Self maps of spaces

Dedicated to Professor Tsuyoshi Watabe on his sixtieth birthday

By Yutaka HEMMI, Kaoru MORISUGI and Hideaki ÖSHIMA

(Received May 18, 1995)

1. Introduction and statements of results.

Given a path-connected space X, we write

$$QH^{n}(X; \mathbf{K}) = \widetilde{H}^{n}(X; \mathbf{K}) / \left\{ \sum_{i} \widetilde{H}^{i}(X; \mathbf{K}) \cdot \widetilde{H}^{n-i}(X; \mathbf{K}) \right\}$$

for K=Z, Q.

If G is a connected Lie group, then the k-fold product kid of the identity map of G satisfies $({}^kid)^*(x)=kx$ for all $x\in QH^*(G;\mathbf{Q})$. This property was important in [5]. Apart from extending Haibao's results on H-spaces to more general spaces, the following problem seems interesting in its own sense.

PROBLEM. Given a function $\theta: \{1, 2, \dots\} \to \mathbf{Z}$, is there a self map μ_{θ} of X such that

(1.1)
$$\mu_{\theta}^*(x) = \theta(\deg(x))x$$
 for all homogeneous elements $x \in QH^*(X; \mathbf{Q})$?

DEFINITION. We call a path-connected space X an M_{θ} -space if it has a self map μ_{θ} , which is called an M_{θ} -structure on X, satisfying (1.1).

When θ is the constant function to $k \in \mathbb{Z}$, we denote M_{θ} and μ_{θ} by M_{k} and μ_{k} , respectively. When there exist an integer k and a function $e: \{1, 2, \dots\} \to \{0, 1, 2, \dots\}$ with $\theta(n) = k^{e(n)}$ for all $n \ge 1$, we denote M_{θ} and μ_{θ} by M_{k}^{e} and μ_{k}^{e} , respectively. Note that every path-connected space is an M_{0} and M_{1} space.

We shall need some finiteness condition on X. That is, we will frequently assume some of the following:

(1.2)
$$H_n(X; \mathbf{Z})$$
 is finitely generated for all n ;

(1.3)
$$\dim H_n(X; \mathbf{Q}) < \infty \quad \text{for all } n;$$

(1.4)
$$\dim H^*(X; \mathbf{Q}) < \infty;$$

$$(1.5) \qquad \dim QH^*(X; \mathbf{Q}) < \infty;$$

$$(1.6) QH*(X; \mathbf{Z}) \otimes \mathbf{Q} \cong QH*(X; \mathbf{Q}).$$

Notice that (1.2) implies (1.3) and (1.6), and (1.4) implies (1.5).

We call a space with a base point well-based if the base point is closed and has a contractible open neighbourhood. The unit (resp., co-unit) of an H-space (resp., co-H-space) is always the base point. Given a finite group A, we denote by |A| the exponent of A, that is, $|A| = \min\{k \ge 1 : a^k = 1 \text{ for all } a \in A\}$. Given $k \in \mathbb{Z}$, we denote by $\langle k \rangle$ the self maps of the sphere S^n and the Eilenberg-MacLane space $K(\mathbb{Z}, n)$ whose induced homomorphisms on the n-th homotopy groups are the multiplications by k.

EXAMPLE 1. (1) For all θ , each of S^n and $K(\mathbf{Z}, n)$ has the unique M_{θ} -structure $\langle \theta(n) \rangle \ (= \mu_{\theta(n)})$, but $K(\mathbf{Z} \oplus \mathbf{Z}/2, n)$ has four M_{θ} -structures.

- (2) Let G be a compact connected semi-simple Lie group and W its Weyl group. If k is prime to |W| and $e(n)=\lceil (n+1)/2 \rceil$, then the unstable Adams operation ψ^k [2, 12, 14] and $\Omega\psi^k$ are M_{k^e} -structures on BG and G, respectively.
- (3) A finite product of M_{θ} -spaces satisfying (1.3) and a finite wedge product of well based M_{θ} -spaces are M_{θ} -spaces.
- (4) Path-connected H-spaces satisfying (1.3) and path-connected well-based co-H-spaces are M_k -spaces for all $k \ge 0$.
- (5) The following spaces are M_k -spaces for all $k \in \mathbb{Z}$: path-connected H-spaces which satisfy (1.3) and have homotopy left or right inverses [11], in particular, path-connected H-spaces which satisfy (1.3) and have homotopy types of CW-complexes, connected Lie groups and loop spaces of simply connected spaces satisfying (1.3); path-connected well-based co-H-spaces which have homotopy left or right co-inverses, in particular, suspension spaces of well-based spaces.
- (6) (Glover and Homer [3]) Let $G_{p,q}(F)$ be the Grassmann manifold of p-planes in F^{p+q} , where F is one of the fields C (complex) and H (quaternion). If $G_{p,q}(F)$ is an M_{θ} -space and if p < q with $p \le 3$ or $2p^2 p 1 \le q$ with p > 3, then $\theta = k^e$ for some integer k and $e(n) = \begin{cases} [n/2] & F = C \\ [n/4] & F = H \end{cases}$.

REMARK 1. (1) In [9], we prove the following: When $n \ge 2$, the Stiefel manifold U(2n+2)/U(2n) is an M_{θ} -space if and only if $\theta(4n+1)\{\theta(4n+3)-1\}\equiv 0 \pmod 8$ or $\theta(4n+1)\{\theta(4n+3)-5\}\equiv 0 \pmod 8$. In particular, when $n\ge 2$, U(2n+2)/U(2n) is an M_{θ} -space if and only if $k\equiv 0, 1, 5 \pmod 8$.

(2) We have

$$\mu_{\theta} \circ \mu_{\tau} = \mu_{\theta \cdot \tau}$$

where $(\theta \cdot \tau)(n) = \theta(n)\tau(n)$. Hence, given e, $\{k \in \mathbb{Z}; X \text{ is an } M_k e\text{-space}\}$ is a multiplicative set, while it is not additive in general by (1).

Our first result is

THEOREM 1. Let X be a path-connected CW-complex satisfying the following:

- (1) X satisfies (1.2) and $H_n(X; \mathbf{Z}) = 0$ for sufficiently large n;
- (2) X is nilpotent [8] and the commutator subgroup of $\pi_1(X)$ is finite;
- (3) $H^*(X; \mathbf{Q})$ is a tensor product of finitely many monogenic algebras.

Then there exists a positive integer c(X) such that X is an M_{θ} -space whenever $\theta(n) \equiv 0 \pmod{c(X)}$ for all n with $QH^n(X; \mathbf{Q}) \neq 0$.

- REMARK 2. (1) In [6, 7], we prove that any spherical fibre bundle over a sphere satisfies the hypotheses and the conclusion of Theorem 1 except for the condition on nilpotency.
- (2) The condition (3) in Theorem 1 can not be removed in general as seen in Example 1 (6).

Given a self homomorphism f of degree 0 of a graded and finite dimensional Q-module, we denote by L(f) the Lefschetz number of f. Given a self map f of a space, as usual, we abbreviate $L(f^*)$ to L(f). The next theorem is a generalization of 3.9 in [5].

THEOREM 2. If e(n)=(b-a)n+2a-b with $b\geq a\geq 1$ and X is an M_k -space which satisfies (1.2) and (1.4), then, for any self map f of X, we have

$$(1.7) L(\mu_k e \circ f) = L(f \circ \mu_k e) \equiv 1 \pmod{k}.$$

Hence moreover if X is a compact absolute neighbourhood retract and $|k| \ge 2$, then $\mu_k \circ f$ and $f \circ \mu_k \circ h$ are fixed points [1].

The following is a corollary to the proof of Theorem 2.

COROLLARY 1. Suppose the following:

- (1) X is an M_ke -space satisfying (1.2) and (1.4);
- (2) there is a set $\{b_{\lambda}\}_{{\lambda}\in\Lambda}$ of homogeneous elements of $\widetilde{H}^*(X; \mathbf{Q})$ which represents a basis of $QH^*(X; \mathbf{Q})$, and, for all $n\geq 1$ and $\lambda_i\in\Lambda$ $(1\leq i\leq n)$, $\sum_{i=1}^n e(\deg(b_{\lambda_i}))$ is non-zero and depends only on n and $\sum_{i=1}^n \deg(b_{\lambda_i})$.

Then any self map f of X satisfies (1.7), and hence moreover if X is a compact absolute neighbourhood-retract and $|k| \ge 2$, then $\mu_k \circ f$ and $f \circ \mu_k \circ h$ ave fixed points.

EXAMPLE 2. The condition (2) in Corollary 1 is satisfied if $H^*(X; \mathbf{Q}) = \Lambda(x_1, \dots, x_n)$ with $\deg(x_i)$ odd and $e(\deg(x_i)) = (1/2)(\deg(x_i) + 1)$.

We generalize the notion of characteristic polynomial of Haibao [5]. Suppose that a path-connected space X satisfies (1.2) and (1.5). Let f, g be self maps of X. Let R(f), R(g) be the matrices representing f^* , $g^*: QH^*(X; \mathbf{Q}) \to QH^*(X; \mathbf{Q})$ with respect to some basis and write

$$\begin{split} \operatorname{ch}(f,\,g)(t) &= \det(tR(f) - R(g)) \in \boldsymbol{Q}[t]\,,\\ \deg(f) &= \det(R(f)) \in \boldsymbol{Q}\,. \end{split}$$

Then we have

THEOREM 3. (1) The polynomial ch(f, g)(t) and the number deg(f) are independent of the choice of a basis of $QH^*(X; \mathbf{Q})$ and

$$\operatorname{ch}(f, g)(t) \in \boldsymbol{Z}[t],$$

$$\operatorname{deg}(f) \in \boldsymbol{Z}$$

where the coefficient of t^i in ch(f, g)(t) is zero for $i > dim QH^*(X; \mathbf{Q})$.

(2) If
$$H^*(X; \mathbf{Q}) = \Lambda(x_1, \dots, x_n)$$
 with $\deg(x_i)$ odd, then
$$L(f) = (-1)^n \operatorname{ch}(f, id)(1) = \operatorname{ch}(id, f)(1) = \det(E - R(f)),$$

$$L(f \circ g) = L(g \circ f),$$

$$\operatorname{ch}(f, g)(t) \prod_i x_i = \prod_i \{tf^*(x_i) - g^*(x_i)\},$$

where E is the unit matrix.

Notice that if G is a compact connected Lie group and f is a self map of G, then deg(f) is the ordinary degree of f.

Let X be a path-connected H-space whose multiplication is denoted by "·". Given a self map f of X and $k \ge 2$, we denote by kf any k-fold product of f. For example sf denotes $f \cdot (f \cdot f)$ or $(f \cdot f) \cdot f$. We write ${}^1f = f$ and denote by of the constant map to the unit of X. In case X has a homotopy left or right inverse T, we define ${}^kf = {}^{k} (T \cdot f)$ for all negative integers k. Notice that

$${}^{k}f = \left\{ \begin{array}{ll} ({}^{k}id) \circ f & k \geq 0 \\ ({}^{(k)}id) \circ (T \circ f) & k \leq 0. \end{array} \right.$$

Let g be also a self map of X. Then we have

THEOREM 4. Let X be a path-connected H-space which satisfies (1.2) and (1.5). Write $n = \dim QH^*(X; \mathbf{Q})$. Then the following assertions hold.

- (1) $(-1)^n \operatorname{ch}(f, id)(t)$ is equal to A(f)(t) in [5].
- (2) (cf., 3.3 and 3.9 in [5]) Given $k \ge 0$ (or $k \in \mathbb{Z}$ if X has a homotopy left or right inverse), we have

$$\operatorname{ch}({}^kf,\ g)(t) = \operatorname{ch}(f,\ g)(kt),$$

$$L({}^kf) \equiv 1 \pmod k \quad \text{if} \ X \ \text{satisfies} \ (1.4).$$

Hence if $|k| \ge 2$ and X is a compact absolute neighbourhood retract, then kf has a fixed point.

(3) (cf., Theorem 1 in [4]) If X has a homotopy left or right inverse T, then

$$\operatorname{ch}(f,\,g)(1) = \operatorname{deg}(f \cdot (T \circ g)) = \operatorname{deg}((T \circ g) \cdot f),$$

$$\deg(f \cdot T) = \deg(T \cdot f) = \operatorname{ch}(f, id)(1) = (-1)^n L(f) \text{ if } X \text{ satisfies } (1.4).$$

COROLLARY 2. Let G be a compact connected Lie group, $k \in \mathbb{Z}$, and f, g self maps of G. Then

- (1) $\operatorname{ch}(f, g)(1) = \operatorname{deg}(f \cdot g^{-1}), \text{ where } g^{-1}(x) = (g(x))^{-1};$
- (2) if $ch(f, g)(1) \neq 0$, then there exists $x \in G$ with f(x) = g(x);
- (3) if $\deg(g) \not\equiv 0 \pmod{k}$, then there exists $x \in G$ with ${}^k f(x) = g(x)$.

Proof of Theorem n $(1 \le n \le 4)$ shall be given in the section n+1.

2. Proof of Theorem 1.

In this section we denote by dim X the homological dimension of X. That is, if $N=\dim X$ then $H_N(X; \mathbb{Z})\neq 0$ and $H_i(X; \mathbb{Z})=0$ for all i>N. When dim X=0, Theorem 1 is obvious by taking c(X)=1. Hence we assume dim X>0. By the hypothesis, we have

(2.1)
$$H^*(X; \mathbf{Q}) = \Lambda(x_1, \dots, x_a) \otimes \mathbf{Q}[y_1, \dots, y_b] / (y_1^{l_1}, \dots, y_b^{l_b}),$$
$$\deg(x_i) = 2n_i + 1, \quad \deg(y_j) = 2m_j.$$

When a=b=0, Theorem 1 is obvious by taking c(X)=1. Hence we assume a+b>0.

The outline of the proof is as follows. We construct a space T_j and a rational equivalence

$$\varphi: X \to K = K(H_1(X; \mathbf{Z}), 1) \times \prod_{i; n_i > 0} K(\mathbf{Z}, 2n_i + 1) \times \prod_{j=1}^b T_j$$

such that $H^*(T_j; \mathbf{Q}) = \mathbf{Q}[y_j]/(y_j^{l_j})$ with $\deg(y_j) = 2m_j$ and T_j and hence K are M_{θ} -spaces for all θ by Example 1 (3). Let the homotopy group of the fibre F of φ be trivial except for the dimensions u_i with $1 \le u_1 < u_2 < \cdots$. Let $G_i = \pi_{u_i}(F) = \Gamma^1 G_i \supset \Gamma^2 G_i \supset \cdots$ be the lower central $\pi_1(X)$ -series. Set $u_0 = 0$ and $N_0 = 1$. Write $N_i = \prod_j |\Gamma^j G_i/\Gamma^{j+1} G_i|^{2a+b}(u_i+2)$ and $c(X) = N_0 \cdots N_n$, where n is determined by the inequality $u_n < \dim X \le u_{n+1}$. Let θ satisfy $\theta(k) \equiv 0 \pmod{c(X)}$ for $k = 2n_i + 1$, $2m_j$. Using the step by step construction for the Moore-Postnikov factorization of φ , we lift the map $\mu_{\theta} \circ \varphi : X \to K$ to $\tilde{\mu}_{\theta} : X \to X$. Then $\tilde{\mu}_{\theta}$ is an M_{θ} -structure on X.

First we will construct T_j . Let $\ell_m \in H^m(K(\mathbf{Z}, m); \mathbf{Z})$ be the fundamental class. Given positive integers n, l, v, we denote by T(2n, l, v) the homotopy

fibre of

$$v_{\ell_{2n}}: K(\mathbf{Z}, 2n) \longrightarrow K(\mathbf{Z}, 2ln)$$

and by

$$\xi: T(2n, l, v) \longrightarrow K(\mathbf{Z}, 2n)$$

the inclusion. Using the Serre spectral sequence, we have

$$H^*(T(2n, l, v); \mathbf{Q}) = \mathbf{Q}[\xi]/(\xi^l).$$

By the diagram given below, T(2n, l, v) is an M_{θ} -space for all θ . From now on we will use only particular M_{θ} -structures μ_{θ} on T(2n, l, v) which make the following diagram commutative up to homotopy:

$$(2.2) \quad \langle \theta(2n)^{l} \rangle \downarrow \qquad \qquad T(2n, l, v) \xrightarrow{\xi} K(\mathbf{Z}, 2n) \xrightarrow{v\iota_{2n}^{l}} K(\mathbf{Z}, 2ln)$$

$$\downarrow \langle \theta(2n)^{l} \rangle \downarrow \qquad \qquad \downarrow \langle \theta(2n) \rangle \qquad \downarrow \langle \theta(2n)^{l} \rangle$$

$$K(\mathbf{Z}, 2ln-1) \longrightarrow T(2n, l, v) \xrightarrow{\xi} K(\mathbf{Z}, 2n) \xrightarrow{v\iota_{2n}^{l}} K(\mathbf{Z}, 2ln)$$

LEMMA 1. Let A be a finite abelian group. Then

- (1) $\langle k \rangle^* = 0$ on $\widetilde{H}^*(K(\mathbf{Z}, n); A)$ if $k \equiv 0 \pmod{|A|}$;
- (2) $(\mu_{\theta}^{w})^{*}=0$ on $\widetilde{H}^{m}(T(2n, l, v); A)$ if $\theta(2n) \equiv 0 \pmod{|A|}$ and $w \geq m+1$, where μ_{θ}^{w} is the w-times iteration of μ_{θ} .

PROOF. For (1), it suffices to prove (1) when $A=\mathbb{Z}/p^u$ with p a prime. We prove this by the induction on u. The case u=1 is true, because $H^*(K(\mathbb{Z}, n); \mathbb{Z}/p)$ is generated by $Sq^I\tilde{\iota}_n$ (p=2) and $\mathscr{Q}_I\tilde{\iota}_n$ (p>2), and $\langle k\rangle^*(\tilde{\iota}_n)=k\tilde{\iota}_n=0\in H^n(K(\mathbb{Z}, n); \mathbb{Z}/p)$, where $\tilde{\iota}_n$ is the mod p reduction of ι_n . Suppose that (1) is true when $A=\mathbb{Z}/p^u$. Consider the following commutative diagram:

$$\widetilde{H}^*(K(\boldsymbol{Z},\,n)\,;\,\boldsymbol{Z}/p^{u+1}) \stackrel{\beta_*}{\longrightarrow} \widetilde{H}^*(K(\boldsymbol{Z},\,n)\,;\,\boldsymbol{Z}/p^u)$$

$$\downarrow \langle p^u \rangle^* \qquad \qquad \downarrow \langle p^u \rangle^*$$

$$\widetilde{H}^*(K(\boldsymbol{Z},\,n)\,;\,\boldsymbol{Z}/p) \stackrel{\alpha_*}{\longrightarrow} \widetilde{H}^*(K(\boldsymbol{Z},\,n)\,;\,\boldsymbol{Z}/p^{u+1}) \stackrel{\beta_*}{\longrightarrow} \widetilde{H}^*(K(\boldsymbol{Z},\,n)\,;\,\boldsymbol{Z}/p^u)$$

$$\downarrow \langle p \rangle^* \qquad \qquad \downarrow \langle p^* \rangle$$

$$\widetilde{H}^*(K(\boldsymbol{Z},\,n)\,;\,\boldsymbol{Z}/p) \stackrel{\alpha_*}{\longrightarrow} \widetilde{H}^*(K(\boldsymbol{Z},\,n)\,;\,\boldsymbol{Z}/p^{u+1})$$

Here the middle horizontal sequence is exact and associated to the exact sequence:

$$0 \longrightarrow \mathbf{Z}/p \xrightarrow{\alpha} \mathbf{Z}/p^{u+1} \xrightarrow{\beta} \mathbf{Z}/p^u \longrightarrow 0.$$

Take any $x \in \widetilde{H}^*(K(\mathbf{Z}, n); \mathbf{Z}/p^{u+1})$. Then $\beta_* \langle p^u \rangle^*(x) = \langle p^u \rangle^* \beta_*(x) = 0$ by the inductive hypothesis. Hence there exists $y \in \widetilde{H}^*(K(\mathbf{Z}, n); \mathbf{Z}/p)$ such that $\alpha_*(y)$

 $=\langle p^u \rangle *(x)$ so that

$$\langle p^{u+1} \rangle^*(x) = \langle p \rangle^* \langle p^u \rangle^*(x) = \langle p \rangle^* \alpha_*(y) = \alpha_* \langle p \rangle^*(y) = \alpha_*(0) = 0.$$

Let $k \equiv 0 \pmod{p^{u+1}}$. Then (1) is true when $A = \mathbb{Z}/p^{u+1}$ by the equality $\langle k \rangle = \langle k/p^{u+1} \rangle \cdot \langle p^{u+1} \rangle$. This completes the induction.

To prove (2), let $E_r^{p,q}(\mu_\theta): E_r^{p,q} \to E_r^{p,q}$ be the endomorphism of the Serre spectral sequence with coefficients in A induced from the first two squares of (2.2). It follows from (1) that if $p+q \ge 1$ then $E_2^{p,q}(\mu_\theta)=0$ and hence $E_\infty^{p,q}(\mu_\theta)=0$. Thus $\mu_\theta^* F^{p,q} \subset F^{p+1,q-1}$ if $p+q \ge 1$, where

$$\begin{split} &H^m(T(2n,\ l,\ v)\ ;\ A)=F^{\,\text{0.}\,m} \supset \!\! F^{\,\text{1.}\,m-1} \supset \cdots \supset \!\! F^{\,\text{m.}\,\text{0}} \supset \!\! F^{\,\text{m+1.}\,-1}=0\,,\\ &E^{\,\text{p.}\,q}_{\,\text{o}}=F^{\,\text{p.}\,q}/F^{\,\text{p+1.}\,q-1}. \end{split}$$

Hence

$$(\mu_{\theta}^*)^{m+1}(F^{0,m}) \subset F^{m+1,-1} = 0$$
 if $m \ge 1$.

This implies (2) and completes the proof of Lemma 1.

LEMMA 2. Suppose the following diagram of abelian groups and homomorphisms is commutative and the horizontal sequences are exact. Then $\phi \circ \phi = 0$.

$$B \xrightarrow{\alpha} C \xrightarrow{\beta} D$$

$$0 \downarrow \qquad \qquad \downarrow \phi \qquad \downarrow 0$$

$$B \xrightarrow{\alpha} C \xrightarrow{\beta} D$$

$$0 \downarrow \qquad \qquad \downarrow \psi \qquad \downarrow 0$$

$$B \xrightarrow{\alpha} C \xrightarrow{\beta} D.$$

PROOF. This is trivial.

LEMMA 3. Let A and B be finite abelian groups, and m a positive integer. Let $K=K(B, 1)\times\prod_{i=1}^a K(\mathbf{Z}, n_i)\times\prod_{j=1}^b T(2m_j, l_j, v_j)$ be a finite product and θ : $\{1, 2, \dots\} \to \mathbf{Z}$ a function such that $\theta(k) \equiv 0 \pmod{|A|^{2^{a+b}(m+1)}}$ for $k=n_i, 2m_j$. Then K has an M_θ -structure μ_θ satisfying

(2.3)
$$\mu_{\theta}^* = 0 \quad on \quad \widetilde{H}^m(K; A).$$

PROOF. Let 0 be the constant self map of K(B, 1). It suffices to prove the assertion when B is trivial, since if f is an M_{θ} -structure on $\prod_i K(\mathbf{Z}, n_i) \times \prod_j T(2m_j, l_j, v_j)$ satisfying (2.3), then $0 \times f$ is an M_{θ} -structure on K satisfying (2.3). So we assume B = 0.

(2.4) If $k=|A|^{2^{a+b}(m+1)}$, then there exists an M_k -structure μ_k on $T(2m_j, l_j, v_j)$ such that the self map

$$g = \prod_{i=1}^{a} \langle k \rangle \times \prod_{i=1}^{b} \mu_k$$

of K satisfies $g^*=0$ on $\widetilde{H}^m(K; A)$.

If this is true, then the map $(\prod_{i=1}^a \langle q_i \rangle \times \prod_{j=1}^b \mu_{r_j}) \circ g$ is a desired M_θ -structure on K, where $q_i = \theta(n_i)/\{|A|^{2^{a+b}(m+1)}\}$ and $r_j = \theta(2m_j)/\{|A|^{2^{a+b}(m+1)}\}$.

We will prove (2.4) by the induction on a+b. The case a+b=1 is true by Lemma 1. Assume that the case a+b=l is true. Suppose a+b=l+1. We treat only the case $a\ge 1$, because the case a=0 can be treated similarly. Write $K_1=K(\mathbf{Z},\ n_1)$ and $K_2=\prod_{i=2}^a K(\mathbf{Z},\ n_i)\times\prod_{j=1}^b T(2m_j,\ l_j,\ v_j)$. Taking $B=\sum_i \widetilde{H}^i(K_1;\ A)\otimes\widetilde{H}^{m-i}(K_2)$, $C=H^m(K_1\times K_2,\ K_1\vee K_2;\ A)$ and $D=\sum_i \operatorname{Tor}(\widetilde{H}^i(K_1;\ A),\ \widetilde{H}^{m+1-i}(K_2))$ in Lemma 2, we have $\{(\langle |A| \rangle \times h) \circ (\langle |A| \rangle \times h')\}^*=0$ on $H^m(K_1\times K_2,\ K_1\vee K_2;\ A)$ for any self maps $h,\ h'$ of K_2 . In particular we have $(\langle |A|^2 \rangle \times h)^*=0$ on $H^m(K_1\times K_2,\ K_1\vee K_2;\ A)$. Taking h to be a map satisfying (2.4) for K_2 , and taking $\psi=\phi=(\langle |A|^2 \rangle \times h)^*,\ B=H^m(K_1\times K_2,\ K_1\vee K_2;\ A),\ C=H^m(K_1\times K_2;\ A)$ and $D=H^m(K_1\vee K_2;\ A)$ in Lemma 2, we have $(\langle |A|^4 \rangle \times h \circ h)^*=0$ on $H^m(K_1\times K_2;\ A)$. Since $4|2^{l+1}$ and $h^2=\prod \mu_l$, where $t=|A|^{2^{l+1}(m+1)}$, it follows that (2.4) is true when a+b=l+1. This completes the induction and the proof of Lemma 3.

Now we prove Theorem 1. Suppose (2.1) and $n_1 = \cdots = n_{a'} = 0 < n_{a'+1} \le \cdots$ $\le n_a$. Choose x_i for $a' < i \le a$ and y_j to be integral. This is possible by (1.6). We will shortly choose $\{x_i; 1 \le i \le a'\}$ in a particular way. Denote by v_j the order of y_j^{lj} in $H^{2ljmj}(X; \mathbb{Z})$. Write $T_j = T(2m_j, l_j, v_j)$. Then $y_j: X \to K(\mathbb{Z}, 2m_j)$ is factored as

$$X \xrightarrow{\tilde{y}_j} T_j \xrightarrow{\xi} K(\mathbf{Z}, 2m_j).$$

Write $K=K(H_1(X; \mathbf{Z}), 1)\times \prod_{i; n_i>0} K(\mathbf{Z}, 2n_i+1)\times \prod_{j=1}^b T_j$. Let $x_0: X\to K(H_1(X; \mathbf{Z}), 1)$ be a map inducing the identity map of $H_1(X; \mathbf{Z})$. Let F be the homotopy fibre of

$$\varphi = x_0 \times \prod_{i; n_i > 0} x_i \times \prod \tilde{y}_j : X \to K.$$

Since $\pi_1(\varphi)$ is surjective, F is path-connected. It then follows from the pages 79 and 67 of [8] that, for all $i \ge 1$, $\pi_i(X)$ is finitely generated and $\pi_1(X)$ operates nilpotently on $\pi_i(F)$. Since $\varphi^* : H^*(K; \mathbf{Q}) \cong H^*(X; \mathbf{Q})$, it follows that φ is a rational equivalence so that $\pi_i(F)$ is finite for all $i \ge 2$. Also $\pi_1(F)$ is finite by the hypothesis (2) in Theorem 1. Suppose that $\pi_i(F) = 0$ if $i \ne u_1, u_2, \cdots$, where $1 \le u_1 < u_2 < \cdots$. Set $u_0 = 0$ and write $G_i = \pi_{u_i}(F)$. Let

$$K(G_i, u_i) \longrightarrow X_i \xrightarrow{p_i} X_{i-1} \quad (i \ge 1, X_0 = K)$$

be the *i*-stage of the Moore-Postnikov factorization of φ (cf., [10, 13]). Under our hypotheses, it admits a principal refinement [8]. That is, every p_i is factored as a product of principal fibrations

$$X_i = X(i, w_i) \xrightarrow{q_{w_i}} \cdots \xrightarrow{q_2} X(i, 1) \xrightarrow{q_1} X(i, 0) = X_{i-1}$$

where q_j is induced by a map $h_j: X(i, j-1) \to K(\Gamma^j G_i/\Gamma^{j+1} G_i, u_i+1)$. Here $G_i = \Gamma^1 G_i \supset \Gamma^2 G_i \supset \cdots \supset \Gamma^{w_i+1} G_i = \{1\}$ is the lower central $\pi_1(X)$ -series. Set $w_0 = 0$. Take n with

$$(2.5) u_n < \dim X \leq u_{n+1}.$$

Write $N(i, j) = |\Gamma^j G_i / \Gamma^{j+1} G_i|^{2^{a+b}(u_i+2)}$ and $N_i = \prod_{j=1}^{w_i} N(i, j)$ for $i \ge 1$. Set $N_0 = N(0, 0) = 1$ and write $c(X) = N_0 \cdots N_n$. Suppose $\theta(k) \equiv 0 \pmod{c(X)}$ for $k = 2n_i + 1$, $2m_j$. Using the maps $\mu_{N(i,j)}$ in Lemma 3, we inductively have maps g(i, j): $K \to X(i, j)$ for $0 \le i \le n$ and $0 \le j \le w_i$ such that g(0, 0) is the identity map, $g(i, 0) = g(i-1, w_{i-1})$ and the following diagram is commutative up to homotopy for $i \ge 1$.

$$K \xrightarrow{\mu_{N(i,w_{i})}} \cdots \xrightarrow{\mu_{N(i,2)}} K \xrightarrow{\mu_{N(i,1)}} K$$

$$g(i, w_{i}) \downarrow \qquad \qquad \downarrow g(i, 1) \qquad \downarrow g(i, 0)$$

$$X_{i} = X(i, w_{i}) \xrightarrow{q_{i,w_{i}}} \cdots \xrightarrow{q_{i,2}} X(i, 1) \xrightarrow{q_{i,1}} X(i, 0) = X_{i-1}.$$

Define $\theta'(k)$ to be $\theta(k)/c(X)$ or zero according as $k=2n_i+1$, $2m_j$ or otherwise. By (2.5), $g(n, w_n) \circ \mu_{\theta'} \circ \varphi \colon X \to X_n$ can be lifted to $\tilde{\mu}_{\theta} \colon X \to X$. Let $\zeta_i \colon K(H_1(X; \mathbf{Z}), 1) \to K(\mathbf{Z}, 1)$ $(1 \le i \le a')$ be a free basis of $H^1(K(H_1(X; \mathbf{Z}), 1); \mathbf{Z})$. Let $\pi_i \colon K \to K(\mathbf{Z}, 2n_i+1)$ be the projection for $i \ge a'+1$ and the composition of the projection $K \to K(H_1(X; \mathbf{Z}), 1)$ with ζ_i for $i \le a'$. We define $x_i = \pi_i \circ \varphi$ for $i \le a'$. Let $\pi'_j \colon K \to T_j \to K(\mathbf{Z}, 2m_j)$ be the composition of the projection with the canonical map ξ . Then $x_i = \pi_i \circ \varphi$ and $y_j = \pi'_j \circ \varphi$ for all i, j, and (2.1) is satisfied. Hence, as is easily seen, we have $\tilde{\mu}_{\theta}^*(x_i) = \theta(2n_i+1)x_i$ and $\tilde{\mu}_{\theta}^*(y_j) = \theta(2m_j)y_j$. Therefore $\tilde{\mu}_{\theta}$ is an M_{θ} -structure on X. This completes the proof of Theorem 1.

3. Proof of Theorem 2.

Let $K = \mathbb{Z}$, Q. We give a decreasing filtration $F_nH^*(X; K)$ of $H^*(X; K)$ as follows:

$$F_0H^*(X; \mathbf{K}) = H^*(X; \mathbf{K}), \quad F_1H^*(X; \mathbf{K}) = \tilde{H}^*(X; \mathbf{K}),$$
$$F_nH^m(X; \mathbf{K}) = \sum_i F_{n-1}H^i(X; \mathbf{K}) \cdot F_1H^{m-i}(X; \mathbf{K}) \quad (n \ge 2).$$

Write

$$E_n H^m(X; \mathbf{K}) = F_n H^m(X; \mathbf{K}) / F_{n+1} H^m(X; \mathbf{K}).$$

Then

(3.1)
$$E_1H^*(X; \mathbf{K}) = QH^*(X; \mathbf{K}),$$

$$F_nH^*(X; \mathbf{Z}) \otimes \mathbf{Q} \cong F_nH^*(X; \mathbf{Q}),$$

$$E_nH^*(X; \mathbf{Z}) \otimes \mathbf{Q} \cong E_nH^*(X; \mathbf{Q}),$$

and any self map f of X induces endomorphisms

$$F_n^m(f^*): F_nH^m(X; \mathbf{K}) \longrightarrow F_nH^m(X; \mathbf{K}),$$

 $E_n^m(f^*): E_nH^m(X; \mathbf{K}) \longrightarrow E_nH^m(X; \mathbf{K}).$

Take a free basis of $E_nH^m(X; \mathbb{Z})/\text{Tor}$ as a basis of $E_nH^m(X; \mathbb{Q})$. This is possible by (3.1). With respect to this basis, $E_n^m(f^*)$ is an integral matrix and the trace $\text{Tr}(E_n^m(f^*))$ is an integer.

LEMMA 4. (1) If a set $\{b_{\lambda}\}_{{\lambda}\in \Lambda}$ of homogeneous elements of $\widetilde{H}^*(X; \mathbf{Q})$ represents a basis of $E_1H^*(X; \mathbf{Q})$, then a subset of $\{b_{\lambda_1}\cdots b_{\lambda_n}\}_{{\lambda_j}\in \Lambda}$ represents a basis of $E_nH^*(X; \mathbf{Q})$.

(2) A function
$$e: \{1, 2, \dots\} \rightarrow \{0, 1, \dots\}$$
 satisfies

(3.2)
$$\sum_{j=1}^{n} e(i_j) \text{ depends only on } n \text{ and } \sum_{j=1}^{n} i_j \text{ for every } n \ge 1$$

if and only if

(3.3)
$$e(n) = (b-a)n+2a-b$$
, $b \ge a \ge 0$ for every $n \ge 1$.

PROOF. Write $\Lambda_n = \{\lambda \in \Lambda ; b_{\lambda} \in H^n(X; \mathbf{Q})\}$ and define

$$\mathcal{Q}_1 = \{b_{\lambda}\}_{\lambda \in A_1}$$
,
$$\mathcal{Q}_n = \{b_{\lambda}\}_{\lambda \in A_n} \cup \mathcal{Q}_1 \cdot \mathcal{Q}_{n-1} \cup \cdots \cup \mathcal{Q}_{\lceil n/2 \rceil} \cdot \mathcal{Q}_{n-\lceil n/2 \rceil} \quad (n \geq 2).$$

Then Ω_n generates $H^n(X; \mathbf{Q})$ and $\{b_{\lambda_1} \cdots b_{\lambda_n}\}_{\lambda_j \in \Lambda_{m_j}}$ spans the subspace of $E_n H^*(X; \mathbf{Q})$ determined by $H^{m_1}(X; \mathbf{Q}) \cdots H^{m_n}(X; \mathbf{Q})$. Hence (1) follows.

If e is defined by (3.3), then e satisfies (3.2). Conversely suppose that e satisfies (3.2). Then e(1)+e(n)=e(2)+e(n-1) for all $n \ge 2$. From this, we can show that

$$e(n) = (n-1)e(2) - (n-2)e(1)$$

= $(e(2)-e(1))n+2e(1)-e(2)$

so that $e(2) \ge e(1)$. Hence, setting e(1) = a and e(2) = b, we have (3.3). This ends the proof of Lemma 4.

Now we continue the proof of Theorem 2. By the hypotheses e(n)=(b-a)n+2a-b with $b \ge a \ge 1$ and $E_1^m(\mu_k^*e)=k^{e(m)}$. Let $\{b_\lambda\}_{\lambda\in A}\subset \widetilde{H}^*(X; \mathbf{Q})$ consist of homogeneous elements and represent a basis of $E_1H^*(X; \mathbf{Q})$. Take any n

elements $\lambda_j \in \Lambda$ $(1 \le j \le n)$ and set $m = \sum_{j=1}^n \deg(b_{\lambda_j})$. Write h(m, n) = (2n-m)a + (m-n)b. Then $h(m, n) \ge 1$ if $m \ge n \ge 1$, and

$$E_n^m(\mu_{\underline{\lambda}e}^*)(b_{\lambda_1}\cdots b_{\lambda_n})=k^{h(m,n)}b_{\lambda_1}\cdots b_{\lambda_n}$$

by Lemma 4(2). Hence $E_n^m(\mu_{\mathfrak{p}}^*)=k^{h(m,n)}$ by Lemma 4(1). Thus

$$L(\mu_k e \circ f) = \sum_n L(E_n((\mu_k e \circ f)^*))$$

$$= \sum_n L(E_n(f^*) \circ E_n(\mu_k^* e))$$

$$= \sum_n \sum_m (-1)^m k^{h(m,n)} \operatorname{Tr}(E_n^m(f^*))$$

$$\equiv 1 \pmod{k}.$$

Similarly $L(f \circ \mu_{k} e) = \sum_{n} \sum_{m} (-1)^{m} k^{h(m,n)} \operatorname{Tr}(E_{n}^{m}(f^{*}))$. This ends the proof of Theorem 2.

PROOF OF COROLLARY 1. In the above proof, by setting $h(m, n) = \sum_{j=1}^{n} e(\deg(b_{\lambda_j}))$, we obtain the proof.

4. Proof of Theorem 3.

If we use an other basis of $QH^*(X; \mathbf{Q})$, then R(f) changes to $AR(f)A^{-1}$ for some regular matrix A. Hence $\mathrm{ch}(f,g)(t)$ and $\mathrm{deg}(f)$ are independent of the choice of a basis. By (1.6), we can take a free basis of $QH^*(X; \mathbf{Z})/\mathrm{Tor}$ as a basis. With respect to this basis, R(f) and R(g) are integral matrices. Hence $\mathrm{ch}(f,g)(t)$ is an integral polynomial and $\mathrm{deg}(f)$ is an integer. This proves (1).

To prove (2), suppose that $H^*(X; \mathbf{Q}) = \Lambda(x_1, \dots, x_n)$ with $\deg(x_i)$ odd. Given an ordered sequence $I = (i_1, \dots, i_k)$ of positive integers, we write

$$l(I) = k$$
.

We call I n-special if $I = \emptyset$ or $1 \le i_1 < \cdots < i_{I(I)} \le n$. When I is n-special, we write

$$x_{I} = \begin{cases} x_{i_{1}} \cdots x_{i_{l(I)}} & I \neq \emptyset \\ 1 & I = \emptyset, \end{cases}$$

$$I = \begin{cases} \sum_{j} \deg(x_{i_{j}}) & I \neq \emptyset \\ 0 & I = \emptyset. \end{cases}$$

We then have

(4.1)
$$|I| \equiv l(I) \pmod{2}$$
 if I is n -special, $\{x_I; I \text{ is } n\text{-special}\}$ is a basis of $H^*(X; \mathbf{Q})$.

450

Let

$$f^*(x_i) \equiv \sum_j f_{ij} x_j \pmod{\widetilde{H}^*(X; \mathbf{Q}) \cdot \widetilde{H}^*(X; \mathbf{Q})}.$$

That is, $R(f)=(f_{ij})$. If I is n-special and $f^*(x_I)=\alpha_I x_I + \text{other}$, then

$$\alpha_I = \left\{ \begin{array}{ll} \det(f_{i_p i_q}) & I \neq \emptyset \\ 1 & I = \emptyset \,. \end{array} \right.$$

This is proved as follows. Set k=l(I). Since

$$f^*(x_I) = \prod_{p=1}^k \sum_j f_{i_p j} x_j = \sum_{l(J)=k} f_{i_1 j_1} \cdots f_{i_k j_k} x_{j_1} \cdots x_{j_k}$$

we have

$$\alpha_I = \sum_{l(J)=k} \operatorname{sgn}\binom{I}{J} f_{i_1 j_1} \cdots f_{i_k j_k} = \det(f_{i_p i_q})$$

where $\operatorname{sgn}\begin{pmatrix} I \\ I \end{pmatrix}$ is the sign of the permutation $\begin{pmatrix} i_1 & \cdots & i_k \\ i_1 & \cdots & i_k \end{pmatrix}$ if I = J as a set and 0 otherwise.

Now

$$\begin{split} L(f) &= \sum_{k=0}^{\infty} (-1)^k \sum_{I: \, n\text{-special}, \, |I| = k} \alpha_I \\ &= \sum_{I: \, n\text{-special}} (-1)^{|I|} \alpha_I \\ &= \sum_{I: \, n\text{-special}} (-1)^{l(I)} \mathrm{det}(f_{i_p i_q}), \quad \text{by } (4.1) \\ &= \mathrm{det}(E - R(f)) \\ &= \mathrm{ch}(id, \, f)(1) \\ &= (-1)^n \mathrm{ch}(f, \, id)(1). \end{split}$$

We then have

$$L(f \circ g) = \det(E - R(g)R(f)) = \det(E - R(f)R(g)) = L(g \circ f),$$

We also have

$$\begin{split} \prod_{i} \{tf^*(x_i) - g^*(x_i)\} &= \prod_{i} \sum_{j} (tf_{ij} - g_{ij}) x_j \\ &= \sum_{l(J) = n} (tf_{1j_1} - g_{1j_1}) \cdots (tf_{nj_n} - g_{nj_n}) x_{j_1} \cdots x_{j_n} \\ &= \sum_{l(J) = n} \mathrm{sgn}(J) (tf_{1j_1} - g_{1j_1}) \cdots (tf_{nj_n} - g_{nj_n}) \prod_{i} x_i \\ &= \det(tR(f) - R(g)) \prod_{i} x_i \\ &= \mathrm{ch}(f, g)(t) \prod_{i} x_i \end{split}$$

where, according as J is a permutation or not, sgn(J) denotes the sign of J or 0. This proves (2) and completes the proof of Theorem 3.

5. Proof of Theorem 4.

Take a free basis $\{x_1, \dots, x_n\}$ of $QH^*(X; \mathbb{Z})/T$ or. Then, as is well-known, $H^*(X; \mathbb{Q}) = \Lambda(x_1, \dots, x_n)$ and $\deg(x_i)$ is odd. With respect to this basis, R(f) is an integral matrix for every self map f of X. Haibao [5] defined the polynomial A(f)(t) by

$$A(f)(t) \prod_{i} x_{i} = \prod_{i} \{x_{i} - t f^{*}(x_{i})\}$$
.

Hence, by Theorem 3(2), $A(f)(t) = (-1)^n \operatorname{ch}(f, id)(t)$. This proves (1). The following lemma can be proved easily. So we omit it's proof.

LEMMA 5. Let X be a path-connected H-space satisfying (1.3). Let f, g be self maps of X and $k \ge 0$. Then, for all $x \in \widetilde{H}^*(X; \mathbf{Q})$, we have

$$\begin{split} &(f \cdot g)^*(x) \equiv f^*(x) + g^*(x) \pmod{\widetilde{H}^*(X; \mathbf{Q}) \cdot \widetilde{H}^*(X; \mathbf{Q})}, \\ &(^k f)^*(x) \equiv k f^*(x) \pmod{\widetilde{H}^*(X; \mathbf{Q}) \cdot \widetilde{H}(X; \mathbf{Q})}, \\ &(^k f)^*(x) = k f^*(x) \quad \text{if } x \text{ is primitive.} \end{split}$$

If X has a homotopy left or right inverse T, then the above equations hold for all $k \in \mathbb{Z}$, and

$$T^*(x) \equiv -x \pmod{\widetilde{H}^*(X; \mathbf{Q}) \cdot \widetilde{H}^*(X; \mathbf{Q})},$$

$$T^*(x) = -x \quad \text{if} \quad x \text{ is primitive}.$$

It follows from Lemma 5 that $R(^kf)=kR(f)$ so that $\mathrm{ch}(^kf,\,g)(t)=\mathrm{ch}(f,\,g)(kt)$. We then have

$$L({}^{k}f) = (-1)^{n} \operatorname{ch}({}^{k}f, id)(1), \text{ by Theorem 3 (2)}$$

= $(-1)^{n} \operatorname{ch}(f, id)(k) = \det(E - kR(f))$
 $\equiv 1 \pmod{k}.$

This proves (2).

It follows from Lemma 5 that

$$\begin{split} \deg(f\cdot(T\circ g)) \prod_i x_i &= (f\cdot(T\circ g))^* \prod x_i \\ &= \prod (f^*x_i - g^*x_i) \\ &= \operatorname{ch}(f, g)(1) \prod x_i \end{split}$$

so that $\deg(f \cdot (T \circ g)) = \operatorname{ch}(f, g)(1)$. Similarly $\deg((T \circ g) \cdot f) = \operatorname{ch}(f, g)(1)$. Other relations in (3) then follows immediately. This completes the proof of Theorem 4.

PROOF OF COROLLARY 2. We have (1) by Theorem 4(3). Recall that a self map of G having non-zero degree is a surjection. Hence (2) follows from (1) and so does (3) from the equalities:

$$\deg({}^k f \cdot g^{-1}) = \operatorname{ch}({}^k f, g)(1), \text{ by } (1)$$

$$= \operatorname{ch}(f, g)(k), \text{ by Theorem } 4 (2)$$

$$= \det(k R(f) - R(g))$$

$$\equiv (-1)^n \det(R(g)) \pmod{k}$$

$$\equiv (-1)^n \deg(g) \pmod{k}$$

where $n=\operatorname{rank} G$.

References

- [1] R.F. Brown, The Lefschetz fixed point theorem, Scott-Foresman, Glenview, 1971.
- [2] E.M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. of Math., 101 (1975), 510-520.
- [3] H. Glover and B. Homer, Endomorphisms of the cohomology ring of finite Grassmann manifolds, Geometric applications of homotopy theories, Springer Lect. Notes Math., 657 (1977), 170-193.
- [4] D. Haibao, The Lefschetz number of self-maps of Lie groups, Proc. Amer. Math. Soc., 104 (1988), 1284-1286.
- [5] D. Haibao, A characteristic polynomial for self-maps of H-spaces, Quart. J. Math., 44 (1993), 315-325.
- [6] Y. Hemmi, K. Morisugi and H. Ōshima, Self maps of sphere bundles over spheres, Memoirs Fac. Sci. Kochi Univ., 16 (1995), 71-80.
- [7] Y. Hemmi, K. Morisugi and H. Ōshima, Correction to "Self maps of sphere bundles over spheres", Memoirs Fac. Sci. Kochi Univ. 17 (1996), 141-142.
- [8] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, Math. Studies, vol. 15, North-Holland, Amsterdam, 1975.
- [9] K. Morisugi and H. Ōshima, Cohomology classification of self maps of sphere bundles over spheres, Publ. Res. Inst. Math. Sci. Kyoto Univ. 32 (1966), 163-189.
- [10] E.H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- [11] S. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Math., vol. 161, Springer, Berlin, 1970.
- [12] D. Sullivan, Geometric topology I, Mimeographed notes, M.I.T., 1970.
- [13] E. Thomas, Seminar on fiber spaces, Lecture Notes in Math., vol. 13, Springer, Berlin, 1966.
- [14] C.W. Wilkerson, Self maps of classifying spaces, Localization in group theory and homotopy theory, Lecture Notes in Math., vol. 418, Springer, Berlin, 1974, pp. 150-171.

Yutaka Hemmi

Department of Mathematics Kochi University Akebono-cho, Kochi 780 Japan Kaoru Morisugi

Department of Mathematics Wakayama University Sakaedani, Wakayama 640 Japan

Hideaki Öshima

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi, Osaka 558 Japan