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In this paper we present new examples of Zariski pairs and we compute some in-
variants of Zariski pairs which were already known. We discuss also the consequences
of these new results in the theory of isolated singularities of surface.

We recall the notion of Zariski pair which was introduced in [A1]. We will say that
two curves $C$ and $D$ are members of a Zariski pair if:
(i) There is a degree-preserving bijection $\alpha$ between the set of irreducible components of

$C$ and $D$ and there exist regular neighbourhoods of $T(C)$ and $T(D)$ (of $C$ and $D$ ,
respectively) such that the pairs $(T(C), C)$ and $(T(D),D)$ are homeomorphic and
the homeomorphism respects the bijection above.

(ii) The pairs $(P^{2}, C)$ and $(P^{2}, D)$ are not homeomorphic.
We recall that first condition means that there exists also a bijection $\beta$ between the

branches of the singular points of $C$ and $D$ such that:
(i1) If $T$ is a branch at a singular point of $C,$ $T$ and $\beta(T)$ have the same topological

type.
(i2) If $T,$ $T’$ are two different branches at singular points of $C$, then their intersection

number equals the intersection number of $\beta(T)$ and $\beta(T’)$ .
(i3) If $T$ is a branch at a singular point of $C$ and $C_{T}$ is the irreducible component of $C$

which contains $T$ , then $\alpha(C_{T})$ is the irreducible component of $D$ which contains
$\beta(T)$ .

The first Zariski pair appears in the works of Zariski, see [Z1], [Z2], [Z3]: the mem-
bers of the pair are irreducible sextics with six ordinary cusps; in one case the cusps lie in
a conic and they do not in the other one (explicit equations for this case appear in [O1]
and [A1] $)$ , Some other examples can be found in [A1]. The invariant used to distin-
guish the members of these pairs is the same: we called it the $b$-invariant and one con-
struct is as follows:

Let $C$ be a reduced plane curve of degree $d$ and $F(x,y,z)=0$ a defining equation of
$C$ . Let $\chi$ be any desingularization of the projective hypersurface $X_{1}$ in $P^{3}$ defined by
$F(x,y,z)=t^{d}$ ; two such desingularizations are birationally equivalent, so the first Betti
number of $X$ is an invariant $b(C)$ of the pair $(P^{2}, C)$ . One can take a finer invariant; if
one composes the desingularization of $X_{1}$ with the restriction to $X_{1}$ of the projection in
the first three variables $x,y,z$ , then one has a $d$-sheeted cyclic covering $\sigma:Xarrow P^{2}$ which
is unramified on $P^{2}\backslash C$ . The monodromy operator $\tau:Xarrow X$ acts on $H^{1}(X;C)$ .
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DEFINITION. The Alexander polynomial $\Delta_{C}$ of the curve $C$ is the characteristic
polynomial of the action of $\tau$ on $H^{1}(X;C)$ (its degree is $b(C)$ ).

This definition agrees with the usual one because of a result of Libgober, see
[Li]. In [Z2], there is a formula giving $\Delta_{C}$ when the only singularities of $C$ are nodes
and ordinary cusps. A general formula can be found in [A1].

Recently, new examples of Zariski pairs have been discovered by Shimada [Sh],
M. Oka [O2] and Tokunaga [T]. The two first authors distinguish the members of the
pairs by the fundamental group of the complement. The third one distinguishes them
by the existence or non-existence of dihedral coverings of $P^{2}$ ramified along the curves.
In any case, these examples can be distinguished by the Alexander polynomial.

DEFINITION. Let $C\subset P^{2}$ a reduced curve. The group $G_{C}$ of the curve is the
fundamental group of $P^{2}\backslash C$ .

We recall also that in Shimada’s examples, one member of the pair has always
abelian group.

Also recently, Degtyarev have classified all irreducible sextics with non-trivial
Alexander polynomials, see [D]. By the way, he produces some new Zariski pairs. The
members of one of them are sexitics $D_{1}$ and $D_{2}$ with three $E_{6}$-singularities. There exists
a conic tangent to the three singular points of $D_{1}$ and it is not the case for $D_{2}$ .
Degtyarev communicated us that the group of $D_{1}$ is $Z/2Z*Z/3Z$ (it is the same as
the group of the sextic with six cusps on a conic, which was computed by Zariski in
[Z1] $)$ . He wondered about the fundamental group of $D_{2}$ . We will prove later that it is
abelian; this question was the starting point of this paper but the method used to find an
answer yields to some interesting results.

Let us take one of the Zariski pairs of [A1]. The members are curves $A_{1},$ $A_{2}$ , with
four irreducible components: one smooth cubic and three lines in general position which
are tangent to the cubic at inflection points. The three inflection points are aligned in
$A_{1}$ , but it is not the case for $A_{2}$ (this example is also related to Zariski’s example). It
was stated without proof in [A1] that the group of $A_{2}$ was abelian. We will prove this
fact and we will show that it is the way to prove that the group of Degtyarev’s curve $D_{2}$

is abelian.
By the way we have $fo$und new examples of Zariski pairs with an interesting feature:

they are not distinguished by the Alexander polynomial. In one of the pairs, the two
members have non-abelian fundamental group. In other one, the curves have only
rational irreducible components.

The existence of Zariski pairs which are not distinguished by the Alexander poly-
nomial yields to the problem of finding invariants of the embedded topology of an iso-
lated germ of singularity of surface in $C^{3}$ . There is an interesting family of such singu-
larities, the so-called superisolated singularities, which was introduced by Luengo in
[Lu]. We may view these singularities as follows: take a reduced plane algebraic curve
and look at it as a homogeneous singularity of surface. Then make a generic deforma-
tion so as to get an isolated singularity such that the tangent cone remains invariant.
We can interpret some results of Luengo in [Lu] as follows: the superisolated singularities
associated to the members of a Zariski pair have the same abstract topology. As it was
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shown in [A2] and announced in [St], it is also the case for the characteristic polynomial
of the monodromy. As we can find in [A2], if the members of a Zariski pair have not
the same Alexander polynomial, then, the Jordan form of the monodromy is not the
same, and then, the two superisolated singularities have not homeomorphic embeddings
in $C^{3}$ . We conjecture that it is also the case for the new Zariski pairs, but up to now
there is no way to distinguish them.

In \S 1 we define an affine curve which is the base of all computations and we describe
the examples of Zariski pairs. In \S 2 we compute the fundamental group of the curve in
\S 1 and we take a subgroup of index 2, related to an unramified double covering. In \S 3
we apply the results of \S 2 in order to compute the fundamental groups of the members of
some known Zariski pairs. In \S 4 we present the first example of a Zariski pair where
both members have non-abelian fundamental group and are not distinguished by the
Alexander polynomial (the fundamental groups are not isomorphic). In \S 5 we present
another Zariski pair which is not distinguished by the Alexander polynomial; the ex-
ample of \S 4 is a degeneration of this one. In \S 6, we study another degeneration of
the example in \S 5 which verifies that the irreducible components of each member are
rational. In \S 7, we sketch the relationship with the singularities of surface.

\S 1. A useful affine curve

Let us consider an affine curve with four smooth irreducible components:

$C:y=x(x^{2}-a^{2})$ ,

$D$ : $y=0$ ,

$P:y=9(x-\sqrt{3})^{2}$ ,

$N$ : $y=-9(x+\sqrt{3})^{2}$ ,

where $a:=3\sqrt[4]{3}\sqrt{2-\sqrt{3}}$ .
Let us list the intersection of these irreducible components:

(a) $C\cap D=\{(0,0), (a, 0), (-a, 0)\}$ and the intersection is transversal.
(b) $C\cap P=\{(3,54(2-\sqrt{3}))\}$ and the contact order is 3.
(c) $C\cap N=\{(-3, -54(2-\sqrt{3}))\}$ and the contact order is 3.
(d) $D\cap P=\{(\sqrt{3},0)\}$ and the contact order is 2.
(e) $D\cap N=\{(-\sqrt{3},0)\}$ and the contact order is 2.
(f) $P\cap N=\{(i\sqrt{3}, -54i), (-i\sqrt{3},54i)\}$ and the intersection is transversal.

We have drawn the real part of this curve in Figure 1. Let us explain why this
curve is useful. We consider the double covering

$\phi:C^{2}arrow C^{2}$ , $\phi(x,y):=(x,y^{2})$ .

We note that $\emptyset$ induces an unramified double covering $\phi_{1}$ : $C^{2}\backslash Darrow C^{2}\backslash D$ .
Let us denote $C_{1}:=\phi^{-1}(C)$ ; it is a smooth cubic defined by the equation

$y^{2}=x(x^{2}-a^{2})$ .
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Figure 1.

It is easily seen that $\phi^{-1}(P)$ has two irreducible components, say $P_{1}$ and $P_{2;}$ they are
tangent lines at two inflection points of $C_{1}$ , denoted $I_{1}$ and $I_{2}$ respectively. We suppose
that their equations are given by:

$P_{1}$ : $y=3(x-\sqrt{3})$ and $P_{2}$ : $y=-3(x-\sqrt{3})$ .

Then, we have

$I_{1}=(3,3\sqrt{3}(\sqrt{3}-1))$ and $I_{2}=(3, -3\sqrt{3}(\sqrt{3}-1))$ .

In the same way, we find that $\phi^{-1}(N)$ is the union of two tangent lines $L_{1},$ $L_{2}$ , at
inflection points of $C_{1},$ $J_{1}$ and $J_{2}$ respectively. We may suppose that their equations are:

$N_{1}$ : $y=3i(x+\sqrt{3})$ and $N_{2}$ : $y=-3i(x+\sqrt{3})$

Then, we have

$J_{1}=(-3, -3\sqrt{3}i(\sqrt{3}-1))$ and $J_{2}=(-3,3\sqrt{3}\sqrt{3}1))$ .

Let us compactify $C^{2}\subset P^{2}$ with homogeneous coordinates $[x:y:z]$ .

CONVENTION. We denote in the same way the affine curves and their compactifica-
tion in $P^{2}$ .

Denote $L$ the line at infinity
$L:z=0$ .

We note that $L$ is tangent to $C_{1}$ at an inflection point

$O:=[0$ : 1 : $0]$

(whenever we will use the abelian group structure of $C_{1}$ we will suppose that $O$ is the
zero element). We are going to find several Zariski pairs related with this construction:

EXAMPLE 1. We find the Zariski pair of [A1] which appears in the introduction.
We take $A_{1}=C_{1}\cup L\cup P_{1}\cup P_{2}$ because $O,$ $I_{1},$ $I_{2}$ are in a vertical line. We take $A_{2}=$

$C_{1}\cup L\cup P_{1}\cup N_{1}$ as $O,$ $I_{1},$ $J_{1}$ are not aligned. In both cases the lines are in general
position.
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EXAMPLE 2. We find Zariski’s example as in [A1]. Take $Z/2Z\cross Z/2Z$-coverings
of $P^{2}$ ramified on the three lines of each member of Example 1. The preimage of $C_{1}$ in
the first case (resp. second case) is a sextic with six cusps in a conic (resp. not in a conic).

EXAMPLE 3. We find now the Zariski pair of [D] which appears in the intro-
duction. Take the Cremona transformations associated to the three lines of each mem-
ber of Example 1. The strict transform of $C_{1}$ is $D_{1}$ in the first case and $D_{2}$ in the second
case.

EXAMPLE 4. It is the first new example. We take $B_{1}=C_{1}\cup L\cup P_{1}\cup P_{2}\cup N_{1}$ and
$B_{2}=C_{1}\cup P_{1}\cup P_{2}\cup N_{1}\cup N_{2}$ . In both cases the lines are in general position. In the first
case three inflection points are aligned; in the second case the four inflection points are in
general position.

The last two examples will be constructed by deformation. We begin their discus-
sion with:

QUESTION. Which is the condition on two points $R_{1},$ $R_{2}\in C_{1}$ such that there exists a
conic $Q$ which intersects $C_{1}$ at $R_{1}$ and $R_{2}$ with contact order 3 at both points?

Using the group structure, see [W], we know that it is the case if and only if
3 $(R_{1}+R_{2})=O$ . AS the 3-torsion of $C_{1}$ is the set of inflection points:

ANSWER. There exists such a conic if and only if the line passing through $R_{1}$ and
$R_{2}$ intersects $C_{1}$ at $R_{1},$ $R_{2}$ and an inflection point $P_{Q}$ .

Then, given such a conic $Q$ , we call $P_{Q}$ the inflection point associated to $Q$ . We
note that $Q$ is irreducible if and only if $R_{1}$ (or $R_{2}$ ) is not an inflection point.

EXAMPLE 5. In this example we have three irreducible components: a smooth cubic
and two irreducible conics. The conics intersect the cubic as above and they intersect
each other transversally.

We denote such a curve $E_{1}$ when the two associated inflection points are not the
same. If they coincide, we denote the curve $E_{2}$ .

It is easily seen that these curves exist: each conic is parameterized by an inflection
point and a generic point of the cubic. If the two generic points degenerate to inflection
points in a suitable way we find members of Example 4, where the two conics degenerate
onto four lines. As in Example 4 the lines are in general position, it is also the case for
conics.

EXAMPLE 6. Replace the cubic $C_{1}$ by a nodal cubic $C_{n}$ in Example 5. In this case
there is a group structure on $C_{n}^{*}$ ( $C_{n}$ minus the singular point) which is isomorphic to
$C$ . Here the 3-torsion has 3 elements and the discussion above is possible with slight
modifications.

The curves of this Example are degenerations of the curves in Example 5.

\S 2. Fundamental group of the usef curve

We recall this definition which will be used everywhere.
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DEFINITION. Let $X$ be a smooth projective manifold and let $H,$ $K\subset X$ be hyper-
surfaces. Let $*\in X\backslash (H\cup K)$ . A meridian of $H$ in the group $\pi_{1}(X\backslash (K\cup H), *)$ is the
homotopy class of a loop $\mu$ defined as follows: take a point $P\in H$ which is smooth in
$H\cup K$ ; take a small disk $\Delta$ around $P$ transversal to $H$ and disjoint from $K$; fix a point
$*’\in\partial\Delta$ and let $m$ be the loop based at $*’$ which tums once along $\partial\Delta$ in the positive
direction. Choose any path $lfrom*to*’$ in $X\backslash (H\cup K)$ such that $\parallel\cap\Delta=\{*’\}$ . Then
pt $:=l\cdot m\cdot l^{-1}$ (we note that two meridians of $H$ are conjugate if $H$ is irreducible).

Let us denote $\Gamma:=D\cup C\cup P\cup N$ . We fix $*:=(\epsilon, K)\in C^{2}\backslash \Gamma$ such that $0<\epsilon<<1$

and $K>>1$ .

PROPOSITION. Let $G:=\pi_{1}(C^{2}\backslash \Gamma;*)$ . Then, there exist loops $d,$ $c,p,$ $n$ which are
meridians of $D,$ $C,$ $P,$ $N$ , respectively, such that:

$G=\langle d, c,p,n : \mathscr{A}\mathscr{B}, \mathscr{C}, \mathscr{B}_{(}ff\mathscr{F}\mathscr{G}, \ovalbox{\tt\small REJECT} J\rangle$ ,

where, if we note $[x,y]:=xyx^{-1}y^{-1}$ , we have:

$\mathscr{A}$ : $[d, c]=1$ , es: $(dp)^{2}=(pd)^{2}$ , $\mathscr{C}$ : $[c,p^{-1}dp]=1$ ,

9 : $(cp)^{3}=(pc)^{3}$ , $g:(dn)^{2}=(nd)^{2}$ , $\mathscr{F}$ : $[c,ndn^{-1}]=1$ ,

$\mathscr{G}$ : $(cn)^{3}=(nc)^{3}$ , $\ovalbox{\tt\small REJECT}:[p,n]=1$ , $J:[p, (dc)^{-1}n(dc)]=1$ .

PROOF. We apply Zariski-Van Kampen method to the projection $p_{X}$ in the
$x$-variable. The key point is that the real picture in Figure 1 allow us to compute braid
monodromy in almost every case.

Let us note that the non-generic fibers of $p_{x}$ , with respect to $\Gamma$ , are exactly those
which correspond with $0,$ $\sqrt{3},$ $-\sqrt{3},$

$a,$ $-a,$ $3,$ $-3,$ $i\sqrt{3}$ and $-i\sqrt{3}$ ; we call them irregular
values of $p_{X}$ with respect to $\Gamma$ and we note $NT$ the set of these values. We take as
generic fixed fiber $F:=p_{X}^{-1}(\epsilon)$ ; we choose $there*=(\epsilon, K)$ as base point. It is easily seen
that

$\pi_{1}(F\backslash \Gamma;*)=\langle d, c,p,n : -\rangle$ ,

where $d,$ $c,p,$ $n$ are meridians of $C,$ $P,$ $D,$ $N$ , respectively, as it is shown in Figure 2.
Zariski-Van Kampen theorem says that these elements generate $G$ . We are going to

explain how to obtain the relations. Let us consider $C\backslash NT$; picture in Figure 3 shows a
set of generators of the free group $\pi_{1}(C\backslash NT;\epsilon)$ .

For each $w\in NT$ we denote $\alpha_{w}$ the path from $\epsilon$ to the boundary of the small disk
around $w$ ; we denote $\delta_{w}$ the counterclockwise boundary of this disk. Then $\pi_{1}(C\backslash NT;\epsilon)$

$F$

Figure 2.
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Figure 3. $b=\sqrt{3}$ .

is the free group generated by the homotopy classes of

$\mu_{w}:=\alpha_{w}\cdot\delta_{w}\cdot\alpha_{w}^{-1}$ , for $w\in NT$ .

Relations are obtained by the action on $\pi_{1}(F\backslash \Gamma;*)$ of the braids determined by $\Gamma$ on
each $\mu_{w}$ (we can think of $\Gamma$ as a multivalued function of $C\backslash NT$ and the support of $\mu_{w}$ is
outside the set of ramification points $NT$).

Let us fix $w\in NT$ ; the braid associated to $\mu_{w}$ may be decomposed as $sts^{-1}$ where $s$

(resp. $t$) is the braid associated to $\alpha_{w}$ (resp. $\delta_{w}$ ). The conjugacy class of $t$ depends only
on the topological type of the singularities of the projection of $p$ at $w$ ; so, it can be
obtained if we know the singularities of $p_{X}$ . In the general case, the difficult part of
the Zariski-Van Kampen method is to determine the braid associated to $s$ . In our case,
we determine $s$ for the real values of $NT$ by means of the real picture; for the non-real
values, we compute directly the braid.

REMARK. Let us denote $w’:=\alpha_{w}\cap\delta_{w}$ and $F_{w}:=p_{X}^{-1}$ $(w$
‘

$)$ . Then, $s$ defines an iso-
morphism from $\pi_{1}(F\backslash \Gamma;*)$ onto $\pi_{1}(F_{w}\backslash \Gamma;(w’, K))$ . We construct a set of generators of
$\pi_{1}(F_{w}\backslash \Gamma;(w’, K))$ as we have done in Figure 2 for $F$ . We connect these two base points
by the lifting of $\alpha_{w}$ in the line $y=K$ in order to regard the loops based on $(w’, K)$ as
loops based on $*$ . We consider another two generic fibers; let us call 3“ the opposite
element to $3’$ in $\delta_{3}$ and let us note $F_{\infty}$ $:=p_{X}^{-1}(3’’)$ . We define $F_{-\infty}$ in the same way, near
$-3$ .

Let us consider the monodromy around $0$ ; there is an ordinary double point on this
fiber which is transversal to $p_{X}^{-1}(0)$ . The braid associated to $\mu_{0}$ is in Figure 4; it can be
computed from the real picture.

We get the relation
$\mathscr{A}$ : $[d, c]=1$ .

The singular point on $p_{X}^{-1}(\sqrt{3})$ is a tacnode not tangent to the fiber. We draw the
braid determined by $\mu_{\sqrt{3}}$ from the real picture again (see Figure 5).

We obtain the relation
$\mathscr{B}$ : $(dp)^{2}=(pd)^{2}$ .

For $w=0,$ $\sqrt{3}$, the braid $s$ may be considered trivial. It will not be the case in the
sequel.
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$|$ $|$

$n$ $p$

$Fi_{1}re4$ . Braid is upwards.

$|$ $|$

$n$ $c$
$d$

$p$

$Fi_{1}re5$ .

$c$ $d’$ $p$

$|$

$|$ $\Vert$ $s_{1}$

$t_{1}|$ $\Vert$ $|$

$c$
$d$

$p$
$n$ $c$ $f$ $p’$

$Fi_{1}re6$ .

Let us consider now the monodromy around $a$ (we have again an ordinary double
point which determine $t_{1}$ ). In this case, the braid obtained is of the form $s_{1}t_{1}s_{1}^{-1}$ , see
Figure 6.

We do not change the name of the loops $(inFandF_{a})iftheycoincideinG$ . Apply-
ing the braid $s_{1}$ and the relation $\mathscr{B}$ , we have $d’=p^{-1}dp$ and $p’=dpd^{-1}$ . Then, we have
the relation:

$\mathscr{C}:[c,p^{-1}dp]=1$ .

The singularity on $p_{X}^{-1}(3)$ has local equations $u^{2}-v^{6}=0$ . The braid obtained when
we tum around 3 is of the form $s_{2}t_{2^{S_{\overline{2}}^{1}}}$ , see Figure 7.

We proceed as before. In this case, we have $(cdpd^{-1})^{3}=(dpd^{-1}c)^{3}$ . From $\mathscr{A}$, this
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$t_{2}|n$

Figure 7.

Figure 8.

is equivalent to
$\mathscr{B}$ : $(cp)^{3}=(pc)^{3}$ .

In order to get relations $d,$ $\mathscr{F}$ and $\mathscr{G}$, we tum around $-\sqrt{3},$ $-a$ and $-3$ . We find
the relations in the same way as above.

The real picture does not give any information about the monodromy around
$\pm i\sqrt{3}$ . It is easily seen that in this case we obtain the braids in Figure 8.

These braids give the relations $\ovalbox{\tt\small REJECT}$ and J. $\square$

NOW, we are concemed with the group of the projective curve
$\Theta:=C_{1}\cup P_{1}\cup P_{2}\cup N_{1}\cup N_{2}\cup L$ .

PROPOSITION. Let us fix a point $*_{1}\in\phi^{-1}(*)\subset C^{2}\subset P^{2}$ . Let $H:=\pi_{1}(P^{2}\backslash \Theta;*\iota)$ .
Then there exist loops $c_{1},$ $p_{1},$ $p_{2},$ $n_{1},$ $n_{2}$ which are meridians of $C_{1},$ $P_{1},$ $P_{2},$ $N_{1},$ $N_{2}$

respectively, such that:
$H=\langle c_{1},p_{1},p_{2},n_{1},n_{2} : \mathscr{B}_{1}, \mathscr{C}_{1},9_{1}, i_{1}, 1, \mathscr{G}_{1}, \ovalbox{\tt\small REJECT}_{1}, \ovalbox{\tt\small REJECT}_{2}, J_{1}, J_{2}\rangle$ ,

where:
$\mathscr{B}_{1}$ : $[p_{1},p_{2}]=1$ , $\mathscr{C}_{1}$ : $[c_{1},p_{\overline{1}}^{1}p_{2}]=1$ , $\mathscr{B}_{1}$ : $(c_{1}p_{1})^{3}=(p_{1}c_{1})^{3}$ , $g_{1}$ : $[n_{1}, n_{2}]=1$ ,

$\mathscr{F}_{1}$ : $[c_{1},n_{\overline{1}}^{1}n_{2}]=1$ , $\mathscr{G}_{1}$ : $(c_{1}n_{1})^{3}=(n_{1}c_{1})^{3}$ , $\ovalbox{\tt\small REJECT}_{1}$ : $[p_{1}, n_{1}]=1$ ,
$\ovalbox{\tt\small REJECT}_{2}$ : $[p_{2},n_{2}]=1$ , $J_{1}$ : $[p_{1}, c_{\overline{1}}^{1}n_{2}c_{1}]=1$ , $J_{2}$ : $[p_{2}, c_{\overline{1}}^{1}n_{1}c_{1}]=1$ .
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PROOF. Let us consider the affine curve
$e_{1}:=C_{1}UP_{1}\cup P_{2}UN_{1}\cup N_{2}\cup D$ .

There are two facts:
- The map $\phi:C^{2}\backslash \Theta_{1}arrow C^{2}\backslash \Gamma$ is the unramified double covering determined by the

monodromy epimorphism $\varphi:Garrow Z/2Z$ such that

$\varphi(c)=\varphi(p)=\varphi(n)=0mod 2$ and $\varphi(d)=1mod 2$ .

$-$ $C^{2}\backslash \Theta_{1}=P^{2}\backslash (\Theta\cup D)$ .

We can compute a presentation for

$ker\varphi=\pi_{1}(C^{2}\backslash \Theta_{1;}*_{1})=\pi 1(P^{2}\backslash (\Theta\cup D);*_{1})$

applying the Reidemeister-Schreier algorithm. It is easily seen that $ker\varphi$ is generated by
$d_{1}:=d^{2}$ (meridian of $D$), $c_{1}:=c$ (meridian of $C_{1}$ ), $p_{1}:=p$ (meridian of $P_{1}$ ), $p_{2}:=dpd^{-1}$

(meridian of $P_{2}$ ), $n_{1}:=n$ (meridian of $N_{1}$ ) and $n_{2}$ : $dnd^{-1}$ (meridian of $N_{2}$ ).
Let us consider the homomorphism

$\sigma:\pi_{1}(P^{2}\backslash (\Theta\cup D);*_{1})arrow\pi_{1}(P^{2}\backslash \Theta;*_{1})$

induced by the open embedding

$P^{2}\backslash (\Theta\cup D)arrow P^{2}\backslash \Theta$ .

It is well-known, see [Z1] or [F], that $\sigma$ is an epimorphism and the kemel is the subgroup
generated by the meridians of $D$ . Then it is enough to add to the set of relations
obtained by the Reidemeister-Schreier algorithm, the relation $d_{1}=1$ (any meridian of
$D$ is conjugated to $d_{1}$ ). Simplifying the new set of relations, we get the one of the
statement. $\square$

LEMMA. The loop $l_{1}:=(n_{2}c_{1}n_{1}c_{1}p_{2}c_{1}p_{1})^{-1}$ is a meridian of $L$ in the group $H$.

PROOF. Let us look for a meridian of $L$ . We proceed as follows. Take a curve
$H_{1}$ with a transversal intersection with $L$ at a point $S$ –which is not a point at infinity
of any irreducible (affine) component of $\Theta_{1}$ . Take a meridian of $S$ in $H_{1}\backslash \Theta$ and take a
path from $*_{1}$ to a generic point of $H_{1;}$ if we conjugate by this path, this loop in $H_{1}$

becomes a meridian of $L$ .
Let us take the parabola $H$ whose (real) equation is $y=-3(x/3-7/3)^{2}+$

$64/3$ . Let $H_{1}=\phi^{-1}(H);H_{1}$ is a hyperbola and its points at infinity are not the points at
infinity of the irreducible components of $\Theta_{1}$ . It intersects $C\cup DUN\cup P$ as it is shown
in figure 9. Take a temporary base $point*’$ in the vertex of $H$ . Choose the shortest path
$lfrom*to*^{J}$ and consider the morphism defined by the inclusion and the path $\parallel$ :

$\pi_{1}(H\backslash (CUD\cup N\cup P);*^{J})arrow\pi_{1}(C^{2}\backslash \Gamma;*)$ .

such $that*\in H,$ $\delta>>0,$ $\gamma\in(-\sqrt{3}, \sqrt{3}),$ $\delta>>0$ and $0<\beta<3$ .
Let us explain how to construct the meridians in $H\backslash \Gamma$ . Let us fix an intersection

point of $\Gamma$ and $H$, say $U$ (any such point is real). We choose the shortest path $l_{U}$ from



Zariski pairs 531

Figure 9.

Figure 10.

$*’$ towards $U$ contained in the real part of $H$ . Take also a small disk $\Delta_{U}$ centered at $U$ ;
let us call $U_{+}$ the intersection of $\partial\Delta_{U}$ with $l_{U}$ and $U_{-}$ the opposite point to $U_{+}$ in $\Delta_{U}$ .
We construct a path $m_{U}from*’$ to $U_{+}$ as follows: start from $l_{U}$ and for any $V\in H\cap\Gamma$

replace the segment $[+, V_{-}]$ by the the counterclockwise arc from $V_{+}$ to $V_{-}$ in $\partial\Delta_{V}$ .
Let us note $\delta_{U}$ the loop based in $U_{+}$ which tums counterclockwise the circle $\partial\Delta_{U}$ . The
meridian associated to $U$ is $m_{U}\cdot\delta_{U}\cdot m_{U}^{-1}$ . We construct in this way meridians $\tilde{c}_{1},\tilde{n}_{1},\tilde{n}_{2}$ ,
$\tilde{d}_{1},\tilde{c}_{2},\tilde{p}_{1},\tilde{d}_{2},\tilde{p}_{2}$ and $\tilde{c}_{3}$ . We will use also this notation for the meridians based $on*and$

obtained from these ones applying the change of base point by $\parallel$ .
From figure 10, we can choose a meridian $l$ of the point at infinity of $H$ such that

$l=(l_{1}\cdot l_{2})^{-1}\sim\sim$ , where:

$l_{1}\sim:=\tilde{c}_{1}\tilde{n}_{1}\tilde{n}_{2}\tilde{d}_{1}\tilde{c}_{2}\tilde{p}_{1}$ , $l_{2}\sim:=\tilde{d}_{2}\tilde{p}_{2^{\tilde{C}}3}$ .

The loop $l_{1}\sim$ (resp. $l_{2}$ )
$\sim$

tums around counterclockwise the intersection points of $\Gamma$ and $H$ in
the left-hand side (resp. right-hand side) $of*inH$ .

It is easily seen that the meridian associated with each point in $\Gamma\cap H$ (except for
the point belonging to $C$ in the left-hand side) is homotopy equivalent to a meridian
(based at $*$ ) of the corresponding irreducible component of $\Gamma$ in a fiber $F_{w}$ for a given
$w\in NT\cup\{\pm\infty\}$ . The choice of $w$ is determined by the real sector which contains the
given point in $\Gamma\cap H$ . For $\tilde{c}_{1}$ we must conjugate with $\tilde{n}_{1}$ .
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We show that:

$\tilde{c}_{1}=d^{-1}ndcd^{-1}n^{-1}d$ , $\tilde{n}_{1}=d^{-1}nd$ , $\tilde{n}_{2}=n$ , $\tilde{d}_{1}=d$ , $\tilde{c}_{2}=c$ , $\tilde{p}_{1}=p$ .

Then, we have:
$l_{1}\sim:=(d^{-1}nd)cndcp$ .

There is a homotopy which shows that $l_{2}=cdp$ . Then,

$l:=(d^{-1}ndcndcpcdp)^{-1}$ .

It is easily seen that $l\in ker\varphi$ ( $d$ appears twice). Then, $l_{1}:=\sigma(l)$ is a meridian of $L$ ; we
obtain $l_{1}$ as in the statement. $\square$

\S 3. Old Zariski pairs

We will apply elsewhere a well-known result, see [Z1] or [F] (we have already used it):

LEMMA. Let $A,$ $B\subset P^{2}$ be projective plane curves with no irreducible component in
common and $let*\in P^{2}\backslash (AUB)$ . Then the morphism

$\sigma:\pi_{1}(P^{2}\backslash (A\cup B);*)arrow\pi_{1}(P^{2}\backslash A;*)$

induced by the inclusion is an epimorphism. The kernel of $a$ is the subgroup generated by
the meridians of the irreducible components of $B$ .

EXAMPLE 1. Let us recall the members of the Zariski pair:

$A_{1}=$ $1^{\cup L}\cup P_{1}\cup P_{2}$ , $A_{2}=C_{1}\cup LUP_{1}\cup N_{1}$ .

Consider the epimorphism

$a_{1}$ : $Garrow\pi_{1}(P^{2}\backslash A_{1;}*_{1})$ .

Then, we obtain a presentation of $\pi_{1}(P^{2}\backslash A_{1;}*_{1})$ from the given presentation of $G$ : they
have the same sets of generators and we have to add the relations

$n_{1}=1$ , $n_{2}=1$ .

Simplifying the presentation we have:

$\pi_{1}(P^{2}\backslash A_{1;}*_{1})=\langle c_{1},p_{1},p_{2} : [p_{1},p_{2}]=1, [c_{1},p_{1}^{-1}p_{2}]=1, (c_{1}p_{1})^{3}=(p_{1}c_{1})^{3}\rangle$ .

We find that $l_{1}(A_{1}):=(c_{1}p_{2}c_{1}p_{1}c_{1})^{-1}$ is a meridian of $L$ . Let us call $q=p_{1}^{-1}p_{2}$ . We
obtain:

$\pi_{1}(P^{2}\backslash A_{1;}*_{1})=\langle c_{1},p_{1}, q:[p_{1}, q]=1, [c_{1}, q]=1, (c_{1}p_{1})^{3}=(p_{1}c_{1})^{3}\rangle$ .

Then

$\pi_{1}(P^{2}\backslash A_{1;}*_{1})=\langle q:-\rangle\cross\langle c_{1},p_{1} : (c_{1}p_{1})^{3}=(p_{1}c_{1})^{3}\rangle=Z\cross G_{3}$ ,

where $G_{3}$ is the fundamental group of the torus link of type $(2, 6)$ in the sphere of real
dimension 3. In particular, $G_{3}$ and, therefore, $\pi_{1}(P^{2}\backslash A_{1;}*_{1})$ are non-abelian.
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Let us consider the epimorphism

$a_{2}$ : $Garrow\pi_{1}(P^{2}\backslash A_{2;*\iota})$ .

In this case we add the relations

$p_{2}=1$ , $n_{2}=1$ .

Simplifying the presentation we have:

$\pi_{1}(P^{2}\backslash A_{2;}*_{1})=\langle c_{1},p_{1},n_{1} : [c_{1},p_{1}]=1, [c_{1},n_{1}]=1, [p_{1},n_{1}]=1\rangle$ .

Then, we have

$\pi_{1}(P^{2}\backslash A_{2;}*_{1})=Z^{3}$ .

We have proved the claim in [A1].

EXAMPLE 2. We recall the construction of this example. Let $L_{X},$ $L_{Y},L_{Z}\subset P^{2}$

three lines in general position. We may suppose that their equations are $X=0,$ $Y=0$

and $Z=0$ respectively. Let us consider the map $\tau:P^{2}arrow P^{2}$ given by

$\tau([x : y : z]):=[x^{2} : y^{2} : z^{2}]$ ;

then $\tau$ is a $Z/2Z\cross Z/2Z$-covering ramified along $L_{X}\cup L_{Y}\cup L_{Z}$ . If $A\subset P^{2}$ is a curve
which does not contain any of the lines $L_{X},L_{Y},L_{Z}$ , the curve $\tau^{-1}(A)$ is called the
$Z/2Z\cross Z/2Z$-covering of $A$ with respect to $\{L_{X}, L_{Y}, L_{Z}\}$ (this curve is well-defined up
to linear automorphisms of $P^{2}$ ). Let $*\in P^{2}\backslash (A\cup L_{X}UL_{Y}\cup L_{Z})$ and $*_{1}\in\tau^{-1}(*)$ . We
have a monomorphism

$\tau_{*}:$
$\pi_{1}(P^{2}\backslash (\tau^{-1}(A)\cup L_{X}\cup L_{Y}\cup L_{Z});*\iota)arrow\pi_{1}(P^{2}\backslash (A\cup L_{X}\cup L_{Y}\cup L_{Z});*)$

and an epimorphism

$a$ : $\pi_{1}(P^{2}\backslash (\tau^{-1}(A)\cup L_{X}\cup L_{Y}UL_{Z});*_{1})arrow\pi_{1}(P^{2}\backslash (\tau^{-1}(A);*_{1})$

induced by the inclusion.
Identify $\tau_{*}$ with an inclusion; we have a subgroup of index 4 and we can recover

a presentation of the subgroup from a presentation of the whole group applying
Reidemeister-Schreier algorithm.

Denote $m_{X},$ $m_{y},$ $m_{z}$ some meridians of the lines (in the base of the covering), we can
see that the kemel of $\sigma$ is the normal subgroup generated by $m_{X}^{2},$ $m_{y}^{2},$ $m_{z}^{2}$ .

We retum to the example. Let us denote $Z_{1}$ (resp. $Z_{2}$ ) the $Z/2Z\cross Z/2Z$-covering
of $C_{1}$ with respect to $\{L, P_{1}, P_{2}\}$ (resp. $\{L,$ $P_{1},N_{1}\}$ ). We have shown in [A1] that $Z_{1}$

(resp. $Z_{2}$ ) is a sextic having six ordinary cusps on a conic (resp. not on a conic).
From the method explained above it is not difficult but long to compute the group of

$Z_{1}$ . Of course, one obtains that $G_{Z_{1}}$ is the free product of $Z/2Z$ and $Z/3Z$, as it was
computed by Zariski in [Z1].

Let us consider now $Z_{2}$ . We must apply the method above to the curve $A_{2}$ of
Example 1. We have shown that its group is abelian; it is also the case for $G_{Z_{2}}$ which is
a quotient of a subgroup of $G_{A_{2}}$ . By homological arguments, $G_{Z_{2}}$ is cyclic of order 6.
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Then we have found a sextic with six cusps not on a conic such that its fundamental
group is abelian. M. Oka found another such sextic in [O1]. Zariski sketched an
argument in the same direction if the sextic degenerates onto a sextic with nine cusps, see
[Z3]. We observe that these results do not imply, up to now, that the fundamental
group of any sextic with six cusps not on a conic is cyclic of order six: There is no result
about the connectivity of the space of such curves.

EXAMPLE 3. We are concemed now with Degtyarev’s example. We begin with
some general facts.

Let $L_{X},$ $L_{Y},$ $L_{Z}\subset P^{2}$ three lines in general position. We suppose as above that their
equations are $X=0,$ $Y=0$ and $Z=0$ respectively. Let us consider the rational map
$\gamma$ : $P^{2}arrow P^{2}$ given by

$\gamma([x:y:z]):=[yz:xz:xy]$ ;

$\gamma$ is a Cremona transformation of $P^{2}$ which is an automorphism outside $L_{\gamma}$ $:=$

$L_{X}\cup L_{Y}\cup L_{Z}$ . If $A\subset P^{2}$ is a curve which does not contain any of the lines $L_{X},$ $L_{Y},$ $L_{Z}$ ,
the curve $A_{\gamma}:=\overline{\gamma^{-1}(A\backslash L_{\gamma})}$ is called the strict transform of $A$ with respect to $\{L_{X}, L_{Y}, L_{Z}\}$

( $A_{\gamma}$ is well-defined up to linear automorphisms of $P^{2}$ ). Let $*\in P^{2}\backslash (A\cup L_{X}\cup L_{\gamma})$ and
$*_{1}\in\gamma^{-1}(*)$ . We have an isomorphism

$\gamma_{*}$ : $\pi 1(P^{2}\backslash (A_{\gamma}\cup L_{\gamma});*_{1})arrow\pi_{1}(P^{2}\backslash (A\cup L_{\gamma});*)$

and an epimorphism

$\sigma:\pi_{1}(P^{2}\backslash (A_{\gamma}UL_{\gamma});*\iota)arrow\pi_{1}(P^{2}\backslash A_{\gamma};*_{1})$

induced by the inclusion.
We recall that the members of this pair are sextics with three singular points of type

$E_{6}$ . We define $D_{1}$ as the strict transform of $C_{1}$ with respect to $\{L, P_{1}, P_{2}\}$ (there exists a
conic tangent to $C$ at the singular points). We set $D_{2}$ as the strict transform of $C_{1}$ with
respect to $\{L, P_{1}, N_{1}\}$ (there is no such a conic). These two curves are projectively rigid.

In order to compute $G_{D_{1}}$ , we must add three relations to the presentation of $G_{A_{1};}$ it
is not difficult (but rather long) to find these relations. With this method, we find the
result which was communicated by Degtyarev, $G_{D_{1}}=Z/2Z*Z/3Z$ .

We recall that $G_{D_{2}}$ is a quotient of $G_{A_{2}}$ , which is abelian. Then, $G_{D_{2}}=Z/6Z$ .

\S 4. A new Zariski pair

EXAMPLE 4. We recall this example: $B_{1}=C_{1}\cup L\cup P_{1}\cup P_{2}\cup N_{1}$ and $B_{2}=C_{1}\cup P_{1}\cup$

$P_{2}\cup N_{1}\cup N_{2}$ .
For a given degree $d$ we consider the space $P_{d}$ of all curves of degree $d$, which is a

projective space of dimension $d(d+3)/2$ .

PROPOSITION. Let $\mathscr{M}_{1}$ (resp. $\mathscr{M}_{2}$ ) the space of curves of degree 7 having five reducible
components $C,$ $L_{1},$ $L_{2},$ $L_{3},$ $L_{4}$ such that:
(a) $C$ is a smooth cubic and $L_{i}$ is a line, $i=1,$ $\ldots,4$ .
(b) The arrangement of lines $\{L_{1}, \ldots, L_{4}\}$ has only double points.
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(c) $L_{i}$ is tangent to $C$ at an inflection point $P_{i},$ $i=1,$
$\ldots,$

$4$ .
(d) There are (resp. are not) three aligned points in $\{P_{1}, \ldots, P_{4}\}$ .

Then, the spaces $\mathscr{M}_{1}$ and $\mathscr{M}_{2}$ are connected.

We leave to the reader the verification of this statement. We observe that $B_{1}\in \mathscr{M}_{1}$

and $B_{2}\in \mathscr{M}_{2}$ . We recall another fact which can be deduced from [A1]:

PROPOSITION. The Alexander polynomial of any curve in $\mathscr{M}_{1}$ and $\mathscr{M}_{2}$ is trivial.

We can compute the fundamental groups of $B_{1}$ and $B_{2}$ . We denote $G_{i}:=G_{B_{i}}$ ,
$i=1,2$ . It is easily seen that:

$G_{1}=\langle c_{1},p_{1},p_{2},n_{1} : \mathscr{B}_{1}, \mathscr{C}_{1}, \mathscr{B}_{1}, \mathscr{F}_{2}, \ovalbox{\tt\small REJECT}_{1}, J_{3}\rangle$ ,

where

$\mathscr{B}_{1}$ : $[p_{1},p_{2}]=1$ , $\mathscr{C}_{1}$ : $[c_{1},p_{1}^{-1}p_{2}]=1$ , $\mathscr{B}_{1}$ : $(c_{1}p_{1})^{3}=(p_{1}c_{1})^{3}$ ,

$\mathscr{F}_{2}$ : $[c_{1},n_{1}]=1$ , $\ovalbox{\tt\small REJECT}_{1}$ : $[p_{1},n_{1}]=1$ , Y3 : $[p_{2},n_{1}]=1$ .

AS $n_{1}$ is central, we deduce from the computations in Example 1 that:

PROPOSITION. We have $G_{1}=Z^{2}\cross G_{3}$ , where $Z^{2}$ is generated by $n_{1}$ and $p_{\overline{1}}^{1}p_{2}$ and
$G_{3}=\langle p_{1}, c_{1} : (p_{1}c_{1})^{3}=(c_{1}p_{1})^{3}\rangle$ . The loop $c_{1}$ is a meridian of $C_{1},$ $p_{1}$ is a meridian of $P_{1}$ ,

$p_{2}$ is a meridian of $P_{2}$ and $(c_{1}n_{1}c_{i}p_{2}c_{1}p_{1})^{-1}$ is a meridian of $L$ .

Let us compute now $G_{2}$ . We have:

PROPOSITION. We have

$G_{2}=\langle c_{1},p_{1},p_{2}, n_{1},n_{2} : \mathscr{B}_{1}, \mathscr{C}_{1}, \mathscr{B}_{1},8_{1}, \mathscr{F}_{1}, \mathscr{G}_{1}, \ovalbox{\tt\small REJECT}_{1}, \ovalbox{\tt\small REJECT}_{2}, J_{1}, J_{2}, \mathscr{J}\rangle$ ,

where

$\mathscr{B}_{1}$ : $[p_{1},p_{2}]=1$ , $\mathscr{C}_{1}$ : $[c_{1},p_{\overline{1}^{1}}p_{2}]=1$ , $\mathscr{B}_{1}$ : $(c_{1}p_{1})^{3}=(p_{1}c_{1})^{3}$ , $\ovalbox{\tt\small REJECT}_{1}$ : $[n_{1},n_{2}]=1$ ,

$\mathscr{F}]$ : $Lr_{c_{1},n_{\overline{1}}^{1}n_{2}]}=1_{?}$ $\mathscr{G}_{1}$ : $(\backslash c_{1}n_{1})^{3}=(n_{1}c_{1})^{3}\overline{)}$ $\ovalbox{\tt\small REJECT}_{1}$ : $[p_{1},n_{1}]=1$ ,

$\ovalbox{\tt\small REJECT}_{2}$ : $[p_{2},n_{2}]=1$ , $J_{1}$ : $[p_{1}, c_{\overline{1}^{1}}n_{2}c_{1}]=1$ , $J_{2}$ : $[p_{2}, c_{\overline{1}}^{1}n_{1}c_{1}]=1$ ,

$\mathscr{J}:n_{2}c_{1}n_{1}c_{1}p_{2}c_{1}p_{1}=1$ .

These loops are meridians corresponding to the curves with capitalized letters.

By counting epimorphisms onto the third symmetric group we have:

THEOREM. The groups $G_{1}$ and $G_{2}$ are both non-abelian but non-isomorphic. Then
$(B_{1}, B_{2})$ is a Zariski pair which is not distinguished by the Alexander polynomial and such
that the two members have non-abelian fundamental group.

We can distinguish these groups also by counting epimorphisms onto the fourth
symmetric group. Computations have been performed by GAP which is a software for
computation in groups, [GAP]
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\S 5. A Zariski pair obtained by deformation

EXAMPLE 5. Let us fix a smooth cubic $\tilde{C}$ . Let us consider a conic $\tilde{Q}$ such that
$\tilde{Q}\cap\tilde{C}=\{R_{1}, R_{2}\}$ and $(\tilde{Q}\cdot\tilde{C})_{R_{i}}=3$ . We have seen that the line determined by $R_{1}$ and
$R_{2}$ cuts $\tilde{C}$ also in an inflection point $P_{\overline{Q}}$ of $\tilde{C}$, which is called the inflection point of $\tilde{C}$

associated to $\tilde{Q}$ .
We recall that $\tilde{Q}$ is reducible if and only if $R_{1}(or/andR_{2})$ is an inflection point of

$\tilde{C}$ . We call $\tilde{Q}$ a double-inflection conic of $\tilde{C}$ .

PROPOSITION. Let $\Lambda^{r_{1}}$ (resp. $\Lambda_{2}’$ ) the space of curves of degree 7 having three reduc-
ible components $C,$ $Q_{1},$ $Q_{2}$ such that:
(a) $C$ is a smooth cubic and $Q_{i}$ is an irreducible conic, $i=1,2$ .
(b) $Q_{1}$ and $Q_{2}$ intersect transversally at four points.
(c) $Q_{i}$ is a double-inflection conic of $C$; let $P_{Q_{i}}$ be the associated inflection point, $i=1,2$ .
(d) $P_{Q_{1}}\neq P_{Q_{2}}$ (resp. $P_{Q_{1}}=P_{Q_{2}}$ ).

Then, the spaces $\Lambda^{r_{1}}$ and $\Lambda^{r_{2}}$ are connected and non-empty.

PROOF. We will prove that $\chi_{2}$ is connected and non-empty; the statement for $A_{1}’$ is
proven in the same way. Let $\mathscr{M}$ be the space of smooth cubics; for a given $C\in \mathscr{M}$ , let
$I_{C}$ be the set of inflection points of $C$ . We set

$\mathscr{M}_{I}:=\{(C, P)\in \mathscr{M}\cross P^{2}|P\in I_{C}\}$

and
$\tilde{\mathscr{M}}:=\{((C, P), R_{1}, R_{2})\in \mathscr{M}_{I}\cross P^{2}\cross P^{2}|R_{1}, R_{2}\in C\}$ .

We note that there exists a dominant rational map of

$\delta$ : $\tilde{\mathscr{M}}-arrow\Lambda^{\tilde{r}_{2}}$ ,

where $\Lambda^{\tilde{r}_{2}}$ is the closure of the space of curves verifying (a), (c) and the first part of (d)
for $P$ . Given $R_{i},$ $i-1,2$ , let $R_{i}’$ be the other point of $C$ aligned with $R_{i}$ and $P$; take the
double-inflection conic $Q_{i}$ associated to $P$ and passing through $R_{i}$ and $R_{i}’$ . Then,

$\delta((C, P),R_{1},$ $R_{2}):=C\cup Q_{1}\cup Q_{2}$ .

We deduce that $\tilde{y}_{2}$ is irreducible. It is easily seen that $\Lambda^{r_{2}}$ is a Zariski-open subset
of $\tilde{A_{\wedge_{2}}^{\wedge}}$ . Then, it is enough to see that $\Lambda^{r_{2}}$ is non-empty.

Take the curve $B_{2}$ of the last example; it is the image of

$\Omega:=((C_{1}, O),I_{1},J_{1})\in\tilde{\mathscr{M}}$ .

The fact that the four lines of $B_{2}$ are in general position implies that the conics corre-
sponding to the image by $\delta$ of a point in $\tilde{\mathscr{M}}$ close to $\Omega$ verify (b). Then, $\Lambda_{2}’$ is
non-empty. $\square$

DEFINITION. Let $\gamma:Iarrow:P_{d}$ a continuous path of reduced curves, $I$ is an interval
and $C_{t}:=\gamma(t)$ for $t\in I$ . We say that the family $\{C_{t}|t\in I\}$ is equisingular if there exist
continuous paths $\gamma_{i}$ : $Iarrow P^{2},$ $i=1,$

$\ldots,$
$n$ , such that

(a) For all $t\in I,$ $\{\gamma_{i}(t)|1\leq i\leq n\}$ is the set of singular points of $C_{t}$ .
(b) For all $i=1,$ $\ldots$ , $n$ , the family $\{(C_{t}, \gamma_{i}(t))|t\in I\}$ is equisingular.
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The next result is well-known, see [C] for a proof:

LEMMA. The curves in an equisingular path of curves are isotopic in $P^{2}$ .

Then, any two curves in $\Lambda^{r_{1}}$ are isotopic; the same statement is true for $A_{2}’$ . Let us
fix $M_{1}\in\Lambda^{r_{1}}$ (resp. $M_{2}\in\Lambda_{2}’$ ) close to $B_{1}$ (resp. $B_{2}$ ).

DEFINITION. Let $\gamma:[0,1]arrow P_{d}$ a continuous path of reduced curves, such that the
family induced by $\gamma_{|(0,1]}$ is equisingular. Note $C_{t}:=\gamma(t)$ if $t\in[0,1]$ . We say that $C_{0}$ is
a degeneration of $C_{1}$ and $\gamma$ is the degeneration path.

We can also finda proof of this well-known result in[C]:

LEMMA. Let $C_{0},$ $C_{1}\subset P^{2}$ such that $C_{0}$ is a degeneration of $C_{1}$ . Then there exists an
epimorphism a: $G_{C_{0}}arrow G_{C_{1}}$ .

We can describe also the kemel of this epimorphism from the Zariski-Van Kampen
method.

Set $H_{i}:=G_{M_{i}},$ $i=1,2$ . Let us fix a degeneration map from $M_{i}$ to $B_{i}$ . For each
$i=1,2$ there exist two ordinary double points $P_{1}^{i},$ $P_{2}^{i}\in B_{i}$ which are not limit of singular
points in the degeneration path. If $\tilde{P}_{i}$ is another singular point of $B_{i}$ , then there is a
small neighbourhood of $\tilde{P}_{i}$ which contains exactly one singular point $\hat{P}_{i}$ of $M_{i}$ ; moreover,
$(B_{i},\tilde{P}_{i})$ and $(M_{i},\hat{P}_{i})$ have the same topological type.

In the Zariski-Van Kampen method, each double point produces a relation.

$irreduciblecomponentsofB_{\iota}whichhmeetatP_{j}^{i}SupposethattherelationindcedbyP_{j}^{i}is[g_{j}^{i}, h_{j}^{i}]=1$

, where $g_{j}^{i},$ $h_{j}^{i}$ are meridians of the

LEMMA. Consider the epimorphism $a_{i}$ : $G_{i}arrow H_{i}$ of the degeneration path. Then,
$ker\sigma_{i}$ is the smallest normal subgroup of $G_{i}$ containing $g_{j}^{i}(h_{j}^{i})^{-1}$ .

PROOF. Consider the Zariski-Van Kampen method. We choose a generic fiber,
where we can identify the generators of $G_{i}$ and $H_{i}$ . We can suppose that the mono-
dromy for $B_{i}$ around each singular point $\tilde{P}_{i}\neq P_{1}^{i},$ $P_{2}^{i}$ agrees with the monodromy for $M_{i}$

around $\hat{P}_{i}$ .
We find differences near $P_{1}^{i}$ and $P_{2}^{\iota}$ , where $[g_{j}^{l},h_{j}^{i}]=1$ (relation in $G_{i}$ ) is replaced by

$g_{j}^{i}=h_{j}^{i}$ (in $H_{i}$ ). $\square$

Figure 11.
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THEOREM. The group $H_{1}$ is free abelian of rank 2.

PROOF. We can suppose that a meridian of $N_{1}$ equals a meridian of $P_{1}$ . As $n_{1}$ is
central in $H_{1}$ , we deduce that $p_{1}=n_{1}$ in $H_{1}$ and is also central in $H_{1}$ . By homological
reasons, $H_{1}=Z^{2}$ . $\square$

THEOREM. The group $H_{2}$ is the middle term of a short exact sequence:

(1) $0arrow H_{2};^{i\mu}arrow H_{2}arrow Z^{2}arrow 0$ ,

where $H_{2}’$ (the first derived group of $H_{2}$ ) is also the middle term of a short exact sequence:

(2) $0arrow H_{2}’\prime^{jv}arrow H_{2}’arrow Z^{2}arrow 0$ ,

where $H_{2}’’$ (the second derived group of $H_{2}$ ) is cyclic of order two. There exist $b_{1},$ $b_{2}\in H_{2}’$

such that $v(b_{1}),$ $v(b_{2})$ generate $Z^{2}$ and $[b_{1},b_{2}]=j(t)$ where $t$ is the nonzero element of $H_{2}’’$ .
We can choose $a_{1},a_{2}\in H_{2}$ such that $\mu(a_{1})_{3}\mu(a_{2})$ generate $Z^{2}$ and

$[a_{1}, a_{2}]=i(b_{1})$ , $a_{1}i(b_{1})a_{\overline{1}^{1}}=i(b_{2})$ , $a_{1}i(b_{2})a_{\overline{1}}^{1}=i(b_{\overline{2}^{1}}b_{\overline{1}}^{1})$ ,

$a_{2}i(b_{1})a_{\overline{2}}^{1}=i(b_{2})$ , $a_{2}i(b_{2})a_{\overline{2}}^{1}=i(b_{1}^{-1}b_{\overline{2}}^{1})$ .

This group is non-abelian but admits a subgroup of index 12 which is abelian.

PROOF. We can realize the degeneration path by moving $P$ down and moving $N$

up. One shows immediately that the relations we must add are $p_{1}=p_{2}$ and $n_{1}=n_{2}$ .
We find:

$H_{2}=\langle c_{1},p_{1},$ $n_{1}|(c_{1}p_{1})^{3}=(p_{1}c_{1})^{3}$ , $(c_{1}n_{1})^{3}=(n_{1}c_{1})^{3}$ ,

$[p_{1}, n_{1}]=1$ , $[p_{1}, c_{1}^{-1}n_{1}c_{1}]=1$ , $n_{1}c_{1}n_{1}(c_{1}p_{1})^{2}=1\rangle$ .

Using GAP, we show the existence of an epimorphism of $H_{2}$ onto the fourth altemating
group; then 2 is not abelian.

We construct the exact sequences from the map onto the abelianized groups of $H_{2}$

and $H_{2}’$ . It is a long but easy computation. One can show that the subgroup generated
by $a_{1}^{3},$ $(a_{2}a_{\overline{1}}^{1})^{2},$ $b_{1},$ $b_{2}^{2}$ and $t$ is isomorphic to $Z^{4}\cross Z/2Z$ and it is of index 12. $\square$

COROLLARY. The groups $H_{1}$ and $H_{2}$ are non-isomorphic. Then $(M_{1}, M_{2})$ is a
Zariski pair which is not distinguished by the Alexander polynomial.

\S 6. A Zariski pair whose members have only rational components.

EXAMPLE 6. Take $C$ an irreducible nodal cubic. We can define double-inflection
conics as in the smooth case; it is also possible to associate an inflection point to each
double-inflection conic.

The next proposition is analogous to the proposition in Example 5.

PROPOSITION. Let $\mathscr{P}_{1}$ (resp. $\mathscr{P}_{2}$ ) the space of curves ofdegree 7 having three reducible
components $C,$ $Q_{1},$ $Q_{2}$ such that:
(a) $C$ is an irreducible nodal cubic and $Q_{i}$ is an irreducible conic, $i=1,2$ .
(b) $Q_{1}$ and $Q_{2}$ intersect transversally at four points.
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Figure 12.

(c) $Q_{i}$ is a double-inflection conic of $C$; let $P_{Q_{i}}$ be the associated inflection point, $i=1,2$ .
(d) $P_{Q_{1}}\neq P_{Q_{2}}$ (resp. $P_{Q_{1}}=P_{Q_{2}}$ ).

Then, the spaces $\mathscr{P}_{1}$ and $\mathscr{P}_{2}$ are connected and non-empty. Moreover, each curve in
$\mathscr{P}_{i}$ is a degeneration of curves in $M_{i},$ $i=1,2$ .

In order to get the fundamental groups of curves in $\mathscr{P}_{1}$ and $\mathscr{P}_{2}$ , we prove next
lemma:

LEMMA. Let $\gamma$ : $[0,1]arrow P_{d}$ a continuous path of curves, set $C_{t}:=\gamma(t)$ . Suppose
that:
(a) $C_{0}$ is a degeneration of $C_{1}$ and $\gamma$ is a degeneration path.
(b) $C_{t}hasrealequationsforallt\in[0,1]$ .
(c) There exist $P\in C_{0}$ and a neighbourhood $B_{P}$ of $P$ in $P^{2}$ verifying:

(c1) $P$ is a nodal point of $C_{0}$ , and there is no singular point of $C_{t}$ in $B_{P},$ $t\in[0,1]$ .
(c2) Let $E_{P}$ the closure of $P^{2}\backslash B_{P;}$ there exists an isotopy of $E_{P}$ which sends $C\cap E_{P}$

onto $D\cap E_{P}$ ( $\gamma$ is equisingular outside $B_{P}$ ).
(c3) The real part of $C_{1}$ degenerates to $D$ in $B_{P}$ as in the Figure 12.
Then $G_{C_{0}}$ is isomorphic to $G_{C_{1}}$ .

PROOF. It is enough to apply Zariski-Van Kampen method. For a given projection
anything is similar for $C_{0}$ and $C_{1}$ but in the neighbourhood $B_{P}$ of $P$ . Let us call $m_{t}$ and
$n_{t}$ the meridians of $C_{t}$ whose circle is contained in $B_{P},$ $t\in[0,1]$ (we can choose them such
that they coincide outside $B_{P}$ ).

There is only one relation for $C_{1}$ : $m_{1}=n_{1}$ . For $C_{0}$ we find two relations: $[m_{0}, n_{0}]=$

$1$ and $m_{0}=n_{0}$ . Let us consider the epimorphism $a:G_{C_{0}}arrow G_{C_{1}}$ . It is easily seen that
$\sigma(m_{0})=m_{1}$ and $a(n_{0})=n_{1}$ .

We deduce also that the kemel of $a$ is the smallest normal subgroup of $G_{C_{0}}$ con-
taining $m_{0}(n_{0})^{-1}$ . From the above arguments, the kemel is trivial. $\square$

THEOREM. For any $S_{i}\in \mathscr{P}_{i},$ $G_{S_{i}}=H_{i},$ $i=1,2$ .

PROOF. The key of the proof is to find real models of $S_{1}$ and $S_{2}$ such that there is
no singular point of the vertical projection between the singular point of the cubic and a
point of vertical tangent in the cubic. It will be clear that a suitable deformation pro-
duces curves in $\Lambda_{1}’$ and $\Lambda^{r_{2}}$ respectively, such that the two degenerations match with the
previous lemma.

Observe that in the model of \S 1, the goal is to obtain curves where a maximum
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Figure 13.

Figure 14.

number of non-transversal vertic 1 lines should have real equations. In this case, we
already know one fundamental group and we do not need a so complicated model.

Let us consider an example of a curve $S_{2}:=C\cup Q_{1}\cup Q_{2}$ whose equations are:

$C:y^{2}z=x^{2}(x+3z)$ , $Q_{1}$ : $y^{2}=6x^{2}-3xz+z^{2}$ , $Q_{2}$ : $y^{2}=9x^{2}-2xz+8z^{2}$ .
It is easily seen that there exists a degeneration path of curves $\Lambda^{r_{2}}$ towards $S_{2}$ sat-

isfying the previous lemma. We can see the real affine part of $S_{2}$ in Figure 13.
Let us consider a curve $S_{1}$ given by:

$C:y^{2}z=x^{2}(x-3z)$ ,

$Q_{1}$ : $y^{2}=3(\alpha-1)x^{2}-3\alpha^{2}xz+\alpha^{3}z^{2}$ , $\alpha\in R$ big enough,

and the curve $Q_{2}$ :

$3(3-3t+t^{2})x^{2}+y^{2}+3(t-1)xy+(t-7)(t-1)^{2}yz-3(t+1)(t-1)^{2}xz+8(t-1)^{3}z^{2}$

$=0$ , $t\in(3,4)\subset R$ .

The real affine part of $S_{1}$ is in figure 14.
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There exists a degeneration path of curves in $\Lambda_{1}^{\nearrow}$ towards $S_{1}$ which verifies the pre-
vious lemma if we replace (c3) by $(c3’)$ and $(c3’’)$ :

$(c3’)$ : The real part of $C_{t}$ in $B_{P}$ degenerates to $C_{0}$ as in Figure 15.

Figure 15.

$(c3’’)$ : There exists a ramified double covering ramified $p:B_{P}arrow p(B_{P})$ along the line
$D$ such that the real part of $p(C_{t})$ degenerates to $p(C_{0})$ in $p(B_{P})$ as in Figure 16.

Figure 16.

$\square$

COROLLARY. Let $S_{1}\in \mathscr{P}_{1}$ and $S_{2}\in \mathscr{P}_{2}$ . Then $(S_{1}, S_{2})$ is a Zariski pair which is not
distinguished by the Alexander polynomial and such that the irreducible components of each
member are rational.

\S 7. Zariski pairs and superisolated singularities

We refer to [Lu] and [A2] and references therein. Let (V, $0$) $\subset(C^{3},0)$ a germ of
isolated singularity of multiplicity $d$; let $f\in C\{x,y, z\}$ a convergent power series such
that $V=f^{-1}(0)$ . Let $f$ $:=f_{d}+f_{d+1}+\cdots$ , where $f_{m}$ is a homogeneous polynomial of
degree $m,$ $m\geq d$ . Let us call $C_{m}\subset P^{2}$ the projective curve defined by $f_{m}(C_{m}=P^{2}$ if
$f_{m}\equiv 0)$ . We recall that $C_{d}$ is the tangent cone of $V(C_{d}\neq P^{2})$ .

DEFINITION. (V, $0$) is a superisolated singularity if the singular points of $C_{d}$ are not
in $C_{d+1}$ .

This is not the usual definition but it is convenient for us. We note that the tangent
cone of a superisolated singularity is always reduced.

We introduce some aspects of the Milnor theory, see [M]. Let $V$ be a germ of
isolated singularity in $C^{3}$ . For a small $\epsilon>0$ , the intersection of the euclidean sphere
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centered at $0$ of radius $\epsilon$ (denoted $S_{\epsilon}^{5}$ ) with $V$ is a compact oriented 3-manifold without
boundary, denoted $Kb$ . The topological type of $(S_{\epsilon}^{5},K_{\epsilon})$ does not depend on $\epsilon$ ; it will be
denoted $(S^{5},K)$ and $K$ ($K$ is the abstract link of the singularity and $(S^{5},K)$ is its link).
There is a locally trivial fibration $\varphi:S^{5}\backslash Karrow S^{1}$ (called the Milnorfibration) of $V$ . The
fiber $F$ (the Milnor fiber) of $\varphi$ has the homotopy type of a bouquet of spheres of
dimension 2. The fibration $\varphi$ is determined (up to isotopy and conjugation) by a
homeomorphism $\sigma:Farrow F$ (the geometric monodromy). The complex monodromy is the
linear automorphism $\sigma^{*}:$ $H^{2}(F;C)arrow H^{2}(F;C)$ .

PROPOSITION. [Lu] Let $\{V_{t}\}_{t\in[0,1]}$ a continuous family of superisolated singularities.
Let us suppose that the inducedfamily of tangent cones is equisingular. Then:
(1) The family of singularities is equisingular.
(2) If $K_{t}$ is the link of the singularity $V_{t}$ in the sphere $S^{5}$ of dimension 5, there exists an
isotopy of $S^{5}$ which sends $K_{0}$ onto $K_{1}$ .

In particular, for a given reduced curve $C\subset P^{2}$ there exists a superisolated singu-
larity whose tangent cone is $C$ ; two such singularities determine the same link in $S^{5}$ up to
Isotopy.

PROPOSITION. Let $C_{1},$ $C_{2}\subset P^{2}$ members of a Zariski pair. Let us take superisolated
singularities $V_{1},$ $V_{2}$ whose tangent cones are $C_{1}$ and $C_{2}$ , respectively. Then:

(1) (see [Lu]) The abstract links are homeomorphic.
(2) (see [St] and [A2]) The characteristic polynomials of the complex monodromies

are equal.
(3) (see [A2]) The Jordan forms of the complex monodromies are equal if and only if

the two curves have the same Alexander polynomial.

COROLLARY. Let $C_{1},$ $C_{2}\subset P^{2}$ members of a Zariski pair which is distinguished by the
Alexander polynomial. Then, there is no homeomorphism of $S^{5}$ which sends one link onto
the other one.

This corollary suggests the next question:

QUESTION. Let us $cons\iota der$ a Zariski pair $(C_{1}, C_{2})$ as in Examples 4, 5 or 6. Let us
take superisolated singularities $V_{1},$ $V_{2}$ whose tangent cones are $C_{1}$ and $C_{2}$ , respectively.
Then, does there exist a homeomorphism of $S^{5}$ which sends the link of $V_{1}$ onto the link of
$V_{2}$?
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