tate878



Lemma 7. Let x ¼ fxmgm AZ be a family of sequences xm ¼ fxm
j gj ANmðe; cÞ

of

nonnegative numbers as above. Then the following conditions are equivalent:

(1) There exists a family fSmgm satisfying (D1) such that (24) holds.

(2) There exists a family fJmgm satisfying (D2) such that

lim
m"y

max
j A Jm

xm
j ¼ 0: ð25Þ

Proof. First we assume the condition (1). Then one can find a sequence flmg of

natural numbers which is monotone increasing and goes to infinity as m ! y such that

for all l A Sm

xm
l
¼ ðdimVlÞ

ÿ1
X

j
ejðmÞ¼l

xm
j <

K

2 lm
:

We define Jm HNmðe; cÞ by

Jm ¼ j A Nmðe; cÞ; ejðmÞ A Sm and xm
j <

1

lm

� �

:

This family clearly satisfies (25). Note that we have

1ÿNmðe; cÞ
ÿ1]Jm

¼ Nmðe; cÞ
ÿ1

X

l ASm

X

j ANmðe; cÞnJm
ejðmÞ¼l

1þNmðe; cÞ
ÿ1

X

l A smðe; cÞnSm

X

j
ejðmÞ¼l

1

¼ Iþ II ðsayÞ:

Since fSmg satisfies the condition (D1), II goes to zero as m ! y. On the other hand,

I ¼ Nmðe; cÞ
ÿ1

X

l ASm

ðdimVlÞS
m
l
;

where we set

Sm
l
¼ ðdimVlÞ

ÿ1
X

j ANmðe; cÞnJm
ejðmÞ¼l

1:

If ejðmÞ ¼ l A Sm and j B Jm, then xm
j V lÿ1

m . Thus, for l A Sm, we have

K

2 lm
V ðdimVlÞ

ÿ1
X

j ANmðe; cÞnJm
ejðmÞ¼l

xm
j V lÿ1

m Sm
l
: ð26Þ

This implies that I < Klm=2
lm ! 0 ðm ! yÞ. Hence the family fJmg satisfies (D2).

The converse is obvious. r

Proposition 4. The conditions (Z) and (C) in the statement of Theorem 2 are

equivalent.
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Proof. We take an A A C0 and set

xm
j ¼ jhAnmj ; n

m
j iÿ hs0ðAÞi

l
e j

for j A Nmðe; cÞ. Note that 0U xm
j U kAk þ hs0ðAÞi

l
e . Hence, by Lemmas 6, 7, we

conclude the assertion. r

The conditions (Z) and (C) are equivalent without assuming (H2). Next we will

prove the equivalence of (S) and (C). For this sake, we prepare the following lemma.

Lemma 8. Consider a family fJm; JmHNmðe; cÞg, and set JmðlÞ ¼ f j A Jm;

ejðmÞ ¼ lg. Then fJmgm satisfies (D2) if and only if there exists a family

fSm; Sm H smðe; cÞg satisfying (D1) such that

lim
m"y

max
l ASm

ðdimVlÞ
ÿ1
]JmðlÞ ¼ 1: ð27Þ

Proof. Set

xm
j ¼

0 if j A Jm

1 if j A Nmðe; cÞnJm.

�

Then for all l A smðe; cÞ, we have xm
l ¼ 1ÿ ðdimVlÞ

ÿ1
]JmðlÞ. Therefore

1ÿNmðe; cÞ
ÿ1
]Jm ¼ Nmðe; cÞ

ÿ1
X

l A smðe; cÞ

ðdimVlÞx
m
l :

Hence by Lemma 7, fJmgm satisfies (D2) if and only if there exists a family fSmgm
satisfying (D1) such that limm"y maxl ASm

xm
l ¼ 0. This implies the assertion. r

Finally we will prove the following proposition, which completes the proof of

Theorem 3.

Proposition 5. Assume that (H2) holds. Then the conditions (S) and (C) in

Theorem 2 are equivalent.

Proof. First, we assume that the condition (S) holds. Note that hAil
e ¼ hs0ðAÞi

l
e

by Lemma 4. Therefore by setting xm
j ¼ kðAÿ hAil

e Þn
m
j k, the condition (C) follows

from Lemmas 6, 7 and the inequality

jhAnmj ; n
m
j iÿ hs0ðAÞi

l
e jU kðAÿ hAil

e Þn
m
j k:

Next we will prove the converse. We may assume, without loss of generality, that

A A C0 is Hermitian. Since the time average A commutes with ĤH and G-action, we

can take an orthonormal basis fnmj g of Lml consists of eigenfunctions of ĤH such that

Anmj ¼ mm
j n

m
j for some mm

j A R. Note that hAnmj ; n
m
j i ¼ hAnmj ; n

m
j i. Then we have

kðAÿ hAil
e Þn

m
j k

2 ¼ jmm
j ÿ hAil

e j
2 ¼ jhAnmj ; n

m
j iÿ hs0ðAÞi

l
e j

2
: ð28Þ

Let fJmgm be as in the condition (C). By Lemma 8, one can find a family Sm satisfying

(D1) such that (27) holds. In view of Lemma 6, we only need to prove that this family

fSmg satisfies
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lim
m"y

max
l ASm

ðdimVlÞ
ÿ1

X
j

ejðmÞ¼l

kðAÿ hAil
e Þn

m
j k

2 ¼ 0: ð29Þ

By (27), for arbitrary e > 0 we can find a positive number N1 such that mVN1 implies

ðdimVlÞ
ÿ1½ðdimVlÞ ÿ ]JmðlÞ� < e for all l A Sm. On the other hand, by the condition

(C) and (28), one can find N2 > 0 such that mVN2 implies kðAÿ hAil
e Þn

m
j k

2
< e for all

j A Jm. Therefore if mVmaxfN1;N2g then for all l A Sm we have

ðdimVlÞ
ÿ1

X
j

ejðmÞ¼l

kðAÿ hAil
e Þn

m
j k

2

¼ ðdimVlÞ
ÿ1

X
j A Jm

ejðmÞ¼l

kðAÿ hAil
e Þn

m
j k

2

þ ðdimVlÞ
ÿ1

X
j ANmðe; cÞnJm

ejðmÞ¼l

kðAÿ hAil
e Þn

m
j k

2

U ð1þ KÞe;

where K ¼ kAk þ hAil
e . Since e > 0 is arbitrary, we obtain (29). r

7. Quantum weak mixing at a finite energy level.

Theorem 1 in this paper says that ergodicity of classical dynamical system is related

to the semi-classical asymptotic behaviour of near-diagonal components of quantum

observables. It is natural to ask what property of classical mechanics a¤ects the

asymptotic behaviour of quantum transition amplitudes. Zelditch [Z4] has shown that

classical weak mixing is equivalent to the notion of quantum weak mixing (see [Z4] for

the definition) plus an additional condition. In this section, we will discuss quantum

weak mixing of QDl at a finite energy level.

First, we begin with the review of the notion of classical weak mixing.

For every t A R and every f A L2ðSl
e Þ, we define f tðtÞ A L2ðSl

e Þ by

f tðtÞ ¼
1

t

ð t

0

eÿits f � jl
s ds:

By von Neumann’s ergodic theorem, the function f tðtÞ converges to the function f ðtÞ A

L2ðSl
e Þ satisfying f ðtÞ � jl

t ¼ e ittf ðtÞ in L2-sense as t ! y. The dynamical system CDl
e

is said to be weak mixing if

f ðtÞ ¼ h f il
e dt;0; a:e:;

(see [C-F-S]) or equivalently

hj f ðtÞj2il
e ¼ jh f ðtÞil

e j
2

for all f A CyðSl
e Þ.
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Next, we will describe a quantum analogue of this notion. For every quantum

observable A A C0 and for every t A R, we define the bounded operator AðtÞ by

AðtÞ ¼ w-lim
t!y

AtðtÞ; AtðtÞ ¼
1

t

ð t

0

eÿitse isĤHAeÿisĤHds:

The bounded operater AðtÞ commutes with the G-action and has the following form

AðtÞ ¼
X

m

X

eðmÞ A sðĤHj
LmÞ

PeðmÞþtAPeðmÞ:

By Egorov’s theorem, the operator AtðtÞ is in C0 and its principal symbol is given by

s0ðAtðtÞÞ ¼
1

t

ð t

0

eÿitss0ðAÞ � fs ds:

Definition 3. The reduced quantum dynamical system QDl is said to be quantum

weak mixing at energy level e > 0 if for every observable A A C0 and every t A R,

hAðtÞ�AðtÞil
e and hAil

e exist and satisfy

hAðtÞ�AðtÞil
e ¼ jhAil

e j
2
dt;0;

or equivalently,

hAðtÞ�AðtÞil
e ¼ jhAðtÞil

e j
2
:

The following proposition and theorem can be obtained by the same way as the

proofs of Proposition 3 and Theorem 1.

Proposition 6. Assume the conditions (H1) and (H2). Then the classical dynamical

system CDl
e is weak mixing if and only if the following two conditions hold:

(1) The reduced quantum dynamical system QDl is quantum weak mixing at energy

level e.

(2) For every observable A A C0 and for every t A R, we have

lim
t!y

hAtðtÞ
�
AtðtÞi

l
e ¼ hAðtÞ�AðtÞil

e :

Theorem 4. Assume that the conditions (H1) and (H2) are fulfilled. Then the

classical dynamical system CDl
e is weak mixing if and only if the following two conditions

hold:

(1) For every A A C0, t A R and orthonormal basis fnmj g
y
j;m¼1 of Vl of eigenfunctions

of ĤH, we have

lim
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
ekðmÞ¼ejðmÞþt

jhAnmj ; n
m
k ij

2 ¼

�

�

�

�

volðSl
e Þ

ÿ1

ð

S l
e

s0ðAÞ do
l
e

�

�

�

�

2

dt;0:

(2) For every A, t and fnmj g
y
j;m¼1 as above, we have

lim
d#0

lim sup
m"y

Nmðe; cÞ
ÿ1

X

j ANmðe; cÞ

X

k
0<jekðmÞÿejðmÞÿtj<d

jhAnmj ; n
m
k ij

2 ¼ 0:
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8. Circle bundle case.

In this section, we will apply our main theorems to a circle bundle over a compact

Riemannian manifold. We fix a Riemannian metric h ; i and an integral closed 2-form

B on a compact Riemannian manifold M. Then one can find a circle bundle p :

P ! M with connection 1-form a whose curvature 2-form is B. We take the irreducible

representation l ¼ 1 A R of the circle S1, that is the multiplication by elements of S1.

In this case, the corresponding reduced phase space ðX1;W1Þ is symplectically di¤eo-

morphic to the cotangent bundle T �M over M with symplectic form WM ÿ p�
MB, where

WM is the canonical symplectic form on T �M and pM is the projection. Now we will

consider the quantum Hamiltonian

ĤH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dhor þ VQ2
p

;

where Dhor is the horizontal Laplacian, Q is ÿ
ffiffiffiffiffiffiffi

ÿ1
p

times the infinitesimal generator of

S1-action on P, and V is the lift of a strictly positive smooth function on M. This

operator is a positive elliptic first order cDO on P. The isotypical subspace Lm of the

character e iy 7! e imy ðm A ZÞ is naturally identified with the Hilbert space L2ðM;LnmÞ
of L2-sections of mth tensor power of the associated line bundle L. Then the restriction

of ĤH to Lm is identical with the operator ĤHm given by

ĤHm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

‘�
m‘m þm2V

q

;

where ‘m is the connection on Lnm induced by a. The principal symbol of ĤH is the

Riemannian norm on T �Pn0 with respect to the metric p�h ; iþ Vÿ1a2. The corre-

sponding Hamiltonian H1 on T �M is given by

H1ðx; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kxk2 þ VðxÞ
q

; ðx; xÞ A T �M:

The flow jt generated by ðH1;W1Þ is called the electro-magnetic flow under the magnetic

field B and the electric potential V. Furthermore, if we take V 1 1, then the Liouville

measure oe on the energy surface Se ¼ Hÿ1
1 ðeÞ is given by the direct product of the

canonical measure on the unit sphere and the volume measure on M up to constant

multiple.

Let f A CyðMÞ and Af A C0 be the multiplication operator by the lift of f. Then

we have

hAf n
m
j ; n

m
j i ¼

ð

M

f jnmj j
2
dVM ; ð30Þ

hsðAf Þil
e ¼ volðMÞÿ1

ð

M

f dVM : ð31Þ

If M is a Riemann surface with constant negative curvature ÿ1, B is the volume 2-form

and eV
ffiffiffi

2
p

, then the dynamical system ðSe; jt;oeÞ is ergodic ([G-U1], [Su2]). Thus we

have the following

Corollary. Let M be a compact Riemann surface with constant negative curvature

ÿ1, B the volume 2-form and eV
ffiffiffi

2
p

. Then for every orthonormal basis fnmj g of
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eigenfunctions of ĤH, there exists a family fJmg satisfying

lim
m!y

]Jm

Nmðe; cÞ
¼ 1 ð32Þ

such that for all f A CyðMÞ we have

lim
m!y

max
j A Jm

�

�

�

�

ð

M

f jnmj j
2
dVM ÿ volðM Þÿ1

ð

M

f dVM

�

�

�

�

¼ 0: ð33Þ

Proof. In view of Theorem 1 and 3, we only need to prove that a family fJmg can

be taken independently of the choice of a smooth function f. For this sake, let fjpg be

a orthonormal basis of L2ðMÞ of eigenfunctions of the Laplacian. For every l A N , let

fJmðlÞg be a family satisfying (32), (33) for all f ¼ jp with pU l. We may assume

Jmðl þ 1ÞH JmðlÞ for all l. We can find a sequence flmgm AN
of natural numbers which

is monotone increasing and tends to infinity as m goes to infinity such that

1ÿ
1

2 lm
U

JmðlmÞ

Nmðe; cÞ
:

Then the family fJmg defined by Jm ¼ JmðlmÞ is a desired family. r
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