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1. Introduction and statements of results.

Given a path-connected space X, we write
QH"(X; K) = A"X; K){S HiX ; K)- H*(X; K)}

for K=27, Q.

If G is a connected Lie group, then the k-fold product *:d of the identity
map of G satisfies (*id)*(x)=kx for all x€QH*(G ; Q). This property was
important in [5]. Apart from extending Haibao’s results on H-spaces to more
general spaces, the following problem seems interesting in its own sense.

PROBLEM. Given a function 0:1{1, 2, ---} — Z, is there a self map py of X
such that

(1.1) pe(x) = 6(deg(x))x for all homogeneous elements x=QH*(X ; Q)?

DEFINITION. We call a path-connected space X an M,-space if it has a
self map pg, which is called an Mjy-structure on X, satisfying (1.1).

When @ is the constant function to k= Z, we denote M, and py by M,
and p,, respectively. When there exist an integer 4 and a function e: {1, 2, ---}
—1{0, 1, 2, ---} with 8(n)=Fk*™ for all n=1, we denote My and py by M,e and
txe, respectively. Note that every path-connected space is an M, and M, space.

We shall need some finiteness condition on X. That is, we will frequently
assume some of the following:

1.2 H.,(X: Z) is finitely generated for all n;
(1.3 dimH,(X; @) < o for all n;
(1.4 dim H¥(X ; @) < oo

(1.5) dim QH*(X; Q) < o« ;
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(1.6) QH¥X; 2)R®Q = QH*X; Q).
Notice that (1.2) implies (1.3) and [1.6), and implies [(1.5).

We call a space with a base point well-based if the base point is closed and
has a contractible open neighbourhood. The unit (resp., co-unit) of an H-space
(resp., co-H-space) is always the base point. Given a finite group A, we denote
by |A| the exponent of A, thatis, |A|=min{k=1; a*=1 for all acA}. Given
keZ, we denote by (k> the self maps of the sphere S™ and the Eilenberg-
MacLane space K(Z, n) whose induced homomorphisms on the zn-th homotopy
groups are the multiplications by k.

ExamMpLE 1. (1) For all 6, each of S"™ and K(Z, n) has the unique
M-structure <0(n)> (=psw), but K(ZPZ/2, n) has four Mjy-structures.

(2) Let G be a compact connected semi-simple Lie group and W its Weyl
group. If % is prime to |W| and e(n)=[(n+1)/2], then the unstable Adams
operation ¢* [2, 12, 14] and £2¢* are M,;e-structures on BG and G, respec-
tively.

(3) A finite product of M,-spaces satisfying (1.3) and a finite wedge product
of well based M,-spaces are Mj-spaces.

(4) Path-connected H-spaces satisfying (1.3) and path-connected well-based
co-H-spaces are M,-spaces for all £=0.

(5) The following spaces are M,-spaces for all k=Z: path-connected
H-spaces which satisfy (1.3) and have homotopy left or right inverses [11], in
particular, path-connected H-spaces which satisfy (1.3) and have homotopy types
of CW-complexes, connected Lie groups and loop spaces of simply connected
spaces satisfying (1.3); path-connected well-based co-H-spaces which have
homotopy left or right co-inverses, in particular, suspension spaces of well-
based spaces.

(6) (Glover and Homer [3]) Let G, .(F) be the Grassmann manifold of
p-planes in F?*? where F is one of the fields C (complex) and H (quaternion).
If G, F) is an Mg-space and if p<<g with p<3 or 2p*—p—1<g with p>3,
then §=*k¢ for some integer 4 and e(n):{ E%[‘H g:_%

REMARK 1. (1) In [9], we prove the following: When n=2, the Stiefel
manifold U@2n+2)/U(2n) is an My-space if and only if §(dn+1){#(4n+3)—1} =0
(mod 8) or 8(4n+1){#(4n+3)—5} =0 (mod 8). In particular, when n=2, U2n+2)
/U@2n) is an M,-space if and only if £=0, 1, 5 (mod 8).

(2) We have

Hoothy — Lo .2

where (0-7)(n)=6(n)r(n). Hence, given e, {k=Z; X is an M;,e-space} is a
multiplicative set, while it is not additive in general by (1).
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Our first result is

THEOREM 1. Let X be a path-connected CW-complex satisfying the following :
(1) X satisfies (1.2) and H,(X ; Z)=0 for sufficiently large n;

(2) X is nilpotent [8] and the commutator subgroup of w,(X) is finite;

(3) H*(X; Q) is a tensor product of finitely many monogenic algebras.

Then there exists a positive integer ¢(X) such that X is an Mgy-space whenever
6(n)=0 (mod ¢(X)) for all n with QH™(X ; Q)+0.

REMARK 2. (1) In [6, 7], we prove that any spherical fibre bundle over a
sphere satisfies the hypotheses and the conclusion of except for the
condition on nilpotency.

(2) The condition (3) in can not be removed in general as seen
in Example 1 (6).

Given a self homomorphism f of degree 0 of a graded and finite dimensional
Q-module, we denote by L(f) the Lefschetz number of f. Given a self map f
of a space, as usual, we abbreviate L(f*) to L(f). The next theorem is a
generalization of 3.9 in [5].

THEOREM 2. If e(n)=(b—a)n+2a—b with b=zaz=1 and X is an Me-space
which satisfies (1.2) and (1.4), then, for any self map f of X, we have

1.7 L(preof) = L(fopr) =1 (mod k).

Hence moreover if X is a compact absolute neighbourhood retract and |k| =2, then
preef and foppe have fixed points [1].

The following is a corollary to the proof of [Theorem 2.

COROLLARY 1. Suppose the following :
(1) X is an Mye-space satisfying (1.2) and (1.4);
(2) there is a set {b;} 1c4 of homogeneous elements of ﬁ*(X; Q) which repre-
sents a basis of QH*X;Q), and, for all n=1 and i,=4 (1<i<n),
271 e(deg(bz,)) is non-zero and depends only on n and 7., deg(by,).
Then any self map [ of X satisfies (1.7), and hence moreover if X is a compact
absolute neighbourhood -retract and |k|=2, then pseof and fou,e have fixed points.

EXAMPLE 2. The condition (2) in is satisfied if H*(X; Q)=
A(xy, -+, x,) with deg(x;) odd and e(deg(x;)=(1/2)(deg(x;)-+1).

We generalize the notion of characteristic polynomial of Haibao [5]. Sup-
pose that a path-connected space X satisfies (1.2) and [1.5). Let f, g be self
maps of X, Let R(f), R(g) be the matrices representing f* g*: QH*X; Q)—
QH*(X ; @) with respect to some basis and write
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ch(f, g)t) = det@R(f)—R(g)) € Q[t],
deg(f) = det(R(f)) € Q.

Then we have

THEOREM 3. (1) The polynomial ch(f, g)t) and the number deg(f) are
independent of the choice of a basis of QH*(X; Q) and

ch(f, 9)) € Z11],
deg(le Z

where the coefficient of t* in ch(f, g)(t) is zero for i>dim QH*(X ; Q).
(2) If H¥X; @)= A(x,, -+, x,) with deg(x;) odd, then
L(f) = (=D ch(f, id)(1) = ch@d, 1) = det(E—R(f)),
L(f-g)=L(g-f),
ch(f, £® IL x; = II {tf*(x)—g*(x},

where E is the unit matrix.

Notice that if G is a compact connected Lie group and f is a self map of
G, then deg(f) is the ordinary degree of f.

Let X be a path-connected H-space whose multiplication is denoted by “-”.
Given a self map f of X and k=2, we denote by *f any k-fold product of f.
For example ®f denotes f-(f-f) or (f-f)-f. We write 'f=f and denote by °f
the constant map to the unit of X. In case X has a homotopy left or right
inverse T, we define *f="'*(T-f) for all negative integers k. Notice that

b { (id)of kz0
L rid)e(Tef) k<0,
Let g be also a self map of X. Then we have

THEOREM 4. Let X be a path-connected H-space which satisfies (1.2) and (1.5).
Write n=dim QH*(X ; Q). Then the following assertions hold.

1) (—D™ch(f, id)®) is equal to A(f)®) in [5].

(2 (cf., 3.3 and 3.9 in [5]) Given k=0 (or k= Z if X has a homotopy left
or right inverse), we have

ch(*f, g)#) = ch(f, g)(kt),
L(*f)=1 (mod k) if X satisfies (L.4).

Hence if |k|z2 and X is a compact absolute neighbourhood vetract, then *f has a
fixed point.
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@3) (cf., Theorem 1 in [4]) If X has a homotopy left or right inverse T,
then

ch(f, g)1) = deg(f-(T-g)) = deg((T-2): f),
deg(f- T)=deg(T- f)=ch(f, id)1)=(—D"L(f) if X satisfies (1.4).

COROLLARY 2. Let G be a compact connected Lie group, k< Z, and f, g
self maps of G. Then

(1) ch(f, &)V)=deg(f-g™"), where g ' (x)=(g(x))*;
(2) if ch(f, g)1)#0, then there exists x&G with f(x)=g(x);
(3) if deg(g)==0 (mod k), then there exists x&G with *f(x)=g(x).

Proof of Theorem n (1<n<4) shall be given in the section n-1.

2. Proof of Theorem 1.

In this section we denote by dim X the homological dimension of X. That
is, if N=dim X then Hy(X; Z)#0 and H;(X; Z)=0 for all z>N. When dim X
=0, is obvious by taking ¢(X)=1. Hence we assume dim X>0. By
the hypothesis, we have

H*(X; Q) = A(Xl’ Ty xa)@Q[.’)’n Ty yb]/(yil’ Tty J’(lzb)»

deg(x;) = 2n;+1, deg(y,) = 2m;.
When a=b=0, is obvious by taking c¢(X)=1. Hence we assume
a+b>0.

The outline of the proof is as follows. We construct a space 7; and a
rational equivalence

2.1

p: X—-K=KH(X; Z), )X “I‘I>0K(Z, 2n+1)X joITj

such that H*(T;; Q)zQ[yj]/(yj-j) with deg(y;)=2m; and T; and hence K are
Myg-spaces for ail § by Example 1(3). Let the homotopy group of the fibre F
of ¢ be trivial except for the dimensions u; with 1=u,<u,<--. Let G;=
Ty (F)=I"G;DI"*G;D--- be the lower central =,(X)-series. Set u,=0 and
o=1. Write N,=IL;|I7G;/I""*'G;|**"*®i*» and ¢(X)=N,--- N,, where n is
determined by the inequality u,<dim X<u,,,. Let 6 satisfy #(k)=0 (mod ¢(X))
for k=2n,;+1, 2m;. Using the step by step construction for the Moore-Postnikov
factorization of ¢, we lift the map poe: X — K to fip: X—X. Then gy is an
Mj-structure on X,
First we will construct 7';. Let ¢n,eH™K(Z, m); Z) be the fundamental
class. Given positive integers n, [, v, we denote by T(2n, I, v) the homotopy
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fibre of
vk 2 K(Z, 2n) — K(Z, 2in)

and by
E:T@2n, l, v) — K(Z, 2n)

the inclusion. Using the Serre spectral sequence, we have
H*(T@2n, I, v); Q) = Q[£1/(&Y).

By the diagram given below, T(2n, [, v) is an Mjy-space for all §. From now
on we will use only particular My-structures gy on T(2n, [, v) which make the
following diagram commutative up to homotopy:

; b
K(Z, 2in—1) —> T(@n, l,v) —> K(Z, 2n) Ei—) K(Z, 2in)
2.2 <B@En | ol [oemy | oeny

K(Z, 2in—1) —> T@n, I, v) —> K(Z, 2n) —> K(Z, 2in)

LEMMA 1. Let A be a finite abelian group. Then

1) <k>*=0 on H*K(Z, n); A) if k=0 (mod|A]);
2) (e)*=0o0n ﬁ”‘(T(2n, L,v); A)if 0@2n)=0 (mod| A|) and w=m+1, where
Uy is the w-times iteration of p,.

Proor. For (1), it suffices to prove (1) when A=Z/p"* with p a prime. We
prove this by the induction on u. The case u=1 is true, because H*(K(Z, n);
Z/p) is generated by Sq¢’i¢, (p=2) and Pri, (p>2), and <k *(,)=ki,=0c
H"(K(Z, n); Z/p), where t, is the mod p reduction of ¢,. Suppose that (1) is
true when A=Z/p*. Consider the following commutative diagram :

HK(Z, n); Z/p**Y) ﬁ HY(K(Z, n); Z/p¥)

| <o RS
AXKZ, n); Z1p) — BNK(Z, n); 2/ o BMEZ, n); 2/
| <> . | <%
BxK(Z, n); Z/p) —> BXK(Z, n); Z/p**)

Here the middle horizontal sequence is exact and associated to the exact
sequence :

0———->Z/p—c—t~>Z/p“”—§—>Z/pu-——>0,

Take any x=H*K(Z, n); Z/p**Y). Then Bxlp">*(x)=<p">*Bx(x)=0 by the
inductive hypothesis. Hence there exists ye H*(K(Z, n); Z/p) such that ax(y)
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={p*>*(x) so that
PUIH*(x) = L Ppy¥pUH¥(x) = (po*ax(y) = ax{p>*(y) = ax(0) = 0.
Let £ =0 (mod p**'). Then (1) is true when A=Z/p**' by the equality <k>=
C/prHye(p¥*ty,  This completes the induction.
To prove (2), let E2%(ug): E2?— E?? be the endomorphism of the Serre
spectral sequence with coefficients in A induced from the first two squares of

(2.2). It follows from (1) that if p+¢=1 then E?%uys)=0 and hence EZ%(uy)
=0. Thus gfFPeCF?* e if pig=1, where

H™T@n, [, v); A) = FOmDFLm-1y .. DFmOOFm+L -1 — (),
E"%q: FP-Q/FP+1.Q“‘1‘

Hence
(P FO™CF™ =0 if m=1.

This implies (2) and completes the proof of Lemma 1l

LEMMA 2. Suppose the following diagram of abelian groups and homomor-
phisms is commutative and the horizontal sequences are exact. Then ¢+¢=0.

@ B
B—C—D

o Lo, Lo

B— C— D

o Lo, Lo

B — C — D,

Proor. This is trivial.

LEMMA 3. Let A and B be finite abelian groups, and m a positive integer.
Let K=K(B, )X K(Z, n) XI5 T(2m;, 13, v;) be a finite product and 0:
1,2, -} —>Z a function such that 6(k)=0 (mod|A[****™*D) for h=n,, 2m;.
Then K has an Myg-structure pq satisfying

2.3) pE=0 on H™K; A).

PrROOF. Let 0 be the constant self map of K(B, 1). It suffices to prove the
assertion when B is trivial, since if f is an Mjy-structure on II; K(Z, n,)X
IL; T(2my, 1, vy) satisfying [2.3), then 0x f is an M,-structure on K satisfying
[2.3). So we assume B=O0.

(2.4) If k=] A|2***™*1 then there exists an M,-structure teon T(2my, 15, v;)
such that the self map
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a b
g =11 <kyx 11 pa

of K satisfies g*=0 on A™(K; A).

If this is true, then the map (JT%&,<¢.:> XII%, Ur)eg 1S a desirec_i M-structure
on K, where ¢;=0(n,)/{| A|2***™*} and r;=@02m;,)/{| A|2**0m+n},

We will prove (2.4) by the induction on a+b. The case a+b=1 is true by
Lemma 1. Assume that the case a+b=/[ is true. Suppose a-+b=[+1. We treat
only the case a=1, because the case a=0 can be treated similarly. Write K,=
K(Z, n) and Ky=TI1%K(Z, n)XIT%=. T(@m;, I;, v;). Taking B=3, H{(K,; A)
RH™(K,), C=H™K, XK, K,VK,; A) and D=3, Tor(H(X,; A), H™*"i(K,)
in we have {({|A|>Xh)o((|A|>Xh)}*=0 on H™(K, X K,, K,\VK,; A)
for any self maps &, A’ of K, In particular we have ({|A|®Xh)*=0 on
H™(K, XK, K,VK,; A). Taking h to be a map satisfying (2.4) for K,, and
taking ¢=¢=(|A|*»>Xh)*, B=H™K,XK,, K,\VK,; A), C=H™K,XK,; A) and
D=H™K,VK,; A) in Lemma 2, we have (|A[*>Xh-h)*=0 on H™K,xK,; A).
Since 4|2'*' and h*=II p., Where t=| A"+ it follows that (2.4) is true
when a+b=I[+1. This completes the induction and the proof of

Now we prove [Theorem 1. Suppose (2.1) and n,= - =n,=0<n, < -
<nq. Choose x; for a’<i<a and y; to be integral. This is possible by [1.6).
We will shortly choose {x;; 1<¢<a’} in a particular way. Denote by v, the
order of y7 in H2imi(X; Z). Write T;=T@2m;, I;, v;). Then v;: X - K(Z, 2m;)
is factored as

i §
X — T;—> K(Z, 2m;).

Write K=KH\(X; Z), 1)XILi; 050 K(Z, 20+ 1) XT3 Ty Let x4: X > K(H\(X;
Z), 1) be a map inducing the identity map of H,(X; Z). Let F be the homotopy
fibre of

@ = oni;ngiXHy"j  X—K.

Since 7,(¢) is surjective, F is path-connected. It then follows from the pages
79 and 67 of that, for all /=1, =;(X) is finitely generated and =,(X) operates
nilpotently on #,(F). Since ¢*: H¥K; Q)=H*(X; @), it follows that ¢ is a
rational equivalence so that =,(F) is finite for all /=2. Also =,(F) is finite by
the hypothesis (2) in [Theorem 1. Suppose that z,(F)=0 if i u,, u,, -, where
1Su;<ue< oo Set u,=0 and write G;=m, (F). Let

bi
K(Gi, u)) — X — Xi (t=1, Xo=K)

be the 7-stage of the Moore-Postnikov factorization of ¢ (cf., [10, 13]). Under
our hypotheses, it admits a principal refinement [8]. That is, every p; is
factored as a product of principal fibrations
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. Gu; g2 . q: )
Xl = X<Zy wi) —> s > X(i, 1) __>X(Z, 0) = Xi—l

where ¢; is induced by a map h;: X(, j—1)—>K({I''G,/I""**G;, u;+1). Here
G,=I"'GDI'*G;D - DI'*i*'1G,={1} is the lower central =,(X)-series. Set
wo=0. Take n with

(2.5) U, < dimX £ Upyy.

Write NG, ))=|1"G;/T7*'G;|****®*» and N,=II;24 NG, j) for i=1. Set N,=
N, 0)=1 and write ¢(X)=N, - N,. Suppose §(k)=0 (mod ¢(X)) for k=2n;+1,
2m;. Using the maps gy, j in we inductively have maps g(, 7):
K—X(@, 7) for 0<i<n and 0</7<w,; such that g(0, 0) is the identity map,
g, 00=g(@—1, w;_,) and the following diagram is commutative up to homotopy
for i=1.

UN G wp UNG, 2 UNG, D

g6, w)) | |26, v | 26,0
Giw q:, qi,
X, = XG, ws) Ly s XG ) > XG,0)=X,_,.

Define 6'(k) to be 6(k)/c(X) or zero according as k=2n;+1, 2m; or otherwise.
By [2.5), g(n, wa)opgrop: X— X, can be lifted to fig: X —X. Let {;: K(H(X;
Z),)—-K(Z, 1) (1<:<a’) be a free basis of H(K(H,(X; Z), 1); Z). Let m;:
K—K(Z, 2n;+1) be the projection for i=a’+1 and the composition of the
projection K — K(H,(X; Z), 1) with {; for i<a’. We define x;=m;°¢ for i<a’.
Let 7j: K— T,iK(Z, 2m;) be the composition of the projection with the
canonical map & Then x;=m;°¢ and y;=njo¢ for all 7, 7, and (2.1) is satisfied.
Hence, as is easily seen, we have jg(x,)=02n;+1)x; and gz(y;)=002m,)y;.
Therefore jip is an M,-structure on X. This completes the proof of [Theorem Il

3. Proof of Theorem 2.

Let K=Z, Q. We give a decreasing filtration F,H*(X ; K) of H*(X ; K) as
follows:

FH*X; K)= H¥X ; K), F,H*X;K)=H*X;K),
Fo,HMX; K) =X F,\HX; K)-FFH"YX; K) (n=2).
Write
E.H™X;K)=F,H™"X; K)/F,.H"X ; K).
Then
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EH¥X; K) = QH*X; K),
@.1) F,H¥X; 2)QXQ = F,H¥X ; Q),
E.H¥X; 2)®Q = E,H¥X; Q)
and any self map f of X induces endomorphisms
FR(f*: FRH™X; K) — F,H™(X ; K),
ER(f*: E.H™X; K) — E,H"(X; K).

Take a free basis of E,H™(X; Z)/Tor as a basis of E,H™(X; Q). This is
possible by [3.I). With respect to this basis, E7(f*) is an integral matrix and
the trace Tr(E®(f*)) is an integer..

LEMMA 4. (1) If a set {bi}ica of homogeneous elements of ﬁ*(X;Q)
represents a basis of E,H¥(X; Q), then a subset of {b; --- bi,} 2,c4 represents a
basis of E.H*(X; Q).

(2) A function e: {1, 2, ---}—{0, 1, ---} satisfies

3.2) ée(ij) depends only on n and ili,- for every n =1
J= J=

if and only if
(3.3) e(n) = (b—a)n+2a—b, b=a =0 for every n =1.

PrROOF. Write A,={Aic4; b;cH*(X; Q)} and define
2, = {bi} A€4))
2, = {ba} 1e4, V21 201\ - UQ00 101 2 tnsy (2 2).

Then £, generates H™(X; @) and {02, -~ bayta,en,, spans the subspace of
E.H*(X; Q) determined by H™(X; Q) --- H™»(X ; @). Hence (1) follows.

If ¢ is defined by [3.3), then e satisfies (3.2). Conversely suppose that e
satisfies (3.2). Then e(l)4+e(n)=e(2)+e(n—1) for all n=2. From this, we can
show that

e(n) = (n—1)e(2)—(n—2)e(l)
= (e(2)—e(1))n+2e(1)—e(2)

so that e¢(2)=e(1). Hence, setting e¢(1)=a and e(2)=b, we have[3.3). This ends
the proof of

Now we continue the proof of By the hypotheses e(n)=(b—a)n
+2a—b with b=a=1 and EP(p*)=Fk*™. Let {b}1c4CH*(X; Q) consist of
homogeneous elements and represent a basis of E,H*X;@). Take any n



Self maps of spaces - 449
elements ;€4 (1<j<n) and set m=3}.,deg(b,,). Write h(m, n)=@2n—m)a+
(m—mn)b. Then h(m, n)=1 if m=n=1, and

EX(pre)ba, - bi,) = k"(”""’bz,_ by,
by Lemma 4(2). Hence ER(u*e)=k"™™ by Lemma 4(1). Thus
L(paee ) = 23 L(Ew((ptae= /)¥)
= 3 LEW(f9)- Enlge}o)
=22 (DA Tr(ER(f)
=1 (mod k).

Similarly L(fepse)=20 D (—D™R2™ M Tr(ER(f*). This ends the proof of

PrROOF OF COROLLARY 1. In the above proof, by setting h(m, n)=
27-1e(deg(bs,)), we obtain the proof.

4. Proof of Theorem 3.

If we use an other basis of QH*(X ; @), then R(f) changes to AR(f)A™?
for some regular matrix A. Hence ch(f, g)() and deg(f) are independent of
the choice of a basis. By [1.6), we can take a free basis of QH*(X; Z)/Tor
as a basis. With respect to this basis, R(f) and R(g) are integral matrices.
Hence ch(f, g)(¢) is an integral polynomial and deg(f) is an integer. This
proves (1).

To prove (2), suppose that H*(X ; @)= A(x,, ---, x,) with deg(x;) odd. Given
an ordered sequence [=(,, ‘-, 7;) of positive integers, we write

I=rk.

We call I n-special if I=@ or 1<i,< - <iy(p<n. When I is n-special, we
write

{ Xy Xy 1+ QD
X1y =

1=g,
[ _{ 2deg(xs) I+ @
I=g.

We then have
(4.1) [I] =I(I) (mod2) if I is n-special,
{x;; I is n-special} is a basis of H*(X; Q).
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Let
fHx) =3 fiyx; (mod H+X; Q)-AX ; Q).

That is, R(f)=(f:;). lf I is n-special and f*(x;)=a,;x;+other, then
{det(fipiq) Ii@
ar =
1 I=¢.

This is proved as follows. Set 2=I(I). Since

k
a0 =1L 2 fipms= 3 fusn o funtn - %
we have

ar=, 3 san( })fun - Fuusy = detlfiye)

I(J)=F

where sgn(f-) is the sign of the permutation (’-1 ’-") if I=] as a set and 0
. Ji T
otherwise.
Now

LH=Z D 5 a

I: n.special, | I|=k

= > (—Day
I: n-special

= X2 (=D'Pdet(fi,i,), by 4.1

1: n-special
= det(E—R(f))
= ch(@d, /HQ)
= (=D"ch(f, id)D).

We then have

L(f-g) = det(E—R(g)R(f)) = det(E—R(f)R(g)) = L(g-f).
We also have
lg[{tf*(xi)_g*(xi)} =1I %1 tfi—giDx;

= l(%}:n(tful—gul) (fng, = 8ns)Xsy X5,
=, 3 senU)Ef 1= gus)  Cfasy=gas) TL x4
= det(tR(f)—R(g) II

= ch(f, QO TI %,
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where, according as J is a permutation or not, sgn(J) denotes the sign of J or
0. This proves (2) and completes the proof of Theorem 3.

5. Proof of Theorem 4.

Take a free basis {x;, .-+, x.} of QH¥(X ; Z)/Tor. Then, as is well-known,
H*(X; Q=A(x,, ---, x,) and deg(x;) is odd. With respect to this basis, R(f) is
an integral matrix for every self map f of X. Haibao [5] defined the polynomial
A(f)@) by

A(H)® 1;[ X = 1;[ {xi—tf*(x} .
Hence, by Theorem 3(2), A(f)@)=(—1)"ch(f, id)(¥). This proves (1).
The following lemma can be proved easily. So we omit it’s proof.

LEMMA 5. Let X be a path-connected H-space satisfying (1.3). Let f, g be
self maps of X and k=0. Then, for all xeﬁ*(X; Q), we have

(f-g)*(x) = f¥(x)+g*(x) (mod H¥X; Q)-H*X; Q)),
(*/)*(x) = kf*(x) mod A*X; @)-H(X; @),
CNH*¥x) = kf*(x) if x is primitive.
If X has a homotopy left or right inverse T, then the above equations hold for all
keZ, and
T*x) = —x (mod H*(X; Q)-H%X; Q)),
T*(x) = —x if x is primitive.

It follows from that R(* f)=FkR(f) so that ch(*f, g)t)=ch(f, g)(kt).
We then have

L f) = (—D"ch(*f, id)(1), by Theorem 3(2)
= (—1)"ch(f, id)(k) = det(E—EkR(f))
=1 (mod k).

This proves (2).
It follows from that

deg(f-(T-g)) I} xi = (f(T-g)*II x:
=T (f*xi—g*xy)
= ch(f, 21T x,
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so that deg(f:-(T-g))=ch(f, g)(1). Similarly deg((T-g)-f)=ch(f, g)[1). Other
relations in (3) then follows immediately. This completes the proof of Theo-
rem 4.

PROOF OF COROLLARY 2. We have (1) by [Theorem 4(3). Recall that a
self map of G having non-zero degree is a surjection. Hence (2) follows from
(1) and so does (3) from the equalities :

deg(*f-g™) =ch(*f, g)(1), by ()
= ch(f, g)(k), by [Theorem 4(2)
= det(kR(f)—R(2))
= (—D"det(R(g)) (mod k)
= (—1)"deg(g) (mod k)

where n=rank G.
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