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Abstract

The generalized truncation method (formerly referred to as the proximal correction
method) was recently introduced for the time-discretization of parabolic variational in-
equalities. The main attraction of the method–which generalizes the truncation method
developed by A. Berger for obstacle problems–is the fact that the problems to be solved
at each time step are elliptic equations rather than elliptic variational inequalities.

In this paper we apply the new method to a class of problems which includes para-
bolic variational inequalities as a special case. The convergence results which we obtain
in this general context also give rise to new results when applied to the special case of
variational inequalities.

We also discuss the applications of our results to several problems that occur in
various branches of applied Mathematics.

1. Introduction

Let $V$ and $H$ be Hilbert spaces such that $V\subset H=H^{*}\subset V^{*}$ with continuous and
dense inclusions. We use $(\cdot, \cdot)$ to denote both the scalar product of $H$ and the duality
between $V$ and $V^{*}$ . The norms of $V,$ $H$ and $V^{*}$ will be designated, respectively, by $||\cdot||$ ,
$|\cdot|$ and $||\cdot||_{*}$ .

Let $A$ : $V\mapsto V^{*}$ be a continuous linear map and let $g$ be a (multivalued) maximal
monotone function from $H$ to $H$. This means that $g$ is non-empty subset of $H\cross H$

which is monotone in the sense that
$[v_{1},z_{1}]\in g$ and $[v_{2},z_{2}]\in g\Rightarrow(z_{2}-z_{1}, v_{2}-v_{1})\geq 0$ . (1.1)

and which is not contained in any larger monotone subset of $H\cross H$ . In the sequel, we
will regard the statements $[u, v]\in g,$ $u\in g(v)$ and $g(v)\ni u$ as synonymous. $D(g)$ will
designate the domain of $g$ , defined as the set { $v\in H$ : $\exists z\in H$ such that $z\in g(v)$ }.

Let $uo\in D(g)$ and let $f$ : $[0, T]->H$ be a strongly measurable function. We are
interested in the (numerical) solution of the parabolic problem:

$u(0)=u_{0}$ ,
(1.2)

$u’(t)+Au(t)+g(u(t))\ni f(t)$ , $\forall t\in[0, T]$ .

An important special case of such problems is obtained on letting $g$ be the sub-
gradient $\partial\phi$ , defined by the rule
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$\partial\phi(z)=\{v\in H : \phi(z)-\phi(y)\leq(v, z-y)\forall y\in H\}$ , for all $z\in H$ ,

where $\emptyset$ : $H\mapsto(-\infty, \infty]$ is a convex lower-semicontinuous function having nonempty
domain $D(\emptyset)=\{v\in H:\phi(v)<\infty\}$ . In this case, (1.2) reduces to the parabolic varia-
tional inequality

$u(0)=u_{0}$

(1.3)
$u’(t)+Au(t)+\partial\phi(u(t))\ni f(t)$ , $\forall t\in[0, T]$ .

Parabolic variational inequalities have important applications in the physical and
engineering sciences [2, 14, 20], and have been studied extensively in the Literature, from
the point of view of existence of solutions [9, 14, 21, 22] and approximation of solutions
[3, 7, 15, 16, 17, 19, 27].

It is well known that the subgradient $\partial\phi$ is maximal monotone $[23, 24]$ . Therefore,
problem (1.3) is a special case of problem (1.2). However, not all problems of the form
(1.2) are variational inequalities since there exist maximal monotone operators that are
not subgradients of convex functionals [25].

One of the simplest methods $[5, 19]$ for the time-discretization of problem (1.2) is the
method of Rothe given by

$U_{k}^{0}=u_{0}$ ,
(1.4)

$U_{k}^{n}-U_{k}^{n-1}+kAU_{k}^{n}+kg(U_{k}^{n})\ni kf_{k}^{n}$ , $n=1,2,$ $\ldots,$
$N$ ,

where $N$ is a positive integer, $k=(T/N)$ and $f_{k}^{n}\approx f(nk)$ .
In using this method we have to solve an elliptic inclusion problem at each time

step. The existence of the solutions of such elliptic problems can be established under
relatively mild conditions (we will retum to this question in section 2). However, the
numerical solution of each of the subproblems in (1.4) remains a major problem which
may tum out to be as difficult as the original problem (1.2).

An altemative method–the topic of the present paper–is the generalized truncation
method which is given by

$u_{k}^{0}=u_{0}$ ,
(1.5)

$u_{k}^{n}-P_{[k]}u_{k}^{n-1}+kA\iota P_{k}=kf_{k}^{n}$ , $n=1,2,$ $\ldots,N$ ,

where $P_{[k]}$ denotes the resolvent operator $(1+kg)^{-1}$ which is known $[11, 12]$ to be a
single-valued and nonexpansive map from $H$ to $H$. The subproblems to be solved at
each time step are elliptic equations which are usually easier to solve than the elliptic
inclusion problems occuring in Rothe’s scheme (1.4). This method was introduced in
$[28, 29]$ within the context of parabolic variational inequalities.

It is known [30] that, when applied to obstacle problems, the scheme (1.5) reduces to
the well-known truncation method of A. Berger [6]. Consequently, it appears that the
name ‘generalized truncation method’ conveys its nature better than the name ‘proximal
correction method’ which was originally suggested for it in $[29, 30]$ . A comprehensive
introduction to the method can be found in [30].

Our main aim in the present paper is to study the convergence properties and error
estimates of the generalized truncation scheme. Similar results for the method have
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been given in [28, 29, 30] for the special case of parabolic variational inequalities.
However, the results obtained in the present paper also give rise to new results
when applied to the problems studied in [28, 29, 30].

The rest of the paper is divided into three sections. Section 2 contains some basic
hypotheses and results on elliptic problems of the form (1.4) which will be used in our
work. Section 3 contains convergence results and error estimates, while Section 4 dis-
cusses the application of these results to problems that occur in applications.

In order to apply the generalized truncation scheme to a practical problem we
require an efficient algorithm for the computation of the values $P_{[k]}v$ of the resolvent
operator. If possible, the practical problem should also fit within the framework of the
available convergence theory for the method.

It will be seen in Section 4 these two requirements are satisfied for a large class of
problems, including such diverse problems as

$u(x, t)\geq 0$ , $\frac{\partial u(x,t)}{\partial t}-\Delta u(x, t)-f(x, t)\geq 0$ ,

(1.6)

$u(x, t)( \frac{\partial u(x,t)}{\partial t}-\Delta u(x, t)-f(x, t))=0$ ,

$\frac{\partial u(x,t)}{\partial t}-\Delta u(x, t)+|u(x, t)|^{p-2}u(x, t)-f(x, t)=0$ , (1.7)

$\frac{\partial u(x,t)}{\partial t}-\Delta u(x, t)+u(x, t)(\int_{\Omega}|u(y, t)|^{2}dy)^{p/2-1}-f(x, t)=0$ (1.8)

(for $p\geq 2,0\leq t\leq T$ and $x\in\Omega\subset R^{n}$ ) with initial condition $u(x, 0)=u_{0}(x)$ and Neu-
mann or Dirichlet boundary conditions.

One of the main attractions of the generalized truncation method is its ability to
handle the numerical solution of such diverse problems in a unified context. Specific
numerical computations and comparisons with Rothe’s method can be found in [28,
29, 30]. These numerical examples suggest that both methods have the same order
of convergence. The method of Rothe generally gives more accurate results than the
truncation method. However, Rothe’s method is much more difficult to implement, and
also tends to require longer execution times.

2. Some remarks on elliptic problems

In the sequel we will assume that there exist $c>0$ and $M>0$ such that the elliptic
operator $A$ satisfies the two conditions:

$(Av, v)\geq c||v||^{2}$ $\forall v\in V$ (2.1)

$|(Av, z)|\leq M||v||||z||$ $\forall v,z\in V$ . (2.2)

We shall also assume that the resolvent operators satisfy the conditions

$P_{[k]}(V)\subset V$ and $P_{[k]}$ is bounded and hemicontinuous on $V$ $\forall k>0$ . (2.3)
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This means that $P_{[k]}$ maps bounded sets in $V$ to bounded sets in $V$, and that for all $v$ ,
$z\in V$, the map $\theta->P_{[k]}(\theta v+(1-\theta)z)$ is continuous from $[0,1]$ to the weak topology of
$V^{*}$ .

In addition, we also assume that $A$ and the resolvent operators are compatible, in the
sense that there exist a function $w:V\vdasharrow H$ and a constant $\beta>0$ such that

$(AP_{[k]}v-w(v), v-P_{[k]}v)\geq 0$ and $|w(v)|<\beta$ for all $k>0$ and $v\in V.$ (2.4)

If we let $g$ be the subgradient of a convex function and let $w$ be a constant function, then
(2.4) reduces to the compatibility conditions employed in [30].

The basic properties of the resolvent operator $P_{[k]}$ which will be used in the sequel
are contained in the following Lemma whose proof can be found in [11, Lemma 1.3].

LEMMA 2.1.
$|P_{[k]}v-P_{[k]}z|\leq|v-z|$ , $\forall v,$ $z\in H$ , (2.5)

$|P_{[k]}v-P_{[k]}z|^{2}\leq(P_{[k]}v-P_{[k]}z, v-z)$ $\forall v,$ $z\in H$ , (2.6)

$|P_{[k]}v-v|\leq k|z|$ , $\forall z\in g(v)$ , (2.7)

$\lim_{karrow 0}P_{[k]}v=v$ , V $v\in\overline{D(g)}$ . (2.8)

Our convergence analysis of the generalized truncation scheme (1.5) will employ the
properties of Rothe’s scheme (1.4). The following result is on the existence of the solu-
tions to elliptic problems of the type occuring in (1.4).

THEOREM 2.2. If (2.1) and the compatibility conditions $(2.3)-(2.4)$ hold then, for every
$b\in H$ , the elliptic problem

$Av+g(v)\ni b$ (2.9)

has a unique solution $v\in V.$ Moreover, $v$ satisfies the estimate

$|Av|\leq 2\beta+|b|$ . (2.10)

PROOF. For every $k>0$ , it follows from (2.1), (2.3) and (2.6) that the operator
$A+(1/k)(I-P_{[k]})$ is monotone, hemicontinuous and coercive. Consequently [21,
Theorem 2.1] there exists a unique $v^{(k)}\in V$ such that

$Av^{(k)}+ \frac{1}{k}(v^{(k)}-P_{[k]}v^{(k)})=b$ . (2.11)

Rewriting this in the form

$(Av^{(k)}-AP_{[k]}v^{(k)})+ \frac{1}{k}(v^{(k)}-P_{[k]}v^{(k)})+(AP_{[k]}v^{(k)}-w(v^{(k)}))=b-w(v^{(k)})$ ,

taking scalar products with $v^{(k)}-P_{[k]}v^{(k)}$ and making use of (2.1) and (2.4), we obtain

$kc||v^{(k)}-P_{[k]}v^{(k)}||^{2}+|v^{(k)}-P_{[k]}v^{(k)}|^{2}\leq k|b-w(v^{(k)})||v^{(k)}-P_{[k]}v^{(k)}|$

$\leq\frac{k^{2}}{2}|b-w(v^{(k)})|^{2}+\frac{1}{2}|v^{(k)}-P_{[k]}v^{(k)}|^{2}$

$\leq\frac{k^{2}}{2}(|b|+\beta)^{2}+\frac{1}{2}|v^{(k)}-P_{[k]}v^{(k)}|^{2}$
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It follows from this that

$|v^{(k)}-P_{[k]}v^{(k)}|\leq k(|b|+\beta)$ (2.12)

$||v^{(k)}-P_{[k]}v^{(k)}||^{2} \leq\frac{k(|b|+\beta)^{2}}{2c}$ (2.13)

Therefore

$|Av^{(k)}|=|b- \frac{1}{k}(v^{(k)}-P_{[k]}v^{(k)})|\leq|b|+\frac{1}{k}|v^{(k)}-P_{[k]}v^{(k)}|\leq 2|b|+\beta$ . (2.14)

Equation (2.11) implies that

$b-Av^{(k)}\in g(P_{[k]}v^{(k)})$ . (2.15)

Using this equation and the analogous equation with $k$ replaced by $h$ , and applying the
monotonicity of $g$ , we obtain

$(Av^{(k)}-Av^{(h)}, P_{[k]}v^{(k)}-P_{[h]^{v^{(h)}}})\leq 0$ .

Rearranging this, we obtain

$(Av^{(k)}-Av^{(h)}, v^{(k)}-v^{(h)})\leq(Av^{(k)}-Av^{(h)}, v^{(k)}-P_{[k]}v^{(k)}-v^{(h)}+P_{[h]}v^{(h)})$ .

Using (2.12) and (2.14) in this inequality, we obtain

$c||v^{(k)}-v^{(h)}||^{2}\leq(|Av^{(k)}|+|Av^{(h)}|)(|v^{(k)}-P_{[k]}v^{(k)}|+|v^{(h)}-P_{[h]}v^{(h)}|)\leq G(k+h)$ ,

where $G=(4|b|+2\beta)(|b|+\beta)$ .
This shows that $v^{(k)}$ is a Cauchy sequence and, therefore that it converges strongly in

the norm of $V$ to some $v\in V$ as $k$ tends to zero. It follows from (2.11) that $P_{[k]}v^{(k)}$ also
converges strongly to $v$ in the norm of $V$. Furthermore, since $|(Av^{(k)}-Av, z)|\leq$

$M||v^{(k)}-v||||z||$ for all $z\in V$ , we see that $Av^{(k)}$ converges to $Av$ in the weak topology
of $V^{*}$ .

NOW, since $|Av^{(k)}|$ is bounded, it contains a subsequence $Av^{(k_{n})}$ which converges (to
$Av)$ in the weak topology of $H$ as $n$ tends to infinity. The estimate in (2.10) now follows
from (2.14) and the fact that

$|Av|< \lim_{narrow}\inf_{\infty}|Av^{(k_{n})}|\leq 2|b|+\beta$ .

Finally, for any $z\in g(y),$ $(2.15)$ and the monotonicity of $g$ shows that $(b-Av^{(k)}-z$,
$P_{[k]}v^{(k)}-y)\geq 0$ . Letting $k$ tend to zero, we obtain $(b-Av-z, v-y)\geq 0$ . Applying
now the the maximality of $g$ , we see that $b-Av\in g(v)$ , which proves that $v$ satisfies
(2.11). That completes the proof. $\blacksquare$

REMARK 2.3. If $g$ is the subgradient of a proper lower semi-continuous convex
function $\phi:H\vdasharrow(-\infty, \infty]$ , then (2.9) becomes an elliptic variational inequality. The
existence of a solution obviously follows from Theorem 2.2. Observe, however, that the
classical Lions-Stampacchia Theorem (cf. [22] or [4, Theorem 3.5]) is not applicable in
this situation since $\emptyset$ is not lower-semicontinuous in the topology of $V$.

EXAMPLE 2.4. Let $H=L_{2}(\Omega)$ and $V=H_{0}^{1}(\Omega)$ , where $\Omega$ is a bounded open set in
$R^{q}$ with smooth boundary $\partial\Omega$ , and let $A$ be a partial differential operator of the form
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$Av=- \sum_{i=1}^{q}(\partial/\partial x_{i})(\sum_{j=1}^{q}a_{ij}(\partial v/\partial x_{j}))+a_{00}v$ where $a_{ij}\in C^{2}(\overline{\Omega})$ for $0\leq i,$ $j\leq q$ and
$\sum_{i}^{q}\sum_{/=1}^{q}a_{ij}x_{i}x_{j}\geq c\sum_{i=1}^{q}x_{i}^{2}\forall x_{1},$

$\ldots,$
$x_{q}\in R$ . Let $\psi_{1}(x),$ $\psi_{2}(x)\in H^{1}(\Omega)$ be such that

$\psi_{1}(x)<\psi_{2}(x)$ , for almost all $x\in\Omega,$ $\psi_{1}|_{\partial\Omega}-0\leq\psi_{2}|_{\partial\Omega}$ , and $A\psi_{1}$ and $A\psi_{2}$ are mea-
sures, with $(A\psi_{1})^{+},$ $(A\psi_{2})^{-}\in L_{2}(\Omega)$ . Given-oo $\leq\alpha_{1}<0<\alpha_{2}\leq\infty$ , let $g(v)$ be defined
almost everywhere in the pointwise manner:

$g(v(x))\equiv\{$

$\alpha_{1}$ if $v(x)<\psi_{1}(x)$

$[\alpha_{1},0]$ if $v(x)=\psi_{1}(x)$

$0$ if $\psi_{1}(x)<v(x)<\psi_{2}(x)$

$[0, \alpha_{2}]$ if $v(x)=\psi_{2}(x)$

$\alpha_{2}$ if $v(x)>\psi_{2}(x)$ .

The resolvent operators can be computed from the pointwise expressions

$P_{[k]}v(x)=\{$

$v(x)-k\alpha_{1}$ if $v(x)<\psi_{1}(x)+k\alpha_{1}$

$v(x)+(\psi_{1}(x)-v(x))^{+}-(v(x)-\psi_{2}(x))^{+}$ if $\psi_{1}(x)+k\alpha_{1}\leq v(x)\leq\psi_{2}(x)+k\alpha_{2}$

$v(x)-k\alpha_{2}$ if $v(x)>\psi_{2}(x)+k\alpha_{2}$ .

It is not difficult to verify that (2.3) holds. Furthermore, if we set

$w(v)(x)=\{$

$(A\psi_{1})^{+}$

$0$

$(A\psi_{2})^{-}$

Then $|w(v)|\leq|(A\psi_{1})^{+}|+|(A\psi_{2})^{-}|$ and

if $v(x)<\psi_{1}(x)$

if $\psi_{1}(x)\leq v(x)\leq\psi_{2}(x)$

if $v(x)>\psi_{2}(x)$ .

$(AP_{[k]}v-w(v), v-P_{[k]}v)= \int_{v(x)<\psi_{1}(x)}(A\psi_{1}(x)-(A\psi_{1})^{+}(x))(v(x)-\psi_{1}(x))dx$

$+ \int_{v(x)>\psi_{2}(x)}(A\psi_{2}(x)-(A\psi_{2})^{-}(x))(v(x)-\psi_{2}(x))dx\geq 0$ .

This shows that the compatibility condition (2.4) also holds.
In this context, the estimate (2.10) reduces to the case $p=2$ of the regularity estimate

in Theorem 1.1 of [9]. This shows that the compatibility conditions in (2.4) are actually
a natural requirement in the study of elliptic problems of the form (2.9). We will see in
the next section that such conditions also play an important role in the convergence and
error analysis of the truncation scheme (1.5).

3. Convergence results for the generalized truncation method

We shall now begin the study of the convergence of the generalized truncation
scheme. All through this section, $L_{2}(0, T;H)$ will designate the set of all strongly mea-
surable $H$-valued functions defined on $[0, T]$ for which $\int_{0}^{T}|f(t)|^{2}dt<\infty,$ $L_{\infty}(0, T;H)$ will
designate the set of strongly measurable essentially bounded $H$-valued functions defined
on $[0, T]$ , and an analogous notation will be employed for $V$-valued and $V^{*}$ -valued
functions. As usual, two measurable functions which coincide almost everywhere will be
regarded as identical.

In the sequel, we shall assume that the data $u_{0}$ and $f$ of problem (1.2) satisfy the
following conditions:
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$\exists v_{0}\in H$ such that $v_{0}\in g(u_{0})$ , (3.1)

$f,f’\in L_{2}(0, T;H)$ , (3.2)

$f(0)-Au_{0}\in H$ . (3.3)

We observe (cf. [19, Theorem 1.3.7]) that if (3.2) holds, then $f$ is a continuous func-
tion. Therefore pointwise values of $f$ are well defined, so that (3.3) makes sense. In
addition, since $L_{2}(0, T;V)\subset L_{2}(0, T;H)\subset L_{2}(0, T;V^{*})$ (because of the continuity of the
inclusions $V\subset H\subset V$“), we also have $ff’\in L_{2}(0, T;V^{*})$ .

Let $u_{k}$ denote the step function assuming the value $u_{k}^{n}$ on the interval $((n-1)k, nk]$ ,
where the u4 are computed from the truncation scheme (1.5). Let $\tilde{u}_{k}$ be the piece-wise
smooth function defined by the condition $\tilde{u}_{k}(t)=\iota l_{k}+(t/k-n)(u_{k}^{n}-u_{k}^{n-1})$ for all
$(n-1)k<t\leq nk$ . In the sequel, we will be using analogous notations for other func-
tions $f_{k},$ $U_{k}$ etc.. Obviously, we have $|u_{k}|_{L_{2}(0,T;H)}^{2}=k \sum_{n=1}^{N}|u_{k}^{n}|^{2}$ and $|\tilde{u}_{k}’|_{L_{2}(0,T;H)}^{2}=$

$k \sum_{n=1}^{N}|(u_{k}^{n}-u_{k}^{n-1})/k|^{2}$ .
In the sequel, we will always define the $f_{k}^{n}$ in (1.4) and (1.5) in the form

$f_{k}^{n}=(1/k) \int_{(n-1)k}^{nk}f(t)dt$ .
The following results are well-known [1, 13, 26] and easy to prove, so their proofs

will be omitted.

LEMMA 3.1. For all $k>0$ we have

$|U_{k}-\tilde{U}_{k}|_{L_{\infty}(0,T;H)}\leq Gk|\overline{U}_{k}’|_{L_{\infty}(0,T;H)}$ , (3.4)

$||f-f_{k}||_{L_{2}(0,T,V^{*})}\leq G_{1}k||f’||_{L_{2}(0,T;V^{*})}$ , (3.5)

$||\tilde{f}_{k}’||_{L_{2}(0,T;V^{*})}\leq||f’||_{L_{2}(0,T,V^{*})}$ , (3.6)

$|f_{k}|_{L_{2}(0,T;H)}\leq|f|_{L_{2}(0.T:H)}$ . (3.7)

Here, and in all that follows, $G,$ $G_{1},$ $G_{2},$
$\ldots$ designate generic constants which need

not have the same value in any two places. We now prove some apriori estimates for
the solution of (1.5).

PROPOSITION 3.1. Suppose that (2.1), (2.3), (2.4) and $(3.1)-(3.3)$ hold. Then the
piece-wise linear function $\tilde{u}_{k}$ whose values are obtained from (1.5) satisfies the estimate

$|\tilde{u}_{k}’|_{L_{\infty}(0,T;H)}^{2}+||\iota\sim 1_{k}||_{L_{2}(0,T;V)}^{2}\leq G.$ (3.8)

PROOF: Since $u_{k}^{1}+kAu_{k}^{1}=P_{[k]}u_{0}+kf_{k}^{1}$ , we have

$u_{k}^{1}-u_{0}+kA(u_{k}^{1}-u_{0})=P_{[k]}u_{0}-u_{0}+k(f(0)-Au_{0})+k(f_{k}^{1}-f(O))$ .

Taking scalar products with $u_{k}^{1}-u_{0}$ , we obtain

$|u_{k}^{1}-u_{0}|^{2}+kc||u_{k}^{1}-u_{0}||^{2}\leq(P_{[k]}u_{0}-u_{0}+k(f(0)-Au_{0})+k(f_{k}^{1}-f(O)), u_{k}^{1}-u_{0})$

$\leq\frac{1}{2}|u_{k}^{1}-u_{0}|^{2}+\frac{1}{2}|P_{[k]}u_{0}-u_{0}+k(f(0)-Au_{0})|^{2}$

$+ \frac{kc}{2}||u_{k}^{1}-u_{0}||^{2}+\frac{k}{2c}||f_{k}^{1}-f(0)||_{*}^{2}$
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$\leq\frac{1}{2}|u_{k}^{1}-u_{0}|^{2}+|P_{[k]}u_{0}-u_{0}|^{2}+k^{2}|f(0)-Au_{0}|^{2}$

$+ \frac{kc}{2}||u_{k}^{1}-u_{0}||^{2}+\frac{k}{2c}||f_{k}^{1}-f(0)||_{*}^{2}$ .

Rearranging and making use of (3.1) and (2.7), we obtain

$|u_{k}^{1}-u_{0}|^{2}+kc||u_{k}^{1}-u_{0}||^{2} \leq 2k^{2}(|v_{0}|^{2}+|f(0)-Au_{0}|^{2})+\frac{k}{c}||f_{k}^{1}-f(0)||_{*}^{2}$ .

NOW, we have

$||f_{k}^{1}-f(0)||_{*}^{2}=|| \frac{1}{k}\int_{0}^{k}(f(s)-f(0))\ ||_{*}^{2} \leq\frac{1}{k}\int_{0}^{k}||f(s)-f(0)||_{*}^{2}\$

$= \frac{1}{k}\int_{0}^{k}||\int_{0}^{s}f’(t)dt||_{*}^{2}ds\leq\frac{1}{k}\int_{0}^{k}\int_{0}^{s}s||f’(t)||_{*}^{2}dtds$

$\leq\frac{1}{k}\int_{0}^{k}s\int_{0}^{T}||f’(t)||_{*}^{2}dtds=\frac{k}{2}||f’||_{L_{2}(0,T;V^{*})}^{2}$ . (3.9)

Consequently, we deduce that

$| \frac{u_{k}^{1}-u_{0}}{k}|2 +kc|| \frac{u_{k}^{1}-u_{0}}{k}||^{2}\leq 2|v_{0}|^{2}+2|f(0)-Au_{0}|^{2}+\frac{1}{2c}||f’||a(0,T;V^{*})\leq G_{1}$ . (3.10)

Since $u_{k}^{n+1}+kA\iota l_{k}^{+1}=P_{[k]}u_{k}^{n}+kf_{k}^{n+1}$ and $u_{k}^{n}+kAu_{k}^{n}=P_{[k]}u_{k}^{n-1}+kf_{k}^{n}$ , we have

$u_{k}^{n+1}$ –u4 $+kA(u_{k}^{n+1}-u_{k}^{n})=P_{[k]}$ u4 $-P_{[k]}u_{k}^{n-1}+k(f_{k}^{n+1}-f_{k}^{n})$ .

Taking scalar products with $u_{k}^{n+1}-u_{k}^{n}$ and making use of (2.1), we obtain

$|l_{k}^{+1}-\iota l_{k}|^{2}+kc||u_{k}^{n+1}-l_{k}||^{2}\leq|P_{[k]}u_{k}^{n}-P_{[k]}u_{k}^{n- 1}||u_{k}^{n+1}-\iota l_{k}|+k||f_{k}^{n+1}-f_{k}^{n}||_{*}||u_{k}^{n+1}-u_{k}^{n}|I$

$\leq\frac{1}{2}|P_{[k]}u_{k}^{n}-P_{[k]}l_{k}^{-1}|^{2}+\frac{1}{2}|u_{k}^{n+1}-l_{k}|^{2}+\frac{k}{2c}||f_{k}^{n+1}-f_{k}^{n}||_{*}^{2}+\frac{kc}{2}||l_{k}^{+1}-l_{k}||^{2}$ .

Therefore, using (2.5) we obtain

$|u_{k}^{n+1}- \iota l_{k}|^{2}-|u_{k}^{n}-u_{k}^{n-1}|^{2}+kc||l_{k}^{+1}-l_{k}||^{2}\leq\frac{k}{c}||f_{k}^{n+1}-f_{k}^{n}||_{*}^{2}$ .

Adding up, and making use of (3.6) and (3.10), we obtain

$| \frac{u_{k}^{l+1}-u_{k}^{l}}{k}|^{2}+kc\sum_{n=0}^{l}||\frac{u_{k}^{n+1}-u_{k}^{n}}{k}||2 \leq| \frac{u_{k}^{l}-u_{0}}{k}|2 +kc|| \frac{u_{k}^{1}-u_{0}}{k}||^{2}+\frac{k}{c}\sum_{n=1}^{l}||\frac{f_{k}^{n+1}-f_{k}^{n}}{k}||_{*}^{2}$

$\leq G_{1}+\frac{1}{c}||f’||_{L_{2}(0,T;V^{*})}^{2}$ .

Since $l$ is arbitrary, we conclude that $\max_{0\leq n\leq N}|(u_{k}^{n+1}-u_{k}^{n})/k|^{2}\leq G_{2}$ and
$k \sum_{n=0}^{N}||(u_{k}^{n+1}-u_{k}^{n})/k||^{2}\leq G_{3}$ . This implies that
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$0^{\max_{\leq n\leq N}}| \frac{u_{k}^{n+1}-u_{k}^{n}}{k}|^{2}+k\sum_{n=0}^{N}||\frac{u_{k}^{n+1}-u_{k}^{n}}{k}||^{2}\leq G$

which is equivalent to (3.8). That completes the proof. $\blacksquare$

PROPOSITION 3.2. Let the hypotheses of Proposition 3.1 hold. Then the step function
$u_{k}$ whose values are obtained from (1.5) satisfies the estimates

$|u_{k}-P_{[k]}u_{k}|_{L_{2}(0,T;H)}\leq Gk$ (3.11)

$||u_{k}-P_{[k]}u_{k}||_{L_{2}(0,T;V)}^{2}\leq Gk$ (3.12)

PROOF. Writing (1.5) in the form

$u_{k}^{n}-P_{[k]}u_{k}^{n}+k(AP_{[k]}u_{k}^{n}-w(u_{k}^{n}))+k(Au_{k}^{n}-AP_{[k]}u_{k}^{n})=P_{[k]}l_{k}^{-1}-P_{[k]}u_{k}^{n}+k(f_{k}^{n}-w(u_{k}^{n}))$ ,

taking scalar products with $\iota f_{k}-P_{[k]}u_{k}^{n}$ , and using (2.4), we see that

$|u_{k}^{n}-P_{[k]}u_{k}^{n}|^{2}+kc||\iota P_{k}-P_{[k]}$ u4 $||^{2}\leq|P_{[k]}u_{k}^{n-1}-P_{[k]}$ u4 $+k(f_{k}^{n}-w(u_{k}^{n}))||u_{k}^{n}-P_{[k]}u_{k}^{n}|$

$\leq\frac{1}{2}|u_{k}^{n}-P_{[k]}u_{k}^{n}|^{2}+k^{2}|f_{k}^{n}-w(u_{k}^{n})+\frac{P_{[k]}u_{k}^{n-1}-P_{[k]}u_{k}^{n}}{k}|^{2}$

Rearranging, and making use of (2.4), (2.5), and the continuity of the inclusion $V\subset H$ ,
we obtain

$\frac{1}{2}|u_{k}^{n}-P_{[k]}u_{k}^{n}|^{2}+kc||\iota P_{k}-P_{[k]}u_{k}^{n}||^{2}\leq k^{2}|f_{k}^{n}-w(u_{k}^{n})|^{2}+k^{2}|\frac{u_{k}^{n}-u_{k}^{n-1}}{k}|^{2}$

$\leq G_{1}k^{2}(|f_{k}^{n}|^{2}+\beta^{2}+||\frac{u_{k}^{n}-u_{k}^{n-1}}{k}||^{2})$ . (3.13)

This implies that

$|l_{k}-P_{[k]}u_{k}^{n}|^{2} \leq G_{2}k^{2}(|f_{k}^{n}|^{2}+\beta^{2}+||\frac{\iota l_{k}-u_{k}^{n-1}}{k}||^{2})$ .

Multiplying with $k$, summing from $n=0$ to $n=N$ , and using (3.7) and (3.8), we obtain

$|u_{k}-P_{[k]}u_{k}|_{L_{2}(0,T;H)}^{2}\leq G_{2}k^{2}(|f|_{L_{2}(0,T;H)}^{2}+||\tilde{u}_{k}’||_{L_{2}(0,T;V)}^{2}+T\beta^{2})\leq G^{2}k^{2}$ .

This proves (3.11).
It also follows from (3.13) that

$k|| \iota l_{k}-P_{[k]^{u_{k}^{n}}}||^{2}\leq G_{3}k^{2}(|f_{k}^{n}|^{2}+\beta^{2}+||\frac{u_{k}^{n}-u_{k}^{n-1}}{k}||^{2})$ .

Summing both sides from $n=0$ to $n=N$ , and using (3.7) and (3.8), we obtain
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$k \sum_{n=0}^{N}||\iota l_{k}-P_{[k]}\iota P_{k}||^{2}\leq G_{3}k(k\sum_{n=1}^{N}|f_{k}^{n}|^{2}+kN\beta^{2}+k\sum_{n=0}^{N}||\frac{u_{k}^{n}-u_{k}^{n-1}}{k}||^{2})$

$\leq G_{3}k(|f|_{L_{2}(0,T;H)}^{2}+T\beta^{2}+||\iota\sim 1_{k}||_{L_{2}(0,T;V)}^{2})\leq Gk$ .

This proves (3.12) and completes the proof of the Proposition. $\blacksquare$

The next result relates the solution of Rothe’s scheme (1.4) to the solution of the
generalized truncation scheme (1.5).

THEOREM 3.3. Suppose that $(2.1)-(2.4)$ and $(3.1)-(3.3)$ hold. If $U_{k}$ and $u_{k}$ are,
respectively, the step functions whose values are obtainedfrom (1.4) and (1.5), then we have

$|u_{k}-U_{k}|_{L_{\infty}(0,T;H)}^{2}+||u_{k}-U_{k}||_{L_{2}(0,T;V)}^{2}\leq Gk$ . (3.14)

PROOF. Since $f_{k}^{n}-(U_{k}^{n}-U_{k}^{n-1})/k-AU_{k}^{n}\in g(U_{k}^{n})$ and $(u_{k}^{n}-P_{[k]}u_{k}^{n})/k\in g(P_{[k]}u_{k}^{n})$ ,
the monotonicity of $g$ implies that

( $P_{[k]}$ u4 $-U_{k}^{n}+kAu_{k}^{n}-kAU_{k}^{n},$ $P_{[k]}u_{k}^{n}-U_{k}^{n}$ ) $\leq$ ( $P_{[k]}u_{k}^{n-1}-U_{k}^{n-1},$ $P_{[k]}$ u4 $-U_{k}^{n}$ ).

Rearranging this inequality in the form

$|P_{[k]}$ u4 $-U_{k}^{n}|^{2}+k$ (A $k^{-AU_{k}^{n}}$
’ u4 $-U_{k}^{n}$ )

$\leq(P_{[k]}u_{k}^{n-1}-U_{k}^{n-1}, P_{[k]}u_{k}^{n}-U_{k}^{n})+k(Al_{k}-AU_{k}^{n}, \iota l_{k}-P_{[k]}l_{k})$

and making use of (2.1) and (2.2), we obtain

$|P_{[k]}l_{k}-U_{k}^{n}|^{2}+kc||l_{k}-U_{k}^{n}||^{2}$

$\leq|P_{[k]}l_{k}^{-1}-U_{k}^{n-1}||P_{[k]}l_{k}-U_{k}^{n}|+Mk||u_{k}^{n}-U_{k}^{n}||||l_{k}-P_{[k]}l_{k}||$ .

This implies

$\frac{1}{2}|P_{[k]}u_{k}^{n}-U_{k}^{n}|^{2}-\frac{1}{2}|P_{[k]}u_{k}^{n-1}-U_{k}^{n-1}|^{2}+\frac{kc}{2}||l_{k}-U_{k}^{n}||^{2}\leq\frac{M^{2}k}{2c}||l_{k}-P_{[k]}u_{k}^{n}||$ .

Performing a summation and making use of (2.7) and (3.12), we obtain

$|P_{[k]}u_{k}^{l}-U_{k}^{l}|^{2}+kc \sum_{n=1}^{l}||\iota P_{k}-U_{k}^{n}||^{2}\leq\frac{M^{2}k}{c}\sum_{n=0}^{N}||l_{k}-P_{[k]}u_{k}^{n}||^{2}+|u_{0}-P_{[k]}u_{0}|^{2}\leq G_{1}k$ .

Since $l$ is arbitrary, we conclude that $\max_{0\leq l\leq N}|Pui-U_{k}^{l}|^{2}\leq G_{1}k$ and
$k \sum_{n=0}^{N}||\iota l_{k}-U_{k}^{n}||^{2}\leq G_{2}k$ , from which (3.14) follows immediately. $\blacksquare$

This result suggests that the numerical performance of Rothe’s scheme and the
generalized truncation scheme should be similar. It also shows that to prove the con-
vergence of the solution $u_{k}$ of the generalized truncation method to the solution $u$ of
(1.2), it suffices to prove that the solution $U_{k}$ of Rothe’s scheme converges to $u$ . This
will be shown in Theorem 3.5 below. However, before stating and proving this theorem
we first establish some basic results for Rothe’s scheme (1.4).

PROPOSITION 3.4. Suppose that (2.1), (2.2) and $(3.1)-(3.3)$ hold. Let $\tilde{U}_{k}$ be the
piecewise linear function constructed from the nodal values of Rothe’s scheme (1.4). Then
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we have
$|\tilde{U}_{k}’|_{L_{\infty}(0,T;H)}+||\tilde{U}_{k}’||_{L_{2}(0,T;V)}\leq G$ , $\forall k>0$ . (3.15)

$|U_{k}-\tilde{U}_{k}|_{L_{\infty}(0,T;H)}\leq Gk$ , $\forall k>0$ . (3.16)

PROOF. Using (3.1), the relation $U_{k}^{1}+kAU_{k}^{1}+kg(U_{k}^{1})\ni u_{0}+kf_{k}^{1}$ , and the monot-
onicity of $g$ , we obtain $(U_{k}^{1}-u_{0}+kAU_{k}^{1}-kf_{k}^{1}+kv_{0}, U_{k}^{1}-u_{0})\leq 0$ . Rearranging this,
we obtain

$|U_{k}^{1}-u_{0}|^{2}+k(AU_{k}^{1}-Au_{0}, U_{k}^{1}-u_{0})$

$\leq k(f(0)-Au_{0}-v_{0}, U_{k}^{1}-u_{0})+k(f_{k}^{1}-f(O), U_{k}^{1}-u_{0})$ .

Using (2.1) we obtain

$|U_{k}^{1}-u_{0}|^{2}+kc||U_{k}^{1}-u_{0}||^{2}$

$\leq k|U_{k}^{1}-u_{0}||f(0)-Au_{0}-v_{0}|+k||U_{k}^{1}-u_{0}||||f_{k}^{1}-f(O)||_{*}$

$\leq\frac{k^{2}}{2}|f(0)-Au_{0}-v_{0}|^{2}+\frac{1}{2}|U_{k}^{1}-u_{0}|^{2}+\frac{kc}{2}||U_{k}^{1}-u_{0}||^{2}+\frac{k}{2c}||f_{k}^{1}-f(0)||_{*}^{2}$ .

Therefore, rearranging and making use of (3.9), we conclude that

$| \frac{U_{k}^{1}-u_{0}}{k}|2 +kc|| \frac{U_{k}^{1}-u_{0}}{k}||^{2}\leq|f(0)-Au_{0}-v_{0}|^{2}+\frac{1}{kc}||f_{k}^{1}-f(0)||_{*}^{2}\leq G_{1}$ . (3.17)

On the other hand, if we use (1.4) and the corresponding equation obtained on re-
placing $n$ with $n-1$ and apply the monotonicity of $g$ we obtain

$(U_{k}^{n+1}-U_{k}^{n}+kAU_{k}^{n+1}-kAU_{k}^{n}, U_{k}^{n+1}-U_{k}^{n})\leq(U_{k}^{n}-U_{k}^{n-1}+kf_{k}^{n+1}-kf_{k}^{n}, U_{k}^{n+1}-U_{k}^{n})$ .

This implies

$|U_{k}^{n+1}-U_{k}^{n}|^{2}+kc||U_{k}^{n+1}-U_{k}^{n}||^{2}\leq|U_{k}^{n}-U_{k}^{n-1}||U_{k}^{n+1}-U_{k}^{n}|+k||f_{k}^{n+1}-f_{k}^{n}||_{*}||U_{k}^{n+1}-U_{k}^{n}||$

$\leq\frac{1}{2}|U_{k}^{n}-U_{k}^{n-1}|^{2}+\frac{1}{2}|U_{k}^{n+1}-U_{k}^{n}|^{2}+\frac{k}{2c}||f_{k}^{n+1}-f_{k}^{n}||_{*}^{2}+\frac{kc}{2}||U_{k}^{n+1}-U_{k}^{n}||^{2}$

Therefore

$|U_{k}^{n+1}-U_{k}^{n}|^{2}-|U_{k}^{n}-U_{k}^{n-1}|^{2}+kc||U_{k}^{n+1}-U_{k}^{n}||^{2} \leq\frac{k}{c}||f_{k}^{n+1}-f_{k}^{n}||_{*}^{2}$ .

Adding up and using (3.6) and (3.17), we obtain

$| \frac{U_{k}^{l+1}-U_{k}^{l}}{k}|^{2}+kc\sum_{n=0}^{l}||\frac{U_{k}^{n+1}-U_{k}^{n}}{k}||^{2}$

$\leq|\frac{U_{k}^{1}-u_{0}}{k}|2 +kc|| \frac{U_{k}^{1}-u_{0}}{k}||^{2}+\frac{k}{c}\sum_{n=1}^{l}||\frac{f_{k}^{n+1}-f_{k}^{n}}{k}||_{*}^{2}$

$\leq|\frac{U_{k}^{1}-u_{0}}{k}|2 +kc|| \frac{U_{k}^{1}-u_{0}}{k}||^{2}+\frac{1}{c}||\tilde{f}_{k}’||_{L_{2}(0,T;V^{*})}^{2}$

$\leq G_{1}(G_{2}+||f’||_{L_{2}(0,T;V^{*})}^{2})\leq G_{3}$ .
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Since $l$ is arbitrary, we conclude that $\max_{0\leq l\leq N}|(U_{k}^{l+1}-U_{k}^{l})/k|^{2}\leq G_{4}$ and
$k \sum_{n=0}^{N}||(U_{k}^{n+1}-U_{k}^{n})/k||^{2}\leq G_{5}$ , from which we conclude that

$0^{\max_{\leq n\leq N}}| \frac{U_{k}^{n+1}-U_{k}^{n}}{k}|^{2}+k\sum_{n=0}^{N}||\frac{U_{k}^{n+1}-U_{k}^{n}}{k}||^{2}\leq G$ .

That proves (3.15). The final estimate (3.16) follows from (3.4) and (3.15). $\blacksquare$

We now prove the existence of a solution to (1.2) and the convergence the approxi-
mate solutions computed from Rothe’s scheme (1.4).

THEOREM 3.5. Let the hypotheses of Theorem 3.4 hold. Then there exists a solution
$u\in L_{2}(0, T;V)\cap L_{\infty}(O, T;H)$ of (1.2). Moreover, if $U_{k}$ is the step function whose values
are obtained from (1.4), then $U_{k}$ converges to $u$, with the error estimate

$|U_{k}-u|_{L_{\infty}(0,T;H)}^{2}+||U_{k}-u||_{L_{2}(0,T;V)}^{2}\leq Gk$ . (3.18)

PROOF. Rothe’s scheme (1.4) with step size $k$ can be expressed in the form

$\tilde{U}_{k}’(t)+AU_{k}(t)+g(U_{k}(t))\ni f_{k}(t)$ . (3.19)

Writing the analogous expression with step size $h$ , and invoking the monotonicity of $g$ we
obtain the inequality

$(\tilde{U}_{h}’(t)-\tilde{U}_{k}’(t)+AU_{h}(t)-AU_{k}(t), U_{h}(t)-U_{k}(t))\leq(f_{h}(t)-f_{k}(t), U_{h}(t)-U_{k}(t))$ .

This can be rewritten in the form (with time arguments omitted for the sake of simplicity)

$(\tilde{U}_{h}’-\tilde{U}_{k}’,\tilde{U}_{h}-\tilde{U}_{k})+(AU_{h}-AU_{k}, U_{h}-U_{k})$

$\leq(f_{h}-f_{k}, U_{h}-U_{k})+(\tilde{U}_{h}’-\tilde{U}_{k}’,\tilde{U}_{h}-U_{h}-\tilde{U}_{k}+U_{k})$ .
This implies

$\frac{1}{2}\frac{d}{dt}|\tilde{U}_{h}-\tilde{U}_{k}|^{2}+c||U_{h}-U_{k}||^{2}$

$\leq\frac{1}{2c}||f_{h}-f_{k}||_{*}^{2}+\frac{c}{2}||U_{h}-U_{k}||^{2}+(|\tilde{U}_{h}’|+|\tilde{U}_{k}’|)(|\tilde{U}_{h}-U_{h}|+|\tilde{U}_{k}-U_{k}|)$ .

Applying (3.15) and (3.16) to the last term in this expression, we obtain

$\frac{d}{dt}|\tilde{U}_{h}-\tilde{U}_{k}|^{2}+c||U_{h}-U_{k}||^{2}\leq\frac{1}{c}||f_{h}-f_{k}||_{*}^{2}+G_{1}(h+k)$ .

Integrating, we obtain

$| \tilde{U}_{h}(t)-\tilde{U}_{k}(t)|^{2}+c\int_{0}^{t}||U_{h}(s)-U_{k}(s)||^{2}ds$

$\leq\frac{1}{c}\int_{0}^{t}||f_{h}(s)-f_{k}(s)||_{*}^{2}ds+G_{1}T(h+k)$

$\leq\frac{1}{c}||f_{h}-f_{k}||_{L_{2}(0,T;V^{*})}^{2}+G_{1}T(h+k)$
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$\leq G_{2}(||f_{h}-f||_{L_{2}(0,T;V^{*})}^{2}+||f_{k}-f||_{L_{2}(0,T;V^{*})}^{2}+h+k)$

$\leq G_{3}(h+k)$ .

Since $t$ is arbitrary, we see that $|\tilde{U}_{h}-\tilde{U}_{k}|_{L_{\infty}(0,T;H)}^{2}\leq(G/2)(h+k)$ and
$||U_{h}-U_{k}||_{L_{2}(0,T;V)}^{2}\leq(G/2)(h+k)$ . By invoking (3.4), we conclude that

$|U_{h}-U_{k}|_{L_{\infty}(0,T;H)}^{2}+||U_{h}-U_{k}||_{L_{2}(0,T;V)}^{2}\leq G(h+k)$ . (3.20)

If follows from the completeness of $L_{\infty}(O, T;H)\cap L_{2}(0, T;V)$ that there exists
$u\in L_{\infty}(O, T;H)\cap L_{2}(0, T;V)$ such that $|U_{k}-u|_{L_{\infty}(0,T;H)}+||U_{k}-u||_{L_{2}(0,T;V)}arrow 0$ as $k$

tends to zero. Letting $h$ tend to zero in (3.20), we obtain (3.18).
We now show that $u$ solves (1.2). It is well known that (3.18) implies that $U_{k}(t)$

converges strongly to $u(t)$ in $V$ as $k$ tends to zero, for almost every $t\in[0, T]$ . Therefore,
the continuity of $A$ implies that $Au_{k}(t)$ converges strongly to Au $(t)$ in $V^{*}$ as $k$ tends to
zero, for almost every $t\in[0, T]$ . Also, Proposition 3.4 states that $\tilde{U}_{k}’$ is bounded in
$L_{2}(0, T;V)$ , which implies that it converges weakly in the norm of $L_{2}(0, T;V)$ to some
$\chi\in L_{2}(0, T;V)$ as $k$ tends to zero. Since $\tilde{U}_{k}$ converges strongly to $u$ in the norm of
$L_{2}(0, T;V)$ , it follows from [19, Lemma 1.3.15] that $\chi=u’$ . Consequently, $\tilde{U}_{k}’(t)$ con-
verges weakly to $u!(t)$ in $V$ as $k$ tends to zero, for almost every $t\in[0, T]$ . Finally, given
any $z\in g(y)$ , it ollows from (3.19) and the monotonicity of $g$ that

$(\tilde{U}_{k}’(t)+AU_{k}(t)-f_{k}(t)-z, U_{k}(t)-y)\geq 0$ .

Letting $k$ tend to zero, we obtain the inequality

$(u’(t)+Au(t)-f(t)-z, u(t)-y)\geq 0$ .

Therefore, the maximality of $g$ shows that $u’(t)+Au(t)-f(t)\in g(u(t))$ , which shows that
$u$ satisfies (1.2) for almost every $t$ . That completes the proof. $\blacksquare$

The convergence of the generalized truncation scheme now follows easily from
Theorem 3.3 and Theorem 3.5.

COROLLARY 3.6. Suppose that the hypotheses of Theorem 3.3 hold. Then the step
function $u_{k}$ whose values are obtained from (1.5) converges to the solution $u$ of (1.2), with
the error estimate:

$|P_{[k]}u_{k}-u|_{L_{\infty}(0,T;H)}^{2}+||u_{k}-u||_{L_{2}(0,T;V)}^{2}\leq Gk$ .

PROOF. Using Theorem 3.4 and Theorem 3.5, we obtain

$|P_{[k]}u_{k}-u|_{L_{\infty}(0,T;H)}^{2}+||u_{k}-u||_{L_{2}(0,T;V)}^{2}\leq 2|P_{[k]}u_{k}-U_{k}|_{L_{\infty}(0,T;H)}^{2}+2|U_{k}-u|_{L_{\infty}(0,T;H)}^{2}$

$+2||u_{k}-U_{k}||_{L_{2}(0,T;V)}^{2}+2||U_{k}-u||_{L_{2}(0,T;V)}^{2})$

$\leq Gk$ .

That completes the proof. $\blacksquare$

This result can be proved directly in a manner similar to the proof of Theorem
3.4. However, we preferred the approach followed above since it brings out the rela-
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tionship between Rothe’s scheme and the generalized truncation scheme in a natural
manner.

4. Applications of the truncation method

In this section we discuss some classes of problems that occur in applications to
which our convergence theory is applicable and for which the relevant resolvent opera-
tors are easily computed. Obviously the generalized truncation method is a convenient
convergent method for the numerical solution of such problems.

EXAMPLE 4.1. Let $q:[0, \infty)->[0, \infty)$ be a differentiable function such that $q(O)=0$

and

$sq’(s)-q(s)>0$ $\forall s>0$ . (4.1a)

It is not difficult to see that this condition implies that, for all $k>0,$ $(1+kq)^{-1}$ exists as
a function mapping $[0, \infty)$ into itself. We make the further assumption that

$(1+kq)^{-1}(s)iscontinuousinsforalls>0$ . (4.1b)

NOW let $g(O)=0$ and

$g(z)=q(|z|)|z|^{-1}z$ , $\forall z\in H\backslash \{0\}$ . (4.2)

Then $g$ is maximal monotone since it is the subgradient of the differentiable convex
function $\phi(z)=\int_{0}^{|z|}q(s)ds$ . For all $v\in V$ , we have

$(v-P_{[k]}v, AP_{[k]}v)=k(g(P_{[k]}v), AP_{[k]}v)=q(|P_{[k]}v|)|P_{[k]}v|^{-1}(P_{[k]}v, AP_{[k]}v)\geq 0$ .

Therefore (2.4) holds with $w(v)\equiv 0$ . The fact that $P_{[k]}$ maps $V$ into itself follows from
the equation

$P_{[k]}v=v\{1+kq(|P_{[k]}v|)|P_{[k]}v|^{-1}\}^{-1}$ , $\forall v\in H$ . (4.3)

Furthermore, we have $||P_{[k]}v||=||v||\{1+kq(|P_{[k]}v|)|P_{[k]}v|^{-1}\}^{-1}\leq||v||$ , which shows that
$P_{[k]}$ is bounded on $V$. Finally, the expression

$P_{[k]}v=v \{1+k\frac{q((1+kq)^{-1}(|v|))}{(1+kq)^{-1}(|v|)}\}^{-1}$

shows that $P_{[k]}$ is a continuous function from $V$ to $V$. In particular, $P_{[k]}$ is hemi-
continuous. Therefore (2.3) holds.

The computation of $P_{[k]}v$ can be efficiently done with a method described in [29], the
idea of which is to obtain $|P_{[k]}v|$ from the equation $|P_{[k]}v|+kq(|P_{[k]}v|)=|v|$ and then
compute $P_{[k]}v$ from (4.3). Using Newton’s method, we obtain the rapidly converging
iterative scheme

$p_{0}=|v|$ , (4.4a)

$p_{m+1}=\{|v|+kp_{m}q’(p_{m})-kq(p_{m})\}\{1+kq’(p_{m})\}^{-1}$ , (4.4b)

$|P_{[k]}v|= \lim_{marrow\infty}p_{m}$ . (4.4c)
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The initial choice in (4.4a) is strongly recommended, for since $\lim_{karrow 0}|P_{[k]}v|=|v|$ , it en-
sures the convergence of the scheme (4.4) whenever $k$ is small enough.

If $p\geq 2$ , the function $q(z)=z^{p-1}$ satisfies (4.1a) and corresponds to the the maximal
monotone function $g(z)=z|z|^{p-2}$ . In this case (1.4) reduces to the nonlinear evolution
equation:

$u(0)=u_{0}$ ,
(4.5)

$u’(t)+Au(t)+|u(t)|^{p-2}u(t)=f(t)$ , $\forall t\in[0, T]$ .

When the value of the exponent $p$ is either 3, 4 or 5, the resolvent values $P_{[k]}v$ can be
computed from the explicit formulae given in $[28, 29]$ instead of the iterative scheme
(4.4).

If we take $V$ and $H$ as in Example 2.4 and let $A=-\Delta$ , then problem (4.5) reduces to
the problem in equation (1.8).

EXAMPLE 4.2. Let $H,$ $V$ and $A$ be as in Example 2.4 and let $q$ satisfy (4.1a). We
define $g(v)$ in the pointwise manner

$g(v(x))\equiv q(|v(x)|)|v(x)|^{-1}v(x)$ . (4.6)

Then for any $v\in V$ , we can compute the resolvent values $P_{[k]}v(x)$ in a pointwise manner
with the scheme (4.4), interpreting $||$ as the absolute value function in $R$ rather than the
norm in $H$. Equation (4.3) shows that $P_{[k]}v$ vanishes (in the sense of traces) on $\partial\Omega$ .
Also, for every $v\in V$ , we have

$\frac{\partial P_{[k]}v}{\partial x_{i}}=\{\frac{\partial v}{\partial x_{i}}\}\{1+kq’(|P_{[k]}v|)\}^{-1}$ ,

which shows that

$||P_{[k]}v||^{2}= \int_{\Omega}|VP_{[k]}v(x)|^{2}d\kappa\leq\int_{\Omega}|Vv(x)|^{2}dx=||v||^{2}$ ,

and hence that $P_{[k]}$ is a bounded map from $V$ to $V$. The pointwise expression

$P_{[k]}v(x)=v(x) \{1+k\frac{q((1+kq)^{-1}(|v(x)|))}{(1+kq)^{-1}(|v(x)|)}\}^{-1}$

shows that $P_{[k]}$ is continuous from $V$ into $V$. Finally, we have

$(AP_{[k]}v, v-P_{[k]}v)=k(AP_{[k]}v, g(P_{[k]}v))= \int_{\Omega}q’(|P_{[k]}v|)(\sum_{i=l}^{q}(\sum_{j=1}^{q}a_{ij}\frac{\partial P_{[k]}v}{\partial x_{j}})\frac{\partial P_{[k]}v}{\partial x_{i}})dx$

$\geq 0$ .

Therefore (2.3) and (2.4) hold with $w(v)\equiv 0$ . In this case (1.2) reduces to the problem
of finding a function $u(x, t)$ such that $u(x, 0)=u_{0}(x)$ for almost all $x\in\Omega,$ $u(\cdot, t)\in V$ for
all $t\in[0, T]$ , and

$\frac{\partial u}{\partial t}(x, t)+Au(x, t)+q(|u(x, t)|)|u(x, t)|^{-1}u(x, t)=f(x, t)$ , $\forall t\in[0, T]$ , $\forall x\in\Omega$ .
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This is a fairly large class of nonlinear parabolic partial differential equations which
includes the problem in equation (1.7).

REMARK 4.3. Let $H,$ $V,$ $A$ and $g$ be as in Example 2.4. Then it has been shown in
Example 2.4 that the compatibility conditions (2.3) and (2.4) hold.

In this case, it is easy to see that problem (1.2) reduces to the problem of finding a
function $u(x, t)$ such that $u(x, 0)=u_{0}(x)$ for almost all $x\in\Omega,$ $u(\cdot, t)\in V$ for all $t\in[0, T]$ ,
and

$\frac{\partial u}{\partial t}(x, t)+Au(x, t)+g(u(x, t))\ni f(x, t)$ , $\forall t\in[0, T]$ , $\forall x\in\Omega$ .

If we set $\alpha_{1}=-\infty$ and $\alpha_{2}=\infty$ , then the resolvent operators in (2.16) reduce to the
simpler truncation formula $P_{[k]}v(x)=v(x)+(\psi_{1}(x)-v(x))^{+}-(v(x)-\psi_{2}(x))^{+}$ . In this
case (1.2) is called an obstacle problem, and the generalized truncation scheme (1.5)
reduces to the time-discretized version of the truncation method due to Berger $[6, 7]$ .
Letting $\psi_{1}=\psi_{2}=0$ , we obtain a problem of the type (1.6).

REMARK 4.4. If we perform a finite-element space discretization in the generalized
truncation scheme, we obtain a fully discretized scheme for the numerical solutiom of
(1.4). Error estimates have been given in $[8, 18]$ for this scheme when applied to
obstacle problems. It would be interesting to see whether these error estimates can be
extended to fully discretized version of the generalized truncation method when applied
to the non-obstacle type problems described above.

ACKNOWLEDGEMENT. The author is gratef to the Intemational Atomic Energy
Agency and UNESCO for hospitality at the Trieste Intemational Centre for Theoretical
Physics during the preparation of the first draft of this paper. He is also grateful to the
referee for pointing out several errors in the initial manuscript.

References

[1] J. Aubin, Approximation of Elliptic Boundary value problems (Wiley Interscience, New York, 1972).
[2] C. Baiocchi, “Disequazioni variazionali”, Bolletino dell’Unione Matematica Italiana (5) 18-A (1981),

173-184.
[3] C. Baiocchi, “Discretization of evolution variational inequalities”, In, F. Colombini, A. Marino, L.

Modica, S. Spagnolo (eds), Partial Differential Equations and the Calculus of Variations: Volume I
(Birkh\u\{a}user Boston, Inc. 1989) 59-92.

[4] C. Baiocchi, A. Capelo, Variational and quasivariational inequalities. Applications to free boundary
problems (J. Wiley, 1980).

[5] V. Barbu, Non-linear Semigroups and Differential Equations in Banach Spaces (Noordhoff Intemational
Publishing, Leyden, The Netherlands, 1976).

[6] A. Berger, “The truncation method for the solution of a class of variational inequalities”, RAIRO Ser.
Rouge Analyse Numerique 10 (1976) 29-42.

[7] A. Berger, M. Ciment, J. W. C. Rogers, “Numerical solution of a diffusion absorption problem with a
free boundary”, SIAM J. Num. Anal. 12 (1975) 646-672.

[8] A. Berger, R. Falk, “An error estimate for the truncation method for the solution of parabolic varia-
tional inequalities”, Math. Comp. 31 (1977), 619-628.

[9] H. Brezis, “Problemes unilat\’eraux’’, J. Math. Pures et Appl. 51 (1972) 1-168.
[10] H. Brezis, Op\’erateur maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert

(North Holland, Amsterdam, 1973).
[11] H. Brezis, M. G. Crandall, A. Pazy, “Pertubations of nonlinear maximal monotone sets in Banach

space”, Comm. Pure and Applied Math. 23 (1970) 123-144.



A generalized tmncation method 735

[12] F. E. Browder, “Nonlinear maximal monotone operators in Banach spaces”, Math. Annalen 176
(1968) 88-113.

[13] P. G. Ciarlet, “The finite element method for elliptic problems.” North Holland, Amsterdam (1978).
[14] G. Duvaut, J. L. Lions, “Inequalities in Physics and Mechanics,” Springer Verlag (1976).
[15] L. Gastaldi, G. Gilardi, “An error estimate for an approximation of a parabolic variational inequal-

ity”, Boll. Unione Matematica Italiana (6) 1-B (1982) 501-521.
[16] R. Glowinski, Lectures on Numerical methods for nonlinear variational problems (Tata Institute for

Fundamental Research, 1980).
[17] R. Glowinski, J. L. Lions, R. Tremolieres, Numerical Analysis of variational inequalities (North Hol-

land, 1981).
[18] C. Johnson, “A convergence estimate for the approximation of a parabolic variational inequality”,

SIAM J. Numer. Anal. 13 (1976) 599-606.
[19] J. Kacur, Method of Rothe in Evolution Equations (Leipzig: BSB Teubner Verlagsges, 1985).
[20] D. Kinderlehrer, G. Stampacchia, An introduction to Variational Inequalities and their Applications

(Academic Press, New York, 1980).
[21] J. L. Lions, “Quelques metodes de resolution des problemes aux limites non lineares (Dunod, Paris,

1969).
[22] J. L. Lions and G. Stampacchia, “Variational inequalities”, Comm. Pure and Applied Math. 20 (1967)

493-519.
[23] G. J. Minty, “Monotone (nonlinear) operators in Hilbert space”, Duke Math. J. 29 (1973) 341-346.
[24] G. J. Minty, “On the monotonicity of the gradient of a convex function”, Pacific J. of Math. 14 (1964)

243-247.
[25] R. T. Rockafellar, Convex Analysis (Princeton University Press, 1970).
[26] R. Temam, Numerical Analysis (D. Reidel publishing Company, Holland, 1973).
[27] R. Tremolieres, “Inequation variationnelles. Existence, approximation, resolution”, Doctoral Thesis.

Universite de Paris VI (1972).
[28] L. U. Uko, Soluzione numerica delle disequazioni variazionali. ‘Dottorato di ricerca’ thesis, University

of Milan (1989).
[29] L. U. Uko, “The proximal correction method for discretization of parabolic variational inequal-

ities”, J. Nigerian Math. Soc. 9 (1990) 33-48.
[30] L. U. Uko, “Parabolic variational inequalities and the proximal correction method”, Afrika Matema-

tika Serie 3 Vol. 3 (1994) 97-111.

Livinus U. UKO
Departamiento de Matematicas
Facultad de Ciencias Exactas y Naturales
Universidad de Antioquia
A.A. 1226, Medellin, COLOMBIA


	Abstract
	1. Introduction
	2. Some remarks on elliptic ...
	THEOREM 2.2. ...

	3. Convergence results ...
	THEOREM 3.3. ...
	THEOREM 3.5. ...

	4. Applications of the ...
	References

