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Abstract. We proved L, — L, type estimates of the Stokes semigroup in a two
dimensional exterior domain. Our proof is based on the local energy decay estimate
obtained by investigation of the asymptotic behavior of the resolvent of the Stokes
operator near the origin.

§1. Introduction.

Let 2 be an unbounded domain in the 2-dimensional Euclidean space R?> having a
compact and smooth boundary dQ contained in the ball By, = {x € R*||x| £ by}. In
(0,00) x 2, we consider the nonstationary Stokes initial boundary value problem
concerning the velocity field u = u(¢,x) = “(u;,uy) and the scalar pressure p = p(z,x):

(NS) om—Adu+Vp=0 and V.u=0 1in (0,0) x Q,

u=0 on (0,00) x 02, u(0,x) =f(x) in Q,

where 0, = 0/0t, A is the Laplacian in R*, V = (01,0,) with §; = /0x; is the gradient,
and V -u=divu = 0ju; + du, 1s the divergence of u.

For the corresponding nonlinear Navier-Stokes equations in two dimensional
exterior domain, we know the uniqueness of the Leray-Hopf weak solutions which was
proved by Lions and Prodi [23]. Masuda proved that if u(x) is a weak solution
with [;” HVu(t)Hiz(Q) dt < o0, |[u(?)||;,(o) tends to zero as t — co. The decay rate of a
weak solution was investigated by Borchers & Miyakawa and Maremonti [24]. In
1993, Kozono and Ogawa proved a unique existence theorem of global strong
solutions with initial data in L,(€2), which satisfy the following decay rate:

(@), @) = o(271D) 2<g <0, |u(t)ll, g = or*/logt),
IVa(®)ll @) = o(t™'?)

(D)

as t — oo.
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But it is surprising that we do not know any L, — L, estimate of the Stokes
semigroup in a two dimensional exterior domain like Iwashita for the space
dimension n = 3. Borchers and Varnhorn [5, 36] investigated the behavior of the
resolvent of the Stokes operator 4 in a two dimensional exterior domain by using the
classical potential theory, which implied the boundedness of the Stokes semigroup
{e7},., in L, for any 1 < ¢ < oo. But, it dose not seem that the L, — L, decay
estimates of the Stokes semigroup follow from their results, because we do not know the
estimate:

Ve |, @) < 42 | ). 1> 0

in the two dimensional case, which was proved by Giga and Sohr when n = 3.
The purpose of this paper is to show the L, — L, estimates which is an extension
of Iwashita’s to two dimensional case. If we apply the L, — L, estimates to Kato’s
argument, we also obtain all of estimates in (D) except L., decay for the corresponding
nonlinear Navier-Stokes equations.
To discuss our results more precisely, first we outline at this point our notation used
throughout the paper. To denote the special sets, we use the following symbols:

Dy={xeR*|b—1Z|x| b}, S,={xeR*||x|=b}, Q,=QNB,.

Let W;"(D) denote the Sobolev space of order m on a domain D in the L, sense and

| [l m p its usual norm. For simplicity, we use the following abbreviation:

- llgp =11 llgops - llgm =11 llgmar -1l = 11400
Moreover, we put

L, (D) ={ueLyD)|u(x)=0Vx¢ B},

WD) = {u e W)'(D)|u(x) = 0 Vx ¢ By},

Wm

quc(Rz) ={ue 9" |0%ueL,By) "a,|o| <mand "b > 0},

"oe(D) = {u|?U e W, .(R*) such that u = U on D}, Ly (D) = W, ,.(D),

q,loc q,loc

W,"(D) = the completion of Cj°(D) with respect to || - |

JD u(x) dx = o},

(D) |63 ully, p < o0},

q,m,D>

W (D) = {u e W(D)

WMD) ={uewn

q q,loc

(V) = j u(x) V@ dx, ()= (g

D
To denote function spaces of two dimensional column vector-valued functions, we use
the bold letters. For example, L,(D)= {u="(uj,u2)|u; e L,(D),j=1,2}. Likewise
for Cy*(D), Lg.s(D), W(e(D), Lyioc(D), Wi(D), W,(D), W(D) and W/(D).
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Moreover, we put

J4(D) = the completion in L,(D) of the set {ue Cy°(D)|V -u =0 in D},

G,(D)={Vp|lpe W,(D)}.

For exterior domains in R® Miyakawa proved that the Banach space L,(D) admits
the Helmholtz decomposition: L,(D) = J,(D) ® G,(D), where @ denotes the direct
sum. His method carries over to arbitrary space dimensions n>2. Let Pp be a
continuous projection from L,(D) onto J,(D). The Stokes operator Ap is defined by
Ap = —PpA with dense domain Z,(4p) =J,(D)N qu (D)N W;(D). For simplicity,
we write: P = Py, A = Ag. It is known that —A generates an analytic semigroup e~/
in J,(2) [9, 5, 36], [4 for n >3] To denote various constants we use the same letter

C, and by C, p.. we denotes the constant depending on the quantities 4, B,---. The
constants C and Cy g.. may change from line to line. For two Banach spaces X and Y,
Z(X,Y) denotes the set of all bounded linear operators from X into Y and || - || 4y y)

means its operator norm. In particular, we put Z(X) = Z(X,X). /(I,X) denotes
the set of all X-valued analytic functions in 1.
Now we state our main results.

THEOREM 1.1. (Local energy decay) Let | <g < oo. For any b> by and any
integer m = 0, there exists a constant C = Cyp p > 0 such that

(1.1) 107"e™ ]| 5,0, < C " (log 1) Pl 1 — o0
Jor any £eJ,(Q2)NL, ,(2)=:J,,(Q).

Tueorem 1.2. (L, — L, estimates) (1) Let 1 <q=r<oo. Then the following
estimate holds for any f e J, (Q):

(1.2) le” 1], < Copr” VS, 1> 0.
(2) Let 1 <q=r=<2 Then, for felJ, Q)
(1.3) Ve " f||, < Cg =MWDY 1> 0.

And let 1 < g =<r and 2 <r < o, then, for feJ,(Q2)

Copt N2 0 <t <1,
(1.4 [vef], <
Co,rt V], t=1.
Our proof of is based on the local energy decay estimate [1.1) obtained

by investigation of the asymptotic behavior of the resolvent of the Stokes operator near
the origin. We combine with the L, — L, estimates in the whole space by cut-off
techniques. We are aware of the related work of P. Maremonti and V. A. Solonnikov
[25]. In their paper, they also obtained L, — L. estimates of Stokes semigroup in -
dimensional exterior domain (n = 2) by a different method. Their arguments rely on
energy estimates, imbedding theorems, L, — L, estimates in the whole space and duality
arguments.
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§2. Preliminaries.

Let us first consider the stationary Stokes equation in R*:
(2.1) (A—Mu+Vp=f and V-u=0 in R
When 1e X = C\{1 <0}, put

(1 - P(E)(E)

Af=7"" = E; +f,
=7 |f|2 ) (x)
f=7" 5'“25)] (x) =p*f
| <]
for f e Lq(RZ), where i =+v—1, P(¢) = (fjfk/\ﬂz)j’k:m,
. . 1 .
f — —1x~ff d a"—lf — tf-xi- d
=] et Fh = [ eneas
and

E,=E;(x) = (E/i(x))j,k:I,Z’

Ej(x) = (2m) {oieKo(V2|x]) — 2" 3k (log|x] + Ko(V7alx]))}

(2.2) = (2n)"! {5jkel(ﬂ|x]) + xf—’|‘§ez(\/1|x!>},

|x

() = [ L
PP T )

Here, K, (n€ NU{0}) denotes the modified Bessel function of order n and

e1(x) = Ko(x) + k'K (k) — k72

| 1
= ~3 (y+§—log2+logic) + 0(K2)10g7€ as k — 0,

where y is Euler’s constant,

er (i) = —Ko(x) — 21K (1) 4 2672
1
= §+ O(x*)logx as k — 0.

These are calculated in [5, 36]. Then, for 1 < ¢ < o0 and any integer m = 0, by the L,
boundedness of Fourier multiplier (cf. [Theorem 7.9.5 of 11]), we have

(2.3) A e o (Z,L(WR?), W ARY))), e LW (R, W/ (R?),
and the pair of u = 4,f and p = IIf solves (2.1) for 1€ X. When f € L, ,(R*), we have

(2.4) A6 =0(x|%), Hf=0(x™") as|x| — .
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For 2 =0, put
(2.5) Aof = Eg«f for fe W,"(R?),

where
Ey = Ey(x) = (Ejok(x))j,kzl,Z’

1 XX
0 k
Ej(x) = an {—5jk log|x| + ’;7}

(cf. [IV.2 of 7]). Then the pair of u = Aof and p = IIf solves (2.1) for L =0. We have
the following facts for 1 < ¢ < oo:

26 Ao e L(WI"(R*), W 2(R?)),
2.6
Aof = O(log|x|) as |x| — oo for f e L, ,(R?).

From and (2.5), it follows that

1
G logV2) I + H;(x),

T

(2.7) E)(x) = Ey(x)

where I, is the 2 x 2 identity matrix, H,(x) = O(2|x|*)log(V/7|x|) and ¢ =y +1/2—
log2.

Let D be a bounded domain in R? with smooth boundary dD and X, = X U{0}.
We now consider the stationary Stokes equations with parameter A€ Xy in D:

(2.8) (A—Au+Vp=f and V-u=0 in D,
u=0 ondD.
The existence, uniqueness and regularity of solutions to (2.8) are well known.

PrOPOSITION 2.1. Let 1 < g < oo and let m be an integer =0. Then, for any
fe W/ (D) and /ey, there exists a unique ue W;’1+2(D) which together with some
pe Wq’”“(D) solves (2.8); p is unique up to an additive constant. Moreover, the fol-
lowing estimate is valid:

(2.9) ullg sz, 0+ IVPlgm 0 = Complfll gm0

ProoF. See Giga [9], Ladyzhenskaya [p. 62, Theorem 2 of 21], Solonnikov and
Temam [p. 33, Proposition 2.2 of 32|.

The following results in bounded domain D are used later.

PROPOSITION 2.2. Let 1 < g < oo. (1) The following relation holds:

(2.10) loll, p = CD(”VUH%D + ‘ JD v(x) dx ), forve qu(D)

(2) Let m be an integer =20. Then, for any ue W[ (D), there exists a v e qu(Rz)
such that w=v in D and |vf|,, g < Com plul where Cy,, p is a constant
independent of u and v.

q,m,D>
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Proor. See [I1.4 of 7] for (1) and [II.2 of 7] for (2).

PROPOSITION 2.3. Let 1 < g < oo and let m be an integer =0. Then, there exists a
linear bounded operator B : W (D) — W(;““(D) such that

(2.11) V-B[fl=f inD, |B[f]llymi1p= ComnlSllymp-

Proor. See Bogovskii [1, 2] (also Giga and Sohr [Lemma 2.1 of 10], Iwashita
[Proposition 2.5 of 12] and Galdi [II1.3 of 7).

PROPOSITION 2.4. Let | < g < oo. Let G=Q or R* and let m be an integer >1.
Let ¢ be a function of C*(R*) such that ¢(x) =1 for |x| <b—1 and ¢(x)=0 for
x| 2 b, where b= by. If ue W, (G), V-u=0in G and u=0 on 0Q when G = Q,
then (Vo) -ue Wq’f’a(Db). As a result, B[(Vo) -u] € W(I’”H(Db), V-B[Vp) -u=(Vp) - u

and

(2.12) IB{(Ve) - ullly i1 m2 = Comopsllullym b,

PrROPOSITION 2.5. Let 1 <g< oo. Let ue W;(Q) and p e W;(Q) satisfy  the
homogeneous equations:

(2.13) —Au+Vp=0 and V-u=0 inQ, u=0 ondQ.
Assume that u(x) and p(x) satisfy the following:

u(x) = 0(1), p(x) = O(Ix|™") s |x] — oo.
Then, u=0 and p = 0.

Proor. First of all we shall show that ue W; we(R) and pe W2, (Q). To do
this, we use the same cut function ¢ as in [Proposition 2.4 If we put w= gu—
B[(V¢) -u] by [Proposition 2.3, then we qu(Q), suppw < 2, and w satisfies the fol-

lowing equations:

—Aw+V(pp) =g and V-w=0 1in Q,
w=0 on 09y,

where g=Vop —2(Vp-V)u+ 4B[(Vp) -u]. Noting that ge W;(Q;,), we know that
we W;(Qb) and g¢p € W;(Qb) by [Proposition 2.1, which means that ue W3, (Q)

q,loc
and p € W; we(€). By [Proposition 2.2 (2), u and p have the extensions @ e W3, (R?),
qaew;

q,loc
loc

(R?) such that u =1, p=qin Q. Let ® = R>\Q. Noting that @ = 0 on 00,
we can apply [Proposition 2.3 to find B[V -u] € W;((_O). If we set v=u— B[V -u], then
we have V-v=0in R*> and u=v in Q.

At this point we prepare the following lemma:

LEMMA 2.6. Assume that w and p € &' satisfy —Au+Vp=0,V.-u=0 in R* and
lu(x)| = O(log|x]), |p(x)| = O(|x|™") as |x| — c©. Then u= constant and p = 0.

PrOOF. Since u and p satisfy |£|2ﬁ +i¢p =0 and i -a =0, we have suppu, supp p
< {0}, which means that @ and p depend on x polynomially. Considering that |u(x)| =
O(log|x|) and |p(x)| = O(|x| ") as |x| — o0, we have u = constant and p = 0. O
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We continue the proof of |Proposition 2.5 We set f=—4v+Vq. Since fe
Wq we(R?) and suppf < O, then fe L,(R?). 1If we put z= Aof and r = IIf, then
we have —4(z—v)+V(r—q)=0 and V-(z—v) =0 in R>. Since z = O(log|x|) and
r=0(x|"") as |x| - o0 and v=u = 0(1) as |x| — o0, we know z — v = O(log|x|) and
r—q=0(x|"") as |x| —» . Byl , we have z =V + constant = O(1) and r =
q. From the fact: z= Ey(x fRz f(y a’y+ 0(|x| "), we have [pf(y)dy =0, which
means that z = O(|x|™"), Vz = O(|x| ) O(|x|™?) and Vr = O(|x| ). Therefore we
have

(2.14) u=0(1), Vu=0(x"), p=0(x") and Vp=0(x")
as |x| — oo, which implies that
(2.15) |Vul|, = 0.

In fact, let us consider the formula:

0= (—du+Vp, “)QR

:( (IXI V) >x|R+<\_;C|p’u>|x|R+(VU’VU)QR

By (2.14) the first and the second terms of right hand side tend to 0 as R — oo, thus we
have (2.15), which implies that Vu =0. From the boundary condition it follows u =0
and Vp =0. By the assumption, we have p = 0. ]

PROPOSITION 2.7. Let 1<g<ow and G=R?> or Q. Let ue W;(G) and
pe W;(G) satisfy the equations:

A=MDu+Vp=0 and V-u=0 inQ, u=0 ondQ if G=2R
for Ae X. Assume that p = O(|x|™"). Then, u(x) =0 and p(x) = 0.

PROOF. When G = R?, since u and p satisfy (1 + |&]*)a+iép =0 and i¢-a =0,
supp{ (4 + |¢|P)a} = supp(icp) = &F. In view of A+ ||*#£0 for Le X, u=0 and p =
constant. From the assumption p = O(|x|™"), we have p = 0.

When G = @, let the pair of (v,q) be an extension of (u,p) to R* such that ve
0 we(R?), g€ WzloC (R*) and V -v =0 in R* (cf. proof of [Proposition 2.5). We set f
= (A— A)v+Vq, then suppf < @ and fe L,(R*). If we put z= A;f and r = IIf, in
view of the result for G = R? we haveu=v=z= O(]x| %) and p=q =1 = O(|x| ') as
|x| — oo by (2.4). Therefore from the same argument as [Proposition 2.§ we have u = 0,
p=0. O

w3

PROPOSITION 2.8. Let 1 < g < oo and let A be the Stokes operator in J,(2) and m
be any integer =0.

(1) Assume that we Z4(A) and Aue W] (Q2). Then ue W;"*Z(.Q) and for some
constant Cy p, > 0,

[ully iz = Com(l[Aully,,, + [lull,)-
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(2) If ue2,A™), then

ully 2, = Com(l[A™ully + ull,),

|4 ull, = Cymllully 2

PrOOF. See [Proposition 2.7, 2.8 of 12].

§3. Asymptotic behavior of the resolvent around the origin

Let us consider the stationary problem for the Stokes equation with parameter 1 € X
in Q:

(S) (A—Au+Vp=f and V-u=0 in Q,

u=20 on 09Q.
In terms of the Stokes operator A, (S) is written in the form:
(S") (A+Au=H.

Giga [9] and Borchers and Varnhorn [5, 36] proved that 2 belongs to the resolvent set
p(A) of A and

(3.1) ||(/1+A)_1||$(J4(9)) < Cpeldl ™,

when |argA| <7 for any 0 <7< 7.

Let b>by+4 and 1 < g < 0. Contracting the domain of (1+ A)~' from J,(Q)
to J, 5(2), we shall investigate the asymptotic behavior of (A+A4)"" as |i]| — 0. Put
2.={Ae|largl| = 1,]A| S e}

PrOPOSITION 3.1. Let 1 < g < oo and m be any integer =0. There exist operator
valued functions R), and P, possessing the following properties:

Y

(1) Ry € (2, L(W2HQ), W2"2(Qy))
Ped (2, 2(WH(Q), W ())),
the pair of u= Rt and p = P)f is a solution to an
2) th f R;f and Pt [ S) and
(3.2) Rfe WI2(Q), PfeW ™™ (Q), PA=0(x"") as|x]— o
for fe W‘%’(Q), L €X, and we have
(3.3) Ri=(+A)" ond,,(Q) forieX,

(3) for any 0 <t <m, there exists an ¢ = &(t) such that for f e quf’g(Q) and A €
21’,87

(3.4) (Rz >f _ zs(M (log 2)/L(log 2)

s+ B
P, M(logi)/i(logi))f+ 0(2" (log 4)'),

where s is an integer (not necessarily positive); L and L are polynomials with constant
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coefficients and M (resp. M ) is a polynomial, not identically zero, whose coefficients belong
to X(quy”,j(Q), W;’”“(.Qb)) (resp. g(Wi”,j(Q), W;”’“(.Qb))); p is an integer. The order
symbol O is used in the sense that

| Rif — 2°(M (log 2) /L(1og A))fllg 2s2.0, S Caom|2°! (log 2)"||£]

q,2m>

1P — 2 (M (log 2)/L(10g D)l 21,0, S Compl2 (10g 2)"| ]l 20

PROOF. At first, we introduce some symbols. Let ¢ be a function of C*(R?) such
that ¢(x) =0 for |x| =2 b —1 and ¢(x) =1 for |x| £b—2. For feL,(Q) let us denote
the restriction of f on ) by n,f and define the extension if of f to whole R?> by the
relation: 1f(x) = f(x) for x € Q and if(x) = 0 for xe R*\Q. Let L;; and p,, be the
operators defined by the relations: L;;g =w and p,;g = q where the pair of w and q is
the solution of the following Stokes equation in £:

(3.5) (A—dw+Vg=g and V-w=0 inQ,, w=0 on0Q,

where 02, = S,U0Q and A€ 2y. p,,;g is not decided uniquely at this moment, that
is we have freedom to choose any additive constant, which will be chosen in
below. By |Proposition 2.1 we know that

(36) ||Lb}vg||q,2m+2,.(2b + ”Vpblg||q,2m,.(2b = 617"1,b7/1||g||q,2n1,.(2b'
Let us construct R, and P, from a compact perturbation of the following operators:
D,f = (1 — gﬂ)(Ailf) + (pr;ﬁbf + B[(V(p) . A;jf] — B[(Vgﬂ) . Lb)j'cbf],

(3.7)
Vif = (1 — o) (IIif) + ppy;mpf,

for fe W;f’,j(!)), where we have used [Proposition 2.4, Now, p,, is chosen so that

(3.8) ng(pbinbf — IIif)(x) dx = 0.

We know that there exists an ¢ > 0 such that L,, and p,, are analytic with respect to
L€ C\(—o0,—da] (cf. [Proposition 2.6 of 18]). From the construction, we have

(3.9) A=—O,f+VV,f=(1+F)f inQ,
(3.10) V.o,f=0 inQ, &,f=0 on iR,
where

Fif = 2(V§0 . V)A;vlf + A(oA;vlf — Z(Vg[) . V)Lb;ﬂfbf - AgoLb;“nbf
+ (A= A)BVep- Auf] — (A — 4)B[Vo - Ly,mpf| — VoIlif + Vop,,npf.

Contracting the domain of 4, and 71, and considering those ranges in wider spaces, we
have

Aje (8, L(WIHQ),W"(2)) and Hie L(W]H(Q), W (Qp)).

At each point Ae X, F, is a compact operator from W;’Z(.Q) into itself and F; is
analytic in Ae Y. We know that (1+F;)"' is analytic in X. In fact, in view of
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Fredholm alternative theorem [VI §4 of 35], it is sufficient that 1+ F is injective for
2eX. Let f be an element of Wi’”b(.()) such that (1 + F;)f =0. Since @,f and ¥ ,f
satisfy the condition of [Proposition 2.7, we see that @,f =0 and ¥,f =0. Therefore,
employing the same argument as in the proof of in Iwashita [12], we can
show that f =0. Thus (1+F,)"' e #(Z, 2(W¥}(Q))). Put

(3.11) Ri=®,(1+F)" and P,=¥,(1+F)",

then the pair of u = R;f and p = P,f solves (S) as 2.€ 2. By |Proposition 2.7, when f €
J,.5(Q), Rif = (h+A)'f for LeX.

Thus we know the analyticity of R; in X, but our purpose is to investigate the
asymptotic behavior of at 2 =0. If we recall [2.7), then we have the following formula:

1
(3.12) Auf = A — —(c+ logV/2)Tf + Bf,

where Tf = [pifdx and Bf = H, x:f € W;’”*Z(Qb) for fe W;’Z(Q), AeX. In in-
vestigating the asymptotic behavior of R, at A =0, difficulties arise from logarithmic
singularity. But this singularity appears only in the coefficients of finite dimensional
operators. To make the above point clear, let us consider the auxiliary operator:

@of = (1 — (p)Aolf + (0Lb07'cbf + B[(Vg/)) . Aolf] — B[(V(p) . Lb()ﬂ:bf],
Pof = (1 — o)(I1if) + ppyomif,
for f e W;’Z(Q) Then,

(3.13)

(3.14) —ADf + VWof = (1 + Sp)f and V- @f =0,
where

Sof =2V -V)(Aoif) + (4p)Agif —2(Ve - V) (Lponpf) — (4p) Lpompf
— AB[(Vo) - Agif] + 4B[(Vo) - Lyompf ] — (Vo) ITif + (Vo) pjomf.

We see that Sy is a compact operator from W;Zf(Q) into itself. Taking into
account, we have the following formula:

1 1
(315)  (1+ F)f = (1+S)f — —dp(c + logV2) Tt + (et logV/2)AB[Vy - Tf],
where

Sif = Sof + (V(/) . V)(Bif) + AB;f — Z(Vgo . V)(Lb;“ — Lbo)nbf — (Ago)(Lb,l — Lbo)nbf
+ AB[(Vo) - Ajf] — AB[(Vp) - Bif] — AB[(Vp) - Ly, mpf]
+ 4BV - (Lp; — Lyo)mf ] + Vo(pyy — Pro) -

S, 1s continuous at A =0, i.e.

In order to investigate the behavior of (1 —I—Fi)_l, modifying 1+ S, in terms of some
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finite dimensional operators, we will construct inverse of the modified operator. To do
this, we would like to start with the following lemma.

LEmMA 3.2. 14 Sy is one to one on the domain X = {f e Wf,"},(Q) | Tf = 0}.

PrOOF. Assume that f e X satisfies (14 Sp)f =0. Since [p.:f dx =0, we have

@ = (1= ) | (Ba(x = )~ Eaa)if () dy + pLoomsf
R
+B[(Vp) - Adgf] — B[(Vp) - Loompf].
Thus, @of = O(|x|™"). On the other hand, from (3.14) it follows that

—ADf +V¥Pf =0 and V- -&f =0 inQ2, &f =0 on 0Q.

Since @of and Wyf satisfy the condition of [Proposition 2.5, we have @of = 0 and ¥f =
0, which means f = 0. O

Lemma 3.3. dimKer(1 +Sp) < 2.

PrOOF. Suppose that dimKer(1+ Sp) = 3. Pick up non-zero two dimensional
vectors of functions ki, k, and k; e Ker(l+S). Since Tk; j=1,2,3 are two
dimensional numerical vectors, there exist constants o, o, and o3 such that (o, 0y, 03) #
(0,0,0) and 0= 21.3:1 o Tk; = T(st:l k;), which together with implies
that 21.3:1 ajk; = 0. This completes the proof of the lemma. O

When dim Ker(1 + Sp) #0, in view of we can find a k="(k,ky) €
Ker(1 + Sy) such that Tk # 0, so that without loss of generality we may assume that
Tk; = 1. Since the dimension of the kernel of a Fredholm operator coincides with that
of its cokernel, we can choose m; and m; ¢ Im (1 +Sy) so that

(3.17) Wh(Q) =Im (1+ Sp) ® Cm; @ Cmy,

where my = 0 if dim Ker(1 + Sp) =1 and m; = m; = 0 if dim Ker(1 4+ Sp) =0. Let us
define the operator:

Gof = (14 So)f + (T f1)m; + (T f;)m;
for f=(f,, f») € ngg(g).

LEMMA 3.4. Gy is bijective Fredholm operator, so that inverse Gy is continuous, too.

ProoOF. From the construction, obviously Gy is a Fredholm operator. In order to
prove bijectivity, it is sufficient to prove injectivity of Gy. When dim Ker(1 4+ Sp) = 0,
it is trivial. Next we consider the case that dimKer(l +Sy) =2. If Gof =0, then
(1+So)f =—-Tfim; — Tfomy. In view of [3.17), Tf =0 and (1 + Sp)f =0, so that we
have f =0 by Lemma 3.2. Finally we consider the case that dim Ker(1 + Sp) = 1. If
Gof =0, then (1+ Sp)f = -7 fym;. From it follows that 7/, =0 and (1 + Sy)f
= 0. Since f e Ker (1 +Sp), there extists o such that f =ok. Then 0 =Tf, = aTk, =
o, which implies that f = 0. ]
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Set
Gif =+ S)f+ (Tf,)m; + (T f,)m,.
LEMMA 3.5. For any 0 <t <7, there exists an ¢ = ¢&(t) > 0 such that
0
(3.18) Gl =Gy Y IS, - S0)G'Y Aez..
J=0
Proor. For 4 #0, G, can be represented in the form
G, = G, — Go+ Gy = Gy + (S, — )
= {1+ (S, — S0)G; '} Go.
For any 0 < 7 < 7, by (3.16) there exists an ¢ =¢(r) > 0 such that
1S: = Soll w2y 1Go o wayay < 1/2
for A€ 2., which completes a proof. O
Using G;, we shall investigate the behavior of (I + F;)"'. 1In terms of G, we have
(3.19) (1+ F,)f = G)f + N,(Tf),

where

Nd = —dym; — dymy — %A(p(c +logVA)d + % (c +logVA)AB[Vp-d], d= (2 )

Thus we consider the equation:

Gf+ N,(Tf)=g forge Wj”,j(Q)
By we have
(3.20) f+ G 'Ny(Tf) = G 'g.
Let pe C°(€25) be a function such that Tp=1. Let us decompose f as follows:

f=1,+(Tf)p, f,=1f—(Tf))p,
where Tf, =0. In the same way, we write
G; 'Ni(Tf) = (G;'N,(TY)), + (TG, 'N;(Tf))p,

G;'g=(G;'g), + (TG; '),

where T(G;'N,(Tf)), =0 and T(G;'g), =0. Thus from we have
f,+ (G} 'NA(TT)), + (T) + TG, 'Ny(T)p = (G;'g), + (TG} 'g)p.

Applying 7, we have

L,(Tf) = TG; 'g,
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where L; = I + TG;'N; is a linear operator from C* to C*. From [3.18) and [3.19] it
follows that the elements of L, = AL, can be represented as numerical series, absolutely
and uniformly convergent in 2 ,, of the form

0 J )
> (Z o (log /1)") M.
=0 \ k=0
In particular,

0

det L, = Z(i di(log 2) ) iﬂDj(logi),
k=0

=0
where D;(t) = Z{( _o dit® is a polynomial of degree j. If D;(r) =0 for all j, that is,
det Li =0 =detL,, then there exists a d # 0 such that L;d =0. Put
= -G;'N;d.

Then Tz=d. By [3.19], (1+ F;)z =0, which implies that z =0, that is d = 0. This
leads to a Contradlctlon. Hence, there is an a < oo such that D,(¢) # 0 and D;(¢) =0
for j <a. Then

detL, = 2D, (1 /1
etL; = #"Daflog2) D, (log )

Since in this formula the sum over s tends to zero when |4| — 0, for suffciently small
e=2¢&(r) >0 we have

HZM],

_ _1_ 7a o0
(detL;)™ = Doliog]) ZO

r=

A’ Ry(q11)(log 2
Z (at1) (log ) forie X, .,
D,(log1))* ’

s=1

where Ry,41) = Durs(Dy)"" is a polynomial of degree not greater than s(a +1). Since
all the series that take part in these formulae converge absolutely and uniformly when
e X, if we collect together the terms in the same powers of A(D,(log4))™', we have

N P AT
(dCtL;L) I _ m; {Ps(aJrl)(log/l) {m} }’

where P; is a polynomial of degree not greater than j. Thus we know the behavior of
Tf as |A] — 0 by the formula Tf= L;'ATG;'g. On the other hand, we have

f,=—(G;'N,(TT)), + (G, 'g),

If we substitute the 7f into the above formula, we know the behavior of f,. Thus
we obtain the behavior of f, i.e. behavior of (I + F;)~'. Therefore, the assertions of
IProposition 3.1 follow immediately from (3.11). O

[Proposition 3.1 says that the operators (R;,P;) can be expanded by the series
of polynomials of log/ and 4. Next task is to determine s, M and L of |3.4), ex-

actly. The strategy follows Kleinman and Vainberg [17]. Let ¢, m, 7, and ¢ be the
same as in [Proposition 3.1.
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PropPOSITION 3.6. Let R; be the same as in Proposition 3.1. Then we have
R; Vi RYA4 _
(3.21) ( )f:( 0)f+(1og/1) 1( 1)f+ O(log/)™® asieX.,,
P, Qo Q1 ’

where Vye L(W)'h(Q), W2 (Qy)) and Q;e L(WH(Q), Wi (2y)) (j=0,1) are
independent of A.

To prove this proposition, we use the cut-off function # € C*(R?) such that 5(x) =
0 for |x| <b—2 and 5(x) =1 for |x| >b—1.
Put u=R)f, p=P)f and z=nu—B[Vy-u] for fe W;’Z(Q) and A€ 2;,. Then,

(A=Mz+V(pp) =nf +g('(u,p)) —AB[Vy-u] and V-z=0 in R?
where
g('(u,p)) = =2(Vyy - V)u — dypu + Vyp + AB[Vy - u).
Obviously, supp g = D;_;.
LemmA 3.7. Let u,p and z be as above. Then, the following formula is valid:
(3.22) z=A;(nf +g('(u,p)) — /B[Vy-u]) and
np = I (nf +g("(w,p)) — ZB[Vy -u]) in R?,
for Le X ..

ProoF. Put v=4A;(nf+g('(u,p))—iB[Vy -u]) and q=IT(nf+g('(u,p))—B[Vy -u)).
By (2.3), (2.4) and (3.2), z— v and np — q satisfy the condition of [Proposition 2.7, thus
we have (3.22). ]

Now we start to prove [Proposition 3.6,

PROOF OF PROPOSITION 3.6. To determine s of [3.4], we employ the contradiction
argument. We may assume that f # 0 and we put wg; = (M(logi)/L(log))f, ;) =
(M (log A)/L(log A))f in and ‘(w,1(;))#(0,0). At first we shall prove s <0. If
s > 0, then by u and p tend to 0 in Qp as |4| — 0, thus we have 0 =f in Q, by
(S). From suppf < Q, it follows f =0, which contradicts the assumption.

Let us suppose that s < 0. By substituting into (S) and equating the terms
which contain the multiplier A° in both sides of (S), we have

(323) —AW(;“) + VI(;N) =0 and V- W) = 0 in £, Wi = 0 on 0Q.

To investigate the behavior of solution as |x| is large, we use the following formula,
which is obtained by substituting into (3.22):

(3.24)  n(2'wgy + 00" (log 2)) = BV - (2°w) + O(2* ! (log 2)")))

1 '
= {0 = g e 0gV DT+ B0+ (. 06)2) + 04 o)),

13+ 00" (log 2))) = H(+8(' (Wi, 1y)2") + 00 (log 1)) in 2,
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where f is an integer. Equating the terms which contain the multiplier 2° in both sides
of (3.24), we obtain

1
nwiy =BV -wl + {Ao ~ (c+ logﬂ)T}g(l(Wu), 1)),

nr(x) = Hg(t(w(,l),r(,l))) in .Qb.
Since the right hand sides of depend only on values of (W(;),r(;) in €, (3.25)

allows us to continue them to the whole domain Q. Thus we obtain (w(;),r(;) which
satisfies (3.23) and

1
nwiy =BV -wl + {Ao - E(C + log\/z)T}g(Z(wu),r(;,))),

(3.25)

(3.26)
ey = g("(wiy,v))  in Q.
Since B[Vy-w(y] =0 for |x| >b—1, when |x| >b—1, we have
—Aw(y + Vg = —A(nwey) + V()
= —A(Aog("(Weay, 1)) + VTE("(Wiay, 1))
=g("(wy, ) =0,
Vewey =V (wi) =V - (Aog("(Wiy, 1)) = 0,
which together with (3.23) implies
(3.27) —Aw + Vi =0 and V-w; =0 inQ, w; =0 ondQ.
Moreover by (3.26)

(3.28) Yo~ {Eo(x) B 4_17[(0 + logﬂ)}T g('(wi). 1)) — 0,

1y = O(x[™") as x| — oo

By the definition of (w(;),x(;)), there exist an integer v, '(Wo, o) and (wy,r1) such that
(wo,19) # (0,0) and

(3.29) (w“)> _ (logl)v(wo> + (log )" (V”) +0((log2)"™2) inQy as |} — 0.
L) Yo ry

We multiply both sides of (3.27) by (logd)™" and take the limit as || — 0, we have

(3.30) —Awg+Vryy=0 and V-wo=0 inQ,, wy=0 ondQ.

Substituting (3.29) into (3.26) and equating the terms of (logA)"™ and (logA)” in both
sides, we have

(3.31) 0— _%Tg(z(w()’ro)%
(3.32) o = B[V - wo| + <A0 - ﬁ T)g(t(wO,ro)) E % Te('(wi,11)),

nro = Hg(l(WO, r())) in Qb.
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If we continue wy and ry to the whole domain Q by (3.32) as in the same way of (3.26),
we have —Awy+Vry=0 and V-wy =0 as |x| >b—1, which combined with (3.30)
implies

(3.33) —Awg+Vryy=0 and V-wog=0 inQ2, w;=0 ondQ.

By (3.31) and (3.32) for |x| > b —1,

o) = | (Bulx = ) ~ Bl (o, 0)) ) v = T i, 0)) = (1)
(3.34) R n

w(x) = Mg( (o, 1) = O(Ix| ™) as x| — 0.

Thus from [Proposition 2.5 it follows that (wg,1o) = (0,0). This contradiction proves
that s =0. Now we have

(g) - (Y;?) +0(M(log2)’) in Q.

Let us determine v of (3.29). Employing the same argument as in (3.23)—(3.28), we
can continue w(; and r;; to Q as follows:

(3.39) W) = BV - wil + {Ao - % (c+ log\//_l)T}(;yf +g(" (Wi, 1)),

ey = I (nf +g("(wey,x()))  in &,
and we have

(336) —AW(;V) + Vr(z) =f and V- Wi = 0 in Q, Wi = 0 on 0Q,

dr

1) = O(x™")  as [x| — oo

1 t
(3.37) MChy {EO(X) “aplet logﬂ)}T(’?f +g((way, ) =0,

If v < 0, taking a limit as |4| — 0 leads a contradiction 0 = f, which implies v = 0. Sup-
pose that v > 0. If we multiply both sides of (3.36) by (logA)™" and take the limit as
|A] — 0, we have (3.30). Substituting (3.29) into (3.35) and equating the terms of
(log2)"™ and (logA)” in both sides, we obtain (3.31) and

= . _ ¢ 4 _ L v t
(3.38) nwo = BIVry - wol + (AO i T)g( (Wo, 10)) — o T(rf" + g("(W1,11))),
nrg = I1g("(Wo,v9)) in Qp,
where

{f v=1,
f' =
0 v=>2.

If we continue wy and ry to the whole domain Q by (3.38), we have (3.33). Employing
the same argument as (3.34), by [Proposition 2.5 we have (wg,ry) = (0,0). This

contradiction implies v = 0. Thus we have and complete the proof of
3.6. O
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By uy (2-dimensional column vector) and q, (scalar) we denote the solution of the
problem:
—Auy+Vagy=f and V-up=0 inQ, uy=0 ondQ,

(3.39) y
u=0(1), q=0(x") as|x|— o,

where fe L, ,(Q). By U; = (u} u}) (2 x 2 matrix) and q; (2-dimensional row vector)
we denote the solution of the problem:
—AU+Vq;=(00) and V-ul=0(i=1,2) inQ, U =(00)on iQ,

(3.40) .
Ur—E =0(1), q,=0(x]") as|x| — .

The uniqueness of (3.39) follows from [Proposition 2.§ and the existence will be proved
below. The unique solvability of (3.40) follows from that of (3.39) (see [17]). Since we
can show that the solution uy of (3.39) converges to some constant vector later on, we
define the constant vector and matrix as follows:

(3.41) b= lim w and L= lim (U, — E).

|x|—o0 |x|—o0

COROLLARY 3.8.

1b + 0(A(log )P,

T

(342) R =uy+ Uy (— 41 (C + logﬂ)]z — L)

for fe L, ,(2) and A e X ,, where wy, Uy, b and L are defined in (3.39)—(3.41), p is an
integer and the order symbol O is used in the sense that

i

Proor. Since v=0 in (3.29) by (3.21), employing the same argument as in the
proof of Proposition 3.6, we have

< Cyoli(log 2| ],

1 71
R —wuy— U <——(C+10g\/z)lz —L) b
qa27Qb

4rn

—Awg+Vyy=f and V-wo=0 inQ, wy=0 ondQ,

1
Wwo — _QTg([(Wlafl)) and 1= O(|x|™") as x| — o0

Thus putting (ug, q9) = (Wo,t9), we have the existence of the solution of (3.39) and w
tends to a constant as |x| — oo. Hence as noted previously, the solution of (3.40):
(U1,q,) also exists and the limits of (3.41) are constant. If we recall that "(w;), ;)

satisfies (3.36) and (3.37), then
wiy — Ui T(nf + g("(Wwiy, 1))

= { (et 0wV = L{TO + ()

I

1 — @ T(nf +g(" (Wi t)) = O(x| ") as x| — oo
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From |Proposition 2.3 it follows that

wiy — Ui Tt +g("(wiy, ) =wo and v — q T(nf + (" (Wi, x(2))) = g0
Since (—1/47n)(c +logy/7)I, — L is invertible as |4 — 0,

T(??f+g(t(wu),r(i)))):< 417:( —i—log\/_)lz— ) b.

Thus we have u = w( + O(4 (log)") = wy+ Ui ((~1/47)(c +logV )L — L)"'b +
O(A(log 2)¥), which implies [3.42). O

§4. Proof of Theorem 1.1.

In this section, we shall obtain the order of local energy decay of e *f. To this
end, we use the result of |[Proposition 3.6 Let 7> 37n/4 and &¢=¢(r) be fixed in
IProposition 3.1l.

PrOOF OF THEOREM 1.1. Let the curve I" = C consist of three curves I'f" and I,
where

't ={leClargi= +3n/4, |)| = ¢},
Ty=T{Ursur;,

Iy ={leClargi= +3n/4, 2/t <|i| <&},
I's={4eC||A=2/t, —3n/4 < argl < 3n/4}

—

and 0 <2/t <e Then, by [3.1), the semigroup ¢4 admits the representation

(4.1) e = LJ XA+ A dr, >0

2ni | -

(cf. [15]). By (3.3) we shall estimate

1 . 1 .
JE(Of = %L MO+ A dL,  To(n)f = ﬁL MR dJ.
1 0

Since by and [Proposition 2.§

|G+ A) ll, 2 < Coullfll, asAelf,

q2—

we have
10T (1), 2 < Comose” “2YVIE] .

In view of we have

1 1 A
o™ Jo(0)f = _.J M (Vof + (log )~ Vif) di + —.J MM S
Tl o 2mi T

= Ky (0f + K5 (0,
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where

-2
1M1l 2.0, < Compllog 2],

On the term K| (#)f, in view of Cauchy’s integral theorem we can replace Iy by I =
Tt ={=—-¢/V2+it|0<t<e/V2),

I = a smooth loop joining the points 1 = (¢/v2)e™ and 1 = (¢/V2)e ™™
and going around the cut in X and connecting I} and I .

Then we have

Since [7 e’)"d) =0, if we apply Lemma 7 of [p. 369, 35] to Ir, e )™ (log i)~ d), we
obtain

< Compe V| 1],
quv-Qb

J” ) e‘;“tlm(Vof + (log l)il Vi f) da
rrur;

||K01(t) qu,Z,Q,7 = q,m,b, el A 1(10g t) ||f||q as t — oo.

On the term K7 (7)f, employing the same argument as in the proof of Lemma 8 of [p.
370, 35], we have

K1)l 5.0, < Cpmpt ™ ' (logt) 2| fll,, ast— oo,
which completes the proof of [Theorem 1.1 O

COROLLARY 4.1. Let 1 < g < o0, b > by and m be a positive integer. Assume that
fe2,(4")NJ,,(2). Then,

(4.2) 1l 2.0, < Comp(1 + 1(l0g ) [1fl, 5, for 120,
(43) 110 fly 0 S Coms(1+ 2(l0g 0P [1f],5,, for 120,

PrOOF. When ¢ is bounded, by [Proposition 2.§

e Kl 2,0, < Clle™ 1,2,
< C(lla™e £, + e f]],)

= C(la™fll, + 1 fll,) = Clf|

q,2m>
|0e~" flly20m-1) = Cllde fll . 20m-1) = ClIll 2
When Ze I'f, by Proposition 2.8 and [3.1) we have
-1
(44) H(’I—FA) f”q 2m+2 S C ,m S,THqu,Zm

for fe 2,(A™). Therefore, by (4.4) and [3.21), if we employ the same argument as in
the proof of Theorem 1.1, we can prove (4.2) and (4.3) for ¢ — oo. O
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§5. Proof of Theorem 1.2
We start with L, — L, estimate in the whole space case. Put

1

(5.1) E(n =g | e () dy

When a e J,(R?), v(¢) = E(f)a solves the nonstationary Stokes equation in R*:

Ov(t) —Av(t)=0 and V-v(/)=0 in (0, 0) x R?
(5.2)
v(0) =a in R°.

By Young’s inequality and Sobolev’s imbedding theorem we have the following
estimates.

LemMA 5.1. Let 1 £g=<r< . Then,

(5.3) 16/03¥ (O, g2 < Corjiat™ VTRl e 121,

i o —(1/q=1/r)—j—|a| /2
(54) 100l g < Corjll+ 0 TR all s 120,
where [-] is the Gauss symbol.

Now we shall prove Mheorem 1.2l Set b= e~ f for feJ,(Q). Then, be Z,(4")
for any integer N =0, and in view of [Proposition 2.8 for any integer N = 0,

(5.5) Iblly, 2n = Co, 1]l

Put u(¢) = e7“b = ¢~ *D4f Then u(¢) is smooth in # and x and satisfies the following
equations with some p(¢):

om(t) —Au(t)+Vp(t) =0 and V-u(t)=0 in (0,00) x Q,

u(z) =0 on (0,0) x 09, u(0)=b in Q.

Obviously, the asymptotic behavior of e~* f for large ¢ > 0 follows from that of u(z), so
that we shall start with the following step.
Ist step. For any integer m = 0, we have the relations:

(5.6) [0(8) 2.2, + 1200 g 20,0, < Comp (140" €1

for any r=0. In fact, let N be a larger integer =([2/q]+2m+6)/2. Since by
[Proposition 2.8 be 2,(4") = J,(2)N qu ()N W;N (Q), by Propositions 2.2(2) and 2.3
there exists a c € W;N(Rz) such that b=c in Q, V-¢=0 in R*> and

(5.7) lelly.on.z2 = Conlblly an = Gy nlIfll,

(cf. [5.5)). Put v(¢) = E(¢)¢c, where E(r) is the operator defined by [5.I]. By
5.1 and

(58) ||a{v<t)||oo72m+l,R2 é Cf]:m(l + t)_l/q_j“ f||q7 ! Z 07 J = 07 1727
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because 2N = [2/q] +2m + 6. Let ¢ be a function of C*(R?) such that ¢(x) =1 for
|x| £b and ¢(x) =0 for |x| =b+ 1, where b is a fixed number =bhy. In view of
IProposition 2.4, putting

w(t) = u(t) — (1 - g)v(r) - B[(Ve) - v(1)],

we see that V-w(f) =0 in Q@ and w(¢) =0 on 0Q for any ¢ =0, and moreover by
[Proposition 2.4 and (5.8) we have

(5.9) 17BI(V) V(O amrare < Comp(L+ 0], 20, j=0,1,2.

Since suppB[(Vp) - v(¢)] € Dp1 and since 1 — ¢(x) =0 for |x| = b, w =u in Q, so that
if we prove that

(5:00) WOl a0y + 1002y S Coms(1+ 078, 120,
then we have [5.6]. To get we set
d = ¢b—B[(Vyp) -b],
g(1) = —{2(Vo - V)v(t) + dov(1)} — (3, — 2)B[(Ve) - ¥(1)],
and then
ow(t) —Aw(t) +Vp(t) =g(t) and 4-w(t)=0 1in (0,0) x Q,
w(t) =0 on 0Q, w(0)=d inQ.

To represent w(¢) by Duhamel’s principle and to estimate the resulting formula by using
Corollary 4.1, we need the following facts:

(5.11) de D, (AMYN T, 511 (RQ),

(5.12) o/g(t) € 2,(A")NJyp1(Q), 120, j=0,1,
(5.13) d]l4,2n = CynlIfll,;

(5.14) 12/8(0) 1y 2m < Coms(1+ 07|, 20, j=0,1.

Since be 7,(4Y) (N=1),be W;N(Q) N qu (2)NJ,(£2), and hence by [Proposition 2.4
V-d=0in Q and d=b in Q,_;, and by [5.5), holds. Moreover, (5.11) follows
from the following lemma.

LEmMA 5.2. Let 1 <q<oo. Let U be a neighborhood of O (0 = R*\Q) in R*
and N an integer =1. Iface W;N(Q) satisfies the condition V-a=0in Q2 and a=10 in
QNU, then aeZ,(A"). As a result, if ae WjN(Q) NJ,(2) coincides with some
be 2,(4Y) in QNU, then ae Z,4").

Postponing a proof of [Lemma 5.2, we shall show (5.12) and [5.14). By [5.8] and
(5.9) we have as well as dg(1) e W;m(Q) for any 7> 0 and j=0,1. Moreover,
we see easily that V - ¢/g(f) =0 in  and supp ¢/g(f) < Dy for any 1> 0 and j =0, 1.
Hence by Lemma 5.2 we have (5.12) too.
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PrROOF OF LEmMMA 5.2. For fe L,(Q), Pf is defined by Pf = f —Vq, where q is
a solution of the boundary value problem:

(5.15) Aq=V-f inQ and (n-V)g=n-f on0Q,

where n is a unit exterior normal of 0Q and the trace to dQ is justified for functions
belonging to the space {ue L,(Q)|V -ue L,(2)} by the same argument of Proposition
12 of [28]. Ifae W;N(Q) satisfies the condition: V-a=0in Q and a=0 in QN U,
then V- {(—4)”a} =0 in Q and n- {(—4)”a} = 0 on 0Q for any M =0,1,...,N — 1,
and hence by (5.15) P(—4)”a = (—4)™a. Therefore, by induction on M we see that
AMa = (—M)Ma for M =0,1,..., N — 1, which implies immediately that 4"a e 7,(4)
for M =0,1,...,N — 1, that is a€ 2,(4A"). This completes the proof of the first part
of the lemma. Putting w=a —b and applying the first part to w, we also have the
second part, which completes the proof of the lemma. O

In view of (5.11) and (5.12), by Duhamel’s principle w(¢) is described as the form:
t

w(t) =e d+ J e~ (=9 4g(s) ds.
0

By [Corollary 4.1, {5.13) and {5.14), we have

W) g, 2m.0, = Comn(1 + 1(log 1))~ | £,

t
+ Cq,m,bJ (1+ (1= s)(log(t — £))) ' (1 +5)"* ds ],
0
We split the above integral into two parts:

JZ/2(1 + (1= s)(log(t = 5))*) ' (1 +5) 7" ds

(-3 (=)))

J:/Z( + (1= s)(log(t — )2) (1 + )"V ds

t/2
J (1+s) Vids < C(1410)71
0

p—

lIA

(1 +£)_WJ (14 (1= )(log(t —$)*) " ds < C(1+ 1)
2 t/2 B |

thus we have
—1
WO g.2m.0, < Comn(L+ 0 £],, £20.
Since

t
a,j ¢ 9g(5) ds = e g (0) + j 949 g(s) ds,
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by [Corollary 4.1, (5.13) and [5.14] we have also

||alw([)||q72m79,, = q7m,b(1 + l‘)il/q” f“q, t= 07

which completes the proof of [5.10). Therefore we have [5.6).
In view of [5.6), to complete the estimate of |lu(z)|| g.m for large ¢ >0, it remains to
estimate [[u(?)|, ,, (xzp- To this end, we start with the following lemma.

LEmMA 5.3. Let p(t) be a certain pressure associated with u(t). Then,

(5.16) POy 2m.0, = Comp(1+ 0" 1]],:
ProoF. From it follows that
VPOl y2m-1.0, = 0@l 2m-1.0, T 140D, 21,0,
< Cpmp(L+0"")1],, =0

We can also take p(z,x) — |Q2p] jQ (1,x) dx, |Q;| being the volume of Q, as a pressure
instead of p(¢,x), so that by applymg [Proposition 2.2(1), we are led to [5.16). O]

2nd step. Choose iy € C*(R?) so that y(x) =1 for |x| <bh—1 and Y(x) =0 for
|x| = b. Put

2(1) = (1 = y)u(7) + B[(V) - u()],
e = (1-y)b+B[(Vy)-b],
h(z) =2(Viy - V)u(s) + Ayu(z) + (0: — A)B[(V) - u(1)] — (Vi)p(2),

and then
0:z(t) — Az(t) + V((1 —y)p(t)) =h(¢) and V-z(f)=0 in (0,0) x R?
z(0) =e in R°.

Moreover, by [5.6), (5.7), (5.16) and [Proposition 2.4

-1
(5.17) IOy 21 g2 < Comp(L+0) Bl mz 1,
(5.18) lell, 2052 < Compll e m20.

Since V-e =0, z(z) is given by the formula:

(5.19) 2(t) = E(t)e+z,(1), z(t) = J; E(t — 5)Pp2h(s) ds.

Note that z(¢z) = u(¢) when |x| = b, so that we shall estimate z(7). At first, we have by

(5.4) and
(5.20) [E)el, g2 < CoorL 4 1) 10 ]

Let us estimate z;(z). Since supp h(¢) < D, for all ¢+ = 0, by (5.4), Holder’s inequality
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and (5.17), we have

t

21 (D)), g = C Jo(l +1- S)_(H/r)||h(5)||1,[2(171/;~)]+1,R2 ds

lIA

t
o [ (1415 NGOl 1 s

t
< cr,qj (41— ) 01 15V as 1],
0

We split the above integral into two parts:

t/2
J (141—9)""Vr (1 4+ 5719 ds
0

—1+1/r 1/2
< <1 +§> J (145)ds < C(1 + )"V,
0

t
J (1+41—5)""r1 +5)7 Y45
t/2

—1/q 1
< (1 +§) J (1+1—s)"rds < C(1 4 1)~ a1
t/2

Thus we have

(5.21) Iz (O, < (140" VT, T<gSr<o, 120,

Since z(¢) = u(¢) for |x| = b and e f =u(t— 1) for t > 1, by [5.6), [5.19), [5.20] and

(5.21) we have for t = 1.
3rd step. Let us prove fort<1. Let N=1[2(1/q—1/r)]. If N is even, then

by |[Proposition 2.8 we have

e 48l S Cou(14" 281, + [l 11l) < €yt 1,

Similarly, e~ fl|, v , < Cp "V 22||f||,. Therefore, we have by Sobolev’s im-
bedding theorem and an interpolation method

_ _ N2y 1=0, N /270
(5.22) le™ £, = Cyrlle™ ™ flly 21110 = Cor (VN1
= Cy, V| 1,

where 0 = {N +2—-2(1/q—1/r)}/2. If N is odd, replace N by N — 1 and employ the
same argument as [5.22). Thus we have [1.2].

Next, we shall prove [1.3] and [1.4). Since we have [1.3) and [1.4) for small ¢ with
the same method as [5.22], it is sufficient to prove and for large ¢. Let us
estimate u(¢) for |x| = b. Let z(¢) be the same function as in the proof of [Theorem 1.2
Then,

Vz(t) =VE(t)e+Vz (1), Vzi(t) = J; VE(t — s)Pg:h(s) ds.
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Then we claim
Cyr(1+0) W12 g if 1< r <2,
Cpr(1+ 07 1], if 2 <r.
In fact, by (5.4) and we have
IVE(t)e], g2 < Cyr(1+ 1) V0712 1)

(5.23) [Va(1)], 5 < {

So we shall estimate Vz;(z). By (5.4), Holder’s inequality and (5.17), we have

t

—(1-1/r)—1/2
1721 ()l g2 < Cyr | (141 V20 1y, m2 S

t
—(1-1/r)—1/2
Cy.r 0(1+Z—S) (=1 /Hh(s>|’q,[2(171/r)]+2,R2 ds
t
Cpr | (L41—5) (1 4 5)7 Y9 ds 1]
JO

lIA

lIA

We split the above integral into two parts. The first part is

t/2

2 672177
J (1—|—t—s)<3/21/r)(1+s)l/qu§(1+§) J (145" ds
0 0

<C(1+ t)—(l/q—l/r)—l/Z‘
On the other part, if 1 <r <2, then we have

t

! —1/q
J (L 1=5)" 2014 )70 ds < (1 +£> J (141 —5) @210 g
t/2 2 t/2

<C(l+ [)—(1/(1—1/")—1/2.

If 2 <r< oo, since we have

t
J (1+t—s5) gy < c,
t/2

then

t
J (It —s) P10 (1 4 5y Vi ds < (1 47V
t/2

\
)

Summing up the above results, we obtain (5.23), which implies that

Cyr(1+ ) W12 g if 1< r <2,

(5.24) Vu(@)|l, e
Alx| = b} Cq’r(l'i‘t)il/q“fnq? lf2<r< 0,

for 1 = 1. By [5.24] and [5.6] we have and for r # 2.

In the case that r =2, we use weighted L,-method. By the energy method,

1 ! 1
(525) 1013+ | I7u(o)l3 ds = 51715
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On the other hand,

< @van) = Va3 + 217a), Vou()

= [Vu(0)|l; — 2e(4u(z), ou(2)).

Applying the equation (NS) to the right-hand side, ws have

(5.26) %(IIIVU(I)H%) = [Vu(0)[l3 = 26(Vp(2), (1)) — 2t 0m(0) 3

< [Vu(o)[l3 + 2¢(p(2), V - 2u(0)) = |[Vu(2)]]5.

and imply that

IVu(?)||, £ CrV2||f||, for ¢ > 0.

For 1 <g<r=2, by and the above we have

IVu(r)|l, = Ve 24241,

é thl/ZHef(t/Z)A fHZ

< ¢ Wl PR for ¢ > 0,

which completes the proof.
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