
J. Math. Soc. Japan
Vol. 50, No. 2, 1998

Error bounds on exponential product formulas for Schr\"odinger operators

By Atsushi DOUMEKI, Takashi $IcHINOSE*$ ) and Hideo TAMURA

(Received Oct. 24, 1995)
(Revised Mar. 25, 1996)

1. Introduction.

We study an error bound in the operator norm for the Trotter-Kato product
formula of Schr\"odinger semigroups with potentials growing at infinity. Let

$H=-\Delta+V=H_{0}+V$

be the Schr\"odinger operator acting on the space $L^{2}=L^{2}(R^{n})$ . Then the Trotter-Kato
product formula ([1, 7, 10]) says that

$s- \lim_{Narrow\infty}K(t/N)^{N}=\exp(-tH)$

strongly in $L^{2}$ , where $K(t):L^{2}arrow L^{2}$ is defined as
$K(t)=\exp(-tV/2)\exp(-tH_{0})\exp(-tV/2)$ , $t>0$ , (1.1)

which is often called the Kac operator or the transfer operator in statistical
mechanics. The aim here is to evaluate the error bound in the operator norm as
$Narrow\infty$ for the exponential product formula above.

We first state the obtained results somewhat loosely. The error bound seems to
depend heavily on growth order and smooth property of potentials. Assume that $V(x)$

behaves like
$V(x)\sim|x|^{\rho}$ , $|x|arrow\infty$ ,

for some $p\geq 0$ . Let
$e(N)=||\exp(-tH)-K(t/N)^{N}||$

be the error term in question, $t>0$ being fixed, where $||\cdot||$ denotes the operator norm as
a bounded operator from $L^{2}$ into itself. Then

$e(N)=O(N^{-l})$ for $0\leq\rho<2$ , $e(N)=O(N^{-2/\rho})$ for $\rho\geq 2$

for a class of $C^{2}$ -smooth potentials and

$e(N)=O(N^{-1/2})$ for $0\leq\rho<2$ , $e(N)=O(N^{-1/\rho})$ for $\rho\geq 2$

for a class of $C^{1}$ -smooth potentials. We can further prove the error bound $e(N)=$

$O(N^{-2/3})$ for bounded potentials without assuming smoothness conditions. The same
error bounds can be also shown to remain true in trace norm, provided that $\rho>0$ .

$*)$ Partially supported by Grand-in-Aid for Scientific Research (B) No. 09440053.
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We shall explain the recent related results. It is Helffer ([4]) who first proved
the error bound $O(N^{-1})$ , when $V(x)$ is a $C^{\infty}$ -smooth potential with growth order
$p=2$ . The proof uses the pseudodifferential calculus and the obtained bound was
applied to the study on the spectral properties of Kac operators. A similar bound has
been extended by Dia-Schatzman [2] to a class of $C^{4}$ -smooth potentials. In the recent
work [6], one of the authors (T. Ichinose) together with Takanobu has studied the error
bound problem for a wide class of potentials under some assumption on the relation
between growth order and smooth property of potentials. The $L^{p}$ error bound has been
also discussed there, including the case of magnetic Schr\"odinger operators. Most of the
results obtained here overlap with those in [6] but include several new results (for

example, error bound in trace norm, error bound for $C^{1}$ -smooth potentials growing
rapidly at infinity, error bound for bounded potentials, etc). The method employed in
[6] is based on the Feynman-Kac formula and is of probabilistic character, while the
proof here is purely analytical and is done by repeated use of simple commutator
computations. Thus the idea, in principle, is similar to that in [2] but the technical
details are quite different. We further note that the present method also applies to
magnetic Schr\"odinger operators under a slight modification. The matter will be briefly
discussed in the last section.

Finally we must refer to Rogava’s work [9], where a rather abstract result is
announced with only a sketch of proof. Roughly speaking, the result is that the
semigroup $\exp(-t(A+B))$ obeys the error bound $O(N^{-1/2}\log N)$ , if both the operators
$A$ and $B$ are non-negative self-adjoint and $B$ is relatively bounded with respect to
$A$ . This result does not apply to Schr\"odinger operators with potentials growing at
infinity. In section 5, we consider the error bound for bounded potentials and make a
further comment on the Rogava bound (see Remark after Theorem 5.1).

We conclude the section by stating a formal commutator relation

$[ \exp(-tA), B]=\int_{0}^{t}\exp(-sA)[B, A]\exp(-(t-s)A)ds$ .

This relation can be easily verified, if the domain problem is neglected, and it is
repeatedly used without further references throughout the entire discussion. The
domain problem is easily justified in later applications.

2. Error bound for $C^{2}$-smooth potentials.

We first consider the error bound for Schr\"odinger operators with $C^{2}$ -smooth
potentials. Throughout this section, the potential $V(x)$ is assumed to fulfill the fol-
lowing assumption:

$(V)_{2}$ $V(x)$ is a $C^{2}$ -smooth real function such that for some $\rho\geq 0$

$V(x)\geq c\langle x\gamma$ , $c>0$ ,

$|\partial_{x}^{\alpha}V(x)|\leq C_{\alpha}\langle x\rangle^{(\rho-|\alpha|)_{+}}$ , $0\leq|\alpha|\leq 2$ ,
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where $\langle x\rangle=(1+|x|^{2})^{1/2}$ and $(s)_{+}= \max(s, 0)$ . The strict positivity of potential does
not matter to the discussion below. It is enough to assume that $V(x)\geq c\langle x\rangle^{\rho}$ only for
$|x|>R,$ $R\gg 1$ . In fact, we have only to consider $V(x)+M,$ $M>>1$ , as a potential in
place of $V(x)$ in such a case.

Under this assumption, the operator $H$ admits a unique positive self-adjoint
realization in $L^{2}$ . We denote this self-adjoint realization as the same notation $H$ and
define the Kac operator $K(t)$ associated with $H$ by (1.1). Then the main result in the
present section is formulated as follows.

THEOREM 2.1. Assume that $(V)_{2}$ is fulfilled. Then one has

$||\exp(-tH)-K(t/N)^{N}||=\{$
$O(N^{-1})$ , $0\leq p<2$ ,

$O(N^{-2/\rho})$ , $p\geq 2$ ,

as $Narrow\infty$ , where the order relations are locally uniform in $t\geq 0(t\in[0, a], 0<a<\infty)$ .

Throughout the whole exposition, we use the terminology locally uniform in $t\geq 0$

and in $t>0$ with the meaning that $t\in[0, a]$ and $t\in[a, b],$ $0<a<b<\infty$ , respec-
tively. The above theorem follows as an immediate consequence of the basic lemma
below. This lemma plays a central role in proving all the other theorems as well as
Theorem 2.1.

LEMMA 2.2.

$||\exp(-tH)-K(t)||=\{$
$O(t^{2})$ , $0\leq p<2$ ,

$O(t^{1+2/\rho})$ , $p\geq 2$ ,

as $tarrow 0$ .

We prepare one lemma to prove Lemma 2.2.

LEMMA 2.3. Let $Q_{m}$ be the multiplication operator with $\langle x\rangle^{m}$ and let $D_{j}$ be the
differential operator $-i\partial/\partial x_{j}$ . Assume that $m\geq 0$ . Then one has:

(1) I $Q_{-m}\exp(-tH_{0})Q_{m}$ II $=O(1)$ , $tarrow 0$ .

(2) $||Q_{-m}\exp(-tH_{0})D_{j}Q_{m}||=O(t^{-1/2})$ , $tarrow 0$ .

We proceed with the argument, accepted this lemma as proved.

PROOF OF LEMMA 2.2. The proof is divided into three steps.
(1) We first calculate $K’(t)=(d/dt)K(t)$ as

$K’(t)=-HK(t)+R(t)$ ,

where $R(t)=R_{1}(t)+R_{2}(t)$ and

$R_{1}(t)=[H_{0}, \exp(-tV/2)]\exp(-tH_{0})\exp(-tV/2)$

$R_{2}(t)=\exp(-tV/2)[V/2, \exp(-tH_{0})]\exp(-tV/2)$ .
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We assert that

$||R(t)||=\{$

$O(t)$ , $0\leq p<2$ ,

$O(t^{2/p})$ , $p\geq 2$ .
(2.1)

If this is verified, then the lemma immediately follows by the Duhamel principle.
(2) We prove the assertion (2.1) only for the case $\rho\geq 2$ . We often use the trivial

estimate

$||Q_{m}\exp(-tV)||=O(t^{-m/p})$ , $m\geq 0$ ,

without further references in the argument below. We now write $H_{0}=D_{j}D_{j}$ by use of
the summation convention and calculate the commutator

$[H_{0}, \exp(-tV/2)]=-t[D_{j}, V]D_{j}\exp(-tV/2)$

$-(t/2)[D_{j}, [D_{j}, V]]\exp(-tV/2)$

$-(t^{2}/4)[D_{j}, V][D_{j}, V]\exp(-tV/2)$ .

By assumption $(V)_{2}$ (recall that $V(x)$ is $C^{2}$ -smooth), the last two operators on the right
side obey the bound $O(t^{2/p})$ and hence

$R_{1}(t)=-tAK(t)+O_{b}(t^{2/p})$ (2.2)

with $A=[D_{j}, V]D_{j}$ , where $O_{b}(t^{v})$ denotes an operator the norm of which obeys the
bound $O(t^{v})$ as $tarrow 0$ .

(3) Next we deal with the operator $R_{2}(t)$ . We calculate the commutator

$[H_{0}, V/2]=[D_{j}, V]D_{j}+[D_{j}, [D_{j}, V/2]]=A+B$ ,

so that

$[V/2, \exp(-tH_{0})]=\int_{0}^{t}\exp(-\tau H_{0})(A+B)\exp(-(t-\tau)H_{0})d\tau$ .

Decompose $B$ as $B=Q_{m}(Q_{-m}BQ_{-m})Q_{m}$ with $m=(p-2)/2$ and use assumption $(V)_{2}$

and Lemma 2.3 (1). Then we obtain that

$|| \exp(-tV/2)\int_{0}^{t}\exp(-\tau H_{0})B\exp(-(t-\tau)H_{0})d\tau\exp(-tV/2)||=O(t^{2/\rho})$ .

Thus

$R_{2}(t)=tAK(t)+R_{21}(t)+R_{22}(t)+O_{b}(t^{2/\rho})$ ,

where

$R_{21}(t)=t[\exp(-tV/2), A]\exp(-tH_{0})\exp(-tV/2)$ ,

$R_{22}(t)= \exp(-tV/2)\int_{0}^{t}[\exp(-\tau H_{0}), A]\exp(-(t-\tau)H_{0})d\tau\exp(-tV/2)$ .
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It is easy to see that

$||R_{21}(t)||=O(t^{2/\rho})$ .

We shall prove that $R_{22}(t)$ also obeys the same bound as above. To see this, we rewrite
$R_{22}(t)$ as

$R_{22}(t)= \exp(-tV/2)\int_{0}^{t}F(\tau)\exp(-(t-\tau)H_{0})d\tau\exp(-tV/2)$ ,

where

$F( \tau)=-\int_{0}^{\tau}\exp(-sH_{0})[H_{0}, A]\exp(-(\tau-s)H_{0})ds$ .

We calculate the commutator

$[H_{0}, A]=[H_{0}, [D_{j}, V]D_{j}]=D_{k}V_{kj}D_{j}+V_{kj}D_{k}D_{j}$

by use of the summation convention again, where $V_{kj}=[D_{k}, [D_{j}, V]]$ . Decompose $V_{kj}$

as $V_{kj}=Q_{m}(Q_{-m}V_{kj}Q_{-m})Q_{m},$ $m=(p-2)/2$ , or as $V_{kj}=Q_{l}(Q_{-f}V_{kj}),$ $l=p-2$ , and use
Lemma 2.3. Since $D_{j}H_{0}^{-1/2}$ : $L^{2}arrow L^{2}$ is bounded, the operator $F(\tau)$ takes the form

$F( \tau)=Q_{m}\int_{0}^{\tau}o_{b}(s^{-1/2})O_{b}((\tau-s)^{-1/2})dsQ_{m}$

$+Q_{l} \int_{0}^{\tau}o_{b}(1)O_{b}((\tau-s)^{-1/2})\ H_{0}^{1/2}$

$=Q_{m}O_{b}(1)Q_{m}+Q_{l}O_{b}(\tau^{1/2})H_{0}^{1/2}$ .

Hence we make use of Lemma 2.3 again to obtain that

$||R_{22}(t)||=O(t^{2/\rho})+O(t^{-1+2/p}) \int_{0}^{t}o(\tau^{1/2})O((t-\tau)^{-1/2})d\tau=O(t^{2/p})$ .

Summing up, we have

$R_{2}(t)=tAK(t)+O_{b}(t^{2/\rho})$ ,

which, together with (2.2), implies (2.1) and hence the proof of the lemma is com-
plete. $\square$

PROOF OF LEMMA 2.3. The lemma is easy to prove. The proof is done by
induction. By interpolation, it suffices to prove the lemma only for integer $m\geq 0$ . The
case $m=0$ is trivial for both (1) and (2). Assume the case $0\leq m\leq k$ for (1) and
(2). TO prove (1) for the case $m=k+1$ , it is enough to show that

$||Q_{-k-1}[\exp(-tH_{0}), Q_{k+1}]||=O(1)$ , $tarrow 0$ . (2.3)

We represent the above commutator as

$[ \exp(-tH_{0}), Q_{k+1}]=-\int_{0}^{t}\exp(-sH_{0})[H_{0}, Q_{k+1}]\exp(-(t-s)H_{0})\$ .
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The commutator in the integrand takes the form

$[H_{0}, Q_{k+1}]=b_{j}(x)D_{j}+b_{0}(x)$ ,

where $b_{j}(x)=O(|x|^{k})$ and $b_{0}(x)=O(|x|^{k-1})$ as $|x|arrow\infty$ . Hence (2.3) can be easily
obtained by inductive assumption. A similar argument applies to (2). The commu-
tator $[H_{0}, D_{j}Q_{k+1}]$ takes the form

$[H_{0}, D_{j}Q_{k+1}]=D_{l}b_{lm}(x)D_{m}+b_{l}(x)D_{l}+b_{0}(x)$ ,

where $b_{lm}(x)=O(|x|^{k}),$ $b_{l}(x)=O(|x|^{k-1})$ and $b_{0}(x)=O(|x|^{k-2})$ . Hence (2) is again
obtained by inductive assumption. Thus the proof is complete. $\square$

We end the section by making a brief comment on the basic lemma above.

REMARK 2.4. If $V(x)$ satisfies

$|\partial_{x}^{\alpha}V(x)|\leq C_{\alpha}\langle x\rangle^{(\rho-\delta|\alpha|)_{+}}$ , $0\leq|\alpha|\leq 2$ ,

for some $0\leq\delta\leq 1$ , then we can show by a slight modification of the argument in the
proof of Lemma 2.2 that

$||\exp(-tH)-K(t)||=\{$
$O(t^{2})$ , $0\leq p<2\delta$ ,

$O(t^{1+2\delta/\rho})$ , $p\geq 2\delta$ .

3. Error bound in trace norm.

We here prove that the same error bound as in Theorem 2.1 remains true in trace
norm. Let $\mathscr{C}_{p},p\geq 1$ , be the Neumann-Schatten class of compact operators and denote
by $||\cdot||_{p}$ the norm in $\mathscr{C}_{p}$ . We still assume $(V)_{2}$ with $p>0$ . Then the j-th eigenvalue $\lambda_{j}$

of $H$ is well known to behave like $\lambda_{j}\sim j^{v},$ $v=(2/n)p/(2+p)$ , as $jarrow\infty$ . Hence the
operator $\exp(-tH),$ $t>0$ , is of class $\mathscr{C}_{p}$ for any $p\geq 1$ and is continuous as a function of
$t>0$ with values in $\mathscr{C}_{1}$ . Such a semigroup is often called a Gibbs semigroup. The
trace $Tr(\exp(-\beta H)),\beta>0$ being an inverse temperature, is called the partition function
of the system govemed by Hamiltonian $H$ and is one of the most important quantities
to be investigated in quantum statistical mechanics.

THEOREM 3.1. Assume $(V)_{2}$ for some $p>0$ strictly positive. Then one has

$||\exp(-tH)-K(t/N)^{N}||_{1}=\{$
$O(N^{-1})$ , $0\leq p<2$ ,

$O(N^{-2/p)},$ $p>2$ ,

as $Narrow\infty$ and hence the trace $Tr(\exp(-tH)-K(t/N)^{N})$ of difference between both
operators also obeys the same bound as above, where the order relations are locally
uniform in $t>0(t\in[a, b], 0<a<b<\infty)$ .

REMARK. The convergence in trace norm of exponential product formula has been
proved by $[5, 8]$ in the abstract setting. The result there requires the assumption that
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$\exp(-tH_{0}),$ $t>0$ , is of trace class for the unperturbed operator $H_{0}$ . Thus it does not
seem to apply to the present case directly.

The proof is done through a series of lemmas. We again consider only the case
$\rho\geq 2$ . We now fix $\delta$ as $0<\delta<1/p$ . Then there exists $\gamma=\gamma(\delta)>>1$ such that

$Z_{\delta}=(H_{0}+1)^{-\delta}(V+1)^{-\delta}\in \mathscr{C}_{\gamma}$ .

LEMMA 3.2. Let $\delta$ and $\gamma$ be as above. Then

$||K(t/N)||_{\gamma}=O(N^{2\delta})$ , $Narrow\infty$ ,

locally uniformly in $t>0$ .

PROOF. The lemma is easy to prove. We write $K(t/N)$ as

$K(t/N)=\exp(-tV/2N)\exp(-tH_{0}/N)(H_{0}+1)^{\delta}Z_{\delta}(V+1)^{\delta}\exp(-tV/2N)$ .

Then the lemma follows at once. $\square$

LEMMA 3.3.

$||K(t/N)^{N}||_{\gamma}=O(1)$ , $Narrow\infty$ ,

locally uniformly in $t>0$ .

PROOF. We write $T(t)$ for $\exp(-tH)$ . Then

$\exp(-tH)-K(t/N)^{N}=T(t/N)^{N}-K(t/N)^{N}=\sum_{j=1}^{N}X_{j}(t/N)$ ,

where

$X_{j}(t)=K(t)^{j-1}(T(t)-K(t))T(t)^{N-j}$ .

If $1\leq j\leq[N/2],$ $[\cdot]$ being the Gauss notation, then

$||T(t/N)^{N-j}||_{\gamma}=||\exp(-(1-j/N)tH)||_{\gamma}=O(1)$ , $Narrow\infty$ ,

and hence
$||X_{j}(t/N)||_{\gamma}=O(N^{-1-2/\rho})$

by Lemma 2.2. On the other hand, if $[N/2]<j\leq N$ , then Lemma 2.2 again, together
with Lemma 3.2, implies that

$||X_{j}(t/N)||_{\gamma}=O(N^{-1-2/p+2\delta})$ .

Thus it follows that

$||\exp(-tH)-K(t/N)^{N}||_{\gamma}=O(N^{2(\delta-1/\rho)})$ .

Since $\delta-1/p<0$ by choice, the lemma is obtained immediately. $\square$
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LEMMA 3.4.
$||K(t/N)^{N}||_{\gamma/2}=O(1)$ , $Narrow\infty$ ,

locally uniformly in $t>0$ .

PROOF. Let $X_{j}(t/N),$ $1\leq j\leq N$ , be as in the proof of Lemma 3.3. First it is easy
to see that

$||X_{j}(t/N)||_{\gamma/2}=O(N^{-1-2/p})$ , $1\leq j\leq[N/2]$ ,

by Lemma 2.2. Next we consider the case $[N/2]<j\leq N$ . As is well known (for

example, see the book [3] $)$ , the H\"older inequality

$||AB||_{r}\leq||A||_{p}||B||_{q}$ , $1/p+1/q=1/r$ , (3.1)

holds for $p,$ $q\geq 1$ . We use this inequality with pair $(p, q)=(\gamma, \gamma)$ . Then we have

$||X_{j}(t/N)||_{\gamma/2}=O(N^{-1-2/\rho+2\delta})$ , $[N/2]<j\leq N$ ,

by Lemmas 2.2, 3.2 and 3.3. Thus the lemma is proved in the same way as in the
proof of Lemma 3.3. $\square$

COMPLETION OF PROOF OF THEOREM 3.1. We repeat the same argument as in the
proof of Lemma 3.4 to obtain that

$||K(t/N)^{N}||_{\gamma/L}=O(1)$ , $Narrow\infty$ , (3.2)

for any $L>>1$ with $\gamma/L\geq 1$ and, in particular,

$||K(t/N)^{N}||_{1}=O(1)$ , $Narrow\infty$ ,

locally uniformly in $t>0$ . For example, we use (3.1) with pair $(p, q)=(\gamma/2, \gamma)$ to
prove (3.2) for $L=3$ . Thus the proof of the theorem is complete. $\square$

4. Error bound for $C^{1}$ -smooth potentials.

We here consider the error bound for Schr\"odinger operators with $C^{1}$ -smooth
potentials. Throughout this section, we assume the potential $V(x)$ to satisfy that:

$(V)_{1}$ $V(x)$ is a $C^{1}$ -smooth real function such that for some $\rho\geq 0$

$V(x)\geq c\langle x\rangle^{p}$ , $c>0$ ,

$|\partial_{\chi}^{\alpha}V(x)|\leq C_{\alpha}\langle x\rangle^{(\rho-|\propto|)_{+}}$ , $0\leq|\alpha|\leq 1$ .

The main result here is stated as follows.

THEOREM 4.1. Let the notations be the same as in Theorem 2.1. Assume that $(V)_{1}$

is fulfilled. Then one has

$||\exp(-tH)-K(t/N)^{N}||=\{$
$O(N^{-1/2})$ , $0\leq p<2$ ,

$O(N^{-1/p})$ , $p\geq 2$ ,

as $Narrow\infty$ , where the order relations are locally uniform in $t>0$ .
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REMARK. The order relations above may be improved to be locally uniform in
$t\geq 0$ , if we look at the $t$-dependence more carefully in the proof. A similar comment
applies to Theorem 5.1 also.

The proof uses an approximation by smooth potentials. Let $\psi(x)$ be a smooth non-
negative function such that

$supp\psi\subset\{x\in R^{n} : |x|<1\}$ and $\int\psi(x)dx=1$ .

We set

$v=0$ if $0\leq p<1$ , $v=p-1$ if $1\leq p<2$ , $v=1$ if $p\geq 2$ ,

and $\delta=(1+v)/2$ . We approximate the potential $V(x)$ under consideration by mollifier

$V_{\epsilon}(x)=( \epsilon\langle x\rangle^{v})^{-n}\int\psi((x-y)/\epsilon\langle x\rangle^{v})V(y)dy$ , $0<\epsilon<<1$ .

Then the lemma below follows from $(V)_{1}$ and it can be easily verified by a simple
calculation. We skip its proof.

LEMMA 4.2. Let $V_{\epsilon}(x)$ be as above. Then one has:

(1) $V_{\epsilon}(x)\geq c\langle x\rangle^{p},$ $c>0$ .

(2) $|\partial_{\chi}^{\alpha}V_{\epsilon}(x)|\leq C_{\alpha}\langle x\rangle^{(\rho-|\alpha|)_{+}}\leq C_{\alpha}\langle x\rangle^{(\rho-\delta|\alpha|)_{+}}$ , $0\leq|\alpha|\leq 1$ .

(3) $|\partial_{x}^{\alpha}V_{\epsilon}(x)|\leq C_{\alpha}\epsilon^{-\iota}\langle x\rangle^{(p-\delta|\alpha|)_{+}}$ , $|\alpha|=2$ .

(4) $|V_{\epsilon}(x)-V(x)|\leq C\epsilon\langle x\rangle^{(\rho-1)_{+}+v}$ .

Here the constants are all independent of $\epsilon$ .

We now define the Hamiltonian $H_{\epsilon}$ as $H_{\epsilon}=H_{0}+V_{\epsilon}$ with potential $V_{\epsilon}(x)$

approximated above and the associated Kac operator $K_{\epsilon}(t)$ as

$K_{\epsilon}(t)=\exp(-tV_{\epsilon}/2)\exp(-tH_{0})\exp(-tV_{\epsilon}/2)$ , $t\geq 0$ .

The proof of the above theorem requires several simple lemmas.

LEMMA 4.3.
$||\exp(-tH)-\exp(-tH_{\epsilon})||=O(\epsilon)$ , $\epsilonarrow 0$ ,

locally umformly in $t\geq 0$ .

PROOF. We again denote by $Q_{m}$ the multiplication operator with $\langle x\rangle^{m}$ . The
difference in the lemma is written in the integral form

$\int_{0}^{t}\exp(-sH)(V_{\epsilon}-V)\exp(-(t-s)H_{\epsilon})ds$ .

By assumption and Lemma 4.2 (1), both the operators

$(H+1)^{-1/2}Q_{p/2}$ , $(H_{\epsilon}+1)^{-1/2}Q_{\rho/2}$ : $L^{2}arrow L^{2}$
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are bounded and, in particular, the second one is bounded uniformly in $\epsilon$ . Hence we
have

$||\exp(-tH)Q_{p/2}||=O(t^{-1/2})$ , $||\exp(-tH_{\epsilon})Q_{p/2}||=O(t^{-1/2})$ .

This, again together with Lemma 4.2 (4), proves the lemma. $\square$

LEMMA 4.4. Let $\mu=(p-1)_{+}+v,$ $0\leq\mu\leq p$ , be as in Lemma 4.2 and let $\{\theta, \sigma\}$ be a
pair such that $\theta\geq 0,$ $\sigma\geq 0$ and $\theta+\sigma=\mu$ . Then one has

$||K_{\epsilon}(t)-K(t)||=O(\epsilon)$ and $||Q_{-\theta}(K_{\epsilon}(t)-K(t))Q_{-\sigma}||=tO(\epsilon)$

as $\epsilonarrow 0$ unif rmly in $t\geq 0$ and, in particular,

$||Q_{-\theta}(K_{\epsilon}(t/N)-K(t/N))Q_{-\sigma}||=\epsilon O(N^{-1})$ , $Narrow\infty$ ,

locally uniformly in $t\geq 0$ .

PROOF. The lemma can be easily proved by use of Lemma 4.2 (4) and of Lemma
2.3. $\square$

LEMMA 4.5.

$||Q_{-m}(\exp(-tH_{\epsilon})-K_{\epsilon}(t))Q_{m}||=\{$

$\epsilon^{-1}O(t^{2})$ , $0\leq p<2$ ,

$\epsilon^{-1}O(t^{1+2/p})$ , $\rho\geq 2$ ,
(4.1)

as $tarrow 0$ uniformly in $\epsilon$ and hence

$||\exp(-tH_{\epsilon})-K_{\epsilon}(t/N)^{N}||=\{$

$\epsilon^{-1}O(N^{-1})$ , $0\leq p<2$ ,

$\epsilon^{-1}O(N^{-2/\rho})$ , $p\geq 2$ ,
(4.2)

as $Narrow\infty$ uniformly in $\epsilon$ and locally uniformly in $t\geq 0$ .

PROOF. Let $\delta=(1+v)/2$ be as in Lemma 4.2, so that $\delta=1$ for $p\geq 2,$ $\delta=p/2$

for $1\leq p<2$ and $\delta=1/2$ for $0\leq p<1$ . We note that $0\leq p<1$ and $\rho\geq 1$ imply
$0\leq p<2\delta$ and $\rho\geq 2\delta$ , respectively (see Remark 2.4). Thus, if we take account of
Lemma 4.2 (2) and (3), (4.1) with $m=0$ is proved in exactly the same way as in the
proof of Lemma 2.2 and hence (4.2) follows at once. The general case with non-zero
$m\neq 0$ can be also proved by a slight modification of the argument used in the proof of
Lemma 2.2. In fact, we can easily show by repeated use of Lemma 2.3 that the
remainder terms $Q_{-m}R_{j}(t)Q_{m},$ $1\leq j\leq 2$ , obey the same bound as in the case $m=0$ . $\square$

LEMMA 4.6. Let $0\leq\gamma\leq\rho$ . Then $Q_{\gamma}(H_{\epsilon}+1)^{-\gamma/\rho}$ : $L^{2}arrow L^{2}$ is bounded from $L^{2}$

into itself uniformly in $\epsilon$ and hence

$||Q_{\gamma}\exp(-tH_{\epsilon})||=O(t^{-\gamma/\rho})$ , $tarrow 0$ .

PROOF. AS is easily seen,

$Q_{\rho/2}(H_{\epsilon}+1)^{-1}Q_{p/2}$ , $Q_{\rho/2}(H_{\epsilon}+1)^{-1}D_{j}:L^{2}arrow L^{2}$
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are bounded. Hence $Q_{p}(H_{\epsilon}+1)^{-l}$ is also bounded by use of the relation

$Q_{p}(H_{\epsilon}+1)^{-1}=Q_{p/2}(H_{\epsilon}+1)^{-1}Q_{\rho/2}+Q_{\rho/2}(H_{\epsilon}+1)^{-1}[H_{0}, Q_{\rho/2}](H_{\epsilon}+1)^{-1}$

Thus the lemma follows by interpolation at once. $\square$

We are now in a position to prove Theorem 4.1 in question.

PROOF OF THEOREM 4.1. For brevity, we again consider only the case $p\geq 2$ , so that
$v=\delta=1$ and $\mu=p$ . Almost the same argument applies to the other case also. The
proof is divided into three steps.

(1) We start by showing the following

LEMMA 4.7. Let $2\leq k\leq N$ . Then one has

$||Q_{p}(K_{\epsilon}(t/N)^{k}-\exp(-k(t/N)H_{\epsilon}))||=\epsilon^{-1}O(N^{-2/\rho}\log N)$

locally uniformly in $t>0$ .

PROOF. We write $T_{\epsilon}(t)$ for $\exp(-tH_{\epsilon})$ . Then we have

$Q_{\rho}(K_{\epsilon}(t/N)^{k}-T_{\epsilon}(t/N)^{k})= \sum_{j=1}^{K}Q_{\rho}Y_{j\epsilon,k}(t/N)$ ,

where

$Y_{j\epsilon,k}(t)=T_{\epsilon}(t)^{j-l}(K_{\epsilon}(t)-T_{\epsilon}(t))K_{\epsilon}(t)^{karrow}$ .

Note that $||Q_{\rho}K_{\epsilon}(t/N)||=O(N)$ . If $j=1$ , then it follows from Lemma 4.5 with $m=p$

that

$||Q_{\rho}Y_{1\epsilon,k}(t/N)||=\epsilon^{-1}O(N^{-2/\rho})$ .

If $2\leq j\leq k$ , then

$||Q_{\rho}T_{\epsilon}(t/N)^{j-1}||=j^{-1}O(N)$

by Lemma 4.6 and hence it follows again from Lemma 4.5 with $m=0$ that

$||Q_{\rho}Y_{j\epsilon,k}(t/N)||=\epsilon^{-1}j^{-1}O(N^{-2/\rho})$ .

This yields the lemma at once. $\square$

By Lemma 4.5, we obtain

$||K_{\epsilon}(t/N)^{k}-\exp(-k(t/N)H_{\epsilon})||=\epsilon^{-1}O(N^{-2/\rho})$ , $2\leq k\leq N$ ,

and hence it follows by interpolation that

$||Q_{\gamma}(K_{\epsilon}(t/N)^{k}-\exp(-k(t/N)H_{\epsilon}))||=\epsilon^{-1}O(N^{-2/p}\log N)$ , $0\leq\gamma\leq p$ .
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Thus we have by Lemma 4.6 that

$||Q_{\gamma}K_{\epsilon}(t/N)^{k}||=\epsilon^{-1}O(N^{-2/\rho}\log N)+k^{-\gamma/\rho}O(N^{\gamma/\rho})$ (4.3)

for $k$ and $\gamma$ as above.
(2) The second step toward the proof is to show the following

LEMMA 4.8. Let $3\leq k\leq N$ . Then one has

$||K(t/N)^{k}-\exp(-k(t/N)H)||=O(N^{-1/p}\log N)$

locally uniformly in $t>0$ .

PROOF. We again write $T(t)$ for $\exp(-tH)$ and decompose the difference in
question into the sum of three operators;

$K(t/N)^{k}- \exp(-k(t/N)H)=K(t/N)^{k}-T(t/N)^{k}=\sum_{p=1}^{3}I_{p\epsilon,k}(t/N)$ ,

where

$I_{1\epsilon,k}(t)=K(t)^{k}-K_{\epsilon}(t)^{k}$ , $I_{2\epsilon,k}(t)=K_{\epsilon}(t)^{k}-T_{\epsilon}(t)^{k}$ , $I_{3\epsilon,k}(t)=T_{\epsilon}(t)^{k}-T(t)^{k}$ .

By Lemmas 4.3 and 4.5, the second and third operators on the right side obey the
bounds

$||I_{2\epsilon,k}(t/N)||=\epsilon^{-1}O(N^{-2/p})$ , $||I_{3\epsilon,k}(t/N)||=\epsilon O(1)$ .

Thus we now take $\epsilon$ as
$\epsilon=N^{-1/\rho}$ .

The first operator is represented as

$I_{1\epsilon,k}(t/N)= \sum_{j=1}^{k}Z_{j\epsilon,k}(t/N)$ ,

where
$Z_{j\epsilon,k}(t)=K_{\epsilon}(t)^{j-1}(K(t)-K_{\epsilon}(t))K(t)^{k-j}$ .

If $j=1$ or 2, then it follows from Lemma 4.4 that

$||Z_{j\epsilon,k}(t/N)||=\epsilon O(1)=O(N^{-1/\rho})$

and also if $3\leq j\leq k\leq N$ , then it follows from Lemma 4.4 and bound (4.3) with $\gamma=p$

that
$||Z_{j\epsilon,k}(t/N)||=O(N^{-1-2/\rho}\log N)+j^{-1}O(N^{-1/\rho})$

for $\epsilon=N^{-1/p}$ . Thus we have

$||I_{1\epsilon,k}(t/N)||=O(N^{-1/\rho}\log N)$

with $\epsilon$ as above. This completes the proof. $\square$
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AS is easily seen,

$||Q_{\rho}K(t/N)^{k}||+||Q_{\rho}\exp(-k(t/N)H)||=O(N)$

and hence Lemma 4.8 implies that

$||Q_{\gamma}(K(t/N)^{k}-\exp(-k(t/N)H))||=O(N^{-(1-\gamma/p)/\rho+\gamma/\rho}\log N)$

for $3\leq k\leq N$ and $0\leq\gamma\leq p$ . Thus we have by Lemma 4.6 that

$||Q_{\gamma}K(t/N)^{k}||=O(N^{-(1-\gamma/p)/\rho+\gamma/\rho}\log N)+k^{-\gamma/\rho}O(N^{\gamma/\rho})$ (4.4)

for $k$ and $\gamma$ as above.
(3) The proof is completed in this step. We repeat the same argument as in the

proof of Lemma 4.8 to obtain that

$K(t/N)^{N}-T(t/N)^{N}= \sum_{j=1}^{N}Z_{j\epsilon,N}(t/N)+O_{b}(N^{-1/\rho})$ .

If $j=1,2$ or $N-3\leq j\leq N-1$ , then

$||Z_{j\epsilon,N}(t/N)||=\epsilon O(1)=O(N^{-1/\rho})$

by Lemma 4.4. Next we evaluate $Z_{j\epsilon,N}(t/N)$ with $3\leq j\leq N-4$ . Let the pair
$\{\theta, \sigma\},$ $\theta+\sigma=\mu=p$ , be as in Lemma 4.4. We choose $\sigma>0$ small enough and
decompose $Z_{j\epsilon,N}(t)$ into the product of three operators

$Z_{j\epsilon,N}(t)=[K_{\epsilon}(t)^{j-1}Q_{\theta}][Q_{-\theta}(K(t)-K_{\epsilon}(t))Q_{-\sigma}][Q_{\sigma}K(t)^{N-j}]$ .

By Lemma 4.4, it follows from bounds (4.3) and (4.4) that

$\sum_{j=3}^{N-4}||Z_{j\epsilon,N}(t/N)||=O(N^{-1/\rho})+O(N^{-1/\rho})[\sum_{j=3}^{N-4}j^{-\theta/\rho}(N-j)^{-\sigma/p}]$

with $\epsilon=N^{-1/\rho}$ . This proves the theorem. $\square$

5. Error bound for bounded potentials.

In this section, we study the error estimate for a class of bounded potentials without
assuming any smoothness conditions. We use the notations $H_{0},H=H_{0}+V$ and $K(t)$

with the meanings ascribed in the previous sections. The main result obtained here is
formulated as follows.

THEOREM 5.1. Assume that $V(x)\geq 0$ is a non-negative bounded function. Then one
has

$||\exp(-tH)-K(t/N)^{N}||=O(N^{-2/3})$ , $Narrow\infty$ ,

locally uniformly in $t>0$ .
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REMARK. The bound in the theorem is sharper than the bound $O(N^{-1/2}\log N)$

obtained by Rogava [9], when applied to the Schr\"odinger operator $H=H_{0}+V$ with
bounded potential $V(x)$ . The idea developed in the proof of the theorem seems to
extend to a certain class of singular potentials. The details will be discussed elsewhere
([11]).

The proof is again done by approximation. Let $\varphi_{0}(s),s\in[0, \infty)$ , be a smooth cut-
off function such that $0\leq\varphi_{0}(s)\leq 1,$ $\varphi_{0}=1$ for $0\leq s\leq 1$ and $\varphi_{0}=0$ for $s\geq 2$ . Then
we define

$V_{\epsilon}=\varphi_{0}(\epsilon H_{0})V\varphi_{0}(\epsilon H_{0})$

for $0<\epsilon<<1$ small enough and set $H_{\epsilon}=H_{0}+V_{\epsilon}$ . We also denote by $K_{\epsilon}(t),$ $t\geq 0$ , the
Kac operator associated with $H_{\epsilon}$ .

The proof of the theorem above is done through a series of lemmas.

LEMMA 5.2. Let $\varphi_{\infty}(s)=1-\varphi_{0}(s)$ . Then one has:

$||(\exp(-tH)-\exp(-tH_{0}))\varphi_{\infty}(\epsilon H_{0})||=O(\epsilon)$ ,

$||(\exp(-tH_{\epsilon})-\exp(-tH_{0}))\varphi_{\infty}(\epsilon H_{0})||=O(\epsilon)$

locally uniformly in $t\geq 0$ .

PROOF. We prove only the first relation. A similar argument applies to the second
one. We write the difference in the integral form and use the estimate

$||\exp(-tH_{0})\varphi_{\infty}(\epsilon H_{0})||\leq e^{-t/\epsilon}$ .

Then the first relation can be easily obtained. $\square$

LEMMA 5.3.
$||\exp(-tH)-\exp(-tH_{\epsilon})||=O(\epsilon)$

locally uniformly in $t\geq 0$ .

PROOF. We again write the difference in the integral form. By Lemma 5.2, we
have

$||\exp(-tH)\varphi_{\infty}(\epsilon H_{0})||\leq e^{-t/\mathcal{E}}+O(\epsilon)$ .

A similar estimate is also true for $\exp(-tH_{\epsilon})$ . This proves the lemma. $\square$

The lemma below can be also easily proved.

LEMMA 5.4.
$||\exp(-tH)-\exp(-tH_{\epsilon})||=O(t)$ , $tarrow 0$ ,

uniforml in $\epsilon$ and, in particular,

$||\exp(-(t/N)H)-\exp(-(t/N)H_{\epsilon})||=O(N^{-l})$ , $Narrow\infty$ ,

locally uniformly in $t\geq 0$ .
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LEMMA 5.5.

$||\exp(-tH_{\epsilon})-K_{\epsilon}(t)||=\epsilon^{-2}O(t^{3})$ , $tarrow 0$ ,

and hence

$||\exp(-tH_{\epsilon})-K_{\epsilon}(t/N)^{N}||=\epsilon^{-2}O(N^{-2})$ , $Narrow\infty$ .

PROOF. We use almost the same argument as in the proof of Lemma 2.2. We
calculate

$K_{\epsilon}’(t)=-H_{\epsilon}K_{\epsilon}(t)+R_{\epsilon}(t)$ .

Since $||[H_{0}, V_{\epsilon}]||=O(\epsilon^{-1})$ and

$||[V_{\epsilon}, [H_{0}, V_{\epsilon}]]||=O(\epsilon^{-1})$ , $||[H_{0}, [H_{0}, V_{\epsilon}]]||=O(\epsilon^{-2})$ ,

we see that the remainder operator $R_{\epsilon}(t)$ obeys the bound

$||R_{\epsilon}(t)||=\epsilon^{-2}O(t^{2})$ , $tarrow 0$ .

This proves the lemma. $\square$

LEMMA 5.6. The difference $K_{\epsilon}(t/N)-K(t/N)$ takes the form
$K_{\epsilon}(t/N)-K(t/N)=\varphi_{\infty}(\epsilon H_{0})O_{b}(N^{-l})+O_{b}(N^{-1})\varphi_{\infty}(\epsilon H_{0})+O_{b}(N^{-2})$ ,

where all the order relations are uniform in $\epsilon$ and locally uniform in $t\geq 0$ .

PROOF. The lemma can be easily proved, if we take account of the fact that the
commutators

$[\exp(-tV/N), \varphi_{\infty}(\epsilon H_{0})]$ , $[\exp(-tV_{\epsilon}/N), \varphi_{\infty}(\epsilon H_{0})]$

are both of class $O_{b}(N^{-1})$ , which is verified by use of a simple commutator calculus. $\square$

We now prove Theorem 5.1.

PROOF OF THEOREM 5.1. (1) Let $T(t)=\exp(-tH)$ and $T_{\epsilon}(t)=\exp(-tH_{\epsilon})$ again.
Then

$K(t/N)^{N}- \exp(-tH)=K(t/N)^{N}-T(t/N)^{N}=\sum_{p=1}^{3}J_{p\epsilon}(t/N)$ ,

where

$J_{1\epsilon}(t)=K(t)^{N}-K_{\epsilon}(t)_{\int}^{N}$ $J_{2\epsilon}(t)=K_{\epsilon}(t)^{N}-T_{\epsilon}(t)^{N}$ , $J_{3\epsilon}(t)=T_{\epsilon}(t)^{N}-T(t)^{N}$ .

By Lemmas 5.3 and 5.5, the second and third operators on the right side obey the
bounds

$||J_{2\epsilon}(t/N)||=\epsilon^{-2}O(N^{-2})$ , $||J_{3\epsilon}(t/N)||=\epsilon O(1)$ .
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Thus we now take $\epsilon$ as

$\epsilon=N^{-2/3}$ .

Then it follows that

$K(t/N)^{N}-\exp(-tH)=J_{1\epsilon}(t/N)+O_{b}(N^{-2/3})$ .

(2) The first operator $J_{1\epsilon}(t/N)$ is represented as

$J_{1\epsilon}(t/N)= \sum_{j=1}^{N}A_{j\epsilon}(t/N)$ ,

where

$A_{j\epsilon}(t)=K_{\epsilon}(t)^{j-1}(K(t)-K_{\epsilon}(t))K(t)^{N-j}$ .

Hence, by Lemma 5.6, it obeys the bound

$||J_{1\epsilon}(t/N)||=O(N^{-1}) \sum_{j=3}^{N-2}||K_{\epsilon}(t/N)^{j-1}\varphi_{\infty}(\epsilon H_{0})||$

$+O(N^{-1}) \sum_{j=3}^{N-2}||\varphi_{\infty}(\epsilon H_{0})K(t/N)^{N-j}||+O(N^{-1})$ .

LEMMA 5.7. Let $\epsilon=N^{-2/3}$ be as above. Then one has

$||K_{\epsilon}(t/N)^{k}\varphi_{\infty}(\epsilon H_{0})||=O(N^{-2/3})+O(e^{-ck/\epsilon N})$ , $2\leq k\leq N$ ,

with some $c>0$ , where the order relations are locally uniform in $t>0$ .

LEMMA 5.8. Let $\epsilon=N^{-2/3}$ be again as above. Then one has

$||K(t/N)^{k}\varphi_{\infty}(\epsilon H_{0})||=O(N^{-2/3})+O(e^{-ck/\epsilon N})$ , $2\leq k\leq N$ ,

with the same $c>0$ as in Lemma 5.7, where the order relations are locally uniform in
$t>0$ .

These two lemmas complete the proof. In fact, it follows that

$||J_{1\epsilon}(t/N)||=O(N^{-2/3})+O(N^{-1}) \sum_{j=3}^{N-2}e^{-cj/\epsilon N}$

$=O(N^{-2/3})+\epsilon O(1)=O(N^{-2/3})$ .

Thus the proof is complete.
(3) The last step is devoted to proving the two lemmas above.

PROOF OF LEMMA 5.7. We first note that

$||T_{\epsilon}(t/N)-K_{\epsilon}(t/N)||=O(N^{-5/3})\leq O(N^{-1})$ (6.1)
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for $\epsilon=N^{-2/3}$ . This follows immediately from Lemma 5.5. We now consider the
operator

$T_{\epsilon}(t/N)^{k}-K_{\epsilon}(t/N)^{k}= \sum_{j=1}^{k}W_{j\epsilon,k}(t/N)$ ,

where

$W_{j\epsilon,k}(t)=K_{\epsilon}(t)^{j-1}(T_{\epsilon}(t)-K_{\epsilon}(t))T_{\epsilon}(t)^{k-j}$ .

If $j=k$ , then it follows from (6.1) that

$||W_{k\epsilon,k}(t/N)||=O(N^{-1})$

and also if $1\leq j\leq k-1$ , then

$||W_{j\epsilon,k}(t/N)\varphi_{\infty}(\epsilon H_{0})||=O(N^{-1})\{\epsilon+e^{-c(k-j/\epsilon N}\}$

locally uniformly in $t>0$ , because

$|IT_{\epsilon}(t/N)^{k- j}\varphi_{\infty}(\epsilon H_{0})$ II $=O(\epsilon)+O(e^{-c(k- j)/\epsilon N})$

by Lemma 5.2. This yields that

$||(T_{\epsilon}(t/N)^{k}-K_{\epsilon}(t/N)^{k})\varphi_{\infty}(\epsilon H_{0})||=\epsilon O(1)+O(N^{-1})=O(N^{-2/3})$

and hence the lemma follows again from Lemma 5.2 at once. $\square$

PROOF OF LEMMA 5.8. The proof is exactly the same as that of the previous
lemma. By Lemmas 5.4, 5.5 and 5.6, we have

$||T(t/N)-K(t/N)||=O(N^{-1})$ .

This enables us to repeat the same argument as in the proof of Lemma 5.7 and the
proof is complete. $\square$

We can combine Lemma 2.2 and Theorem 5.1 to establish the error bound for a
little wider class of potentials. For example, consider $V(x)=|x|^{p},$ $0<p<1$ , which is
not $C^{1}$ -smooth. We decompose $V(x)$ into $V(x)=V_{0}(x)+V_{1}(x)$ , where $V0(x)$ is a
bounded function with compact support and $V_{1}(x)$ is a smooth function vanishing in a
neighborhood of the origin. Set $H_{1}=H_{0}+V_{1}$ . As is easily seen, the argument used
in the proof of Theorem 5.1 applies to $H=H_{l}+V0$ and we obtain

$||\exp(-tH)-K_{1}(t/N)^{N}||=O(N^{-2/3})$ ,

where $K_{1}(t)=\exp(-tV_{0}/2)\exp(-tH_{1})\exp(-tV_{0}/2)$ . On the other hand, it follows
from Lemma 2.2 that

$||\exp(-tH_{1})-\exp(-tV_{1}/2)\exp(-tH_{0})\exp(-tV_{1}/2)||=O(t^{2})$ , $tarrow 0$ .
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Thus we have

$||\exp(-tH)-K(t/N)^{N}||=O(N^{-2/3})$ .

This improves the bound $O(N^{-\rho/2})$ obtained in [6] (Theorem 2.2) for the above type of
potentials.

6. Error bound for magnetic Schr\"odinger operators.

The argument developed here applies to magnetic Schr\"odinger operators

$H=\Pi_{j}\Pi_{j}+V=H_{0}+V$ ,

where $\Pi_{j}=D_{j}-a_{j}(x),$ $a_{j}(x)$ (magnetic potential) being a real function, and $V(x)$ fulfills
the assumption $(V)_{2}$ or $(V)_{1}$ . Since $\Pi_{j}$ and $\Pi_{k},$ $j\neq k$ , do not necessarily commute with
each other

$[\Pi_{j}, \Pi_{k}]=ib_{jk}$ , $b_{jk}(x)=\partial_{j}a_{k}-\partial_{k}a_{j}$ ,

the argument requires a slight modification. We assume that the magnetic field $b_{jk}$ is a
bounded function, so that $\Pi_{j}\Pi_{k}(H_{0}+1)^{-1}$ : $L^{2}arrow L^{2}$ is bounded. If we take account
of the relation $[\Pi_{j}, V]=[D_{j}, V]$ , all the results obtained here can be shown to remain
true for magnetic Schr\"odinger operators. We omit the detailed statements. In the
special case that $a_{j}(x)$ is a polynomial, it is known (Guibourg [12]) that the operator
$\Pi_{j}\Pi_{k}(H_{0}+1)^{-1}$ is bounded, even if $b_{jk}$ is not necessarily assumed to be bounded. We
do not know whether or not the results obtained here extend to such a class of magnetic
potentials.
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