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Abstract. In this paper, when an entire function f and the linear combination of its
derivatives L(f) with small functions as its coefficients share one value CM and another
value IM is studied. We also resolved the question when an entire function f and its
derivative f' share two values CM jointly. Some of the results remain to be valid if f
is meromorphic and satisfying N(r, f) =o(T(r,f)) as r — co and the values a,b are
replaced by small functions of f(z).

1. Introduction.

Let f and g be two non-constant meromorphic functions and » be a complex
number. We say that f and ¢ share the value » CM (IM) provided that f(z) — b and
g(z) — b have the same zeros with the same multiplicities (ignoring multiplicities). In
1929, R. Nevanlinna proved that (i) if f and ¢ share five values IM, then f =g,
and (ii) if f and g share four values CM, then f is a Mdbius transformation of g.
Particularly, if f and g are entire functions, then f = g provided that f and g share four
finite values CM. Recently the studies on sharing values have been extended to the
studies of sharing small functions of f and sharing several finite sets or even to one finite
set only, see, e.g. [2], [3], [4], [5] and [6]. For instance, it has been shown in [7] that
there exists a single set S with 15 elements such that f~'(S) =g !(S) implies f = g.
For its improvements, we refer the reader to Yi [8] and Mues-Reinders [9]. In 1976, it
was shown that if an entire function f and its derivative f’ share two values a,
b CM, then f = f'. Since then the subject of sharing values between a meromorphic
function and its derivatives has been studied by many mathematicians. For example,
G. Gundersen proved that if fis entire and shares two finite nonzero values IM with
f', then f = f'. E. Mues and N. Steinmetz proved that if f is meromorphic and
shares three finite values IM with f’, then f = f’. This result was improved by Frank
and Schwick to the case that f shares three finite values IM with f®). Similar
questions on f shares three finite values IM with its differential polynomial L(f) were
studied in [14], and [16]. When a meromorphic function f shares two finite values
CM with its differential polynomial L(f) whose coefficients are polynomials, P.
Russmann proves that f = L(f) except for six specific cases.

More recently, Bernstein-Chang-Li studied the similar questions about
meromorphic functions of several complex variables. As a special case, they proved
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THEOREM A. Let f be a non-constant entire function and
L(f) = buf ™ + bua fU7 4 bu S+ bof

with all b; being small meromorphic functions of f. If f and L(f) share two values CM,
then f = L(f).

Note, here and in the sequel, a meromorphic function a(z) is called a small function
of f(z) iff T(r,a(z)) =o(T(r,f)) as r — oo except a set of finite measure of r € (0, o0).

In this paper, we have improved the above result and resolved the problem when the
condition of Theorem A is replaced by assuming that f (entire) and L(f) share one value
a; CM and another value a, IM. We have also resolved an interesting problem,
namely: What happens if an entire function f and its derivative f’ share two finite
values aj,a; CM jointly, i.e., (f(z) —a1)(f(z) —az) =0 and (f'(z) —a1)(f'(z) —a2) =0
have the same zeros counting multiplicities? It is assumed that the reader is familiar
with the standard notations and basics of Nevanlinna’s value distribution theory (cf.

[19], [20)).

2. Lemmas and main results.

The following lemmas will be used in the proof of our theorems. is
obvious by the Lemma of the logarithmic derivative, i.e., m(r, f'/f) = S(r, f), see e.g.
[19]. [Cemma 2 and [Lemma 3 are well-known. can be deduced easily from
Lemma 2.

LemMmA 1. Let f be a transcendental meromorphic function, Py(f) denote a
polynomial in f of degree k, and a;,i = 1,2 ... n denote finite distinct constants in C. Let

g Pe(f)f
(f—a) - (f—a)

If k < n, then m(r,g) = S(r, [), where and in the sequel S(r, ) will be used to denote any
quantity o(T(r, f)),r — o0, except a set of finite measure of r € (0, c0).

LemMa 2 ([21)). Let Pi(f) and Pi(f) be two relatively prime polynomials of degree
k and 1, respectively. That is

Pe(f) = ao(2)f (@) +ar(2) T (2) + -+ anl(2),
and

Pi(f) =bo(2)f'(2) + b1 (2) [ () + -+ bi(2)

such that no polynomial in f of degree more than or equal to one can be a common factor
of Pi(f) and Pi(f). Let

Then
T(r,R(f)) = dT(r, f) + S(r, f),
where d = max{k,[}.
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Lemma 3 ([21]). Let f be a transcendental meromorphic function and b;, i=0,
l,....n be small functions of f. If

buf" + by i f" 4 by =0,
then b; =0,i=0,1,...n.

LemMmA 4. Let

where o is a nonconstant entire function and b; (i =0,1,...,n) are meromorphic functions
satisfying T(r,b;) = S(r,e*), then

T(r, f*) = T(r, f) + S(r, f).

LEMMA 5. Let f be a nonconstant entire function and

g=L(f)=b1+> bif" (1)
i=0
where b; (i =—1,0,1,...,n) are small meromorphic functions of f. Let ay and a, be two

distinct constants in C. If f and g share ay, a, IM, then

_ 1 — 1
I(r,f) :N<V>]Ta1) +N<”7m> +8(r, /),

and

provided that f # g.

ProOOF. Let

f(f—=9)
F—alf —a) @)

From [Cemma 1 one can easily see that m(r,¢) = S(r, f). Since f and g share a; and ay,
we see that N(r,¢) = S(r, f), thus

T(r,¢)=S(r.f). (3)
If =0, then f =g¢g. Suppose that ¢ # 0, that is f #¢g. From (1) we deduce that
¢f —a)(f - az)>

¢ =

T(r.f—g)= T(r,
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That is

_ 1 — 1
Tr,f—g =N{r,—— | +N|(r,——— | +S(,f).
s =) =N (r )+ W (n ) +50)
From the expression of g, it is clearly that T(r, f —¢g) < T(r,f)+ S(r, f). Thus

_ 1 _ 1
A(nfja)+N<ﬁf_@>STUJW+ﬂnﬁ-

According to Nevanlinna’s Second Fundamental Theorem and the above inequality, we
have

ren=n{eyty) (o) s

<T(r,g) +T(r,g) + S(r,f),
since f and g share a; and a;. O

LEMMA 6. Let fand g be as in Lemma 5. Furthermore, if f and g share ay CM, a;
IM, and N(r,1/(f —a)) = S(r, f), then f =g.

PrOOF. Suppose that f #g. Then the function ¢ in (2) is not identically zero.
Set

g f ()

Tg-a f-a
By the assumption of [Lemma 6, we have T(r,f) = S(r,f). From (2), we get

f-—a _ . g—a
¢ f/ =1 f_az‘

By taking the derivative and using (4), we have

f—a (f —ar)f” f—a
Al vV T (PP B B

That is

f//

/! o
G +B) o= 9 =0 (5)

Since N(r,1/(f —ay)) = S(r, f), from we have

|
N(r,m) =T(r,f)+S(r, f) #S(rf).

Since f,g share a; CM, from (2) we see that “almost all” a;-points of f are simple.
And (5) implies that “almost all” simple a;-points of f are the zeros of ¢ + . Hence
we have ¢+ f =0, and thus

"

0.

¢ _
+o

</
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That is
(f —a)=cf'(g— ), (6)

where ¢ # 0 is a constant. From (2) and (6) we get

f=g=cf—a)(g —a).

. _l—l—caz _g—a
g _f_al‘

Since f, g share a; CM, it follows from the above identity that

M=) = S0

Hence by Nevanlinna’s Second Fundamental Theorem,

_ 1 _ 1
100) < B (r =) + 8 (n— o)+ 500) = S0,
Thus from Lemma 3, 7'(r, f) <2T(r,g) + S(r,f) = S(r, f), a contradiction. O

This can be rewritten as

THEOREM 1. Let f be a nonconstant entire function and

g=L(f) = b+ > bif,
i=0

where b; (i=—1,0,1,...,n) are small meromorphic functions of f. Let a; and a, be two
distinct constants in C. If fand g = L(f) share aj CM and a; IM, then f =g or f and
g have the following expressions,

2
f=ay+ (a1 —ap)(1 — e%)",
and
g =2a; —ai + (a1 — az)e”,
where o is an entire function.

ProOOF. Suppose that f # g. Set

/! g
= — ) 7
! f—a g—a )
Since f and g share a; CM, we have T(r,y) = S(r,f). From (2)
) g—a
— =1- :
/ f f—a

By taking the derivative in both sides of the above identity and using it again, we deduce

that
- (fa)f” g—ar _ < B f—az)
- +¢<1 (7 ) = S\U)
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That is

LAY S (8)

(¢—y)f_a2— 7

If ¢ —y =0, then

ffoe S g'
_7+$+f—611 _9—611

It follows from (2) and the above equation that

f—y
(f —a)(g —ar)

which leads to that f and ¢ share a;,a, CM. And thus by using Theorem A, we have
f =g, a contradiction.

In the following, we assume that ¢ —y # 0. Denote by Ny(r,1/(f —a)) the
counting function of those a-points of f whose multiplicities are less than or equal to k
and by Ny 1(r,1/(f —a)) the counting function of those a-points of f whose multi-
plicities are greater than k.

Let zp be an ay-point of f of multiplicity k > 1 but not the zero of ¢ —y and the
pole of ¢’ + y¢. Then the formula (8) implies that ¢(z9) — ky(z9) =0. If ¢ —ky #0
for any k > 1, then

0.

= ¢, (nonzero constant),

N (120 ) = S0

Let z; be an ay-point of f of multiplicity & > n + 2, but not the zero of ¢ — y and not the
pole of ¢’ +y¢ and b; (i=—1,0,1,...). Then from (1), we have b_1(z;) + bo(z1)as =
ay. If b_y1 + bpay # a;, then we get N(,H_Q(V, 1/(f — az)) = S(I’,f). If b_1 + boar = as,
then it follows from (1) that

g—f=(by—1)(f —a) +ib,~f@.
i=1

Hence z; is a multiple zero of g — f and thus a zero of ¢. Hence N, »(r, 1/(f —a)) =
S(r, f) still holds. In any case, we can deduce that N(r,1/(f —a2)) = S(r, f). Hence
f =g by Lemma 6.

Now we suppose that there exist an integer k > 1 such that ¢ —ky =0 and ¢ #
0. Then it follows from (8) that

1 f/ f// ¢/ B
(1-8) e grr=o ®)
By integrating, we obtain that
R = /g —ar) ¢
e =gt mag]
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where ¢ # 0 is a constant. From this and (2), by eliminating ¢, we have

|
fzaz—i—z(h—l)k, (10)
where
f—a1
h= ) 11
s (11)

Clearly, h’' = yh, from (1) and we see that there exist small functions d; (i =0,
l,...,k) of f such that

g= zk:dihi. (12)

From {(10), (11) and (12), we have

k Dk ‘
+ [a’o—al —(—l)k_lﬂhqtal —a2—<_2)k = 0. (13)
From this and [Lemma 3, we get
_ (=DF
a, —ar’
dy = a) — k(a; — an),

[k
di—l = (—1)l< .>(611 —az), iZZ,...,k,

dk = 0.
Thus it follows from [(10), (11) and (12) that
f=a+(a—a)(l - h),

(a1 — a)[(1 = )" — 1]'

g=a+ A
These two identities can be rewritten as
f—a=(ay—a)(1 —h)", (14)
h—1 _
g—ar = (a1 — ) [1—(1—h)*". (15)

h

Since f and ¢ share a; CM, we have N(r,h) = S(r,f) and N(r,1/h) = S(r,f). On
the other hand, from and by [CLemma 2, we have

T(r,h) :%T(r,f)—i—S(r,f) #S(r, f).
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Hence / can take any finite value b # 0,1. Thus when k > 2, there exists a value
b # 0,1 such that (1 — b)ki] = 1. Noting that f and ¢ share a,, from and (15) we
can conclude that k =2. Thus g = 2a; — a; + (a; — a2)h is an entire function. Hence
h=(f—a1)/(g—ay) =e* where o is an entire function. Finally from this, and
(15), we obtain that

f=a+ (a1 —a)(l — e“)z,
and
g =2a— a1+ (a1 — ax)e”,
which completes the proof of Theorem 1. O
COROLLARY 1. Let f be an entire function, and ay, a, be two distinct numbers in
C. If f and f(k) share a; CM and a, IM, then f Ef(k).
PROOF. If /= as + (a1 — az)(1 — e*)?, then, by [Cemma 4, /* can not be 2a; —
ay + (a; — ax)e*. Hence follows from [Theorem 1. O
ReEMARK 1. (i) There are examples to show that the word “entire function” in
can not be replaced by “meromorphic function”. (ii) The assumption “f

and L(f) share ¢ CM” in can not be replaced by “f and L(f) share a
IM”.

ExampPLE 1. Let aj,a0€ C, aj —a» =/2i, w be a nonconstant solution of the
following Riccati equation

Let

f:(w—al)(w—az)—%.

Then w and f are transcendental meromorphic functions and w' # 0. It is easy to verify
that

PP S U A
fr=owf, f‘f'g— (f‘|‘€)~

Hence f and f” share 0 CM and —(1/6) IM. However, neither f = f” nor f has the

form ay + (a1 — a)(1 — )2,

ExampLE 2. Let f = (1/2)e” + (1/2)a’e™* and L(f) = f" + f' =&, where a is a
nonzero constant. It is obviously that
(L(f) = 1) = (f —a)(f +a).

Hence f'and L(f) share —a,a IM and not CM. Again neither /' = L(f) nor f assumes
the form a, + (a; — a2)(1 — e*)*.

Now we state a slight generalization of [Theorem 1. First of all, we generalise the
definitions of CM and IM to CM* and IM*.
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Let f and g be two meromorphic functions. Denote by N.(r,1/(f —a)) the
counting function of those a-points of f where a is taken by f and g with the same
multiplicity, counted only once regardless of the multiplicity, and N;(r,1/(f —a)) the
counting function of those a-points of f where a is taken by f and g regardless of the
multiplicity, counted only once. We say that f and g share the value a CM*, if

() nlerte) s
(gt (gt -sen

Similarly, we say that f and ¢ share the value « IM*, if

ey te) ety s
(igtd) wleste) s

REmMARK 2. From the proofs of [Lemma J, [Lemma 6 and [Theorem 1|, one can easily
deduce that the result in is still valid for a nonconstant meromorphic
function f satisfying N(r, f) = S(r, f) and sharing ¢; CM* and a, IM* with g = L(f).

When aj,a, are two small functions of f, we have the following

and

and

THEOREM 2. Let f be a nonconstant meromorphic function satisfying N(r,f) =
S(r. f), and

g=L(f) = b1+ > buf"
i=0

where b; (i=—1,0,1,...,n) are small meromorphic functions of f. Let a; and a, be two
distinct small meromorphic functions of f. If f and g share a; CM* and a, IM*, then

f=g or

f=a+(a —a)(1 —e*)?,

and
g =2a,—a; + (a1 — ap)e”,
where o is an entire function.

ProOOF. Let

—d — a]
sz , and G:g .
a —da a —a

Then F and G share 0 CM* and 1 IM*. Obviously, G still has the form B_;+
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Soilo B;F", where B; (i=—1,0,1,...,n) are small functions of F. According to
Remark 2, we can deduce that F = G or

F=1-(1-¢%?%
and
G=2-e¢%

where o is an entire function. Hence we get f =g or

f=a+ (a1 —a)(l — e"‘)z,
and

g =2ay, —a;+ (a1 —ap)e”. O

COROLLARY 2. Let f be a meromorphic function satisfying N(r,f) = S(r,f) and
ay,ap be two distinct small meromorphic functions of f. If f and f ®©) share a, CM* and
share a, IM*, then f zf(k).

Thus we have completely resolved the question: What happens when an entire
function f and the linear combination of its derivatives L(f) share a small function a,
CM and another small function a, IM? Next we propose to solve a new interesting
question, namely: What happens when an entire function f and its derivative f’ share
two finite values aj,a CM jointly, that is f '{aj,ay} = (f’)*l{al,bz} counting
multiplicities? Firstly, we prove two lemmas which will be needed in the proof of the
theorem.

LEMMA 7. Let f be a nonconstant entire function and ay,a, be two nonzero distinct
finite values. If f and f' share the set {ay,ay} IM and T(r,h) # S(r, f), where

(f' —a)(f' — a)
"= A ) 16)

then following conclusions hold.

(i)  T(r,) =S(r,f), where
(f/h—f”)(flh"Ff”)'

VU w) o
@) T@r,f)=N@E1/(f" —a))+ S f), i=1,2.
(i) m(r,1/(f —¢)) = S(r, f), where ¢ # ay,a, is a constant.
(@v) T(r.h)=m(r,1/(f = 1))+ m(r,1/(f = @) + S(r, f) = m(r, 1/ [") + S(r, f).
(V) 2T(r,f)=2T(r,f") =m(r,1/h) + S(r, f).

Proor. (i) Since f, f' share a;(i = 1,2), any a;-point of f'is simple and thus /4 is an
entire function. By assumption, T'(r,h) # S(r, f), hence  # 0. Rewrite as

(f" = a)(f' — @) = (f —a))(f — a)h, (18)
and then by taking the derivative in both sides of [I8], we have

Qf' —ai—a)f" =[2f —a1 —a) f'h+ (f —a)(f — ax)l]. (19)
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When, say at z = zo, (f'(z0) — a1)(f'(z0) — @) = 0, and thus (f(z0) — a1)(f(z0) — @2) =
0, we have
2f/(Zo) —d —a

= +1.
2f(zo)—a1—a2 -

It follows that

(f"(z0)h(z0) = 1" (20))(f"(20)h(z0) + [ " (20)) = 0.

Hence we see that the simple a;-points of f’ are not the poles of . If zj is an a;-point
of /" of multiplicity m > 2, thus a zero of /" of multiplicity m — 1, then from [16}, z is
also a zero of & of multiplicity m — 1. Hence zy is not the pole of y». We conclude
that  is an entire function. Furthermore, since

/ " "2 / "

ff=a — (f—a)(f—a) f'—a’
by using [Lemma 1, we have m(r, (f'h— f")/(f' —a1)) = S(r, f). Similarly, we have
m(r,(f'h+f")/(f" —a)) = S(r,f). Hence m(r,y)=S(r,f), and thus T(r,y)=
S(r, f).
(ii) By rewriting as
lp f/ f//

i = U —a)f —a)  ( —a) —a)
and then by [Cemma 1, we can deduce that m(r,1/(f'h— f")) = S(r, f). Similarly,
we have m(r,1/(f'h+ f")) =S(r, f). Hence it follows from that
m(r,1/((f" —a))(f' — a))) = S(r, f), which implies that T(r, ') = N(r,1/(f" —a;))+
S(r, f),i=1,2.
(iii) From and (20), we have
w B (f/)z . Clzf, f/ f// f/h +f//

f—e |- —a)f-w) [f—cf(ff—a)| [T—ar~

Hence by [Cemma 1, we get m(r,1/(f —¢)) = S(r, f), for ¢ # aj,a.
(iv) Since the function / in is entire and

/l

S (@ta)f N a1a;
f—af—a (f-a)f—-a) (f-—a)f—a)

by using [Cemma 1, it is not difficult to get

h =

1
T(rh) = ’””( F—al — )

() relers) s

< m(n%) +S(r, f).

) st
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On the other hand, from and by eliminating /, we have

/l

v _ () —@+a)f) ("? L aaf I

S —a) (U —a) S —a)(f @) (- a)(f —a) (f - a)(f —a)
thus by Lemma 1, we get

() =l wo(n ) st

Hence we obtain that

e R

(v) By using the conclusion in (ii), we have

1
(f" —a)(f' — @)

It follows from and the conclusion in (iv) that

2T(r, f') = N|{r, +S(r, f).
( )

1
(f—al)(f—az)h) 5 S)

- N(“ (f—al)l(f—az)> *N(“%) + 50 J)

) b))

=2T(r,f)— T(r,h) —|—N(

2T (r, f) = N<r,

That is 27(r,f) —2T(r,f') = m(r,1/h) + S(r, f), which completes the proof of
[Lemma 7. O

LemMA 8. Let f be a nonconstant entire function and aj,a, be two distinct finite
values. If f and f' share the set {ai,ay} CM, then T(r,h) = S(r, f), where h is the same
as in Lemma 7.

Proor. For the sake of convenience, we write f; = f', f, = f", and f3= f".
Because f and f share the set {a;,ay} CM, there exists an entire function o such that
h=e*. If aja =0, then from (16)

P 1t (a1 + @) f

(f—a)(f —a) (f—a)(f —a)

Hence by we have T(r,h) = S(r, f). Without loss of generality, we may
assume that ajay #0. Suppose T(r,h) # S(r,f). From [I7], and (19) by
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eliminating 4, we have

(f—a)+(f-a)lfi _ Qf —ai—-a)fiy _ 2fi—a—a)f

= = — 21
F-alf—a) —G-a)T—a)  Gh-a)fi-a) OV
where, and in the sequel f = o', and
/i _ f3 v -
GalU—al ~ Giafh—a) a2
By squaring all sides of (21), we get
ft 217 iy
G-a)y T—af=a) (f-a)
_ Ch-a-w)ff pCh-a-a)h, o ’
S U-a)h-a)  Uhi-a)fw) >
Now (22) can be written as
f12 B 2]‘12 N f'lz
(f=a)* U=a)lf —a@)  (f-a)’
_ (@~ @)Y (fi —a)(f; — @) + (a1 — az)zfzz_ (24)
(fy —a)*(f; — @)
By taking the difference of and [24), we get
Af} _ 4L -2 —a—a)fy B h—a)fi - @) - (@ - @)Y
(f—a)(f—a) —  (fi—a)(/i — @) (/1 —an)(fi — @) '
(25)
By ecliminating f from [17), (22) and [24), we have
16[p 16f22 — 4f22 B 2ﬁ(2f1 —daj —Cl2>f2 +H ’ (26)

G—a)h—a)  (f—a)f—w) | Hhh—a)(fi —a)

where

BA(fi —a)(fy — @) — (a1 — @)Y
AU —a)(fy —a2) '

From [Lemma 7, m(r,1/(f; —a1)) + m(r,1/(f; —a2)) = S(r, f). Hence from (26) and
by using [Lemma 1, we get

H =

m(r,H) = S(r, f). (27)

We shall treat two cases: ayaxf” — (a1 —a)*y # 0 and ajaxf* — (ay — ax)*y = 0,
separately.
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If ajarf® — (ay — ax)*y # 0, then from (27) and [Cemma 2, we can deduce that

| | 1
3T(r, fi) =N\ r,— +N<r, >+N(r,—)+Sr,f.
1) ( fl) fi—a fi—a (. J)
By (ii) of and above formula, we get

m(r) =500, (28)

Hence by (iv) of [Lemma 7, we have T'(r,h) = S(r, f).
Now we consider the case

alazﬂz — (a1 — az)zlp = 0, (29)
and rewrite as
Y(fi —a)(fi —a) = 12320{ —f22~ (30)
By taking the derivative on both sides of [30), we get
V(i —a)(fi — @) +Y(2fi —a - @) fy
= 20/ fle® + 21, fre** — 21 3. (31)
Let zp be a zero of f;. From [17), [18), (19) and |31}, we can see that

_f3(=0) Blzo) = — (@1 + @) fo(20)

aa ’ aa;

Y(z0) =

and

aax’(z0) — (a1 + a2)¥(20) f2(20) = —2/2(20) f3(0)-
Thus by using [29), we have

(ﬁ'(ZO) p(20)

Blzo) | 2

Again from we see that any zero of f; and f, must be the zero of y, thus “almost
all” zeros of f; are simple. Let

_ (B B\L_ S
= (7577 G2

Then we have T(r,y) = S(r, f), which also holds when f, is zero free.

If y =0, then we can deduce that f5/f, = (8'/B) + (¢’/2), and thus by integrating,
we have f, = c(f/2)exp(x/2), and thus f; = c{exp(«/2) +d}, where ¢ # 0 and d are
constants. This implies

m<71) R ’”(W) < 3 T k) + 50 1),
which leads to T(r,h) = S(r, f), by [Lemma 7.

)f2<zO> ~ f(z0) =0,
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In the following, we assume that y # 0. From [30), [31], by eliminating ¢**, we
have

W' =22"Y) f1(fy — @) (fy — @) + ¥ (2f; — a1 — a2) f1 17
=20/ f, /5 + 20(f, —ar)(fi — @) fr+ 215 = 2fifofse (33)

If ' — 20y =0, then we can get e** = ¢y, where ¢ is a constant. Hence T(r,h) =
T(r,e*) = S(r,f). Without loss of generality, we may assume that ' — 2"y # 0.
Since any a;-point and any a-point of f; are simple, from (33) any zero of f, but
not a zero of f; must be also a zero of Y’ —2ua’yy. Hence we can conclude that
T(r,f3/f,) =S(r,f). From (32), we have

_(F §_§>é
y_(ﬁ+2 AR
Thus
T(r,%) =S(r, f). (34)
Now since holds, (26) can be rewritten as
bof{ +bifi + by =0, (35)
where
_ 16— 1250 (2 ag (L2 16— g
by = (16 — 127) +4p + 16y + 16 — 16 — f°,
S N
3 2
by = — 16(ar + a@)p <%) +16(ar + @) (%) —8(a1 + @)’ (%)
+2(a1 + @)t — 16(ar + ),
5\’ /
by = — 4(a) + ar)* B> <72> +4(ay +a—2)*p (72> + 16ara — 2y — (ay + ax)*B*.
1 1

It is obviously that T'(r,b;) = S(r, f),i =0,1,2. Since

T(r,f)<N<r, : )+N(r, : )+S<r,f)

-
|
2

<2T(r, /1) +S(r. /),
we have T(r,b;) = S(r, f;), i=0,1,2. Thus by Lemma 3, we have

bi=0, i=0,1,2. (36)
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From this, [29), and [36), it is not difficult to show that f,/f; is a constant. Hence
fl=alf - ), (37)

where ¢; #0, and ¢ # a1,ap are constants. From and (37), we have
N(r,1/(f —c2)) = S(r, f). On the other hand, from (21), Lemma 7 and Lemma 1, we
can conclude that m(r,/(f — ¢2)) = S(r,f). Thus m(r,1/(f —c2)) = S(r, f). Hence
T(r,f)=S(rf), a contradiction. O

THEOREM 3. Let f be a nonconstant entire function and ay,a, be two distinct complex
numbers. If f and f' share the set {aj,a,} CM, then one and only one of the following
conclusions holds:

0 f=/"

(11) f—f—f’za1+a2.

(ili) f =cie“ + e, with a; +a, =0, where c,cy and ¢, are nonzero constants

which satisfy ¢* # 1 and cic; = (1/4)ai(1 —c72).

Proor. Under the assumption of [Theorem 3, there exists an entire function o
satisfying T'(r,e*) = S(r, ) such that (' —a))(f' — @) = (f — a1)(f — az)e*, which can
be expressed as

(1/2]( al—i—az “/z—i—f’—aﬁLaZ)(‘/zf al+a2 o2 _ f,+a1+a2>

2 2
ap —a\?, ,
z( . ) (e* —1). (38)
Set
_ )2 _al+a2 /2 a +a
G=e"f ¢ +f - 5 (39)
and
_oapny Gta o,y o G t@
H=e"f ¢ f+72 . (40)
Then G and H are entire functions and, if G- H # 0,
N : +N ! =S(r, f) (41)
r,G r,H =S f).
Thus
G’ H'
T(r,g) + T(r,ﬁ> =S(r, f). (42)
From (38), (39) and (40), we have
G+ H =e*?2f —a) — ay), (43)
G—szf’—al—az, (44)

GH = (“1 ; “Z)Z(e“ —1). (45)
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We deduce easily from above three equations that

o' G’ o H'
> a/2 M N7 o/2
(2+e G>G+<2 e H>H+(a1—|—a2)e = 0. (46)
By multiplying G on both sides of (46), we get
$1G*+ .G+ ¢5 =0, (47)
where
o’ G’
= 2 o2 _

¢y = (a1 + az)e”’?,

4 = (al;a2>2(e“—1)<%—e“/2—%/).

From (42), we see that

T(r,9,)=S(r,f), i=12,3. (48)
When e* = h =1, we can easily get from that

either f=f" or f+f =a +a.
Now we assume that e* # 1. If T(r,G) = S(r, f), then from (45) we have T'(r,H)
=S(r,f). Thus T(r,f)=S(r,f) from (43). This is impossible. Hence T'(r,G) #
S(r,f). If ¢, #0, then from and [48), we get

2T(r, G) = T(r,z—?G—i—z—?) <T(r,G)+ S(r,f),

and thus 7'(r, G) = S(r, f), a contradiction. Hence ¢, = 0. Similarly we have ¢; =0,
i=2,3. That is

o G’

2 e 2 =

2—I—e C =0, (49)

o H'

Z e = 50

2 H ’ (50)
ay+a, =0. (51)

Formulas (49) and (50) lead to (G'/G)+ (H'/H) =a'. Thus
GH = cye®, (52)

where ¢y is a nonzero constant. By combining (45), (51), and (52) we can see that e*
and thus o is a constant. Hence (49) and (50) become G’ = ¢*?>G and H' = — ¢*/*H,
respectively. This and (45) lead to

G=ce”, H=ce“, (53)
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where ¢ = e%? # 41, with ¢;,c, are constants satisfying

crer = (& ;az)z(e“— = (“ ;“2)2((;2— . (54)

Hence from (43), (53) and (54), we have

f= o=@/ pez 4 %ef(u/Z)efc-

The above expression can also be rewritten as
— —CZ
f=cie“ + e @,

where ¢ = (c1/2)e” 2, and & = (¢3/2)e”*/?) satisfy

C16y = % <a1 g a2>2(1 — ),

which completes the proof of [Theorem 3. O

REMARK 3. We suspect that the condition ‘f and f' share the set {a;,a,} CM’ in
can be replaced by ‘f'and f’ share the set {a;,a;} IM’. But it can be shown
that for a meromorphic function £, the word ‘CM’ in can not be replaced by
‘IM’.  For example, if f = (e** —1)/(e* + 1), then fand f’ share 0,1 IM jointly. The
following is a more complicated example.

ExampLE 3. Taking a constant a,a # 0,—(27/32). Then the equation z° — az? —
a’z +a® + a*> = 0 has no multiple root. Let f be the elliptic function satisfying

(f/)2:f3—af2—a2f—|—a3—|—a2.
Then

(/' =a)(f" +a)= (f —a)’(f +a),
and f, f’ share a,—a IM jointly.
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