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Abstract. These varieties are conjectured to be abelian varieties up to finite étale

coverings. This conjecture is derived from an a‰rmative answer to the abundance

conjecture in minimal model theory. In particular, this is true for n ¼ 3.

1. Introduction.

In [I ], Iitaka posed the following:

Conjecture Un. Let V be a nonsingular complex projective algebraic variety

whose universal covering space is biholomorphic to an n-dimensional complex a‰ne

space C
n. Then there exists an abelian variety which is a finite unramified covering

manifold over V .

As he mentioned, U1 is obvious and U2 is solved by the classification theory of

algebraic surfaces. The similar conjecture to Un is considered for compact Kähler

manifolds, which is in fact proved a‰rmatively in the case n ¼ 1; 2. However there are

many examples of non-Kähler compact complex manifolds whose universal covering

spaces are biholomorphic to C
n, if nV 2. For Un, the Kodaira dimension kðVÞ < n

is derived from the following fact concerning with hyperbolic geometry:

Fact 1.1 ([KO1], [KO2, Theorem 2]). Let X be an n-dimensional compact complex

analytic manifold of general type, i.e., kðX Þ ¼ n. Let Z be a complex analytic

manifold, B a proper closed analytic subset and let h : ZnB ! X be a generically smooth

holomorphic mapping, i.e., the di¤erential dh : TzðZÞ ! ThðzÞðXÞ is surjective at a point

z A ZnB. Then h extends to a meromorphic mapping from Z.

A nonsingular projective variety V with a finite unramified covering A ! V from

an abelian variety, is called a para-abelian variety. A hyperelliptic surface is a para-

abelian variety, for example. For U3, Iitaka proved in [I ] that kðVÞ0 1 and that the

anti-Kodaira dimension k
ÿ1ðVÞ0 1. By the theory of Kodaira dimension, he inves-

tigated the degenerations of para-abelian varieties and obtained a kind of canonical

bundle formula to derive a contradiction to the both assumptions kðVÞ ¼ 1 and

k
ÿ1ðVÞ ¼ 1. In that time, the classification theory of algebraic varieties had not enough

contents to solve the conjecture. After more than twenty years, we have good in-

formation from minimal model theory of algebraic varieties and the structure theorem of

compact Kähler manifolds with trivial first Chern classes. As is remarked in [I ], V
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contains no rational curves. Thus by applying Mori’s theory of extremal rays [Mo],

we now see that the canonical divisor KV is nef, i.e., KV � gV 0 for any irreducible curve

gHV . In three dimensional case, we can say more by the abundance theorem (cf.

[Ka4], [Mi1], [Mi2]): The canonical divisor KV is semi-ample, i.e., some multiple of KV

is linearly equivalent to the pullback of a hyperplane of PN for a morphism V ! P
N . It

is conjectured in any dimensions:

Abundance Conjecture. Let X be a minimal projective algebraic variety, i.e., X

has only terminal singularities and KX is nef. Then KX is semi-ample.

Suppose that the canonical divisor KV of a nonsingular projective variety V is

numerically trivial. Then Bogomolov’s decomposition theorem (cf. [Bo], [Be]) states

that there is a finite unramified covering A�W ! V , where A is an abelian variety, W

is a simply connected nonsingular projective variety with trivial canonical bundle. Since

the universal covering space of our V is C
n, we have a finite unramified covering

A ! V . Thus Un is true for V with numerically trivial first Chern classes.

Therefore for the a‰rmative answer to U3, we have only to eliminate the case

kðVÞ ¼ 2. For this purpose, we need to know the structure of the elliptic fibration over

a surface. The first version of this paper treats only the case and U3 is solved af-

firmatively by applying the q-étale cohomology theory developed in [N3].

In this version, we shall generalize the argument of elliptic fibrations to the case of

para-abelian fibrations, which are proper surjective morphisms whose smooth fibers are

para-abelian varieties. We shall consider the following conditions (U1), (U2), (U3),

(U4) for a complex analytic variety U:

Conditions. (U1) There exists a generically smooth holomorphic mapping h : Z !

U from a Zariski-open subset Z of a compact complex analytic manifold.

(U2) Any prime divisor of U is not uniruled, i.e., it is not a union of rational curves.

(U3) U contains no positive dimensional nonsingular projective variety with nu-

merically trivial first Chern classes.

(U4) U contains no positive dimensional compact complex analytic subsets.

The condition (U4) is stronger than (U2) and (U3). The a‰ne space C
n satisfies the

conditions (U1) and (U4). We shall prove:

Theorem 1.2. Let f : V ! S be a proper surjective morphism with connected fibers

from a nonsingular projective variety V onto a normal projective variety S such that KV is

f-numerically trivial. Suppose that the universal covering space U of V satisfies the

conditions (U1), (U2), (U3). Then there exist a para-abelian variety F and a generically

finite surjective morphism T ! S from a nonsingular projective variety such that

(1) the normalization of the main component of the fiber product V �S T is iso-

morphic to F � T over T,

(2) the induced morphism F � T ! V is a finite unramified morphism.

Especially U is isomorphic to C
d �UT , where d ¼ dimF ¼ dimV ÿ dimS and UT is the

universal covering space of T satisfying the conditions (U1), (U2), (U3).

Definition 1.3. A nonsingular projective variety V is called of type U, if its

universal covering space satisfies the conditions (U1) and (U4).
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As a corollary of Theorem 1.2, we have:

Theorem 1.4. Let V be a nonsingular projective algebraic variety of type U.

Suppose that the canonical divisor KV is semi-ample. Then V is a para-abelian variety.

Proof. By applying Theorem 1.2 to the Iitaka fibration f : V ! S, we have a

nonsingular projective variety T of general type and of type U. Then by Fact 1.1, there

is a dominant meromorphic mapping Z � � � ! T from a compact complex manifold

which has a lift to UT over a Zariski-open subset of Z. Thus there is also a lift

Z � � � ! UT . Hence UT is compact and is a point by the assumption. Thus V is a

para-abelian variety. r

As a consequence, we see that Abundance Conjecture is stronger than Conjecture

Un. Further by a remark on Abundance Conjecture, we can prove: V is an n-

dimensional nonsingular projective variety of type U for nV 4, then kðVÞU nÿ 4

(Theorem 6.4). Theorem 1.2 is proved in the following way: We first study an abelian

reduction of a para-abelian variety, which is a finite unramified covering with minimal

degree from an abelian variety. Further we similarly consider an abelian reduction for

a para-abelian fibration with a section (cf. Section 2). By Bogomolov’s decomposition

theorem and by (U3), the fibration f : V ! S is a para-abelian fibration. After a base

change, we can take a section for the fibration. Then by the abelian reduction, we have

an abelian fibration. The period mapping of the fibration is shown to be constant

mainly from the condition (U1), in Theorem 5.1. Then we finish the proof by

applying a key theorem: Theorem 4.2. There, to find a nice covering T ! S, we use an

argument of [V1] instead of q-étale cohomology theory.

After this paper appeared in the preprint series of RIMS, the author was informed a

result of Kollár [Ko2, 6.3] which is related to our problem. Combining the result with

Theorem 5.1, we have another proof of Theorem 1.4.

Next let us consider the Albanese mapping a : V ! AlbV of a nonsingular pro-

jective variety V of type U. Then it is shown in Proposition 7.1 that a is a surjective

morphism with connected fibers. Especially qðVÞU dimV . If qðVÞ ¼ dimV , then V

is an abelian variety. Theorem 1.4 is generalized to the following:

Theorem 1.5. Let V be a nonsingular projective variety of type U. Suppose that the

canonical divisor KF of a general fiber F of the Albanese mapping a : V ! AlbV is semi-

ample. Then V is a para-abelian variety and a is an étale fiber bundle.

2. Para-abelian variety.

Definition 2.1 ([I ]). A projective algebraic variety V is called a para-abelian

variety, if there is a finite unramified covering A ! V from an abelian variety A.

Definition 2.2. An abelian reduction for a para-abelian variety V is a finite

unramified covering A ! V from an abelian variety A such that for any unramified

covering A 0 ! V from an abelian variety A 0, there is a morphism A 0 ! A over V.

Proposition 2.3. For any para-abelian variety, an abelian reduction exists uniquely

up to isomorphisms. The reduction is a Galois covering.
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Proof. Let C
n
FU ! V be the universal covering mapping of a para-abelian

variety V and let us fix a point v A V and u A U over v. The fundamental group

p1ðV ; vÞ is considered to act on U from left. Thus it also acts on the space of

holomorphic global vector fields GðU ;YU Þ from left. Let p�1ðV ; vÞ be the kernel of the

homomorphism

p1ðV ; vÞ ! AutGðU ;YUÞ:

Let A ! V be a finite unramified covering from an abelian variety. We fix a point

a A A over v. There is a morphism U ! A over V which sends u 7! a. The p1ðA; aÞ is

a subgroup of p1ðV ; vÞ with finite index, which is contained in p
�
1ðV ; vÞ. Thus p

�
1ðV ; vÞ

is a normal subgroup of p1ðV ; vÞ with finite index. Let AV be the quotient space of U

by the action of p
�
1ðV ; vÞ. Then AV is an abelian variety and there is a sequence of

unramified coverings:

U ! A ! AV ! V :

Thus AV ! V is the expected abelian reduction. r

Remark. Let A ! V and A 0 ! V be two abelian reductions and let a A A, a 0 A A 0

be points which are mapped to a same point in V. Then there is a unique isomorphism

A ! A 0 over V which sends a 7! a 0.

Definition 2.4. (1) A proper surjective morphism f : X ! S of normal algebraic

varieties is called a para-abelian fibration, if general fibers are para-abelian varieties.

(2) An abelian reduction for a para-abelian fibration f : X ! S is a finite ramified

covering Y ! X such that the fiber Ys ! Xs over s A S is an abelian reduction, provided

that Xs is smooth.

Proposition 2.5. Let f : X ! S be a smooth para-abelian fibration admitting a

section s : S ! X. Then there exist an abelian reduction Y ! X for f and a lift of the

section s to Y. If Y 0 ! X is another abelian reduction with a lift of s, then there is a

unique isomorphism Y FY 0 over X which preserves the lifts.

Proof. First we shall show the existence of the abelian reduction in local situation.

Let us fix a point s A S. Since f is a fiber bundle in Cy-sense, there is a simply

connected open neighborhood U such that f ÿ1ðUÞ is di¤eomorphic to U� Xs. Then

p1ðXs; sðsÞÞF p1ð f
ÿ1ðUÞ; sðsÞÞ. Let f ÿ1ðUÞ@ ! f ÿ1ðUÞ be the universal covering

mapping and let us take a lift ~ss : U ! f ÿ1ðUÞ@ of the section s over U. Then for the

universal covering space X@

s of Xs, there is a di¤eomorphism f ÿ1ðUÞ@ ! U� X@

s ,

which sends ~ssðsÞ 7! ðs; sðsÞÞ. Thus p1ðXs; sðsÞÞ acts on f ÿ1ðUÞ@ from left. Let AU

be the quotient space of f ÿ1ðUÞ@ by the action of p
�
1ðXs; sðsÞÞ. Then the fiber of

AU ! f ÿ1ðUÞ over the point s is an abelian reduction. Therefore other fibers are also

abelian reductions. Next, we shall show the uniqueness. Let Y1 ! X and Y2 ! X be

abelian reductions for f and let ~ssi : S ! Yi be lifts of s for i ¼ 1; 2. Let us consider the

fiber product Y1 �X Y2 and let Y3 be the connected component containing the section

~ss1 �S ~ss2. Then Y3 is isomorphic to Y1 and Y2, since it is so over every such open

neighborhood as U above. Note that the isomorphism Y1 ! Y2 over X preserving the

lifts of s is uniquely determined. Therefore, finally, we can patch the local abelian

reductions to have global one. r
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Remark. Without the hypothesis of the existence of a section, it has no abelian

reduction in general analytic situation.

Corollary 2.6. A para-abelian fibration with a rational section has an abelian

reduction.

Proof. Let f : X ! S be a para-abelian fibration with a rational section

s : S � � � ! X . Let S*HS be the maximal Zariski open subset over which f is smooth

and s is a morphism. Then the restriction f *: X * :¼ f ÿ1ðS*Þ ! S* is a smooth para-

abelian fibration with a section sjS*. Thus by Proposition 2.5, there is an abelian

reduction Y *! X * for f *. Since it is a finite morphism, it extends to a finite ramified

covering Y ! X . r

Lemma 2.7. Let Y ! X be an abelian reduction for a para-abelian fibration X ! S.

Suppose that Y ! S is a smooth morphism having a group scheme structure, i.e., an

abelian scheme. Then X ! S is also a smooth morphism.

Proof. We have only to show that the Galois group G of Y ! X acts freely on Y.

The action of g A G is written by:

Y C y 7! agðyþ tgÞ A Y ;

where ag is an automorphism preserving the zero section and tg : S ! Y is a section.

Then we have:

tgh ¼ th þ aÿ1
h tg

for g; h A G. Thus G C g 7! ag is a homomorphism to GLðd;CÞ, where d is the

dimension of the fiber. Let A be the group of sections S ! Y . Then A has a right G-

module structure by t 7! aÿ1
g t for t A A. We thus have a cohomology class in H 1ðG;AÞ

by ftgg. Since A is an abelian group, it is of finite order. Let m be the order and let

Am HA be the set of sections of order m. The cohomology class is coming from

H 1ðG;AmÞ. By changing the zero section, we may assume that tg A Am for any g A G.

For non-trivial g A G, it has no fixed point over an open subset S � of S. Thus the

equation

y ¼ agðyþ tgÞ

has no solution over S �. Since the section tg is now ‘constant’, it has no solution on

every fibers. Thus G acts freely on Y. r

Corollary 2.8. Let Y ! X be an abelian reduction for a para-abelian fibration

X ! S such that Y is isomorphic to A� S over S for an abelian variety A. Then X is

isomorphic to F � S for a para-abelian variety F.

Proof. By the proof of Lemma 2.7, the Galois group of the abelian reduction acts

on Y FA� S by:

ðy; sÞ 7! ðagðyþ tgðsÞÞ; sÞ

and the morphism tg : S ! A is constant. Thus we are done. r
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3. Smoothness of fibrations.

Lemma 3.1. Let p : Y ! C be a surjective morphism from a normal projective

variety Y onto a smooth projective curve C, whose general fibers are abelian varieties.

Suppose that there is a section s : C ! Y and that the every component in any fiber is not

a ruled variety. Then p is an abelian scheme.

Proof. We see that the Néron model p 0
: Y 0 ! C of p is an abelian scheme. It is

enough to show the birational mapping Y � � � ! Y 0 over C is actually an isomorphism.

Let M ! Y 0 be a succession of blowing-ups with nonsingular centers such that the

induced M � � � ! Y is a morphism. Then every exceptional divisor for M ! Y 0 is a

ruled variety. Therefore it is also exceptional for M ! Y . Hence Y and Y 0 are

isomorphic in codimension one. Let A be a p-ample Cartier divisor and let A 0 be its

proper transform in Y 0. Then A 0 is also p 0-ample. Therefore Y FY 0. r

Corollary 3.2. Let f : X ! C be a para-abelian fibration over a nonsingular

projective curve C. Suppose that X is nonsingular and every components of any fiber are

not uniruled varieties. Then any fibers are multiples of para-abelian varieties.

Proof. There is a branched covering t : C 0 ! C from a nonsingular projective

curve C 0 such that X �C C 0 ! C 0 has a section. We denote by X 0 the normalization

of X �C C 0. Let s : C 0 ! X 0 be the induced section and let Y ! X 0 be an abelian

reduction of X 0 ! C 0 by s. By Lemma 3.1, Y ! C 0 is an abelian scheme. Hence

X 0 ! C 0 is also a smooth morphism by Lemma 2.7. Especially the support of every

fiber of f is a para-abelian variety, since X is nonsingular. r

4. Ramification.

Let f : X ! S be a surjective morphism from a nonsingular projective variety X

onto a projective variety S. We shall consider the following three conditions for f :

(C1) Any uniruled prime divisor G HX must dominate S.

(C2) Some multiple of the canonical divisor KX is the pullback of a Cartier divisor

of S.

(C3) There is a generically finite surjective morphism T ! S such that the main

component of X �S T is birationally equivalent to F � T over T for a variety

F.

Lemma 4.1. Let f : X ! S be a surjective morphism from a nonsingular projective

variety satisfying the conditions (C1) and (C2). Then there is no prime divisor BHX

with codim f ðBÞV 2.

Proof. If such a prime divisor B exists, then there is a family of curves fClg in X

such that B � Cl < 0, f ðClÞ are points, and the closure of the union 6Cl is B. Since

KB � Cl ¼ B � Cl < 0, B is uniruled by [MM ]. r

Theorem 4.2. Let f : X ! S be a para-abelian fibration from a nonsingular pro-

jective variety satisfying the three conditions (C1), (C2) and (C3). Then there is a

generically finite surjective morphism T 0 ! S from a nonsingular projective variety T 0

such that for the normalization XT 0 of the main component of X �S T 0,
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(1) XT 0 is isomorphic to F � T 0 for a para-abelian variety F, and

(2) XT 0 ! X is a finite unramified morphism.

Proof. We may assume that S and T are normal and t : T ! S is a finite Galois

morphism with the Galois group G. Let XT be the normalization of the main

component of X �S T .

Claim 4.3. The rational mapping F � T � � � ! XT is an isomorphism over

TnSingT .

Proof. Suppose that T is nonsingular and let T �
HT be the maximal Zariski open

subset over which fT : XT ! T is smooth. Then F � T is isomorphic to XT over T �,

since any birational mapping to a para-abelian variety is a morphism. By Lemma 4.1,

the rational mapping is an isomorphism in codimension one. Let H be an ample

divisor of XT and let H 0 be its proper transform in F � T . Since the restriction of H 0

to F � ftg is ample for general point t A T and since F is a para-abelian variety, H 0 is

relatively ample over T. Thus we have an isomorphism F � T FXT over T. r

Proof of Theorem 4.2 continued. Therefore by Lemma 4.1 and Claim 4.3, there

is a Zariski open subset S�
HS with the following properties:

(1) S� and T�
:¼ tÿ1ðS�Þ are nonsingular.

(2) codimðSnS�ÞV 2 and codim f ÿ1ðSnS�ÞV 2.

(3) XT� FF � T�.

Let us denote the birational mapping by C : XT � � � ! F � T . The Galois group G

acts also on XT and its quotient morphism tX : XT ! X is induced from t : T ! S. For

a prime divisor G HS, let fG1;G2; . . . ;G lg be the set of all prime divisors of T

contained in tÿ1ðGÞ. Then the Galois group G acts on the set transitively. Let G 0
i H

XT be the main component of f ÿ1
T ðG iÞ which is the proper transform of F � G i in

XT . For each 1U iU l, let Gi be the subgroup consisting of g A G such that gðG iÞ ¼

G i. Then fGig are conjugate to each others. For each i, Gi acts on G 0
i and its quotient

space is birationally equivalent to the main component of f ÿ1G . Let RðG iÞ be the

subgroup of Gi consisting of g A Gi such that g acts trivially on G 0
i . Then fRðG iÞg are

also conjugate to each others. Let RðGÞ be the subgroup of G generated by all RðG iÞ.

Then it is a normal subgroup of G and let R be the subgroup generated by all the union

of RðGÞ for G HS. Note that the condition R ¼ f1g implies that tX : XT ! X is a

finite unramified covering.

Let AutðF Þ be the group of holomorphic automorphisms of F and let Aut0ðF Þ be its

identity connected component. Note that Aut0ðF Þ is an abelian variety. Let AðTÞ be

the set of all the rational mappings T � � � ! Aut0ðFÞ. We assume that G acts on T

from left. For g A G and z : T � � � ! Aut0ðFÞ, let us define

zg :¼ z � g : T �!
g�

T � � � !
z
Aut0ðF Þ:

Then AðTÞ has a right G-module structure. Let s 0
g : XT ! XT be the morphism

induced from ðidX �S gÞ : X �S T ! X �S T and let sg : F � T � � � ! F � T be the

rational mapping C � s 0
g �C

ÿ1 for g A G. Then

fg :¼ ðidF � gÞÿ1 � sg : F � T � � � ! F � T
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is a birational automorphism over T. If g A RðG iÞ, then fg induces the identity on

F � G i. Thus for g A R, fg is given by

F � T C ðx; tÞ 7! ðzgðtÞðxÞ; tÞ;

for a rational mapping zg A AðTÞ. We have the following cocycle condition for g; h A R:

zgh ¼ zh þ zhg :

Therefore we have a cohomology class in H 1ðR;AðTÞÞ, which is of finite order. Let n

be the order and let An be the kernel of the multiplication mapping by n:

Aut0ðFÞ �!
n�

Aut0ðF Þ:

Then the group AðTÞn of n-torsion points of AðTÞ is just identified with An F

ðZ=nZÞl2d
, where d ¼ dimAut0ðFÞ. The cohomology class is coming from an element

of H 1ðR;AnÞ. Thus by changing the birational mapping C : XT � � � ! F � T , we may

assume that zg is a constant mapping to An. Since g A RðG iÞ fixes F � G i, the zg must

be zero. Hence if g A R, then ðidF � gÞ ¼ sg. Therefore the main component of

X �S ðRnTÞ is birationally equivalent to F � ðRnTÞ over ðRnTÞ. If we take t : T ! S

with the degree of t minimal, then R ¼ f1g. Hence we can take t so that XT ! X

is a finite unramified covering. The XT is hence nonsingular. Especially the rational

mapping XT � � � ! F � T is holomorphic, since F is a para-abelian variety.

Since some multiple of the canonical divisor KXT
is the pullback of a divisor of T,

and since XT ! F � T is an isomorphism in codimension one, the F � T and hence T

have only terminal singularities. Let T 0
HXT be the fiber of the composite XT !

F � T �!
p1

F over a general point of F, where p1 denotes the first projection. Then T 0

is nonsingular and the induced birational morphism T 0 ! T is also crepant, i.e., KT 0

is the pullback of KT . Therefore T 0 ! T is an isomorphism in codimension one, i.e.,

there is no exceptional divisor, since T has only terminal singularities. Then there

is a birational mapping XT � � � ! F � T 0 over F � T which is an isomorphism in

codimension one between nonsingular varieties. We shall show it is actually an

isomorphism.

Let A be an ample divisor on XT , Xc the fiber of XT ! F � T ! F over c A F , Ac

the restriction of A to Xc and let H be the proper transform of A in F � T 0. We denote

the restriction of H to fcg � T 0 for c A F by Hc. For general c A F , Xc is nonsingular

and Xc ! T is a birational morphism isomorphic in codimension one. The Ac is ample

and Hc is its proper transform on T 0. Note that all the Hc ðc A FÞ are numerically

equivalent to each other. Then all the nonsingular Xc are isomorphic to each other,

since the proper transform of Hc 0 in Xc also ample for any c 0 A F . Similarly, the proper

transform of p�
2Hc in XT is relatively ample over F � T , where p2 is the second

projection F � T 0 ! T 0. On the other hand, the proper transform in F � Xc is also

relatively ample over F � T . Therefore XT is isomorphic to F � Xc over F � T .

Hence XT FF � T 0. Especially, the normalization XT 0 of the main component of

X �S T 0 is also isomorphic to F � T 0. r
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5. Constant period mapping.

Theorem 5.1. Let f : V ! S be a para-abelian fibration from a nonsingular pro-

jective variety satisfying the condition (C1). Suppose that the universal covering space U

of V satisfies the condition (U1). Then every smooth fiber of f is isomorphic to a para-

abelian variety F and there is a finite surjective morphism T ! S such that the main

component of V �S T is birationally equivalent to F � T over T.

Proof. By Corollary 3.2, we can take a Zariski-open subset S�
HS such that

(1) S� is nonsingular,

(2) codimðSnS�ÞV 2,

(3) f is smooth over S�nD� for a smooth divisor D�
HS�, and

(4) any fibers over D� are multiples of para-abelian varieties.

By Lemma 4.1, we see also codim f ÿ1ðSnS�ÞV 2. Let p2 : V �S V ! V be the second

projection and let W be the normalization of the main component of V �S V . Then

the induced morphism fV : W ! V from p2 is a para-abelian fibration with a rational

section by considering the diagonal. Let M ! W be the abelian reduction of fV with

respect to the rational section. By Corollary 3.2, we see that M ! V and W ! V are

smooth over the open subset V � ¼ f ÿ1S�.

Let us denote U�
:¼ U �V V �. The fiber product M �V U ! U is a smooth

abelian fibration over the simply connected manifold U�. Thus we have a period

mapping of the abelian fibration from U� to a bounded domain. It extends to a

holomorphic mapping from U and thus from Z. Since Z is a Zariski-open subset of a

compact complex manifold, the holomorphic mapping must be constant. Therefore

M �V U� is isomorphic to A�U� over U� for an abelian variety A. Hence we have a

finite unramified covering V 0� ! V � such that M �V V 0�
FA� V 0�. The W �V V 0� is

also isomorphic to the product F � V 0� for a para-abelian variety F by Corollary 2.8.

Especially, every smooth fiber of f is isomorphic to F. There is a finite covering

V 0 ! V whose restriction to V � is the previous unramified covering. Let T 0
HV 0 be

a general subvariety of the same dimension as S and let T 0 ! T ! S be the Stein

factorization. Then T ! S is a finite surjective morphism such that V �S T is

birationally equivalent to F � T . r

Proof of Theorem 1.2. The general fiber F of f : V ! S is a nonsingular projective

variety with numerically trivial canonical divisor. Hence F is a para-abelian variety by

Bogomolov’s decomposition theorem (cf. [Bo], [Be]) and by the condition (U3). Hence f

and V satisfy the condition of Theorem 5.1. Thus further by Theorem 4.2, we have a

generically finite surjective morphism T ! S and a finite unramified covering

F � T ! V . Let UT be the universal covering space of T. Then U F C
d �UT ,

where d ¼ dimF . Let Z ! U be the generically smooth holomorphic mapping from

a Zariski-open subset of a compact manifold. Then the composite Z ! U ! UT is

also generically smooth. Hence T also satisfies the conditions (U1), (U2), (U3). r

6. Abundance Conjecture.

For a nef Cartier divisor L on a projective variety X, we know the following

invariant, which is called the numerical Iitaka dimension for L or the numerical L-
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dimension:

nðLÞ ¼ nðL;XÞ :¼ maxf0U kU n jLk �H nÿk
0 0g;

where n ¼ dimX and H is an ample divisor of X. Kawamata [Ka2] has proved that if

nðKX Þ ¼ kðXÞ for a minimal projective variety X, then KX is semi-ample.

Definition 6.1. A projective variety X is called a k0 variety, if for a nonsingular

projective model M of X, the following two conditions are satisfied:

(1) kðMÞ ¼ 0,

(2) For any ample divisor A of M, dimH 0ðM;mKM þ AÞ is bounded for m > 0.

Remark. If a minimal model X 0 of X exists and Abundance Conjecture for X 0 is

true, then kðXÞ ¼ 0 implies X is a k0 variety and some multiple of KX 0 is trivial.

Lemma 6.2. Let X be a minimal projective variety. Suppose that kðX Þ > 0 and let

F :¼ FjmKX j : X � � � ! S be the Iitaka fibration. Suppose further that ‘general’ fibers of F

are k0 varieties. Then KX is semi-ample.

Proof. Let m : X 0 ! X be a birational morphism from a nonsingular projective

variety such that h :¼ F � m : X 0 ! S is a morphism. Then m�KX 0 �Q h�Aþ E for

some ample Q-divisor A and e¤ective Q-divisor E. Since E is h-nef and its restriction

to ‘general’ fibers are numerically trivial, it is the pullback of an e¤ective Q-Cartier Q-

divisor of S. Thus m�KX �Q h�L for some nef and big Q-Cartier divisor L. Therefore

nðKX Þ ¼ dimS ¼ kðXÞ. By [Ka2], we are done. r

Since Abundance Conjecture is true for threefolds ([Mi1], [Mi2], [Ka4]), we have:

Corollary 6.3. For a minimal projective variety X with kðXÞV dimX ÿ 3, KX is

semi-ample.

Therefore we have:

Theorem 6.4. Let V be an n-dimensional projective variety of type U. If n ¼ 3,

then V is a para-abelian variety. If nV 4, then kðVÞU nÿ 4.

7. Albanese mapping.

Next, we shall consider the Albanese mapping a : V ! AlbV .

Proposition 7.1. Suppose that the universal covering space of a nonsingular pro-

jective variety V satisfies the condition (U1), then the Albanese mapping a : V ! AlbV is

a surjective morphism with connected fibers. Especially, the irregularity qðVÞU dimV .

Proof. Let V ! W ! A :¼ AlbV be the Stein factorization of a. Then by [Ka1,

Theorem 13], there exist an abelian subvariety BHA and a finite morphism T ! A=B

from a projective variety of general type such that W is isomorphic to a fiber bundle of

B over T. There is a lift U ! C q of the composite V ! W ! T ! A=B from the

universal covering space U of V to that of A=B, where q ¼ dimA=B. Let Z ! U be a

generically smooth morphism from a Zariski-open subset of a compact manifold Z. By
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Fact 1.1, Z ! U ! C
q ! A=B extends to a holomorphic mapping Z ! A=B, which is

constant. Therefore W is an abelian variety and W FAlbV . r

Now we shall prove Theorem 1.5.

Proof of Theorem 1.5. If qðVÞ ¼ 0, then this is done by Theorem 1.4. Thus we

may assume that qðVÞ > 0. The canonical divisor KV is nef and KV jF @KF is semi-

ample. Thus the evaluation mapping:

a
�
a�OðmKV Þ ! OðmKV Þ

is surjective for some positive integer m by [N1, Theorem 5]. Thus we have a fiber

space p : V ! R over AlbV such that some multiple of KV is the pullback of a Cartier

divisor of R. Thus there exist a generically finite surjective morphism V 0 ! R and a

finite unramified covering F 0 � V 0 ! V , where F 0 is a para-abelian variety and V 0 is a

nonsingular projective variety of type U, by applying Theorem 1.2 to p. Hence the

Albanese mapping for V 0 also satisfies the condition of Theorem 1.5. Here a general

fiber of the Albanese mapping is of general type. However we can prove the F is a

point provided that F is of general type as follows: Assume the contrary. Then by the

addition theorem [Ka3], [Ko1], [V2], we have:

kðVÞV kðFÞ ¼ dimF > 0:

Since kðVÞ > 0, we have the Iitaka fibration:

f ¼ FjmKV j : V � � � ! S;

where dimS ¼ kðVÞ. Let us consider the rational mapping

V � � � ÿ!
ð f ;aÞ

S �AlbV

and let V � � � ! W ! S �AlbV be the Stein factorization. For a ‘general’ point s A S,

the fiber Ws HW is a normal variety and has a finite morphism Ws ! AlbV . Thus it

has a finite unramified covering from a product of an abelian variety and a variety of

general type by [Ka3, Theorem 13]. Let us consider the fiber Vs � � � ! Ws of the

rational mapping V � � � ! W and let Vw be a ‘general’ fiber of V � � � ! W . There is a

factorization V � � � ! W ! AlbV , where KV is relatively big over AlbV . Thus by the

same addition theorem, we see that

0 ¼ kðVsÞV kðVwÞ þ kðWsÞV 0:

Hence kðVwÞ ¼ 0 and V � � � ! W is a birational mapping. Since kðWsÞ ¼ 0, Vs is

birationally equivalent to an abelian variety. Therefore by Lemma 6.2, KV is semi-

ample. Theorem 1.4 implies that kðVÞ ¼ 0. This is a contradiction.

Therefore RFAlbV and V 0 ! AlbV is a generically finite surjective morphism.

Hence V 0 ! AlbV is a finite unramified covering. Thus V is a para-abelian variety

and the Albanese mapping is an étale fiber bundle. r

Corollary 7.2. Let V be a nonsingular projective variety of type U. If qðVÞV

dimV ÿ 3, then V is a para-abelian variety.
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