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Abstract. Let g be a complex semisimple Lie algebra with symmetric decomposition
g=If+p. For each irreducible Harish-Chandra (g, f)-module X, we construct a family of
nilpotent Lie subalgebras 1(¢) of g whose universal enveloping algebras U(n(0)) act on X
locally freely. The Lie subalgebras n(() are parametrized by the nilpotent orbits ¢ in the
associated variety of X, and they are obtained by making use of the Cayley tranformation
of shy-triples (Kostant-Sekiguchi correspondence). As a consequence, it is shown that an
irreducible Harish-Chandra module has the possible maximal Gelfand-Kirillov dimension
if and only if it admits locally free U(n,,)-action for n,, = n(0,,,) attached to a principal
nilpotent orbit O, in p.

Introduction.

Let g be a complex semisimple Lie algebra, and let g =%+ p be the symmetric
decomposition of g defined by an involutive automorphism 6 of g. By a Harish-
Chandra module associated to the pair (g,f), we mean a U(g)-module X of finite length
on which the subalgebra U(f) acts locally finitely. Here U(q) denotes the universal
enveloping algebra of a complex Lie algebra q.

The main purpose of this paper is to give for each irreducible Harish-Chandra
module X a family of nilpotent Lie subalgebras n(¢) of g whose enveloping algebras
Un(0O)) act on X locally freely. The Lie subalgebras n(() are parametrized by the
nilpotent K¢?-orbits ¢ contained in the associated variety ¥"(X) = p of X, where K&
denotes the analytic subgroup of the adjoint group G¢ = Int(g) of g corresponding to
the Lie subalgebra f. We construct n(¢) from a K&-orbit ¢ through the Cayley
transformation of normal sl,-triples that gives the Kostant-Sekiguchi correspondence of
nilpotent orbits ([10]).

The Harish-Chandra modules are essentially related to infinite-dimensional repre-
sentations of a real semisimple Lie group as follows. Let g, be any real form of g, and
let G be a connected linear Lie group with Lie algebra g,. We choose an involution 0
of g so that the real form g, is O-stable and that f, :=fNg, coincides with the Lie
algebra of a maximal compact subgroup K of G ([4, Ch. III, §4]). By fundamental
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results of Harish-Chandra ([3], see also [13, Ch. 3]), any admissible Hilbert repre-
sentation (7, H) of G of finite length yields a Harish-Chandra module X by passing to
the K-finite part of H through differentiation. The irreducibility is preserved by the
assignment H — X. Accordingly, we may say that the present work reveals some new
algebraic aspects of representations of the group G.

We now explain the results of this article in more detail.

(I) For a nonzero nilpotent K&/-orbit @ in p, take a normal sl,-triple (X, H,Y) =
g with X € O (see 1.6), and define its Cayley transform (X', H’, Y') as in [1.2]. Making
use of the /-eigenspaces g(/) (/=1,2,...) of g With respect to ad(H "), we can construct
a nilpotent Lie subalgebra n(()) = ( 1) @a3(1) ® (P, (1)) of g with g{(1) ® g3(1)
< g(1) (see 1.4 and 1.6 for the precise deﬁmtlon of subspaces g, (1) of g(/)) such that:

(i) dimn(O0) = dim0,

(ii) the Killing form B of g is nondegenerate on ad(X)f x n(0).
(See Mheorem 1.2 and Cemma 3.1.) Up to K¢&/-conjugacy, the Lie subalgebra n(C) is
independent of the choice of an sl,-triple (X, H,Y). In addition, the ideal (P, , g(/) of
n((0) becomes stable under the complex conjugation of g with respect to the real form
g9, if we construct n(¢) from a strictly normal sl-triple ([Proposition 3.1). We can
describe concretely the Lie subalgebras n(() associated to the holomorphic nilpotent
orbits ¢ in p (Theorem 3.6), when g, is a noncompact real simple Lie algebra of
hermitian type. As we indicate below, the above two properties (i) and (ii) are crucial
to establish the local freeness of the U(n(¢))-action on Harish-Chandra modules.

(I) Now let X be an irreducible Harish-Chandra module. Through the natural
increasing filtlation Uy (g) (k = O, 1,...) of U(g), we attach to each nonzero vector v € X
a graded module M = gr(X;v) (—Dk oUk(9)v/Ur—1(g)v over the symmetric algebra

~ @, Uk(a)/Uk-1(g) of g, where U_i(g) := {0}. The associated variety 7"(X)

of X is then defined to be the set of the common zeros of elements in the annihilator
Anng;) (M) of M. Here, ¥'(X) is independent of the choice of a vector v, and we
identify S(g) with the ring of polynomial functions on g through the Killing form B.

As is shown by Vogan [12], the variety 7"(X) associated to X is a union of finitely
many nilpotent K¢¢-orbits in p (cf. Cemma 2.2). If @ is a K&-orbit contained in
7°(X), the above properties (i) and (ii) imply that the natural projection p : g — g/n(0)"
induces a linear isomorphism from the tangent space ad(X)f of ¢ at X onto g/n(0)",
where n(¢)" is the orthogonal of n(¢) in g with respect to B. This allows us to deduce
that M = gr(X;v) is a torsion free S(n(C¢))-module for every nonzero veX. As a
consequence, we establish the main result of this article as follows.

THEOREM. (Theorem 3.2) Let X be an irreducible Harish-Chandra module. The
enveloping algebra U(n(0O)) of nilpotent Lie subalgebra n(O) acts on X locally freely for
every nilpotent Kgd-orbit (O < p contained in the associated variety ¥ (X) of X.

We remark that, by the Hilbert-Serre theorem, X is a torsion free U(n)-module for a
Lie subalgebra n of g only if dimn < dim 7" (X).

Bearing this remark in mind, we derive two interesting conclusions of the above
theorem. First, we find that the nilpotent Lie subalgebra n(0,,.) associated to a
maximal Kgd-orbit Omax 10 77 (X) realizes a maximal Lie subalgebra of g among those

having locally free action on X (Theorem 3.3). Second, let g=f+a+m, be a
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complexified Iwasawa decomposition of g,. Then it can be shown that an irreducible
Harish-Chandra module X is large i.e., dim 7" (X) = dimn,,, if and only if X is a torsion
free U(n,,)-module (Theorem 3.4).

(I)  The organization of this paper is as follows.

In section 1, we first study certain fine structure on finite-dimensional SL(2,C)-
modules equipped with involutive linear transformations (see |[Proposition 1.2] and
Theorem 1.1). The properties (i) and (ii) stated in (I) for the nilpotent Lie subalgebra
n(0) of g are shown by applying to the adjoint representation of s :=
CX+CH+CY ~5¢l(2,C) on g.

Section 2 is devoted to giving a simple criterion for X to be a torsion free U(n)-
module. More precisely we shall consider a much more general situation, where g is an
arbitrary complex Lie algebra, f and n are any two Lie subargebras of g, and X is a
locally U (f)-finite, irreducible U(g)-module. Our criterion ([Theorem 2.1) is given by
means of the Lie subalgebras f, n and the associated variety 7" (X) of X.

In section 3, the main result of this paper, [Theorem 3.2, is established by using
Theorems and 2.1. Then we deduce two important consequences (Theorems
and (.4) of MTheorem 3.2. In addition, the Lie subalgebras n((¢) associated to the
holomorphic nilpotent Kgd-orbits (0 are described explicitly in 3.3.

1. SL(2,C)-modules with involution &.

In this section, we begin with investigating in 1.1-1.5 certain fine structure on finite-
dimensional SL(2, C)-modules V equipped with an involutive linear transformation
6 € GL(V'), compatible with a nontrivial involution ¢ of SL(2,C). The results are
summarized as [Proposition 1.2] and [Theorem 1.1

We then apply the results to Lie algebra case in 1.6, where V' =g is a complex
semisimple Lie algebra with an involution ¢ = 6, and SL(2,C) acts on g through the
adjoint representation of a @-stable, simple Lie subalgebra s ~ sl(2, C) of g. This gives
us a new kind of decomposition of g ([Theorem 1.2(3)), which is, in a sense, comparable
with the (complexified) generalized Iwasawa decompositions of g. The nilpotent Lie
subalgebra n of g appearing in this decomposition will play an essential role in §3 for
studying locally free U(n)-action on Harish-Chandra modules.

1.1. sl)-triples and Cayley transformation.

Let s=CX+ CH+ CY ~5sl(2,C) be a three-dimensional, complex simple Lie
algebra with commutation relation:
(1.1) [H,X|=2X, [H,Y]=-2Y, [X,Y]=H.
We denote by S ~ SL(2, C) the simply connected Lie group with Lie algebra s. Setting

(1.2) X’:%(H—X-I-Y), H=X+7, Y’:—%(H-i—X—Y),

one gets another sh-triple (X’, H', Y') in s which satisfies the same relation [(1.1). If we
identify s with sl(2,C) by

0 1 1 0 0 0
XZ(O 0)’ H:(o —1)’ Y:<1 0)’
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, i1 —1 , (01 , (-1 —1
X_2(1 —1)’ H_<1 o) V=3l

is a basis of the real form su(l,1) of s, and the Cayley transformation:

then

1+i\1 i
sends the sly-triple (X, H,Y) to (X' H',Y'). Note that the center of S contains a

1
(1.3) ¢:s3Z— Ad(c)Z=cZc'es withc= : ( Z)ESL(2,C)

. .. : . (-1 0
unique nontrivial element ¢ = exp(niH') corresponding to the matrix ( I 1).

Now let ¢ be the involutive automorphism of s defined by
(1.4) cX=-X, cH=H, oY=-Y.

It then follows that ¢X'=-Y', ¢Y'=—-X'" and oH = —H’'. Extend ¢ to an
automorphism of S through the exponential map, which we denote again by o. Let

E(X’— Y)=expX'-exp(=Y’')-exp X’

(1.5) W= exp 5

0
be the element of S corresponding to the matrix ((l) ) which represents the
—1i

nontrivial element of the Weyl group of s with respect to the Cartan subalgebra CH'.
Direct computation in S ~ SL(2,C) immediately gives the following lemma.

LemMMmA 1.1. One has the equalities:
(1) a(w)=w, w*=g¢,
2) a(s) =wsw™! (se8), and o equals Ad(w) on s,

(3) Ad(exp(—iY")X = iX'/2.

1.2. Irreducible S-modules.

For each nonnegative integer d, let (z4, V;) be an irreducible S-module of dimension
d+1. The Lie algebra s acts on V; through differentiation. Take a nonzero highest
weight @)

ght vector v, € V; such that

(1.6) ta(HY0 = a1y (X"l =0,
and set

1 i (a .
(1.7) vgl)zi.:ﬁrd(Y')]vy) (j=0,1,....d).

Then the vectors UEZ )2 (0 <j<d) form a basis of V;. The action of X', H', Y’ on Vy
is described respectlvely as

d) d
Td(XI>U£1 % = (d+ 1 - ) Eg )2(]'_1)7
d)
(1.8) w(HN, = (d -2,

d
Td(Y/>U£1 )zj (7 + 1>U§1 )2(]+1)
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where v(_dcz_z = Ugi)z =0. We note that the element we S in acts on V, as

d —j (d .
(1.9) gy = (=D, (=0,1,....d).

1.3. [Extension ¢ and S-homomorphism J.

Let (z,V) be any finite-dimensional S-module (and so s-module). A map & :
V' — V is called an extension of o to V if it is an involutive linear isomorphism on V'
satisfying
(1.10) 61(2)6 ' =1(6Z) (Zes).

The totality of such extensions will be denoted by Ey. If V' =V, is irreducible, ¢ :=
it(w) for d€2Z +1; 6:=1(w) for d € 2Z, gives an extension of ¢ to V, by [Lemmal
1.1(2).

In 1.6 we shall consider an extension ¢ arising from an involutive automorphism of
a semisimple Lie algebra g = V', where s is a Lie subalgebra of g acting on V' through
the adjoint representation.

Let Fy denote the set of all S-homomorphisms J on V such that J? = 7(e), where
w2 =¢ is, as in [Lemma 1.1, the nontrivial central element of S. Then,

ProposITION 1.1.  The assignment 6 — J := Gt(w) gives a bijective correspondence
from Ey onto Fy.

ProOF. Let ¢ be in Ey. Then together with yields that
J1(Z) = 6t(Ad(w)Z)t(w) = 61(aZ)t(w) = 1(Z)J
for every Z € s, and that
J? = (&e(w)a)r(w) = t(a(w))z(w) = 7(w)* = 7(¢).

We thus find that J € Fy, for the group S is connected.
Conversely, if J is in Fy, then & := Jr(w)~" belongs to Ey. In fact, it follows from
that

& =Jt(w) P =1(e)r(e)" = idy,
and that
61(2)67" = 1(w) '2(Z)t(w) = 1(cZ)

for Z € s, where idy denotes the identity operator on V. These two equalities show that
¢ 1s an extension of ¢ to V. ]

It should be noticed that
(1.11) Jo=aJ =t(w),

since ¢ is involutive and it commutes with z(w).
We fix once and for all an extension ¢ of ¢ to V, and the corresponding S-
homomorphism J = gz(w).



134 A. Gyoja AND H. YAMASHITA

1.4. The subspace U.

For an S-module (7, V) with 6 € E; and the corresponding J € Fy in 1.3, let
(1.12) V=V+1)®V(g,—1) with V(a, +1):={ve V|év= +v}

be the eigenspace decomposition of V' with respect to 6. The semisimple element H' € s
gives a weight space decomposition of V-

(1.13) V=@V withV():={veV|t(H =MW}
leZ
Let
(1.14) V==@my - Va with [mg]-V ~Vy@® --- @ Vy (mg-copies)
d>0

be the irreducible decomposition of the S-module V, where m,; denotes the multiplicity
of simple S-module V; (see 1.2) in V. Put

(1.15) VW = @ [ma)-VacV, 1) :={x+dn|n=01,..1},

del(k)
for k =0,1,2,3. Then V® is the S-submodule of V' generated by all the maximal
weight vectors in V' with weight 1 = x (mod 4). Clearly it holds that

3
(1.16) V=@V"™ asS-modules,
k=0
and that
(1.17) VO =@ rWi)y  with VW) .= y@np()
leZ

gives the weight space decomposition of V), where V*)(I) = {0} if x — [ ¢2Z. Note
that any S-submodule W of V' decomposes as

3
(1.18) w=@wnvrw,

k=0
since each irreducible constituent of W with highest weight d € I(x) is contained in V).

Using the S-homomorphism J on V such that J* = 1(¢)* = 7(1) = idy, we decom-
pose the S-representation (7, V) also as

3
(119) V:@V(n) Wlth V('?) = {UG V|JU:inU}.
n=0

Denote by Vi, (/) := V()N V{, the l-weight subspace of V,). We observe that V, (/)
= {0} if  — [ ¢ 2Z, because J> = 1(¢) = exp(nit(H')) acts on V(I) by the scalar (-1)".

Summarizing the above discussion, we immediately deduce the following lemma on
the compatibility of two decompositions (1.16) and (1.19).

LemMa 1.2. (7, V) admits the decomposition:

3
(1.20) V= @0 Vi with V) o=V9N1,
K, =

as S-modules, and V,* equals {0} if kx —n¢2Z.



Locally free U(n)-action 135

This lemma shows that the even part V" := P, _, V(/) and the odd part V*% .=

P;erys V() of V decompose respectively as
(121) yeer = O @r@ =vy,@Vy=Vlereviaers:,
' yed =y @ v® =y @ Vg =Vievierier;.

We note that the involution ¢ acts on V in the following way.

Lemma 1.3, For x,1=0,1,2,3, and 1€ Z, let V, (1) =V, N V(l) denote the I-
weight subspace of V,©. Then it holds that

(1.22) oV, =V, aV(l)=V(-l), andsoaV,(I)= V5 (-1I).

Proor. It follows from that, if W is any irreducible S-submodule of V, so is
W and dim W equals dimgW. This implies that each S-submodule V'* is g-stable.
We get oV, =V, by virtue of the commutativity (1.11). Thus we get the first
equality in (1.22). The second one follows from ¢H' = —H', and the third one is an
immediate consequence of the former two. ]

We now introduce a subspace U of V' defined as follows:

1>2

(1.23) U=(r(herii) e (@ V<l>>.

Later in §3, this subspace U gives a nilpotent Lie subalgebra n of a semisimple Lie
algebra g which admits locally free action on Harish-Chandra modules for g.

The following proposition is one of the main ingredients to establish our main result
on locally free U(n)-action on Harish-Chandra modules.

PrOPOSITION 1.2.  Let (7, V) be a finite-dimensional S-module with &, J € GL(V) as
in 1.3, and let U be the subspace of V defined above. Then V is expressed as a sum of
three subspaces as

(1.24) V="V(,+1)+Kert(X)+ U=6U+Kert(X)+ U,
where V(6,41) is the subspace of G-fixed vectors as in (1.12), and Kert(X) ={ve V|
7(X)v = 0} denotes the kernel of t(X).
ProOOF. Set M := V(G,+1)+ Kerz(X) + U. First we see easily from
together with the definition of U that the sum V(d,+1)+ U is decomposed as
V(eg,+1)+U=U+6U+ V(a,+1)
= { D V(l)} e(viheri-nie{rner(-n}

[7]=2
e{r) @ (=))Nre+1)} @ {(r3(1) ® V3 (=1)) N V(3,+1)}
@{roynr,+1)}.
Hence, for the proof of it is enough to show that three subspaces:

(1.25) {Qf? = (VE() @ VE(~1))NV(5;—1) with (1) = (1,3),(3,1), and
' R:=V(0)NV(,—1),
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are contained in M. Before proving this, we remark that
(1.26) M > Kert(X) = (expit(Y')) - Kert(X’)

by [Cemma 1.1/(3), and that the subspace Kerz(X') is exactly the linear span of all the
maximal weight vectors in V' with respect to 7(H’).

Now let (x,77) be (1,3) or (3,1), and let us show Oy = M. Consider the irreducible
decomposition:

N
(1.27) VE=@ Ve
p=1
as an S-module, where V is, as in 1.2, the irreducible S-module with highest weight
d, = k (mod 4).
For a while we fix any p e {1,2,...,s}, and take a nonzero highest weight vector

UEZF) € Vy4,(dy) = Kerz(X'). Then one gets

(1.28) (expit(Y")) sz vd ZJeM

by [(1.26), where v;;l”jzj =7(Y'y ol dp / J' € Vg, is a weight vector with weight d, — 2/. Since

(—B‘ |22 V(l) = M, we find that vid”) + iv(_df) lies in M, and this vector can be calculated as
follows:

U] b 4 i ’1’) :vgd”)—i—( DD+ (1)) by [1.9)
= vgdp) + (=D D255 by
— vgd”) + (—1)(”])/21"7“&1)561”) since vgd”) € Vn"
= v(ld”) &vsd” )

for (x,n) =(3,1) or (1,3). We thus conclude v&‘” avg e M.

Considering this inclusion for all p=1,2,...,s, we get Q) = M since the vectors
vgd”) —6'vgd”) (p=1,2,...,s) form a basis of Oy by (1.22).
The inclusion R © M can be shown in the same (even easier) way. O

1.5. S-modules with JS-invariant form.

Let (7, V) be, as in 1.3, a finite-dimensional S-module with extension & € £y and
J =at(w) € Fy. A bilinear form B on V is called J- and S-invariant, or JS-invariant
for short, if it satisfies

(1.29) B(Jv, Jv') = B(z(s)v,7(s)v") = B(v,v") (s€S),
or equivalently,
(1.30) B(gv,av") = B(v,v"), and B(z(Z)v,v") + B(v,7(Z)v') =0 (Ze€s)

for all v,v' e V.

Now let us consider the subspaces V(a, +1), V(I) (/€ Z) and the S-submodules
Ve, Vi, (c,n=0,1,2,3) of V defined in (1.12), (1.13), and [T.15), (1.19) respectively.
If B is any JS-invariant bilinear form on V, these subspaces have the following
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orthogonality relations with respect to B:

(1.31) VG, +1) LV(E, F1), VI)LV{I') if1+1"#0,

(1.32) VO LV if e £u, Vi LV i nt+n' #0or4,

which can be checked easily by the JS-invariance of B. (For the third relation, use the
fact that the Casimir element H'? +2(X'Y’'+ Y'X’) for s has distinct eigenvalues on
each V("').) Here, for any subsets L; and L, of V, L; L L, stands for B(v;,v;) = 0 for
every v; € Ly and v, € L.

Now we get the following consequence of |Proposition 1.2 for (7, V) with JS-
invariant form.

THEOREM 1.1.  Assume that the S-module (t, V') admits a JS-invariant, nondegenerate
symmetric bilinear form B on V. Then we get the following.

(1) dimU =dimz(X)V(6,+1) =dimz(X)V(5,—1) = (dimz(X)V)/2.

(2) B is nondegenerate on t(X)V(a,+1) x U.

(3) V=(V(e,+1)+Kerz(X)) @ U (direct sum).
Here V (6, +1) and U are the subspaces of 'V defined by (1.12) and in (1.23), respectively.

Proor. (1) We first prove the equality dim7(X)V (6, +1) = dim7(X)V (G, —1). This
can be done just in the same way as in the proof of [8, Prop. 5].

In fact, set (v,v')y := B(z(X)v,v) (v,v’ € V). Then we can see that (-,-), gives
a skew-symmetric bilinear form on V" with kernel Kerz(X). Hence this (-,-), naturally
induces a nondegenerate, skew-symmetric bilinear form on V' /Ker z(X) which we denote
again by (-,-)y. Note that the operator t(X) sends V(g,+1) to V(ag, ¥1) since
oX = —X. Hence we can identify V' /Kerz(X) with the direct sum:

V(e,+1)/(Kerz(X)NV(6,+1)) @ V(6,—1)/(Kerz(X)NV(5,—1)),

in the canonical way, and each constituent V' (g, +1)/(Kert(X)N V (G, +1)) is totally
isotropic with respect to (-,-), by the first orthogonality in (1.31). This shows that the
bilinear form (-,-), gives a nondegenerate pairing on

V(g,+1)/(Kert(X)NV(a,+1)) x V(a,—1)/(Kert(X)NV(a,—1)).
We thus obtain
dimt(X)V(a,+1) = dim V(a,+1)/(Kert(X) N V (G, +1))
=dim V(g,—1)/(Kert(X)NV(a,—1)) = dim(X)V(a, 1),
which is equal to (dimz(X)V)/2.

Second, let us prove the first equality in (1), or equivalently dim U = (dim7(X)V")/2
by the above result. Keeping in mind, we can calculate dimz(X)V as

dimz(X)V = dim V — dimKerz(X') = dim V' — (dim ¥ (0) + dim V(1))

=dim V(1) +2) _ dim V().
1>2
Here we used the fact that dim Kert(X’) coincides with the number of (linearly in-
dependent) maximal weight vectors in the S-module V, which is given by dim V' (0) +
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dim V(1) (see 1.2). In view of the definition of U, it is sufficient for us to show
(1.33) dim ¥} (1) 4 dim Vf(l):%dim V(1).

This is true because the bilinear form B gives nondegenerate pairings on

(1.34) Vi) x Vi(=1) and V(1) x V3(-1),

because of (1.31) and (1.32). Thus the proof of (1) is over.
(2) For any subset L of V, let L+ denote the orthogonal of L in V' with respect to
B. Observe that (Kerz(X))" = t(X)V and that V(, +1)" = V(6, F1). Then we get

(1.35) (V(&,+1) + Kert(X))" = o(X)V (5, +1),

with 7(X)V(a, £1) =« V(6, F1) in mind. [Proposition 1.2 combined with this equality
shows that U Nt(X)V(G,+1) = {0}. We thus get the assertion, because the
subspaces U and 7(X)V(a,+1) have the same dimension as is already shown in (1).

(3) Because of (1) and [1.35), it suffices to show that the intersection of the two
direct summands of the right hand side is equal to zero. If v belongs to both
summands, then it follows that v € U, that v e (¢(X)V(&,+1))" by [1.35), and hence that
v=0 by (2). O

REMARK.  Since 7(Y')V, (1) = V*(—1), it follows from (1.31) and (1.32) that

(1.36) B(z(Y'),0") =0 forv,v’ eUNV(1) =V (1)@ V;(1).

This combined with (1.33) shows that UN V(1) is a maximally totally isotropic subspace
for the skew-symmetric bilinear form V(1) x V(1) 3 (v;,v2) — B(z(Y')v1,v2) € C on
V(1).

1.6. An application of Theorem 1.1.

We conclude this section by an application of to the case where g =V
is a semisimple Lie algebra and (7, V) is the adjoint representation on g of a Lie
subalgebra s ~sl(2,C) < g.

To be more precise, let ¢ be a complex semisimple Lie algebra, and 0 be an
involutive automorphism of g. We denote by g =+ p the eigenspace decomposition
of g with respect to 0, where T:= g(0,+1) and p := g(#,—1) are as in (1.12) with 6 = 6.

Let (X, H, Y) be an sl,-triple in g with commutation relation [1.1]. Such a triple is

called normal (cf. [8]) if o = 0 acts on the elements X, H, and Y as in [1.4]. Take an
arbitrary normal sl-triple (X, H,Y) in g, and set s :=CX + CH+ CY = CX'+ CH'+
CY' ~¢l(2,C). Here (X',H',Y') is the Cayley transform of (X,H,Y) defined by
1.2).
We consider (7, V) = (ad|s,g), the adjoint representation of s on g. Put J:=
0 Ad(w), where w is defined by [1.5]. Then the involution 6 on g is actually an
extension of 0]s (= the restriction of @ to s) to g in the sense of [I.10), and that the
Killing form B of g gives a nondegenerate JS-invariant form on g (see 1.5 for the
definition). Let

(1.37) n=n:=(gi(1) @g3(1)) @ <@9(1))

1>2
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denote the subspace U of g defined in ((1.23) for V¥ =g. Then it is easily seen that n is a
nilpotent Lie subalgebra of g.
Applying to the above setting, we now get

THEOREM 1.2. Let g =1+ p be the symmetric decomposition of a complex semi-
simple Lie algebra g with respect to the involution 0 of g, and let (X,H,Y) be a normal
sly-triple in g. Then one gets the following properties (1)—(3) for the nilpotent Lie
subalgebra n=ns of g given by (1.37):

(1) dimn = dimad(X)f = dimad(X)p = (dimad(X)g)/2,

(2) the Killing form B of g is nondegenerate on ad(X)I x n,

(3) g=(F+3(X)) @n as vector spaces.

Here 3(X):= Kerad(X) denotes the centralizer of X in g.

REMARKS. (1) Set 1n:= @12 ,8(/), then m is a nilpotent Lie subalgebra of g con-
taining n as its ideal. The Remark in 1.5 implies that our n is a polarizing subalgebra
(see e.g., [1, p. 28]) of n for the linear form:

éy/ ZﬁaZHB<Y/,Z>EC

on 1, defined by the nilpotent element Y’ e g(—2) through the Killing form. In
particular &y, gives a one-dimensional representation of m.

(2) Let G¢ be a complex semisimple Lie group with Lie algebra g, and N¢ =expn
be the analytic subgroup of g with Lie algebra n. Then, the character &y, of n gives
rise to an induced Gc-module Indﬁg(expéyf), called the generalized Gelfand-Graev
representation of G¢ associated to the nilpotent orbit Ad(G¢)Y'. ([6], see also [14, §1].)

2. Associated variety and a criterion for locally free U(n)-action.

Let g be any finite-dimensional complex Lie algebra, and U(g) be the universal
enveloping algebra of g. We now consider two Lie subalgebras f and n of g. In this
section we give a simple criterion (Theorem 2.1)) for a locally U(¥)-finite, irreducible
U(g)-module X to be a torsion free U(n)-module. Our criterion is described by means
of the Lie subalgebras f, n and the associated variety 7" (X) of X. It has, as we show in
§3, an interesting application when X is a Harish-Chandra module for a semisimple Lie
algebra g.

2.1. Associated variety for U(g)-modules.

First let us review the definition and some fundamental properties of the associated
variety for finitely generated U(g)-modules, which is one of the principal objects in the
present article. A basic reference is [12].

Denote by (Uk(g))s—o,;.... the natural increasing filtration of U(g), where Uy(g) is
the subspace of U(g) generated by elements X --- X,, (m < k) with X; € g (1 < j <m).
By the Poincaré-Birkhoff-Witt theorem, we can identify the associated graded ring

grU(g /@)Uk 9)/Uk-1(g) (U-1(g) := (0))

with the symmetric algebra S(g @k>0Sk ) of g in the canonical way. Here S*(g)
denotes the homogeneous component of S(g) of degree k.
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Let X be a finitely generated U(g)-module. Take a finite-dimensional subspace
Xo of X such that X = U(g)X,. Setting X; = Ui(g)Xo (k=1,2,...), one gets an
increasing filtration (Xy), of X, and correspondingly a finitely generated, graded S(g)-
module
(2.1) M = gr(X;Xo) = 6—) M, with M = Xk/Xk_l.

k>0

The annihilator Anng )M := {D € S(g)|Dv =0 (Vv e M)} of M is a graded ideal of

S(g), and it defines an algebraic cone in the dual space g* of g:

(2.2) V" M) :={ieg”|D(A) =0 (VD € Anng,) M)},

as the set of common zeros of elements of Anng M. Here S(g) is regarded as the
polynomial ring over g* in the canonical way. It is then easily seen that the variety
7" (M) does not depend on the choice of a generating subspace X,. Therefore we write
77 (X) for 7" (M).

DErFINITION.  (Cf. [12], see also [16]) For a finitely generated U(g)-module X, the
variety 7'(X) < ¢* and its dimension d(X):=dim 7 (X) are called respectively the
associated variety and the Gelfand-Kirillov dimension of X.

ReEMARK. By the Hilbert-Serre theorem (cf. [16, Th. 1.1]), the map k& — dimX;
coincides with a polynomial in k£ of degree d(X), for sufficiently large k.

Let G¢ :=Int(g) be the adjoint group of g. We write I(g) for the graded
subalgebra of S(g) consisting of all G&-fixed elements in S(g). Then I(g) has a unique
maximal graded ideal 1(g), := @, /() N S*(q).

Using the Schur lemma [13, Lemma 0.5.2] for irreducible U(g)-modules, one can
deduce the following.

Lemma 2.1. (Cf. [12, Cor. 5.4]) Suppose that X is a U(g)-module of finite length.
Then its associated variety ¥ (X) is contained in the cone N defined by I(g),:

(2.3) N i={ieg |D(A)=0 (VDel(g),)}

Notice that, if g is semisimple, the cone ./ is the totality of nilpotent elements in
g. Here g* is identified with g by the Killing form.

2.2. The variety 7 (X) for (g,f)-module X.

Now let f be a Lie subalgebra of g. A U(g)-module X is said to be locally U(f)-
finite if the U(f)-submodule U(f)v is finite-dimensional for every ve X. By a (g,f)-
module is meant a locally U(f)-finite, finitely generated U(g)-module. Hereafter we
exclusively consider such (g, f)-modules.

Let K¢ denote the connected, simply connected Lie group with Lie algebra f. The
natural inclusion i:f< g gives rise to a Lie group homomorphism:

24 Ad: K¢ ak— Ad(k) e G¥ = GL(g),
C

from K¢ into the group G4 of all inner automorphisms of g, in the canonical way. We
notice that, since K¢ is simply connected, any (g,f)-module X admits a Kc-module
structure compatible with the U(g)-action in the following sense:



Locally free U(n)-action 141

(2.5) (epo)-v:Ji;%Zjv (Zel),
(2.6) k- (Dv) = (Ad(k)D) -kv (D e U(g), k € K¢),

for every v e X. Here the sum in converges because Z/v stay in a finite-dimensional
subspace U(f)v for all j > 0.

By using this Kc-action, it is easy to deduce the following lemma on an orbital
structure of the associated variety of a (g, f)-module.

Lemma 2.2. (Cf. [12, Cor. 5.13]) Let X be a (g,1)-module. Then the associated
variety V" (X) of X is a union of K¢-orbits contained in the orthogonal ¥ := {]. e g* |
MZ)=0(VZeb)} of T in g*. Here K& := Ad(Kc) = G4 denotes the analytic sub-
group of G& with Lie algebra ¥, and it acts on g* through the coadjoint representation.

2.3. A criterion for locally free U(n)-action.

Let f and Kgd be as in 2.2. Take another Lie subalgebra n of g (not necessarily the
one given by [1.37)). We shall give a criterion for an irreducible (g, f)-module to have
locally free U(n)-action.

To do this, let p* be the surjective linear map from g* to n* defined by the re-
striction to n of each linear form on g. We say that an element 4 e g* satisfies the
condition (Pt,) if the projection p* mapps the subspace ad*(f)1:={ad"(Z)1|Z et}
onto n*, i.e.,

(Prn) p*(ad*(H)A) = n*.

Here ad*(Z)A := (d/dt)(exptZ - 1)|,_,, and ad”(f)4 can be identified naturally with the
tangent space of Kgd-orbit Kgd -/ at the point A.
This condition (P¢,) for 4 has the following geometric interpretation.

LemMA 2.3.  The image p*(Kgd “A) of Kgd-orbit Kgd - A under p* contains an open
neighbourhood of p*(1) in w* if and only if 1 € g* satisfies the condition (Pxy).

Proor. The condition (Pt ,) implies that the differential of

K& sk p*(k-2)en”

1s surjective at the origin e € Kgd, and vice versa. This immediately proves the claim.

O

ProposITION 2.1. Let X be a cyclic (g,t)-module generated by a vector vy € X :
X = U(g)vo. For a Lie subalgebra w of g, the annihilator Annyy(vo) vanishes if there
exists an element 1€ V" (X) satisfying the condition (Py ).

Proor. Let M = gr(X;Xo) = @), . (M, with Xo = Cuy, be the graded S(g)-module
in (2.1). Write 9y for the vector vy viewed as an element of My « M. We remark that,
since M = S(g)to, an element D € S(g) lies in the annihilator Anng M of M if and
only if Dyy = 0.

In order to prove the proposition, it suffices to show that the annihilator Anngy)(%)
vanishes. This can be done as follows.
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Suppose that 4 e 7"(X) satisfies the condition (P; ), and that an element D € S(n)
annihilates the vector 9. Then one sees from the above remark that
D(p*(u)) = D(p) =0 for all ue v (X).

This combined with Lemmas 2.2 and shows that the function D on n* is identically
zero on an open neighbourhood of p*(4). We thus get D =0 because D e S(n) is a
polynomial on n*. O

Now [Proposition 2.1 yields the following criterion (sufficient condition) for the
U(n)-action on an irreducible module X to be locally free.

THEOREM 2.1. Let f, n be two Lie subalgebras of g, and let X be an irreducible (g, ¥)-
module. Then, the action of the enveloping algebra U(n) on X is locally free, that is, X is
a torsion free U(n)-module, provided that the associated variety V" (X) of X contains a
point /. satisfying the condition (P y).

REMARK. From the Remark in 2.1, it follows that
(2.7) dimn < d(X) = dim 7"(X),
if a finitely generated U(g)-module X has a locally free U(n)-action.

3. Locally free U(n(())-action on Harish-Chandra modules.

From now on, let g be a complex semisimple Lie algebra, and 6 be an involutive
automorphism of g. The associated symmetric decomposition of g is denoted by g =
f+p with f:=g(0,+1) and p:=g(0,—1) as in 1.6. Then there exists a 0-stable real
form g, of g such that the restriction of 0 to g, gives a Cartan involution of g, (see [4,
Ch. III, Lemma 4.1]). We fix once and for all such a real form g,, and let g, = o + p,
denote the corresponding Cartan decomposition of g, where fp:=1Ng, and py:=p
Ngp.

By a Harish-Chandra module, we mean in this paper a (g,f)-module X (see 2.2) of
finite length, associated with the symmetric pair (g,f). As is shown by Harish-Chandra,
the category of such (g,f)-modules plays an essential role in the study of representations
of a real semisimple Lie group with Lie algebra g.

For each irreducible Harish-Chandra module X, we construct in this section a family
of nilpotent Lie subalgebras n(() of g for which X is locally free as a U(n(())-module
(see Theorem 3.2), by using the associated variety ¥ (X) of X and the Cayley
transformation of normal sl -triples. The Lie subalgebras n(() are parametrized by the
K¢-orbits O contained in 77(X).

The main result of this paper is [Theorem 3.2, The proof is carried out by
combining Theorems and 2.1. We shall give in 3.3 a concrete description of Lie
subalgebras n(() associated to holomorphic orbits ¢ when the real form g, is a simple
Lie algebra of hermitian type.

3.1. Lie subalgebras n(() associated with a nilpotent K2 -orbit (.

We denote by ./, the totality of nilpotent elements of g contained in p. By [8, Th.
2], the variety ./, is a union of finitely many K& -orbits, where K¢/ is as in 2.2 the
connected Lie subgroup of G = Int(g) with Lie algebra f.
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Let @ be a Kgd-orbit in /7. Let us attach to ¢ a Kgd-conjugacy class of nilpotent
Lie subalgebras n(®) of g. Suppose that @ # {0}, and take any element X € 0. A
strengthened version of the Jacobson-Morozov theorem [8, Prop.4| assures that X can be
embedded to a unique, up to K&-conjugacy, normal sh-triple (X, H,Y) in g (see 1.6),
where Het and X, Y ep. Set s:=CX+ CH+ CY c g and define a nilpotent Lie
subalgebra n =1, = (g{(1) ® g3(1)) @ (P),.,8(/)) just as in [T.37), through the Cayley
transform (X', H’,Y’) of (X,H,Y) defined by [1.2]. Then it is immediate to check
that, up to K¢-conjugacy, the Lie subalgebra n is uniquely determined by (), inde-
pendently of the choice of an X in (¢ and of the choice of an sl,-triple (X, H,Y). So
we take up such n, and denote it by n(0).

We attach n(0) = {0} for the zero orbit ¢ = {0}.

From [Theorem 1.2(1), we get the following.

Lemma 3.1. It holds that dimn(0) =dim 0O = (dim 0)/2, where 0 := G -X
denotes the nilpotent ng-orbil in g containing 0.

Now let g5 Z — Z e g be the complex conjugation of g with respect to the real
form g,. Sekiguchi’s result enables us to choose a nice representative n((’) which is
compatible with this conjugation except the g(1)-part.

More precisely, take a normal sl,-triple (X, H,Y) in g with X € ¢. By virtue of
[10, Lemma 1.4], there exists an element ke K& such that (Xi,H, Y,):= (k- X,
k-H,k-Y) is a strictly normal sl,-triple in the following sense:

(3.1) X, =Y, H =-H;, orequivalently X+ Yy, i(X; — Y|)ep,, iHel.

Then, as is checked immediately, the Cayley transform (X|, H{, Y|) of (X1, Hi, Y1) (see
(1.2)) lies in g,.

THEOREM 3.1. (Kostant-Sekiguchi, see [10, Th. 1.9]) Under the above notation, the
assignment

(3.2) O=K¢ X — 0 =G X|

gives a bijection ( Kostant-Sekiguchi correspondence) between the set of nilpotent K&-
orbits in p and that of nilpotent G*“-orbits in g,. Here G < ng denotes the adjoint
group of gy,

Note that dimg ¢’ = dime O is equal to 2 dime ¢ by Lemma 3.1.

As for our Lie subalgebra n((), we have the following advantage of choosing a
strictly normal sl-triple (X7, Hy, Y1).

ProposSITION  3.1.  Let n(0) = (g(1) ® g3 (1)) ® (@D,2,8(1)) be a Lie subalgebra of
g constructed as above from a strictly normal sly-triple (X1, Hy, Y)). Then one has

s =g() (eZ), o(1)={n(0)Ng(1)} @ {n(€)Ng(1)},

where q(I) denotes as in 1.6 the I-eigensubspace of o for ad(H{) with H =X+
Y1 epy. In particular, n(0O) is stable under the complex conjugation - if and only if
g(1) = {0}, ie., O is an even nilpotent orbit in p.
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ProOF. Note that the real form g, is stable under the linear operators ad(H|) and
stable also under J = 0Ad(w) in 1.2 with V' =g, 6 = 0. Here w is defined as in
with X’ and Y’ replaced by X| and Y| respectively. Then the claim immediately
follows from [1.33) and from the definition of subspaces g(/) and g, (/) (x,7 =
0,1,2,3; /e Z) given in 1.4. OJ

3.2. Main result.

By virtue of Lemmas 2.1 and we can see that the associated variety 7" (X) of
each Harish-Chandra module X is a K¢?-stable algebraic cone in ./,. Here we identify
the dual space g* with g itself through the Killing form B of g.

Now we are in a position to give a sufficient condition for the locally freeness of
U(n(0))-action on Harish-Chandra modules.

THEOREM 3.2. Let X be an irreducible Harish-Chandra module. The action of en-
veloping algebra U(n(0O)) of n(©) on X is locally free for every nilpotent K&-orbit O < p
contained in the associated variety 7" (X) of X. Here n(0) is the nilpotent Lie subalgebra
of g constructed in 3.1.

Proor. Take an element X € ¢ < 77(X), and construct the Lie subalgebra n(() as
in 3.1. By [Theorem 1.2(2), the Killing form B of g is nondegenerate on [f, X] x n(0).
This shows that X € 77(X) satisfies the condition (Pt,) in 2.3 with n =n(¢). Hence
the U(n(0))-action on X is locally free by Mheorem 2.1. Any K&’-conjugate k - n(V) of
() also has locally free action on X, because the universal covering group K¢ of K¢

acts on X as in [2.5], [2.6). ]

We now deduce two important consequences of the above main result.
First, together with the Remark in 2.3 allows us to derive the following
theorem by considering a K&¥-orbit of #"(X) of maximal dimension:

THEOREM 3.3. Let X be as in Theorem 3.2, and let O,,,, be a nilpotent Kgd-orbit in
V" (X) of maximal dimension, that is, dim 0, = dim ¥ (X). Then the corresponding
W(Opax) is maximal (with respect to the inclusion relation) among the Lie subalgebras n of
g whose enveloping algebras U(n) act on X locally freely.

Second, let 1, o be a maximal nilpotent Lie subalgebra of the real form g, ap-
pearing in an Iwasawa decomposition of g,. We see from |[Proposition 3.1 that, for
every nilpotent K&/-orbit @ in p, n(0) is conjugate to a Lie subalgebra of 1, under the
action of Kgd on g. Here n, denotes the complexification of n, o in g. Note that
dimmn,, = dim /7. By [Lemma 3.1 and [Theorem 3.1, n(¢¥) equals the whole 1, up to
K¢-conjugacy if and only if the orbit ¢ is open in ./, (or equivalently, the corre-
sponding G“-orbit (' is a principal nilpotent orbit in g).

A Harish-Chandra module X is called large if its associated variety 7 (X) contains
an open K&-orbit in ./}, or dim¥(X) =dim.4}. Our main result yields a char-
acterization for an irreducible Harish-Chandra module to be large, as follows.

THEOREM 3.4.  An irreducible Harish-Chandra module X is large if and only if X is a
locally free U(n,,)-module.
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PrOOF. Assume that an irreducible Harish-Chandra module X is large, and take a
Kgd-orbit Omax In 77 (X) of maximal dimension. As we have observed above, the Lie
subalgebra n((,,,) is conjugate to n, under the action of Kgd on g. Thus
yields the locally freeness of the U(n,,)-action on X. The converse follows immediately
from the Remark in 2.3. L]

RemARK. The largeness of an irreducible Harish-Chandra module X is charac-
terized also by the existence of Whittaker vectors for X. See for example |7, Th. K] and
[9, Cor. 2.2].

3.3. Lie subalgebras n(¢®,) for holomorphic orbits ¢,.

Now suppose that g, = Ty + p, is a noncompact real simple Lie algebra of hermitian
type. We denote by w the unique (up to sign) fp-invariant complex structure on p,.
Extending w to p by complex linearity, one gets a triangular decomposition

(3.3) g=p_@t@®p, withp, ={Zep|wZ=+iZ},
of g such that

(3.4) Epilepe, pep]Ch o [pepy]=1[p_,p_] ={0}.

It then follows that the subspaces p are included in the nilpotent variety ./, of p, since
(ad Z)3 =0 for every Zep,. A K&-orbit ¢ contained in p, is called holomorphic, as
p, is naturally identified with the holomorphic tangent space at the origin of the
hermitian symmetric space G/K with g, = Lie (G) and f, = Lie (K).

We conclude this article by describing the nilpotent Lie subalgebras n(¢) of g asso-
ciated with holomorphic K&-orbits .

3.3.1. In order to do this, we prepare after [14, 3.1] and [15, 9.1] refined structure
theorems for g, originally due to Harish-Chandra and Moore. Let ty, be a compact
Cartan subalgebra of g, which is contained in f). We denote by 4 the root system of g
with respect to the complexification t of t). For y € 4, the corresponding root subspace
is denoted by g(t;7). A root y e 4 is called compact (resp. noncompact) if g(t;y) < f
(resp. g(t;7) < p), and 4, (resp. 4,) stands for the set of all compact (resp. noncompact)
roots. To each ye 4 we attach a nonzero vector X, € g(t;y) satisfying

(35) Xy—X_y, Z(X/+X—y) Ef0—{'1.1307 [X)MX—V] :HV‘

Here H, is the element of ity corresponding to the coroot y“ :=2y/(y,y) through the
identification t* =t by the Killing form B.
Take a positive system A" of A4 compatible with the decomposition (3.3):

pr = P g(t; £y) with 4] := 47N 4,,
yedy

and fix a lexicographic order on it; which yields A". Using this order we define a
fundamental sequence (yy,7,,...,7,) of strongly orthogonal (i.e., y; +7y; ¢ 4U{0} for
i # j) noncompact positive roots in such a way that y, is the maximal element of A™,
which is strongly orthogonal to y, ¢,...,7,.
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Now, put t~ := Y, , CH, ct, and denote by 7(y) € (7)" the restriction to t~ of a
linear form y € t*. For integers k, m with 1 <m < k <r, we define subsets Py,,, Pr, Py
of A and subsets Ciy, Ck, Cy of AT respectively by

(3.6) Pl = {y e 4" |n(y) = M}
(3.7) Cim = {y ed!|n(y) = w}’
38 m={rear|a) =" G- frear a4,

(39) Py = {yl7y27"'7yr}7 CO = {yEAj|ﬂ(y) :O}
Then, by Harish-Chandra the subsets 47 and A are expressed as

(3.10) A,j:( U Pk>UPoU( U Pkm>,

<k< l<m<k<r
(3.11) A = U G lul U Gl
1<k<r 1<m<k<r
(3.12)

where the unions are disjoint.
We set Hy =X, +X_, epy for I <k <r. Then

(3.13) ap0:= Y RH,
k=1

turns out to be a maximal abelian subspace of p,. Let ¥ denote the root system of g,
with respect to a, 9, and for each k let Y € a;, be the linear form on a, ¢ defined by
Vi (Hm) = 201 (m=1,...,r; with Kronecker’s dy,,). Moore’s restricted root theorem
describes ¥ as follows.

THEOREM 3.5. (Moore) The elements . (1 <k <r) form a basis of a,, and there

exist only two possibilities for the root system ¥

W:{i<lpk;wm> 1Sm<k£r}u{i(lpk+lpm)

2
if the subsets P and Cj are empty for every k, or otherwise

W:{ich;wfﬂlSm<k£r}U{iC&%£%M1SmSkSV}
Vi
U{i7

The former possibility occurs exactly when the corresponding hermitian symmetric space is
analytically equivalent to a tube domain.

13mgks%,

lskSr}.
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3.3.2. For each restricted root y € ¥, let g(a,;y) denote the complexified root
subspace of g corresponding to . We can now write down a basis of each g(a,; ) by
means of the vectors X, € g(t;y) (y € 4) defined in [3.5), as follows.

ProposITION 3.2. (Hashizume, cf [15, Lemmas 9.1 and 9.2]) (1) For l <m <k <
r, the vectors

(3.14) Ef =X, +[X_,.X,] £ X

Y —Vm? Xy] i [Xfym’ [‘vayk7 Xy“

form a basis of the root subspace g(ay; (Y +,,)/2), where y runs over the elements of
Pkm in (36)
(2) The element

(3.15) Ep = i(H, — X, +X_,)/2

lies in g(ay;yy) and it holds that dim g(a,; ) =1 for every 1 <k <r.
(3) The subspace g(a,;y/2) has a basis:

(3.16) E} =X, +[X_, X,] (yePUG)

for every 1 <k <r, where Py and Cj are as in (3.8).

3.33. Set X(t):=> 4o, Xy, €0, (X(r):=0) for 0 <t <r, and let O;  p, be the
holomorphic Kgd-orbit through X (7). The following well-known proposition para-
metrizes such K¢/-orbits in .1/,

PropoSITION 3.3.  The subspace p_. splits into a disjoint union of r + 1 number of
K&-orbits 0, (0<t<r):p. =y, Or and the closure O, of orbit O, is equal to
U,=,0s for every t.

REMARK. When g, = su(/,n) (I > n) or sp(n, R), the real rank r of g, is equal to n,
and (; consists of all matrices in p, of rank r—1t (cf. [2, Prop. 12.1]).

Suggested by the above proposition, we want to describe the nilpotent Lie sub-

algebra n((,) in terms of root vectors Eyi, E; and Ey1 in [Proposition 3.2 for every
0<r<r.

This is achieved in the following way. Put

(3.17) H(t):= Y H,, Y():=)> X,.

t<k<r t<k<r

Then it follows from together with the strong orthogonality of y,’s that (X (7), H(?),
Y(¢)) is a strictly normal sly-triple in g. We denote by (X'(¢), H'(¢), Y'(¢)) the Cayley
transform of (X (¢), H(t), Y (7)) defined in [I.2]. Noting that H'(1) = >",_,_, Hx, one
deduces from the following.

LemMA 3.2. The Lie algebra g decomposes into a direct sum of the eigensubspaces
for ad H'(t) as:

(3.18) g=g(-2)@g(-1) ®g(0) ®g(l) ®g(2),
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where

a(+2)= @D g(ap;i(w";wm)),

t<m<k<r

av=_ @ _(o(ore (852 s (5)))o( @ n(ov )

(0) = 3(0) @ <1S g@(g(ap;” L) g g(a@m
o (@ (o5 oa(wi- 5 %)) )

and 3,(a) denotes the centralizer of a in g. In particular, gs(l) = {0} for all n and 1.

By using |Proposition 3.2 and [Lemma 3.2, we obtain the following complete de-
scription of Lie subalgebra n(¢;) associated to the orbit @,.

THEOREM 3.6. Let O, = K& - X(t) with 0 < t < r be a holomorphic K& -orbit in p,,
and let w(0O,) be the Lie subalgebra of g constructed as in 3.1 from the Cayley transform
of (X(t),H(t),Y(t)). Then n(0,) is expressed as

(3.19) n(0r) = g{(1) ® 9(2),

with §(2) as in Lemma 3.2, and g} (1) is the subspace of (1) having a basis:

(3.20) Ef —E; (y€Pwm; 1 <m<t<k<r), Eyl(yeCk;t<k£r).

Here E;—’ and Ey1 are as in Proposition 3.2.

Proor. The first claim follows immediately from since g(j) =
{Z eg|[H'(t),Z] = jZ} equals {0} for |j| > 3. Notice that the subspace g{(1) of g(1)
is given as
(3.21) oi(1) = {Z eg(1)|VZ = iZ},
where J = 0w € GL(g) with

(3.22) w=exp 5 (X'(1) ~ ¥'(1)) = exp %iH(t) € G,

by definition (see 1.4 and 1.6). Then one finds by direct computation that the operator
J acts on vectors E;i, Ey1 respectively as

(3.23) JEF = —iE} if ye P, withk>1>m,
(3.24) JE, = —iE, if ye P, withk > 1,
(3.25) JE, =iE, if yeC; withk > 1.



Locally free U(n)-action 149

This combined with [Proposition 3.2] and shows that the vectors in {3.20)
form a basis of the subspace gi(1). L]

implies that the (at most) two-step nilpotent Lie subalgebra n((,) acts
locally freely on the Harish-Chandra module of a holomorphic discrete series for every ¢,
because its associated variety coincides with the whole p, (cf. [17]). More generally, the
associated variety 7"(X) of any irreducible highest weight Harish-Chandra module X is
contained in p,. By [Theorem 3.2 [Proposition 3.3 and the Remark in 2.3, the
U(n(0,))-action on X is locally free if and only if ¢ > ¢y, where ¢, is the unique open
orbit in #"(X). The integer /y :=r — ty gives a kind of rank for highest weight module
X (cf. [5, p. 136]; see also the Remark succeeding [Proposition 3.3)).

References

[1] L. Corwin and F. P. Greenleaf, Representations of nilpotent Lie groups and their applications Part 1:
Basic theory and examples, Cambridge Univ. Press, Cambridge-New York, 1990.

[2] M. G. Davidson, T. J. Enright and R. J. Stanke, Differential operators and highest weight repre-
sentations, Mem. Amer. Math. Soc. No. 455, American Mathematical Society, Providence, R. 1., 1991.

[3] Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer.
Math. Soc. 75 (1953), 185-243.

[4] S. Helgason, Groups and geometric analysis, Academic Press, New York-London-Tokyo, 1984.

[5] R. Howe, Wave front sets of representations of Lie groups, in “Automorphic forms, representation
theory and arithmetic (Bombay, 1979),” Tata Inst. Fundamental Res., Bombay, 1981, pp. 117-140.

[6] N. Kawanaka, Generalized Gelfand-Graev representations and Ennola duality, Advanced Studies in
Pure Math. 6 (1985), 175-206.

[7] B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184.

[8] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math.
83 (1971), 753-809.

[9] H. Matumoto, Whittaker vectors and the Goodman-Wallach operators, Acta. Math. 161 (1988), 183—

241.

[10] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987),
127-138.

[11] D. A. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), 75—
98.

[12] D. A. Vogan, Associated varieties and unipotent representations, in ‘“Harmonic Analysis on Reductive
Groups (W. Barker and P. Sally eds.),” Birkhéduser, 1991, pp. 315-388.

N. R. Wallach, Real reductive groups I, Academic Press, Boston-New York-Tokyo, 1988.

[14] H. Yamashita, Finite multiplicity theorems for induced representations of semisimple Lie groups II:
Applications to generalized Gelfand-Graev representations, J. Math. Kyoto Univ. 28 (1988), 383-444.

[15] H. Yamashita, Multiplicity one theorems for generalized Gelfand-Graev representations of semisimple
Lie groups and Whittaker models for the discrete series, Advanced Studies in Pure Math. 14 (1988), 31—
121.

[16] H. Yamashita, Criteria for the finiteness of restriction of U(g)-modules to subalgebras and applications
to Harish-Chandra modules: study in relation with the associated varieties, J. Funct. Anal. 121 (1994),
296-329.

[17] H. Yamashita, Associated varieties and Gelfand-Kirillov dimensions for the discrete series of a
semisimple Lie group, Proc. Japan Acad. 70A (1994), 50-55.

Akihiko Gyosa Hiroshi YAMASHITA
Division of Mathematics Current address: Department of Mathematics
Faculty of Integrated Human Studies Graduate School of Mathematics Faculty of Science

Kyoto University Nagoya University Hokkaido University

Kyoto 606-01, Japan Nagoya 464-8602, Japan Sapporo 060-0810, Japan
E-mail: E-mail: E-mail:

gyoja@math.h.kyoto-u.ac.jp gyoja@math.nagoya-u.ac.jp yamasita@math.sci.hokudai.ac.jp



	Introduction.
	THEOREM. (Theorem ...

	1. $SL(2, C)$ -modules ...
	1.1. $\mathfrak{s}I_{2}$ ...
	1.2. Irreducible $S$ -modules.
	1.3. Extension $\tilde{\sigma}$ ...
	1.4. The subspace $U$ ...
	1.5. $S$ -modules with ...
	THEOREM 1.1. ...

	1.6. An application of ...
	THEOREM 1.2. ...


	2. Associated variety ...
	2.1. Associated variety ...
	2.2. The variety $\mathscr{V}(X)$ ...
	2.3. Acriterion for locally ...
	THEOREM 2.1. ...


	3. Locally free $U(\mathfrak{n}(\mathscr{O}))$ ...
	3.1. Lie subalgebras $\mathfrak{n}(\mathscr{O})$ ...
	THEOREM 3.1. ...

	3.2. Main result.
	THEOREM 3.2. ...
	THEOREM 3.3. ...
	THEOREM 3.4. ...

	3.3. Lie subalgebras $\mathfrak{n}(\mathscr{O}_{t})$ ...
	THEOREM 3.5. ...
	THEOREM 3.6. ...


	References

