Existence of curves of genus three on a product of two elliptic curves

By Hisao Yoshihara

(Received June 13, 1995)

1. Introduction.

Let E be an elliptic curve over the field of complex numbers, and let A be the abelian surface $E \times E$. It seems interesting to study if A contains a smooth curve of genus g. In the case when g=2, Hayashida and Nishi [3] studied this subject. Their aim was to determine if a product of two elliptic curves can be a Jacobian variety of some curve. In this note we will consider the case when g=3. Our first aim is to determine if A has a (1, 2)-polarization which is not a product one ([1]). Second one is as follows: for an algebraic variety V, the degree of irrationality $d_r(V)$ has been introduced in [4] or [7]. Especially we take an interest in the value $d_r(A)$ for an abelian surface A. Concerning this we have shown that $d_r(A)=3$ if an abelian surface A contains a smooth curve of genus 3 ([5]).

On the other hand the following assertion has been obtained ([8]):

Let n be a positive square free integer. Put $\omega = \sqrt{-n}$ [resp. $\{1+\sqrt{-n}\}/2$] if $-n\equiv 2$ or $3 \pmod 4$ [resp. $-n\equiv 1 \pmod 4$]. Let $K=Q(\sqrt{-n})$ be an imaginary quadratic field. For each $\xi\in K\setminus Q$, let $a\xi^2+b\xi+c=0$ be the equation of ξ satisfying that $a,b,c\in Z$, a>0 and (a,b,c)=1. Let L be the lattice generated by $\{1,\xi\}$ and let E be the elliptic curve C/L.

PROPOSITION 1. Under the situation above, suppose that at least one of a, b, c is an even number. Then there exist two elliptic curves E_1 and E_2 on $A=E\times E$ satisfying $(E_1, E_2)=2$, where (E_1, E_2) denotes the intersection number of E_1 and E_2 . Especially there exists a nonsingular curve of genus 3 on A, hence $d_r(A)=3$.

REMARK 2. Of course there are many elliptic curves E satisfying the condition in this proposition. In fact, if $-n\equiv 2$ or $3\pmod 4$, then b is even, because $a\xi$ becomes an integer. Hence every ξ enjoys the condition. For the remainder case, letting k and l ($\neq 0$) be rational integers, we have the following.

This research was partially supported by Grant-Aid for Scientific Research (No. 07640025), Ministry of Education, Science and Culture, Japan.

- (i) If $-n \equiv 1 \pmod{8}$, then $\xi = k + l\omega$ and $1/2 + l\omega$ are the suitable ones.
- (ii) If $-n \equiv 5 \pmod{8}$, then $\xi = k + 2l\omega$ and $1/2 + l\omega$ are the suitable ones.

Moreover we will consider if A has an infinitely many smooth curves of genus 3 modulo birational equivalence.

We would like to thank the referee for suggesting a simple proof of Theorem 6.

2. Statement of results.

Let m be 0 or a square free positive integer and put $K=Q(\sqrt{-m})$. Let $\mathfrak o$ be the principal order of K. When m=0, we understand that K and $\mathfrak o$ coincide with Q and Z, respectively. Let E be an elliptic curve with the ring of endomorphisms isomorphic to $\mathfrak o$ and let A be the abelian surface $E\times E$. Then our result is stated as follows:

THEOREM 3. If $m \neq 0$ and $\neq 3$, then there exists a smooth curve of genus 3 on A. On the contrary if m=0 or 3, then there exists no such a curve.

REMARK 4. If m=1, 7 or 15, then there exists no smooth genus-2 curve, but exists a genus-3 curve in each case.

REMARK 5. If E has complex multiplications, then $d_r(E \times E) = 3$. Because, in case m=3, there is an automorphism φ of order 3. Since $A/\varphi \times \varphi$ is a rational surface, we conclude that $d_r(E \times E) = 3$ (cf. $\lceil 5 \rceil$).

Similarly as in [3] we feel an interest to know whether there are infinitely many smooth curves of genus 3 on A. Contrary to the case of genus 2 the result is as follows.

THEOREM 6. If an abelian surface B contains a smooth curve of genus 3, then it contains infinitely many such curves modulo birational equivalence. Hence in case $m \neq 0$ and $\neq 3$, $E \times E$ contains infinitely many smooth curves of genus 3.

3. Proof of Theorems.

In this section we use the same notation as in [3]. First we enumerate several lemmas.

LEMMA 7. Let X be an effective divisor on an abelian surface with $X^2=4$. Then X is one of the following, where E', E'' and F are elliptic curves:

- (i) X is a smooth genus-3 curve.
- (ii) X is an irreducible curve with one double point and the genus of the normalization of X is 2.
- (iii) X=E'+E'' and (E', E'')=2.

(iv) X=F+E'+E'' and (F, E')=(F, E'')=1, (E', E'')=0.

PROOF. See (1.2) in [1].

LEMMA 8. Let X be a divisor as in Lemma 7. Then X is not of type (iv) if and only if $(X, E_{\lambda, \mu}) > 1$ for all elliptic curves $E_{\lambda, \mu}$ on A.

PROOF. If X is of type (iv), i.e., X=F+E'+E'', then (X,E')=(X,E'')=1. Note that E' and E'' can be expressed as translations of $E_{\alpha,\beta}$ for some $\alpha,\beta\in\mathfrak{o}$ (cf. Lemma 1 in [3]). Suppose that X is not of type (iv) and that $(X,E_{\lambda,\mu})=1$ for some $E_{\lambda,\mu}$. Then we have a contradiction as follows: in case X is irreducible, we have a birational mapping $E\times E\to X\times E_{\lambda,\mu}$, i.e., $E\times E$ and $\widetilde{X}\times E_{\lambda,\mu}$ are birational (cf. Cor. 2, Th. 4 in [6]), where \widetilde{X} is the normalization of X. This means that the irregularity of \widetilde{X} must be 1. In the case when X is reducible, put X=E'+E''. We may assume that $(E',E_{\lambda,\mu})=1$ and $(E'',E_{\lambda,\mu})=0$. This means that $E_{\lambda,\mu}$ is a translation of E'', hence $(E_{\lambda,\mu},E'')$ must be 2, which is a contradiction.

LEMMA 9. If there is an effective divisor X in Lemma 7, which is not of type (iv), then there is a smooth genus-3 curve on A.

PROOF. Since the pencil |X| has no fixed components, its general member is irreducible and smooth (see, (1.5) in [1]).

We will prove the theorem in a similar way as in [3]. Let D be a divisor on A. Note that the Néron-Severi group of A is generated by $E_{1,1}$, $E_{1,\omega}$, $E_{1,0}$ and $E_{0,1}$, where we regard $E_{1,\omega}$ as 0 in case m=0. Hence we have a unique expression

$$D \equiv aE_{1,1} + bE_{1,\omega} + cE_{1,0} + dE_{0,1}$$

where $a, b, c, d \in \mathbb{Z}$.

Therefore we obtain that

$$(D, E_{\xi, \eta}) = (k\xi \bar{\xi} + l\eta \bar{\eta} - \alpha \xi \bar{\eta} - \bar{\alpha} \bar{\xi} \eta) / N(\xi, \eta),$$

where $k=a+b\omega\bar{\omega}+d$, $\alpha=a+b\omega$, l=a+b+c.

Hence we have that

$$(D, D) = 2(kl - \alpha \bar{\alpha})$$
 and $(D, E_{1,0}) = k$.

Now let X be a divisor as in Lemma 7. Since X is effective and $X^2=4$, X is ample and hence k>0. Conversely, let D be a divisor on A with $D^2=4$. If k>0, then l(D)>0. So we may assume that D is effective. Combining the lemmas above, we obtain the following criterion:

LEMMA 10 (CRITERION). Let D be a divisor on A satisfying that

$$k > 0$$
, $kl - \alpha \bar{\alpha} = 2$. (1)

If the equation

$$k\xi\bar{\xi} + l\eta\bar{\eta} - \alpha\xi\bar{\eta} - \bar{\alpha}\bar{\xi}\eta = N(\xi, \eta) \tag{2}$$

has a non-trivial solution $(\xi, \eta) \neq (0, 0)$ in o, then X is of type (iv); and otherwise there exists a smooth genus-3 curve on A.

We now divide the proof of Theorem 3 into several cases according to the value m.

(I) The case m=0.

In this case we may assume that b=0. Then the criterion becomes as follows:

$$a+d>0$$
, $(a+d)(a+c)-a^2=2$ (3)

$$(a+d)x^2 - 2axy + (a+c)y^2 = 1 (4)$$

Put $q(x, y) = (a+d)x^2 - 2axy + (a+c)y^2$. By the condition (3) this quadratic form is primitive, i.e., (a+d, 2a, a+c)=1. The discriminant δ of q is -8, hence the class number of the discriminant $h^+(\delta)$ is 1. Thus we infer that the equation q(x, y)=1 has a primitive solution. Namely, there is no smooth genus-3 curve on $E \times E$.

(II) The case m>0.

Let \mathfrak{a} and \mathfrak{b} be ideals of \mathfrak{o} satisfying $(\xi, \eta)\mathfrak{a} = \eta$ and $(\xi, \eta)\mathfrak{b} = (k\xi - \bar{\alpha}\eta)$. In case $\eta = 0$, we see that k = 1 if $\xi \neq 0$. Hence for our purpose we may assume that $k \neq 1$ hereafter. Thus $\eta \neq 0$. Putting $\gamma = \mathfrak{a}\bar{\alpha}/\eta$, we obtain that

$$\left\{ egin{aligned} (\gamma \xi, \, \gamma \eta) &= ilde{\mathfrak{a}} \ \gamma \eta &= ilde{\mathfrak{a}} &= N(\mathfrak{a}) \,. \end{aligned}
ight.$$

Putting further $\zeta = \gamma \xi \in \mathfrak{o}$ and $n = \gamma \eta \in \mathbb{N}$, we infer that the equation (2) becomes

$$k\zeta\bar{\zeta} - \alpha\zeta n - \bar{\alpha}\bar{\zeta}n + ln^2 = n$$
.

Multiplying k on both sides of this equation and using (1), we obtain that

$$N(k\zeta - \alpha n) = n(k-2n). \tag{5}$$

We want to find (k, l, α) satisfying (1) such that (5) has no non-trivial solutions. By Proposition 1 we have only to consider the case when $-m \equiv 1 \pmod{4}$.

(II-1) The case $m \equiv 7 \pmod{8}$.

Let a=b=1, i.e., $\alpha=1+\omega$, then we let k=2. In this case the equation (5) becomes

$$N(2\zeta - \alpha n) = n(2-2n)$$
.

In case n=0, the solution is trivial, but in case n=1, we have $2\zeta=1+\omega$, hence $\zeta\neq 0$. So that there is no non-trivial solution.

(II-2) The case $m \equiv 3 \pmod{8}$.

CLAIM 1. Suppose that m=3. Then the simultaneous equations (1) and (2) have always solutions.

PROOF. In the equation (2) put $\xi = x + y\omega$ and $\eta = s + t\omega$. Then we can regard the left hand side of (2) as a quadratic form Q of x, y, s and t over Z. By a simple calculation we infer that Q is positive definite if m=3, and its determinant is 9/4. Since the minimum value of Q is not greater than $\sqrt[4]{9}$ (cf. Appendix in [2]), the minimum value must be 1. Hence the equation (2) is always satisfied when ξ and η give the minimum value of Q. Therefore there is no smooth genus-3 curve on A.

CLAIM 2. Suppose that $m \neq 3$. Then for a suitable value (k, l, α) satisfying (1), the equation (5) has no non-trivial solution.

PROOF. Let us express m as $8m_1+3$.

- (a). If $m_1 \equiv 0$ or 2 (mod 3), then let k=3 and $\alpha=\omega$ or $1+\omega$, respectively. The equation (5) becomes $N(3\zeta-\alpha n)=n(3-2n)$. If n=0, then $\zeta=0$, which yields a trivial solution. Hence n=1, this means that $3\zeta-\alpha$ must be a unit in \mathfrak{o} , i.e., $3\zeta-\alpha=\pm 1$, since $m_1\neq 0$. Then we have that $\zeta\not\in\mathfrak{o}$.
- (b). If $m_1\equiv 1\pmod 3$, then put $m_1=3m_2+1$, i.e., $m=11+24m_2$. If $m_2\equiv 1\pmod 5$, then $2+\alpha\bar{\alpha}$ can be a multiple of 5 for suitable values of a and b, so let k=5. Consider the equation (5); $N(5\zeta-\alpha n)=n(5-2n)$. Clearly n must be odd. So let n=1, then we have $N(5\zeta-\alpha)=3$. This equation has solutions only if $m_2=0$. Hence we consider the case when m=11. Take a=0 and b=5, i.e., $\alpha=5\omega$ and let k=11. Then $N(11\zeta-\alpha n)=n(11-2n)$. If we put $11\zeta-\alpha n=x+y\omega$, then this equation becomes

$$x^2 + xy + 3y^2 = n(11-2n)$$
,

where $1 \le n \le 5$.

Clearly n must be odd, so the right hand side takes the values 9, 15 and 5. By checking each case n=1, 3 and 5, we conclude that there are no solutions.

Lastly we consider the case when $m_2 \equiv 1 \pmod{5}$. Put $m_2 = 5m_3 + 1$ and $n_3 = 11m_4 + r$, where $0 \le r \le 10$. Then the equation (1) becomes

$$kl = 2 + a^2 + ab + (9 + 30r)b^2 + 330m_4b^2.$$
 (6)

Note that for each value r, there exist $a, b \in \mathbb{Z}$ satisfying $b \equiv 0 \pmod{11}$ and the right hand side of (6) is a multiple of 11. For example we can take as follows:

$$(r, a, b) = (0, 0, 1), (1, 6, 3), (2, 0, 5), (3, 1, 8),$$

= (4, 1, 6), (5, 0, 2), (6, 2, 5), (7, 4, 2),
= (8, 1, 1), (9, 0, 4), (10, 0, 3).

Then we consider the equation (5): $N(11\zeta - \alpha n) = n(11 - 2n)$. Putting $11\zeta - \alpha n = x + y\omega$, we see that this equation becomes

$$x^2 + xy + (9+30r)y^2 + 330m_4y^2 = n(11-2n)$$
.

Clearly n must be odd, hence the right hand side of this equation takes the values 9, 15 and 5. If $r \neq 0$ or $m_4 \neq 0$, then y=0, $x=\pm 3$. Hence n=1 and $11\zeta-\alpha=\pm 3$. Thus we see that $\zeta \not\in \mathfrak{o}$ in view of the above list of (r, a, b). If $r=m_4=0$, then take a=0 and b=8, and let k=17. Similarly we infer that the equation $N(17\zeta-\alpha n)=n(17-2n)$ has no solutions.

Thus we complete the proof of Theorem 3. We note the following.

REMARK 11. In the classification of (1, 2)-polarization in Lemma 7, the singularity of the curve of type (ii) is a node.

PROOF. By the genus formula we infer that the double point is a node or a (simple) cusp. Let \widetilde{C} be the normalization of C, then there is a finite unramified covering $\lambda: J(\widetilde{C}) \to A$ satisfying $\lambda(\widetilde{C}) = C$, where $J(\widetilde{C})$ is the Jacobian variety of \widetilde{C} . This implies that the singularity cannot be locally irreducible, i.e., it is a node.

Let C be a smooth curve of genus 3 on an abelian surface B. The complete linear system |C| has four base points. By blowing-up these points, we obtain a morphism $f: S \to P^1$. Let ω_{S/P^1} be the dualising sheaf of f. Then, since $\deg f_*\omega_{S/P^1}>0$, f is locally non-trivial. Hence Theorem 6 is clear. Note that f has singular fibers, each of which is of type (ii), (iii) or (iv) in Lemma 7. Finally we mention a problem concerning d_r .

PROBLM. We do not know the value $d_r(E \times E)$ when E has no complex multiplications. Moreover we conjecture that $d_r(E_1 \times E_2) = 4$ if E_1 and E_2 are not isogenous.

References

- [1] W. Barth, Abelian surfaces with (1,2)-polarization, Adv. Studies in Pure Math., 10 (1987), 41-84.
- [2] J.W.S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, 1971.
- [3] T. Hayashida and M. Nishi, Existence of curves of genus two on a product of two elliptic curves, J. Math. Soc. Japan, 17 (1965), 1-16.

- [4] T.T. Moh and W. Heinzer, On the Lüroth semigroups and Weierstrass canonical divisors, J. Algebra, 77 (1982), 62-73.
- [5] H. Tokunaga and H. Yoshihara, Degree of irrationality of abelian surfaces, J. Algebra, 174 (1995), 1111-1121.
- [6] A. Weil, Variété abéliennes et courbes algébriques, Hermann 1971.
- [7] H. Yoshihara, Degree of irrationality of an algebraic surface, J. Algebra, 167 (1994), 634-640.
- [8] H. Yoshihara, Degree of irrationality of a product of two elliptic curves, Proc. Amer. Math. Soc. 124 (1996), 1371-1375.

Hisao Yoshihara Faculty of Science Niigata University Niigata, 950-21 Japan

E-mail address: yosihara@geb.ge.niigata-u.ac.jp