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Abstract. The purpose of this paper is to formulate the notion of quantum ergodicity
at a finite energy level for certain quantum mechanics, by using the method of Sunada
[Sul] Under some assumptions on the corresponding classical mechanics, we obtain a
necessary and sufficient condition in terms of semi-classical asymptotic behaviour of
eigenfunctions of a quantum Hamiltonian so that the classical mechanics is ergodic. We
also obtain a result on quantum weak mixing at a finite energy level which is a semi-
classical analogue of the notion introduced in .

1. Introduction.

The eigenfunctions of a quantum Hamiltonian with ergodic classical counterpart
have remarkable asymptotic behaviour. For instance, it is well-known that any or-
thonormal basis of eigenfunctions of the Laplacian on a compact Riemannian manifold
with ergodic geodesic flow is, roughly speaking, asymptotically uniformly distributed
(Sn]. [Z1], [Cav),.

In a recent paper [Sul], Sunada obtained a necessary and sufficient condition in
terms of asymptotic behaviour of the eigenfunctions so that the corresponding classical
dynamical system is ergodic. He introduced the notion of quantum ergodicity at infinite
energy level for quantum mechanics, and his result is obtained by studying the rela-
tionship between classical ergodicity and quantum ergodicity. That is, he showed that
classical ergodicity is equivalent to quantum ergodicity at infinite energy level with an
additional condition on the quantum mechanics. This notion introduced by Sunada is
a natural quantum analogue of Boltzmann’s ergodic hypothesis. In fact, he also noted
that a notion of ergodicity at infinite energy level can be defined for certain classical
systems.

The classical system investigated in the above works is homogeneous Hamilton flow,
that is the flow which commutes with R, -action on the cotangent bundle. However,
there are natural classical systems which are not homogeneous. For example, the
magnetic flow under the uniform magnetic field on a compact Riemann surface with
constant negative curvature —1 has different behaviour on different energy surfaces
([G-U1], [Su2f). This phenomenon arises from the fact that the magnetic flow is not
homogeneous. Ergodicity of such dynamical systems affects semi-classical asymptotic
behaviour of the eigenfunctions of corresponding quantum Hamiltonian ((H-M-R],

[5-T]. [22)).
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Our purposes of this note are to formulate a notion of quantum ergodicity for the
quantum mechanics corresponding to such a classical system as the above example using
the method of Sunada, and investigate the relationship between classical and quantum
ergodicity. We call the notion introduced in this paper quantum ergodicity at a finite
energy level because we take the dependence of dynamical behaviour on the energy level
into consideration.

We will give a brief account of the dynamical system discussed in this paper. The
precise formulation of the dynamical system, which is the same as in [Z2], is described in
the next section.

We note that the magnetic flow is obtained as a reduction of the geodesic flow on
a compact S! bundle with a connection 1-form and with Riemannian metric which is
invariant under S'-action. In this case the magnetic field is represented by the cur-
vature 2-form of the connection form. Therefore, in general, we consider the reduced
dynamical system of the Hamilton flow generated by the Hamiltonian which is invariant
under group action on the cotangent bundle over a compact principal bundle. The
corresponding quantum mechanics is generated by a first order positive elliptic pseu-
dodifferential operator (DO for short) which commutes with group action. However,
as the case of classical mechanics, we need to consider a reduced quantum mechanics.
More precisely, we consider the operator restricted to a ladder subspace associated
with a fixed irreducible representation of the structure group as a reduced quantum
Hamiltonian. We will define the notion of quantum ergodicity at a finite energy level
for the quantum mechanics generated by the reduced Hamiltonian. To study the
relationship between classical and quantum ergodicity, we will use the trace formula
due to Guillemin-Uribe [G-U2] and Zelditch [Z2].

We mention the contents of this paper. Our main theorems will be stated in section
3. In section 4, we will define the notion of quantum ergodicity at a finite energy level,
and the main theorems will be proved in section 5 and section 6. Recently, Zelditch
introduced the notion of quantum weak mixing. As a semi-classical analogy of this
notion, we will introduce the notion of quantum weak mixing at a finite energy level in
section 7. In section 8, we will mention the example of the magnetic flow on a
Riemann surface.

2. Formulation of dynamical systems.

In this section, we will describe the formulation of dynamical systems discussed in
this paper, and mention some properties of it.

Let 7 : P — M be a compact connected principal bundle over a compact Riemannian
manifold M with structure group G, a compact connected Lie group. Choosing a
biinvariant metric on G and a connection 1-form on P, we have a unique G-invariant
metric on P which makes the bundle 7 : P — M into a Riemannian submertion, with
fibers isometric to G. We fix such a metric.

Let H be a positive elliptic yDO of order one on P commuting with G-action and
let H=o0,(H) be its principal symbol. Since H commutes with G-action, H is a G-
invariant smooth function on the punctured cotangent bundle 7*P\0. The (left) action
of G on T*P is Hamiltonian and its equivariant moment map @ : T*P — %" is given by
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(D(p,0), 4> ={(4,), (p,()eT'P, Ae9,

where 4* is the dual space of the Lie algebra 4 of G. Let (x;, V) be an irreducible
representation of G with the highest weight 4 in the positive Weyl chamber of a dual
Cartan subalgebra, and let (U, be the coadjoint orbit through 4.

Since the differential map d® of @ at each point is surjective, @ !(0;) is a
submanifold in 7P, and G acts freely on it. The leaves of the null-foliation of the
G-invariant closed 2-form 1;Qp — @*w; on @ '(0;) are just the G-orbits, where Qp is
the canonical symplectic form on 7*P and w; is the Kostant-Kirillov symplectic
form on (;, and hence it induces the symplectic form Q; on X; = & '(¢;)/G. The
symplectic manifold (X, ;) is called the reduced phase space.

The G-invariant Hamiltonian H descends to the Hamiltonian H; on X;. Let (pf
denote the restriction of the Hamilton flow of (Hj,Q;) on the energy surface X’ =
H;'(e), which preserves the Liouville measure w?. We thus obtain the classical dy-
namical system CD’1 (27 3 ,¢0F, w*). A quantum counterpart of the dynamical system
CD/ will be described as follows:

The action of G breaks L?(P), the Hilbert space of square integrable functions on P,
into a direct sum of Hilbert spaces,

Lz(P) = @ gﬂ?

the sum taken over isotypical subspaces #, associated to the irreducible representation
(my, V) corresponding to the dominant integral weight . More precisely, the Hilbert
space ., is the closure of the image of the evaluation map, Homg(V,, L*(P)) ® V,, —
L?*(P). The Hilbert space %, is also obtained by the following way: Since
the operator H is elliptic and the manifold P is compact, the Hilbert space LZ( ) is the
direct sum of finite dimensional eigenspaces of H. Since the operator H commutes
with G-action, G acts on each eigenspace, and hence each eigenspace is decomposed
into irreducible representations. The Hilbert space %, is the direct sum of the irre-
ducible representations obtained in this manner which is equivalent to the irreducible
representation corresponding to u. We set

o0
= C‘Dl gm/l(c LZ(P))

The subspace 77, is called the ladder space associated to A ([G-S2], [G-U2|). Let
e1(m) < ex(m) < --- be the eigenvalues of the restriction of the operator H to %,,; and
let {v;" ieN be the orthonormal basis for .%,,, of the eigenfunctions of H, FIvJ’.” =
e;(m)v}".

Now we set up the triple QD” = (7 W H), ‘Pé) as a quantum dynamical system
where H, is the restriction of H to ¥, ¥, is the algebra consisted of all yDO of
order zero commuting with G-action and ‘Pé is the algebla of operators which are the
restriction of the elements in ¥ to the Hilbert space 77;. We consider the algebra ¥
as the algebra of quantum observables. We will call the dynamical system QD” the
reduced quantum dynamical system.
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Before going to discussion of quantum ergodicity, we must mention some properties
of the classical dynamical system CDj‘.

Let Z, be the energy surface of H, the principal symbol of H, at energy e, and let @,
be the Hamilton flow generated by H and the canonical symplectic form Qp on T*P.
The flow ¢, commutes with G-action, and hence it induces a flow on X;. Note that the
flow induced by ¢, just coincides with the flow ¢/

We consider the following condition:

(H1) The Hamiltonian vector field, Xy, of H is not tangent to the G-orbit through any
point in Xt = Z,Nd71(0,).

Note that, for example, the Laplacian on P with respect to the fixed metric (see Section
1) satisfies the condition (H1) if e > |4|. The assumtion (H1) makes us to obtain the
following lemmas.

LemMA 1. Under the assumption (H1), the subset X% is a submanifold in T*P, and
thus X% is a principal G-bundle over X*.

ProOF. Since the differential map d®. at ze X j is surjective, we have 7.9~ !(0;) =
d®;'(Tp,)0;). By the equivariance of @, we obtain

AP Ty 0;) = %(2) + %(2)",

where 4(z) = {A; e T.T*P; A € 4} and “L” denotes the annihilator of ¥%(z) with respect
to Qp. Since H is G-invariant, we have %(z) = (Xy)= = T.Z,. Therefore we obtain

T.Z,+ T-07'(0;) = (Xp)" +%(2)",
and hence
(T-Z, + T.&7'(0,))" = (Xy) N%(z).

By the assumption (H1), the right hand side of the above expression is zero. So
the submanifolds Z, and 45’1((92) intersect transversally. Thus we conclude the
assertion. ]

LemMA 2.  For each smooth function f on X j, there exists a smooth function F on
T*P\O which is G-invariant, homogeneous of degree zero such that

¢ f=F on X}
where q; is the projection from X% onto X*.

Proor. The function ¢; f is a G-invariant smooth function on z j, and it can be
extended to a smooth function Fy on Z,. Averaging Fy on G and extending to a smooth
function on 7*P\0O of degree zero, we obtain a desired function. ]

We also note that a G-invariant smooth function ¢ on 7*P\0 descends to a smooth
function on X;. Then we will continue to denote by a the function on X induced by a.
Next, we will review the ergodicity of the classical dynamical system CD;.
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For each square integrable function f e L?(X ;“), let f, be the time average of f up
to time ¢, f, = (1/1) fot fog*dr. Birkhoff’s ergodic theorem says that the (long) time
average f = lim,_, f, exists a.e. The dynamical system CD/ is said to be ergodic if
the time average f identically equals the space average { />’ = vol(X j)*l [z fdwf, or
equivalently '

AP =Kl (1)
for all smooth function f e C*(X?).

LEmMA 3. For all fe C* (EQ ), we have the following:
(1) timyo KIfE = AP
@) A1 = KN

PRrROOF.

(1) This is a direct consequence of Lebesgue’s convergence theorem.
(2) By Birkhoff’s ergodic theorem, we have {f >j ={f >j‘. Therefore

USPYE= KM = f = <HHHE=0. 0

3. Statement of main theorems.

To state our main theorems, we prepare some notation. For a fixed constant ¢ > 0,
let

Nm(e,¢) = {j € N;lej(m) — me| < c},
Npy(e,c) =N (e, c).

Then our first theorem can be stated as follows. (See Section 4 for the assumption
(H2).)

THEOREM 1. Assume that the dynamical system CDLf“ satisfies the conditions (H1),
(H2). Then the dynamical system CDé1 is ergodic if and only if the following two
conditions hold.

(1) For every A € ¥ and for every orthonormal basis {v]f”}fﬁzl of V) of eigen-

functions of H, we have

2
lim N, (e, c)”! Z |<Av;”,v,T>|2 = Vol(Zj)_IJ ap(A) dow? (2)
e Jrke V(e c) .
ej(m)=ex(m)
(2) For every A, {v]"} as above, the following holds:
lim lim sup Ny(e,c)” > > <AV vit|* = 0. (3)

o0 mio jeNmlec)

k
0<e;(m) ey (m) <0

This theorem is a semi-classical analogy of [Sul]. Before proceeding our second
theorem, we refer to Zelditch’s result [Z2].
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THEOREM 2 (Zelditch). Assume that the dynamical system CDj is ergodic. Then for
every orthonormal basis {v/m} and for every yDO A of order zero, we have

lim N, (e,c)”" Z =0. (4)

m— o0 -
/ € '/Vm (ev C)

oy = | ol

e

We will give a brief explanation for the integral appeared in (4). For details, see
[G-S2], [G-U2], [Z2]. Let (T*P)c(, be the space of the leaves of the null-foliation
on &7 '(C(0;)), where C(0;) is the cone through the orbit ¢, C(0;)=
{rf; feO,r>0}. Note that the orbit (/, is integral, that is, for f € (,, there is a
character y, : Gy — S ' (Gy is the stabilizer of /) such that dys(A) = 27i{ f, A) for every
Ae%Yr (9 is the Lie algebra of Gy). Then the leaf of the null-foliation through z e
@~ 1(C(0;)) is the orbit through z under the action of the identity component of the
kernel, kery,, of y,. The function 6o(4) is the function on (77P)c(, obtained by
integration of gy(A4) over the fibers. The natural action of G on the symplectic manifold
(T"P)c(q,) 1s Hamiltonian. Let ¥ : (T"P)c,) — %" be the moment map of the above
action, and let p = [¥|. Then the Hamilton flow of p on (7"P)¢(, is periodic with
constant period, and hence it induces an S!'-action on (T “P)c(c,- This Sl-action is
obtained by regarding S' as G/kery,. The level surface p~'(|4]) is a S'-bundle over the
Kazhdan-Kostant-Sternberg reduction X f with respect to the orbit V,. The surface S’j
appeared in (4) is the intersection S* = p~'(|A))NH '(e) in (T"P)c(p,, Where the
function H is the function induced by G-invariant Hamiltonian H on T*P. The measure
u/ in (4) is the normalized Liouville measure on S’.

In the case where the function gy(A4) is invariant under the action of G, the integral
in (4) is reduced to the integral over X/ — X; of the function induced by the function
go(4). We explain this as follows: The level surface S* is a S'-bundle over the level
surface S/ = (H f)*l(e) in X iﬁ, where the function H Aﬁ is the function on X Aﬁ induced by
H. Note that X f is symplectically diffeomorphic to the product X f = X, x 0, and the
action of G on X f is interpreted as the action only on the second component of the
product. Since H f is G-invariant, we have S/ = X% x (/;. Therefore the integral in (4)
is reduced to the integral over X’ in case where the function oo(4) is G-invariant.

Before going to state our second theorem, which relates Theorem 1 to the above
theorem, we need to prepare some notations.

For every quantum observable 4 € ¥, we define the (quantum) space average (A >£‘
of A by

(A>f = lm Ny(e,c)™" Y <Ay,
JEN (e, c)

The existence of the above limit and independence of the choice of the constant ¢ are
guaranteed by the semi-classical trace formula due to V. Guillemin-A. Uribe ((G-U2J)
and S. Zelditch ([Z2]) under the assumption (H2). (See Section 4.) We also define the
(quantum) time average 4 of 4 € ¥, by

- R B A
A = w-lim —J e™ foTH 1.

Now we can state our second theorem as follows.
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THEOREM 3. Assume the condition (H2). Then the following three conditions are
equivalent:

(S) For every Ae ¥y,

. -1 n 7 2
Tim N, Y (A= DI =0, (5
jeNm(ec)
where || - || is the L*-norm.

(Z) For every Ae ¥y and for every orthonormal basis {vjf" for V', of eigen-

functions of H,

. ~1
lim N (e, ) >,

JEN m (6, C)

j?n,l

=0. (6)

sty =vol( =)™ | () do]

(C) For every A, {v!"} as in (Z), there exists a family {Jy}, .5 of subsets of
N (e, c) satisfying

m ﬂJm
m—x Ny, (e, c)

=1 (7)

such that

lim max [<Av/",v]") —Vol(Zj)_IJ oo(A) dow?| = 0. (8)

m—oo jeJ, 2;1

We remark that the conditions (1) in and (S) in are

equivalent to quantum ergodicity of QD” at energy level e defined in Section 4. Note

also that the conditions (Z) and (C) in are equivalent without assuming the
condition (H2).

4. Quantum ergodicity at a finite energy level.

This section is devoted to define quantum ergodicity of QD* at energy level e > 0,
following the method in [Sul]. Let 4 be a bounded operator on L?(P) which commutes
with G-action. Then the quantum time average of A is defined by

_ ) 1 ., A
A=wlim4, A = —J "™ gem™ dr. 9)
— 0 t 0

The above weak limit exists, and the bounded operators 4,, 4 commute with G-action.
By the spectral theorem, we have

H=3""e(w)Pyyy, ™ =3 > c"Wp,,, (10)
Hoe(p) uoe(y)

where u runs over irreducible representations of G, e(u) runs over eigenvalues of the
restriction of H to %y, and P, 1s the projection onto the eigenspace corresponding to
the eigenvalue e(u). Using the expression (10), we obtain that the time average 4 of 4
has the form

A=) ;Pe(ﬂ)APdﬂ). (11)
Hmooe(u
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On the other hand, the quantum space average of A is defined by
Ay = Tim N (e, ¢)” DR ZUAROY (12)
JeN (e, c)

if the above limit exists, where Ny (e, ¢), A(e, ¢) and v}" are as in the previous sections.
Note that <A>; = <A>’ if the left hand side exists. To guarantee the existence of the
space average of A in ¥, we need the following condition.

(H2) The set of periodic points of (p;1 on X L’l has Liouville measure zero.

Under the condition (H2), the semi-classical asymptotic formula due to Guillemin-Uribe
[G-U2] and Zelditch holds. That is to say, for every 4 € ¥y we have the following
formula,

i m ] A n+d—1
Z A" vy = 2c<2n> J ) oo(A) dw} + o(m" 7). (13)

jeNm(ec)

where n = dim M and 2d = dim ;. (We refer to [B-U], [G-U2| and for the proof
of this formula.) The following lemma is the direct consequence of Egorov’s theorem
and the above formula (13).

Lemma 4. (1) If A€ Wy then A, € Wy, and the principal symbol of A, is given by

ao(A4,) = lj ao(A) o ¢, dz.

2 Jo
(2) If the condition (H2) is fulfilled, then for every A € Wy we have {AY* = {ay(A))’.

e

Now we will define quantum ergodicity, which is an analogy of Boltzmann’s ergodic
hypothesis in a weak sense. (See [Sul}.)

DEFINITION 1. The reduced quantum dynamical system QD* is said to be quantum
ergodic at energy level e if for every observable A € ¥\, <A_*A_>j and <A>£‘ exist and

satisfy
A =<4 (14)
The next lemma is the direct consequence of the [Definition 1.

LEMMA 5. Assume the condition (H2). Then the reduced quantum mechanics QD*
is quantum ergodic at energy level e if and only if the condition (S) in the statement of
Theorem 2 holds.

Furthermore, we obtain the following proposition, which can be proved by using
(11).

PROPOSITION 1. Assume the condition (H2). Then QD* is quantum ergodic at energy
level e if and only if the condition (1) in Theorem 1 holds.

In order to prove [Theorem 1, we shall prepare the following proposition.

PROPOSITION 2. Assume the condition (H2). Then every quantum observable A € ¥
satisfies
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lim (A7 Ay} = (A" A)] (15)
if and only if the condition (2) in Theorem 1 holds.

Proor. This proposition is obtained by essentially the same way as the proof
of Lemma 22 in [Sul]. However, we recall it just to make sure. Note that, by the
assumption (H2) and [Lemma 3, lim,_,oo<A[*A,>j exists. A direct computation leads us
to

1 (el'l(ek(m)—ej(m)) —1) _
Ay =— AV vV 4 Av]” 16
2 e =gy AT 1o
ex(m) #¢;(m)
and hence
i} 1 eitler(m)—e¢;(m)) _ 1 e
<AZA,va"7 ij> = Z | | |<Av ,’:1>|2 + <A AV v (17)

! % lex(m) — e;(m)|®
ex(m) #ej(m)

We set S(x) = x2|e™ — 1|* = 2x2(1 — cosx) and
Sy =lim sup Ny(e,c)”' > Z S(t(ej(m) — ex(m)))[<Amv?", Vi,

mToo V(e e
TN oy )

We observe that holds if and only if lim,_. S; =0. Note that there exists o > 0
such that S(x) >1/2 if |x| <a. Then we have

S; > lim sup Ny(e,0)™' x Y > S(t(ej(m) — ex(m)))[<Av", vy
m] oo jeNm(e,c) k
0<le;(m)—ex(m)| <o/t

1. _
> Ehm sup Ny(e,¢)”! E E ](Avj”’,v,'f>|2. (18)
m]oo jeNm(ec) k
0<|ej(m)—ex(m)| <o/t

Therefore lim,_ ., S; = 0 implies the condition (2) in Theorem 1.
Conversely, we assume the condition (2) in [Theorem 1. For any ¢ > 0, there exists
T >0 such that S(x) <e if |x| > 7. Then we have

Z Z S(t(e;(m) — ex(m)))| <AV v |

Vo
TN ) erom)
< eNp(e,c)” Z Z | <Ay, vy I
jeNmle,c)

k
lej (m)—ex (m)|>T /1

+ N (e, C)il Z z |<Avjm,v;€“>|2

jeNm(ec) k
0<le;(m)—ex (m)] < T/t

<el|A|]* + Nule,o)™ > > <A Vi), (19)

jeNm(e,c k
jenlec) 0<|e;(m)—ex (m)| < T/t
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Therefore we have

Si < e A|)* +lim sup Ny(e.c)™' > > KAV v (20)

mf oo jeNmle,c) k
0<les(m)—ex (m)| <T/1

Letting 7 — oo, we have lim sup,;., S; < e||A|]2. Since ¢ > 0 1s arbitrary, we conclude
lim,_,, S; =0, and hence (15). O
5. Proof of Theorem 1.

In the preceding section, we defined quantum ergodicity of the reduced quantum
dynamical system QD” at a finite energy level. This notion plays an important role in
the proof of (stated in Section 3). In fact, in view of Propositions 1, 2, we
only need to prove the following proposition for the proof of Theorem 1.

PROPOSITION 3.  Assume the conditions (H1) and (H2). Then the dynamical system
CD? is ergodic if and only if the following two conditions hold:
(1) The reduced quantum dynamical system QD” is quantum ergodic at energy
level e.
(2) For every observable A € ¥, we have

lim <A/ Ay = <A
Proor. We take an arbitrary 4 € ¥y. Then we have
KA = [Kao(4))f]  (Lemma 4)
= {ao(4))? 2 (ergodicity)
= lim (Joo(4),*)/  (Lemma 3,(1))
— zlinolc <JO(A[*A[)>2“ (Lemma 4)
= tlirré (A7 A" (Lemma 4).
By (17), we have (44", v") = <A_*A_v]m,v}">, and hence

(A7 AL = Timsup Ny(e, o) 7 <A A v,
mf oo JjeNm(ec)

On the other hand,

0 < lim inf N,,(e,c)”" A — {AH™|?
mind Mofe.c S 1= G

= lim inf N,,( A" A" vy — <AL
11;111T;an e,c) ]€¢Z)< VI = KA
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Therefore we have
[CAYH? = lim <A A4,
1— o0

> lim sup Ny(e,c¢)”" Z <A_*A_v]’.“,v]m>
mf oo jeNm(ec)

> lim inf N, (e, ot Y Ay
mj oo
jeN (e c)

> KA.
This implies that (4 A)’ exists and
KA = lim CA7A] = (A 4D}
We will prove the converse. Let 4 € ¥y. Then we have
[<A>(I* = [<ao(4)y;]”  (Lemma 4)
< {Joo(4)]*>»; (Lemmal3, (2))
= lim CJoo(A), 12>/ (Lemma3, (1)
= lim <oo(4;4,)); (Lemma 4)
= lim (4;4,>; (Lemma 4)
= (A AY! (Assumption (1))

= |<A>Z‘|2 (Assumption (2)).

Thus for every go(A) of A € ¥y, the equation (1) in section 2 holds. Now, by [Lemma 2,
for every f e C*(X7) there exists a smooth function F on 7*P\0 which is G-invariant,
homogeneous of degree zero and ¢q;f = F on z e) Let 4y be the yDO of order zero
whose principal symbol is F. Then the operator 4 = . gAog~'dg is in ¥, whose

principal symbol is F, and hence (|oo(4)|*>* = <|f|>?. Therefore the dynamical system
CD/ is ergodic. 0

6. Proof of Theorem 3.

Now we will proceed to the proof of Theorem 3. For this sake, we will define
auxiliary notions.

DeriNiTION 2. (1) A family {Sp; S < amle,c)}  of subsets of ay(e,c) =
{4€ a(ﬁ\ymz); |A — me| < ¢} is said to satisfy the condition (D1) if it satisfies

lim Ny(e,c)” Y (dimV;) =1, (21)

m— o0
LES m

where V; is the eigenspace of an eigenvalue 2 of H| 7.
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(2) A family {J; Jpy © Nm(e,c)} of subsets of N (e, c) = {j e N;ej(m) € aple,c)} is
said to satisfy the condition (D2) if we have

lim N, (e,c) '8, = 1. (22)

m— o0

Let x={x"},.z be a family of sequences x" = {x/"},_ , . of nonnegative

numbers such that 0 <x" < K for all m, j, for some constant K >0. For each i€
am(e,c), we set

= (dim V)"~ Z x

e (m) 7
so that

Ni(e,e)™! Z xj’”:N,,fl(e,c)_1 Z (dim V;)x"

jeNulec) L€ap(e,c)
Lemma 6. The following holds,

lim Ny(e,c)”' > (dim V;)x)' =0, (23)
m— oo
Aean(e,c)

if and only if there exists a family {Sp; Sm < am(e, )} satisfying the condition (D1) such
that

lim maxx}" =0. (24)

m—oo j ey,

Proor. Since “if” part is obvious, we will only give a proof of “only if” part.
Assume that holds. Then one can find a sequence {/,,} of natural numbers which
is monotone increasing and goes to infinity as m — oo such that

Nau(e,o)™ > (dim V;)x) <2—If

A€ap(e,c)

for every me N. We define

1
Sy = {/Ieam(e, c);x;' < Z_}

It is clear that %, satisfies [24). Furthermore {¥),} satisfies (D1). Indeed we have
K _ : " _ :
37> Nule,c) YYD dim V)X > {luNu(e, o)} Y (dim V),
Leay(e,c) Aeam(e, )\ Im
and hence

_ . L
1= Nule,e)™ > (dim V) < Kz—,
AES

This implies [21]. O
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Lemma 7. Let x={x"}, ., be a family of sequences x™ ={x"},_ - . of
nonnegative numbers as above. Then the following conditions are equivalent:
(1) There exists a family {%p},, satisfying (D1) such that (24) holds.
(2) There exists a family {J,},, satisfying (D2) such that
li " =0. 2
i g =0 =
Proor. First we assume the condition (1). Then one can find a sequence {/,,} of

natural numbers which is monotone increasing and goes to infinity as m — oo such that
for all 1€ %,

(dim V)~ Z x < .
e,(m) A

We define J,, = A,(e,c) by

1
In = {j € Nm(e,c); ej(m) € S and x}" < I_}
m
This family clearly satisfies [25]. Note that we have

1 — Ny(e, c)_ljij

= Np(e,¢)”! Z 1+ Ny(e,e)”! Z Z 1
AES m Jje/ 1m( C)\ m 260’,,,(6, C)\<q)m J
e,(m):

=1+1I (say).

Since {,} satisfies the condition (D1), II goes to zero as m — oo. On the other hand,

I=Ny(e,e)™ Y (dimV;)Sy",

r€Sm

where we set

S = (dim ;)" 1.

jeNme,c)\Im
ej(m)=2

If ej(m)=4€ %), and j ¢ J,, then x> [.1. Thus, for Ae%,, we have

K ) _
== (dim )T Y Xz lsy (26)
JeNm(e,c)\Im
ej(m)=~7

This implies that I < Ki,,/2' — 0 (m — o). Hence the family {J,} satisfies (D2).
The converse is obvious. l

PrROPOSITION 4. The conditions (Z) and (C) in the statement of Theorem 2 are
equivalent.
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Proor. We take an 4 € ¥, and set

X" = KA v = Cou(4))]

for je Au(e,c). Note that 0 < x" < [|4] + (oo(A4))>?. Hence, by Lemmas 6, 7, we
conclude the assertion. O

The conditions (Z) and (C) are equivalent without assuming (H2). Next we will
prove the equivalence of (S) and (C). For this sake, we prepare the following lemma.

Lemma 8. Consider a family {J; Jn=Nm(e, )}, and set Ju(1) ={j€ Ju;
ej(m)=A}. Then {J,}, satisfies (D2) if and only if there exists a family
{Lm; Sm = amle, )} satisfying (D1) such that

lim max (dim V) '$J,,(2) = 1. (27)

mloo JeSy,
PrROOF. Set

m_{O if jeld,
YT e Nnle, )\

j
Then for all Ze€ay,(e,c), we have x}" =1 — (dim V;) '4J,.(%). Therefore

1= Ny(e,0) 't = Nule,0)™" Y (dim V;)x]".

A€am(e,c)
Hence by [Lemma 7, {J,,},, satisfies (D2) if and only if there exists a family {%,,},,
satisfying (D1) such that lim,,;. max;c¢, x' = 0. This implies the assertion. O

Finally we will prove the following proposition, which completes the proof of

Theorem 3.

PROPOSITION 5.  Assume that (H2) holds. Then the conditions (S) and (C) in
Theorem 2 are equivalent.

Proor. First, we assume that the condition (S) holds. Note that {4 >Lf‘ = <0'0(A)>j‘
by Lemma 4. Therefore by setting x" = ||(4 — (4»/)v"|, the condition (C) follows
from Lemmas 6, 7 and the inequality

<AV, vy = ao(A) 3] < (1A = <Ayl

Next we will prove the converse. We may assume, without loss of generality, that
A e ¥, is Hermitian. Since the time average 4 commutes with H and G-action, we
can take an orthonormal basis {v/"} of &, consists of eigenfunctions of H such that
Avit = vt for some u" € R. Note that (Av/",v/") = {4v/",v">. Then we have
; 2 2 112
1A = <A™ = | = <AL = [<Av] vy = oo(A))(]. (28)

Let {J,,},, be as in the condition (C). By [Lemma 8, one can find a family %, satisfying
(D1) such that holds. In view of [Lemma 6, we only need to prove that this family
{%m} satisfies
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lim max (dim ;)" Z (A = <A = (29)

mloo le Sy

e (m):/1

By [27), for arbitrary ¢ > 0 we can find a positive number N; such that m > N; implies
(dim V;)"'[(dim V;) — #J,,(4)] < & for all L€ #,. On the other hand, by the condition
(C) and (28), one can find N, > 0 such that m > N, implies ||(4 — <A>j)v}”H2 < ¢ for all
j€Jy. Therefore if m > max{N;, N>} then for all 1€ .%,, we have

(dim V)~ ZHA AP

e,(m) )
- —1 n N2
= (dim V)" Y (A =<
J€JIm
ej(m)=1

+(dim )™ Y (A=
j E,/V;?(/, (6)7i)“\‘] m

<(1+K),

where K = ||A|| + <(4)*. Since &> 0 is arbitrary, we obtain (29). ]

7. Quantum weak mixing at a finite energy level.

in this paper says that ergodicity of classical dynamical system is related
to the semi-classical asymptotic behaviour of near-diagonal components of quantum
observables. It is natural to ask what property of classical mechanics affects the
asymptotic behaviour of quantum transition amplitudes. Zelditch has shown that
classical weak mixing is equivalent to the notion of quantum weak mixing (see for
the definition) plus an additional condition. In this section, we will discuss quantum
weak mixing of QD” at a finite energy level.

First, we begin with the review of the notion of classical weak mixing.

For every 7€ R and every f e L*(XZ%), we define f,(r) e L*(Z%) by

(.
f.(7) = ;J e f o plds.

0

By von Neumann’s ergodic theorem, the function f,(t) converges to the function f(7) €
L*(X?%) satisfying f(7) o ¢/ = e"™f(z) in L>-sense as t — oo. The dynamical system CD?
is said to be weak mixing if

f(@) ={fibeo,  ae,
(see |[C-F-S]) or equivalently

QfEPE = K@
for all fe C*(Z4).
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Next, we will describe a quantum analogue of this notion. For every quantum
observable 4 € ¥ and for every te R, we define the bounded operator A4(z) by

- | I )
A1) = m[/-lim A1), Air) = ;J e eBH g H g,
— 00
The bounded operater A(r) commutes with the G-action and has the following form
Z D, PeuscAPey).
e(n)ea(Hly,)

By Egorov’s theorem, the operator A,(t) is in ¥, and its principal symbol is given by
t
ao(4,(7)) = —J e ay(A) o ¢, ds.

DEFINITION 3. The reduced quantum dynamical system QD” is said to be quantum
weak mixing at energy level e >0 if for every observable A€ ¥, and every 1€ R,

CA(0)*A(t)Y! and (A exist and satisfy

CA@) A@@)¢ = KA{ 0,

or equivalently,

AR A(x)>; = KA
The following proposition and theorem can be obtained by the same way as the
proofs of Proposition 3 and Theorem 1.

PROPOSITION 6.  Assume the conditions (H1) and (H2). Then the classical dynamical
system CDeA is weak mixing if and only if the following two conditions hold.
(1) The reduced quantum dynamical system QD”* is quantum weak mixing at energy
level e.
(2) For every observable A € ¥ and for every t € R, we have

lim (A,(7)"4,(2)>] = CA(x) A(2)).

THEOREM 4. Assume that the conditions (H1) and (H2) are fulfilled. Then the
classical dynamical system CD? is weak mixing if and only if the following two conditions
hold:

(1) For every A€ ¥, t € R and orthonormal basis {v _, of V', of eigenfunctions
of H, we have
2
rlanrglo N(e,c)™! Z Z [<Av", v = Vol(ZeA)*1 L/_ oo(A) do?| J..

jeNulec) k
" ex(m)=ej(m)+t

e

(2) For every A, T and {v]" ;Omzl as above, we have

hr(r)l hstup Nu(e,c)” ! Z Z <A, v,ﬁ”>|2 =
mj oo Nim(e,c
jeNnte.c) 0<|ek(m)—lz,-(m)—f\<(5
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8. Circle bundle case.

In this section, we will apply our main theorems to a circle bundle over a compact
Riemannian manifold. We fix a Riemannian metric {,) and an integral closed 2-form
B on a compact Riemannian manifold M. Then one can find a circle bundle 7 :
P — M with connection 1-form o whose curvature 2-form is B. We take the irreducible
representation A =1 e R of the circle S', that is the multiplication by elements of S'.
In this case, the corresponding reduced phase space (Xi,€;) is symplectically diffeo-
morphic to the cotangent bundle 7*M over M with symplectic form Q,, — 7}, B, where
Q) 1s the canonical symplectic form on 7*M and 7y, is the projection. Now we will
consider the quantum Hamiltonian

ﬁ =\ Apor + VQ27

where 4, is the horizontal Laplacian, Q is —v/—1 times the infinitesimal generator of
Sl-action on P, and V is the lift of a strictly positive smooth function on M. This
operator is a positive elliptic first order DO on P. The isotypical subspace ., of the
character e s ¢™’ (m e Z) is naturally identified with the Hilbert space L>(M,L®™)
of L?-sections of mth tensor power of the associated line bundle L. Then the restriction
of H to &,, is identical with the operator H,, given by

I:Im =/ V;1Vn1 + m? Va

where V,, is the connection on L®” induced by «. The principal symbol of H is the
Riemannian norm on 7*P\0 with respect to the metric 7*{,> + V~'a>. The corre-
sponding Hamiltonian H; on 7*M is given by

Hl(xaé) =V Hé“2 + V(X), (X, é) eT"M.

The flow ¢, generated by (H;, ;) is called the electro-magnetic flow under the magnetic
field B and the electric potential V. Furthermore, if we take V7 = 1, then the Liouville
measure o, on the energy surface X, = H;!(e) is given by the direct product of the
canonical measure on the unit sphere and the volume measure on M up to constant
multiple.

Let f e C*(M) and Ay € ¥ be the multiplication operator by the lift of . Then
we have

Appop = | s (30)
M

(o(Ap)> = vol(M)~! JM rdvy. (31)

If M is a Riemann surface with constant negative curvature —1, B is the volume 2-form
and e > /2, then the dynamical system (X,,¢,,w,) is ergodic ((G-U1], [Su2]). Thus we
have the following

COROLLARY. Let M be a compact Riemann surface with constant negative curvature
—1, B the volume 2-form and e >+/2. Then for every orthonormal basis {vj’-”} of
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eigenfunctions of H, there exists a family {Jm} satisfying

lim B

m— o0 ]Vm(e7 C) (3 )

such that for all f € C*(M) we have

lim max
m—oo jeJy,

wawgnﬁcnaw-voKA4)1J

Mfdm4:0. (33)

PrOOF. In view of and 3, we only need to prove that a family {J,,} can
be taken independently of the choice of a smooth function /. For this sake, let {¢,} be
a orthonormal basis of L>(M) of eigenfunctions of the Laplacian. For every / € N, let
{Jm(l)} be a family satisfying [32), (33) for all /' =¢, with p </. We may assume
In(l+1) c Jy(l) for all . We can find a sequence {/,,},,.y of natural numbers which
1s monotone increasing and tends to infinity as m goes to infinity such that

L )
2im = Nyl(e,c)
Then the family {J,} defined by J,, = J,,(/,,) is a desired family. O
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