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The reducibility of linear almost periodic systems with

sufficiently small coefficient matrices
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Abstract. In this paper, we shall obtain a reducible theorem for a linear almost
periodic system with an almost zero coefficient matrix. This reducible theorem states that
the system can be transforms into two systems with size smaller than the original
system. Of course, the transformation is linear and almost periodic.

§1. Introduction.
Let us consider a linear almost periodic system
(1) x=¢eVA(t,e)x, *=d/dt, xeC", teR.

Here N is a positive integer, ¢ is a complex parameter sufficiently close to 0 and A4(z,¢) is
a matrix function continuous in

—o<t<ow, [ <p,

almost periodic in ¢ uniformly for |¢] <p and holomorphic in |¢] < p. From the
holomorphic property of A(z,&) we get the analytical expression

A(t,e) = i Ar(0)er.
k=0

Now we denote by A the mean of Ay(z). If Ay(t) = Ao(f) — A, then Ay(¢) is an almost
periodic matrix function whose mean is zero. Suppose that A has a Jordan’s normal
form diag(A4;, 4,) where

(i) 4; is a z x z matrix whose diagonal entries are arranged as A;,...,4. and whose
(i,i+ 1)th entries are denoted by /; (i=1,...,z—1),
(i) 4, is a (n—z) x (n— z) matrix whose diagonal entries are arranged as A..,..., 4,

and whose (i,i+ 1)th entries are denoted by 7.; (i=1,...,.n—z—1),
(i) ifi=1,...,z, j=z+1,...,n—1, then
Ai # Aj.
Needless to say,
/i=0 or 1 (i=1,...;z—1,z+1,....n—1).
Moreover we adopt a convention

/. =0.

z
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Recall that a system
(2) x=A(t)x
is called reducible with a projection P, if (2) is kinematically similar to a system
(3) X = B(t)x

where B(t)P = PB(t). Here (2) is said to be kinematically similar to (3), if there exists a
continuously differentiable invertible matrix function S(z) bounded as well as its inverse
S~1(#) such that the transformation x = S(¢)y transforms (2) to (3).

Let P(z) be a diagonal matrix. The first z diagonal entries of this are 1 and the
others are 0. The purpose of this paper is to show that (1) is reducible with P(z) under
suitable suppositions. For this goal we shall use the idea stated in the proof of
Proposition 1 of [1, p. 42]. As in there we define

{M}, = P(z)MP(z) + (I - P(2))M(I — P(z))

{M}, = P(z)M(I — P(z)) + (I — P(z)) MP(z)
for any matrix M. Moreover we put

0

B(t,e) =Y Bi(1)e" = A(1,¢) — 4.

k=0

Therefore we get

Bo(t) = 1‘10([), Bk([) = Ak(t).
From the part of [1] mentioned above, it follows that if we get a solution H = H(t,¢) of

(4) H=¢Y(AH — HA+ {(I — H)B(t,e)(I + H)},)

(5) {H}l = 07
then the transformation x = (I + H(t,¢))y transforms (1) to

(6) p=e"(A+{Bt,e)(I + H(t,))})y.

Therefore if H(t,¢) is bounded, then (1) is reducible with P(z).
In the previous paper we obtained a formal solution

0

H(t,e) =Y H(t)e"
k=0

of (4), (5) in case of N =1 under some suppositions. To tell the truth, the consid-
eration of the reducibility of (1) here arises from the expectation that such a formal
solution converges. Actually under the suppositions given in we shall show the
existence of a solution H(tz,¢&) of (4), (5) continuous in —oo <t < 00, |¢f <, almost
periodic in ¢ uniformly for |¢| < 1 and holomorphic in |¢] < u for some positive constant
. Therefore we shall find that the formal solution converges, since this was uniquely
determined.
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§2. Preliminaries.

Concerning A(,¢) we assume the same properties as in [2]. First we define the
following two function spaces:

DeriNiTION 1. Let M, be a set consisting of 0 and real numbers whose absolute
values are greater than some positive constant. Suppose M, is closed under the
addition. Then we put

F1=A{f: feAP(C),Exp(f) = M,}

where AP(E) denotes the totality of E-valued almost periodic functions and Exp(f)
denotes the exponents of the almost periodic function f.

Recall that #; is a set of periodic functions or of almost periodic functions whose
exponents consist of 0 and numbers with the definite sign.

DEFINITION 2. Let w € RX have components linearly independent with respect to
integers. Suppose the nonresonance condition

|(m, )| = co|lm|™? (co,0 : positive constants)
where m = (my,...,mg)eZ K, ) denotes the inner product of vectors and
m| = |my| + - -+ [mg].
Then we define
M, = {(m,w) :me ZX},

Fy={f : [ € AP(C)NO(R),Mod(f) = M,}

where ()(R) denotes the totality of real analytic functions and Mod(f) denotes the
smallest module of real numbers containing Exp( f).

If fe%,, then f is quasiperiodic. Hence there exists a function f () of 0=
(61,...,0k) with the period 2z in every 6;(i =1,...,K) such that

J(1) =f(wr).
DeriniTION 3. Let us call f the extension of f.

Consider the case when all entries of A4(¢,¢) belong to %, or %#,. Moreover we
must define operators .# and .%.

DerINITION 4. For any almost periodic function /(¢), we denote by .#h the mean
value of /(¢). Furthermore #h denotes the almost periodic solution of

X=h(t)—Mh

whose mean value is zero, if this exists. Furthermore if H(¢) = [h;(¢)] is an almost
periodic matrix function, then we define

SH() = [Lhy(1)], wH = [Mhy).
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DEFINITION 5. Let () be a set of functions such that if f e %5(v), then f =
f(0)(0=(04,...,0k)) is continuous in [Im ;| < v, holomorphic in its interior and is the
extension of some function f € .%,.

The following is obtained by Lemma 2.3 of [2].

LemmA 1. (a) % is a bounded linear operator of F, into F,. o
(b) & is a bounded linear operator of F,(v) into F,(v/2) where Lf (f € F2(v)) is
defined to be equal to the extension of £f.

Furthermore, from Lemma 2.4 (c) of [2], we get

LEMMA 2. Let f(t,e) =Y ", fi(t)ek be a function continuous in —oo < t < oo,
le| < p, almost periodic in t uniformly for |e| < p, holomorphic in |e| < p and f,(t) belong
to F, or F. Then

7 (Z fk<z>sk> =S Zfilnet
k=0 k=0
which converges uniformly for all t € R.

The assumption that entries of A(z,¢) belong to #; or %, is given for ensuring the
boundedness of .. The discussions can be carried out more easily in the case when
entries of A(t,¢) belong to Z; than in the case when these belong to #,. So the
discussions of the former case will be omitted.

SUPPOSITION A. All the entries of A(t,e) belong to F,.
Under this supposition we must assume the more.

SUPPOSITION B.  There exists the extension A(0,¢) of A(t,€) which is continuous in
the set

Imo < v, |el<p

and is holomorphic in |Im0;| <v where v is a constant independent of e.

Since A(6,¢) has the period 27 in 6; and hence is bounded, this is also holomorphic
in |¢g < p.

§3. The main discussions.

If (4) has an almost periodic solution, then we get
(7) H=¢"P(AH — HA+{(I — H)B(t,e)(I + H)},) + C
(8) MAH — HA+{(I —H)B(t,e)(I + H)},) =0,
where C is a constant matrix. Here if

H=G+C

where G is an almost periodic matrix function with the mean zero and C = .#H, then
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from (8) we obtain
9) AC—CA+ M({(I—-H)B(t,e)(I+ H)},) = 0.

Conversely if (7), (9) have an almost periodic solution, then we have (4). Namely (4) is
equivalent to (7), (9).
To solve (9), we require

LemMA 3. If M is a matrix with {M}, = 0, then there exists uniquely a solution X of
(10) AX —XA=M
such that

{X}, =0.
Proor. Suppose that X, M are partitioned as
X = [Xij]i,jzl,m M = [Mij]i,jzl,Z
where if ny = z, ny = n — z, then Xj;, Mj; are n; x n; matrices and from {M}, =0 we get
My = My =0.

In this case, from we obtain

(11) A X — Xudy =0
(12) A1 X2 — Xipdy = My
(13) A2 Xo1 — Xo1 4y = My
(14) Ao X — Xy = 0.

Xi1 = Xo» = 0 satisfies and [I4]. If we put

X2 = [Xizyj], M = [m;-y]

then we get from (12

(Ai — /1z+j)xi ot T LiXig1 2 = Xz 1L 241 = Moy
Thus x;.,; are determined uniquely in the order
(17]) = (27 1)7 (272)7"'7(271/1 _2)7
(z—1,1),(z=1,2),...,(z— L,n—z),
(1,1),(1,2),...,(1,n—2).

Similarly X»; is determined uniquely by [13). Hence the proof is completed.
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DEerINITION 6. Let us denote by M the unique solution of (10).

Notice that % is a bounded linear operator.
Returning to (9), we get

(15) C=-S4({(I—-H)B(t,e)(I+H)},).
From (7) and [I5), we obtain
H=¢e"L(AH — HA+ {(I — H)B(t,e)(I + H)},)
—SM({(I—H)B(t,e)(I+H)},).
Here we denote by JH the right side of this. Furthermore we put
(16) Hy=0, H,=J9H;; (k=1,2,...).
The norm || ||, we shall use is defined as

I1H(0,¢)ll, = sup |H(0,e)],

\Imﬁ,\ § v

where | | denotes a matrix norm with |GH| < |G||H| for matrices G, H and H(0,¢) is a

matrix function defined in a region of C>. Moreover we define

B(0,e) = A(0,¢) — A.

Since B(0,¢) has the period 27 in 6; and is continuous in [Im@;| <v (i=1,...,K),

le] < p, there exists a constant Q such that
1B(0,e)], = @

over |¢] < p.

Applying (b) to [16], it follows from the inductional argument that Hj
has the extension holomorphic in |Im@;| < v/2% which is equal to the extension of
JHy_;. The extension of Hj will be also denoted by Hj;. Moreover from the in-

ductional argument,
Hk = 0(8),
because if Hy_; = O(¢), then
(17) SM({(I — Hi-1)B(t,6)(I + Hi-1)}5)
= SM({Bo(1) + O(e)},) = S (O(e)) = Oe).
Now suppose that
[Hi-1]ly 001 = 1.
Then for |¢f <1 we get
[Hkllyjoe = |7 Hia ], e

= [el| Z](214] + 4cQ) + 4[| M | L2,
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where | | denotes a norm of operators together with a matrix norm and c¢ is a constant
satisfying

{M},]| = c|M].

However, from (17) we obtain

|40 ({(1 — Hi)B(t6) (T + Hi-1)}a | oics

< 47 )@
p— el
Here if we suppose
e]| L] (2] 4] 4+ 4c2) < 1 A S| |cQ l¢] < 1
- 27 p_ |8| = 27
then
(18) le| < min ! 14 1
= N4 24+ 2eQ) 8|7 M@ + 1

since |e| < 1. If ¢ satisfies this, then
(19) [ Hill,or < 1.

Namely, from the induction, is valid for k =1,2,....
Furthermore we get

1Hi = Hiall,ox < (6] V| 2| AH -1 = Hy14
+{(I = Hi-1)B(1,€)(I + Hi-1)},
— AHj> + Hio4 — {(I — Hi—2)B(t,¢)(I + H-2) }5 |, o1
+ [LN AN — Hy-1)B(t,)(I + Hi-1)},
—{(I = Hi2) B(t,&)(I + Hi2) b |, s

On the other hand

(20) LU = Hi-1)B(t,&)(I + Hi1)},
—{(I = Hi-2)B(t,¢)(I + Hi-2) }, |, i
1s not greater than

4C.Q”Hk,1 — Hk*2Hv/2"*1'
Therefore is not greater than

&
4cQ||Hy—y — Hi-al], it i »

p— el
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since is equal to O(¢). Consequently we have

&
|Hi = Hiall, e < {|e||ff|<z|A| T 4c0) + 4|sﬂ||//|cszp'_—"8|}||Hk1 — Hially e
If we suppose
1 le| 1
ZL|12lA| +4cQ2) £ ~, 4P| M|cQ < -
1212+ 4e) < 5. 4 Mle < 5
then
(21) le| < min : P
- 81.Z|(|A| +2¢Q) " 16|L||M)cQ+ 1)

Therefore if |¢| < u where

) 1 p
= 1
a mm(8|$|(|/1| Y 2eQ) 16| |[ M@+ 1’ )
then and are satisfied. In this case,

|
1k = Hit[lyox = Sl Hi-1 = Hi2ll, i

Hence we have

@) I - Hioilyo < (5) 10— ol

Take te R. Then from we get

k
lim Hy(z,¢) = lim (Ho(t, €) + Z(Hr(t, ) — H, (1, e))) = H(t,¢),

k— o0 - k— o
r=1

where the convergence of the limit is uniform. Therefore H(z,¢) is a function con-
tinuous in —oo <t< oo, |g]<u almost periodic in ¢ uniformly for |¢f < u
and holomorphic in |¢] < ¢ such that

H=7H.
Consequently H(t,e) is a solution of (7), (9) and hence of (4). Moreover since
H; = O(¢), we obtain
H(t,e) = O(e).
From we get
{Hi}y = {e" L (AHy — Hi4)},
= ENg({AHk_l — Hk—lA}l)-
Consequently if {Hy_;}, =0, then
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Namely we get
{H}, =0.
Since we have just shown that H(z,¢) is a solution of (4), (5), we now conclude that
x=(I+ H(te))y transforms (1) to (6).
THEOREM. (1) is reducible with P(z).
Since H(t,¢)(= O(¢)) is holomorphic in |¢| < u, we write

o0

(23) H(t,e) =Y Hi(t)e" (Ho(1) =0).

k=0

In the same manner as in [2], we shall obtain recurrence formulas for determining
Hi(t). Substituting into (4), we get

(24) H()=0 (k=12,....N—1)

(25) Hk(l) = AHk,N(t) - Hk,N(l‘)A + {Bk,N(l‘)
k—N-1 k—N-1
= Y Hing(0By(1)+ > By(t)Hi_n—y(1)
q=0 q=0

— Y H,(0B,(0H, (1)}, (k=N,N+1,..),
pi+p2+p3=k—N

where the sum Z;ZIO i1s supposed to be equal to zero.
It follows from and that Hy(t) are determined to have the form

Hi (1) = Gi(1) + Cr, {Hk(1)}; =0

where Gy (¢) are almost periodic matrix functions whose means are zero and Ci are
constant matrices such that the mean of the right side of vanishes if the index k is
changed for k+ N. Consequently we get

Git)=0 (k=0.1,....N—1),
Gi(t) = L(AGr-n(1) = Gen()A + Fi_n(t)) (k=N,N+1,...)
Co = —FME(1) (k=0,1,...).
Here

»

—1

Fi(1) = {Bi(1) = G(1)Bo(1) — > (Gi—y(1) + Ci—yg) By(2)

<
Il
—_

k—1
+ Bo(1)Ge(1) + Y By(1)(Giy 1) + Ciy)
q=1

- Z (Gpl(t) + Cpl)sz(Z)(GIh(l) + CP3>}2

P1+p2+pi=k
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where p; #0, p3 #0. It is noteworthy that these can be obtained directly from
H=7H.
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