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Introduction.

Let X be a smooth projective variety over € with dimX=n, and L an
ample (resp. a nef and big) Cartier divisor. Then (X, L) is called a polarized
(resp. a quasi-polarized) manifold.

For this (X, L), the sectional genus of L is defined to be a non negative
integer valued function by the following formula ([Fj2]):

#(L) = Lt g (K t(n—D L)L,

where Ky is the canonical divisor of X.
Then there is the following conjecture :

CONJECTURE 1 (p. 111 in [Fj3]). Let (X, L) be a quasi-polarized manifold.
Then g(L)=q(X), where q(X)=h'(X, Ox) (called the irregularity of X).

In [FkI], we treat dim X=2 case. But if dim X=3, the problem seems
difficult. So we consider the following conjecture :

CONJECTURE 2. Let (X, L) be a quasi-polarized manifold, Y a normal pro-
jective variety with 1<dim Y <dim X, and f: X —Y a surjective morphism with
connected fibers. Then g(L)=h'(Oy'), where Y’ is a resolution of Y.

Of course Conjecture 2 follows from Conjecture 1. The hypothesis of Con-
jecture 2 is natural because X has a fibration in many cases (Albanese fibration,
litaka fibration, etc.).

In this paper, we consider Conjecture 2. In particular, we study dim Y =1
or some special cases of dim Y =2. Using some results with respect to Conjec-
ture 2, we study Conjecture 1.

The author would like to express his hearty gratitude to Professor Takao
Fujita for giving him useful advice and teaching him the proof of B
in Appendix. The author also would like to thank the referee for giving many
valuable comments and suggestions and pointing out A’ in Appendix.
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§0. Notations and conventions.

In this paper, we shall study mainly a smooth projective variety X over C.

O(D): invertible sheaf associated with a Cartier divisor D on X.
Ox: the structure sheaf of X.

X(<): Euler-Poincaré characteristic of a coherent sheaf &.
XX)=X0x)

h¥(F)=dim H{X, ) for a coherent sheaf ¥ on X.
h¥{(D)=h*©(D)) for a divisor D.

D]¢: the restriction of D to C.

| D] : the complete linear system associated with a divisor D.

Ky : the canonical divisor of X.

ps(X) (or p,): the geometric genus h°(Kyx) of X.

pn(X) (or pn): the m-genus A(mKy) of X.

g(X) (or ¢): the irregularity A}(@x) of a smooth projective variety X.

If X is a normal projective variety over C, then we define ¢(X)=h'(©x), where
X'’ is a resolution of X. We remark that ¢(X) is independent of a resolution
of X.

k(D) : litaka dimension of a Cartier divisor D on X.

£(X) : Kodaira dimension of X.

Py(&): the Pm"-bundle associated with a locally free sheaf & of rank » over Y.
Opyer (1) : the tautological invertible sheaf of Py(&).

~ (or =): linear equivalence.

= : numerical equivalence.

For »reR, we define [r]=max{tcZ:t<r}, [rl=—[—r]

(f, X, Y, L) is called a polarized (resp. quasi-polarized) fiber space if X is a
smooth projective variety, Y is a smooth or normal projective variety with
1<dimY <dim X, f: X—Y is a surjective morphism with connected fibers, and
L is an ample (resp. a nef and big) Cartier divisor on X.

We say that two quasi-polarized fiber spaces (f, X, Y, L) and (h, X, Y’, L)
are isomorphic if there is an isomorphism d:Y—Y’ such that A=d-f. In this
case we write (f, X, Y, L)=(, X, Y’, L).

We say that (f, X, Y, L) is a scroll if ¥ is smooth, f: X — Y is Pibundle,
and L|r=0(1) where F is a fiber of f and {=dim X—dim Y.

We say that (X, L) has a structure of scroll over Y if there exXists a sur-
jective morphism f: X —Y such that (F, L|m)=P"*» ™, O(1)) for any fiber F of
f, where dim X=n, and dim Y =m.
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We say that a Cartier divisor D on a projective variety X is pseudo-effective
if there is a big Cartier divisor H such that x(mD-+H)=0 for any natural
number m.

A general fiber F of f for a quasi-polarized fiber space (f, X, Y, L) means
a fiber of a point of the set which is intersection of at most countable many
Zariski open sets.

Let D be an effective divisor on X. We call D a normal crossing divisor
if D has regular components which intersect transversally.

§1. dim Y=1 case.

In this section, we consider a lower bound for g(L) under the following
condition :

(x): Let (f, X, Y, L) be a (quasi-)polarized fiber space with dim X=n, where
Y is a smooth projective curve.

1-1. The nefness of Ky, +tL.

We study the nefness of Ky,p+tL for t=n, n—1, n—2, where Ky, =Ky
— f*Ky. Here [Theoreml A in Appendix plays an important role. (See Appendix
for the statement of A and its proof.)

THEOREM 1.1.1 (cf. Theorem 1 in [Fj2)). Let (f, X, Y, L) be a polarized
fiber space with dim X=n=2, dim Y =1.
Then Ky,y+nL is nef.

Proor. If Ky,»+nL is not f-nef, there exists an extremal rational curve
[ such that (Kx,y+nL)-[<0 and f(/)=point. Let ¢:X—Z be the contraction
morphism of [,

Then there exists a morphism g: Z —Y such that f=g-¢ (Theorem 3-2-1
in [KMM]). In particular dim Z>=dim Y'=1.

But by the proof of Theorem 1 in [Fj2], dim Z=0. This contradicts dim Z
=dim Y=1. Hence Ky,,+nL is f-nef.

On the other hand, (Ky,y+nL)—Ky is f-ample. By the base point free
theorem (Theorem 3-1-1 in [KMM])),

(1.1.1.1D *fxOm(Kyy+nl)) —> Om(Ky,y+nL))

is surjective for any m>»0.
By A in Appendix, f+O(m(Ky,y+nL)) is semipositive ([Fjl1]) and
by (1.1.1.1) O(m(Kyx,y+nL)) is nef. Therefore Ky, y+nL is nef, O

THEOREM 1.1.2 (cf. Theorem 2 in [Fj2]). Let (f, X, Y, L) be as in Theo-
rem 1.1.1. Then Kyp+m—1)L is nef unless (f, X, Y, L) is a scroll.
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PROOF. If Ky, y+(n—1)L is not f-nef, there exists an extremal rational
curve [ such that (Kx+n—1L)-I=Kxy+(n—1)L)-1<0 and f()=point. Let
¢:X—Z be the contraction morphism of /.

Then there exists a morphism g: Z—Y such that f=gep. In particular
dim Z =dim Y =1.

By ((2.7) proof of Theorem 2 in [Fj2]), ¢ is not birational and dim Z=1.
Then (¢, X, Z, L) is a scroll by the proof of Theorem 2 in [Fj2]. On the
other hand, Z=Y because f has connected fibers. Hence (f, X, Y, L) is a
scroll.

If Kyjp+(n—1)L is f-nef, Ky,y+(n—1)L is nef by the same argument as
in [Theorem 1.1.1. O

THEOREM 1.1.3 (cf. Theorem 3 and 3’ in [Fj2]). Let (f, X, Y, L) be as in
Theorem 1.1.1. Suppose that dim X=n=3 and Ky, +m—1)L is nef. Then
Kxiw+m—2)L is nef except the following cases:

(8-1) There exist a smooth projective variety X', a birational morphism
p: X—X', and a surjective morphism with connected fibers f':X'—Y such
that f=f"ou, p is blowing down of E=P"', E|g=0(—1), and L|g=0(1).

3-2) (f,X,Y, L)is P*bundle and L|r=0(2) for any fiber F of f.

3-3) F is a hyperquadric in P™ and L|p=0(1), where F is a general fiber
of f.

(3-4) (F, Lyp)is a scroll over a smooth curve, where F is a general fiber of f.

Proor. If Kyy+(n—2)L is f-nef, then Ky, +(n—2)L is nef by the same
argument as in [Theorem 1.1.1.

If Ky p+(n—2)L is not f-nef, there exists an extremal rational curve /
such that (Kx,y+(n—2)L)-1<0 and f(/)=point. Let ¢:X—Z be the contrac-
tion morphism of /. Then we have a morphism g:Z —Y such that f=ge-¢.

Case (A): ¢ is birational.

Then by the proof of Theorem 3’ in [Fj2], ¢ is blowing down of E= P!,
E|g=0(—1) and Llz=01). We put pu=¢, f'=g, and Z=X'. So (3-1) is
obtained.

Case (B): ¢ is not birational.

We remark that dim Z=dim Y=1. By Theorem 3’ in [Fj2], we have the
following three types:

(1) dim Z=1, (F,, Llp'(‘[?):(Pz, O(2)) for every fiber F, of ¢.
(2) dim Z=1, F is hyperquadric and L|,=0Q).
(3) dim Z=2, Z is smooth, and (¢, X, Z, L) is scroll.

Case (1)
In this case, Z=1 since every fiber of f is connected. So (f, X, Y, L)=
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(p, X, Z, L) and (3-2) is obtained.

Case (2)

By the same argument as in Case (1), (f, X, Y, L)=(¢p, X, Z, L). Hence
(3-3) is obtained.

Case (3)
In this case, a general fiber F of f is scroll over a smooth curve. Hence

(3-4) is obtained, O

1-2. g(L)zg(Y).
Here we shall show that the following theorem.

THEOREM 1.2.1. Let (f, X, Y, L) be a polarized fiber space with dimY =1.
Then g(L)=g(Y), where g(Y) is the genus of Y.

Proor. First since 2(g(Y)—1)L" 'F=f*KyL""!, we have
1 _
(1.2.1.1) g(L) = gV)+5Exp+n—DL)L"" +(g(V)—1)(L" - F—-1),

where F is a general fiber of f.
Case (a): g(¥)=0.
g(L)=g(Y)=0 by Corollary 1 in [Fj2].
Case (b): g(Y)=1.
In this case,

(1.2.1.2) (g(¥)—1)(L" - F—1) = 0

since L is ample.

Case (b)-1: Kyp+(n—1)L is nef.

By (1.2.1.1) and (1.2.1.2), we have g(L)=g({).

Case (b)-2: Ky, p+(m—1)L is not nef.

By [Theorem 1.1.2, (f, X, Y, L) is a scroll. Let & be a locally free sheaf
of rank n over Y such that X=P(&) and L=0p ) (1). Then Ky= f*(Ky+det &)
—0Oprwer(n) ((1.3) in [Fj3]). Hence g(L)=1+(Kx+mn—1)L)L"*/2=14+(f *(Ky+
det&)—L)L"'/2=1+4+(1/2)deg Ky=g(Y).

Therefore g(L)=g(Y) is obtained. O

REMARK 1.2.2, There exists an example of (f, X, Y, L) with g(L)=g).
(For example, the case (f, X, Y, L) is scroll.)

In 1-4, we shall show that (f, X, Y, L) with g(L)=g(") has a structure of
scroll over a smooth curve,

By [Theorem 1.2l1, we have the following Corollary.

COROLLARY 1.2.3. Let (X, L) be a polarized manifold. Assume that the
image of the Albanese map ([U]) is a curve. Then g(L)=q(X).
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PrROOF. Let a:X—AlbX be the Albanese map of X. By assumption,
a(X) is a smooth curve of genus ¢(X) and a:X —a(X) has connected fibers.
Hence by Theorem 1.2.1, g(L)=g(a(X))=q(X). O

1-3. x(X)=0.
Here we treat £(X)=0 case.

LEMMA 1.3.1. Let X be a projective variety with dim X=n and D a pseudo
effective Cartier divisor on X. Then DL" =0 for any nef Cartier divisor L.

PrROOF. By definition of a pseudo effective Cartier divisor (see §0 or (11.3)
in [Mo]), k(tD+H)=0 for any natural number ¢{ and a big Cartier divisor H
over X. Since L is nef, mL-+A is ample for any natural number m and an
ample Cartier divisor A over X. Therefore

: ! " = 1 n-1
<D+7H)(L+77{'A) = ’*n‘zn—-lg‘(tDJrH)(mL%—A) >0,
Tend t— oo and m-— oo, We have DLn-lgO -

REMARK 1.3.2.

(1) Let X and Y be smooth projective varieties over C, and f: X—Y a
surjective morphism with connected fibers. Let D be a Cartier divisor on X
such that f0(D)+0. If f0(D) is weakly positive (see Appendix), then D is
pseudo effective.

(2) Let € be a locally free sheaf on a normal projective variety X. If €
is semipositive ((5.1) in [Me]), then & is weakly positive.

PROOF.
The proof of (1)
By hypothesis, the natural map

[*f+0(D) —> o(D)

is non-trivial. If O(D—Z)=Im(f*fx0(D)—O(D))**, where Z is an effective
divisor on X and ** is double dual, then f*f.0(D)—0O0(D—7Z) is surjective in
codimension 1. By Hironaka theory [Hi], there exists a birational morphism
g X'— X such that

p*f*fx0(D) — o(p*(D—Z)—E)

is surjective, where X’ is smooth and FE is an exceptional effective divisor
over X',

By hypothesis, p*f*fx0(D) is weakly positive. Hence O(p*(D—Z)—E) is
weakly positive. By definition, p*(D—Z)—FE is pseudo effective. Since Z and
E are effective, p*D is pseudo effective. Hence D is pseudo effective.
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The proof of (2)

Since & is semipositive, S*“(&) is also semipositive for any positive integer
a. Let 4 be an ample invertible sheaf on X. Then S*(€)®4 is an ample
locally free sheaf ([Ha2]). Hence & is weakly positive. O

THEOREM 1.3.3. Let (f, X, Y, L) be a quasi-polarized fiber space with
dimY =1, gY)=1, and £(F)=0, where F is a general fiber of f.
Then g(L)zg(Y)+[((n—1)/2)L™].

PROOF. Since x(F)=0, there exists a Zariski open set U of Y such that
for any closed point yeU,

(1) F,=f""(y) is smooth
(2) h%mKp,) is constant and not zero for some fixed meN.

By Grauert’s theorem (see [Hall]), f+O(mKy,y)#0. Hence by Lemma 1.3.1,
Remark 1.3.2 and the semipositivity of fxO(mKy,y) ([Ka2], [V31]), Kyp- L* 1=0.
By (1.2.1.1) in [Theorem 1.2.1, we have
—1
g(L) 2 g0V)+ " S=L+(g(V) =1L F-1).
Since L is nef and big, Ly is also nef and big. Hence L% '>1,
By hypothesis, g(Y)=1. Therefore

D)z g+ "5 1]

because g(L) is integer. 0

THEOREM 1.3.4. Let (X, L) be a quasi-polarized manifold with x£(X)=1 and
L*=2. Then g(L)=q¢X).

PrROOF. In general, there is the following fibration (called litaka fibration
[GID if s(X0)=1:

There exist a birational morphism p:X’—X and a surjective morphism
with connected fibers f: X’ — Y such that dim Y =#(X) and £(F)=0 for a general
fiber F of f, where X’ and Y are smooth projective varieties.

We remark that ¢(X)=¢(X’) and g(L)=g(L’), where L’'=p*L.

So we may assume that there is a fibration f: X — Y, where Y is a smooth
projective variety.

Here dim Y =1.

If g(Y¥)z1, then we apply [Theorem 1.3.3 for this (f, X, Y, L). Hence
g(L)y=gY)+[{({(n—1)/2)L™]. By hypothesis, [(n—1)/2)L*"|=n—1. Since &(F)
=0, ¢(F)=dim F=n—1 by Kawamata’s theorem ([Kal]). So we have g(L)=
g¥)+(n—1Dzg¥)+q(F).
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On the other hand, by B in Appendix, ¢(F)+g(Y)=q(X). There-
fore g(L)=q(X).

If g(¥)=0, then g(L)=14+Kx+n—1)L)L"'/2=214+n—1=14q(F)>g(Y)+
q(F)zq(X). O

By Kawamata’s theorem, we have the following theorem.

THEOREM 1.3.5. Let (X, L) be a quasi-polarized manifold with kx(X)=0 and
L*=2. Then g(L)=q(X).

PROOF. Since #(X)=0, ¢(X)<dim X=n by Kawamata’s theorem.
Hence

#(L) = Lt 4 Kt (n—D L)L

n—1_.

2145 L

v

n
= q(X). O

1-4. Classification of (f, X, Y, L) with g(L)=g(").
Here we shall classify (f, X, Y, L) with dim Y=1 and g(L)=g().

LEMMA 1.4.1. If f.O(D) is ample, then DL"*>0 for any ample line bundle
L on X,

Proor. By hypothesis, given any coherent sheaf & on Y, there exists a
natural number m, such that for every m=m, FXRS™(f«(D)) is generated by

the global sections. Hence [*F@S™(f*<f4(D)) is generated by the global
sections. We put F=0(—A), where ©(A) is an ample invertible sheaf on Y.
Then mD— f*A is effective and L* '(mD— f*¥*A)=0. Hence L**D>0. O

THEOREM 1.4.2. Let (f, X, Y, L) be a polarized fiber space with dim X=
n=3 and dim Y=1. Suppose that g(L)=g(Y). Then (f, X, Y, L) is a scroll.

Proor. First we have
1
(1.4.2.1) g(L) = g(Y)—l——g(KX/y—Hn—l)L)L”'l—I—(L"“F—l)(g(Y)—1)-

Case 1): g(¥)=1
If f4«O(Kxy+(n—1)L)#0, then f.O(Kx,y+(n—1)L) is ample by Theorem 2.4
and Corollary 2.5 in [E-V], so by Lemma 1.4.1,

(Kyp+n—DLYL™* > 0.
By (1.4.2.1), g(L)>g(). Hence we may assume [« OKy, p+(n—1)L)=0, If
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Ky, y+(n—1L is not nef, then (f, X, Y, L) is a scroll by [Theorem 1.1.2. Hence
we may assume that Ky,p+(n—1)L is nef.
By hypothesis, there are two possible cases:

(A) Kxy+n—DL)L" =0, g¥)=1
B Kxp+n—1L)L"" =0, L"'F=1

Case (A)
Since g(L)=g(Y)=1, we have

(A-1) (X, L) is a del Pezzo variety
(A-2) (X, L) is a scroll over an elliptic curve

by Fujita’s classification of g(L)=1. ([Fj2])

If (X, L) is the case (A-1), then since —Ky is ample, ¢(X)=0, which con-
tradicts ¢(Y)=1. Next we consider that (X, L) is the case (A-2). Let n: X—C
be a P™ -bundle with Lr=0O(), where C is an elliptic curve and F is a fiber
of f. Since P"7! has no fibration over a curve for n=3, there is a morphism
p: C—Y such that f=per ((4.4) in IlI). Since f has connected fibers,
p is an isomorphism ((7.1) in [MuJ). Therefore (f, X, Y, L) is a scroll.

Case (B)

In this case we can exclude g(Y)=1, which implies g(¥Y)=2. Since (Kx,»
+(n—2)L)L" '+ L"=0, Ky,y+(n—2)L is not nef. Hence we can apply Theo-
rem 1.1.3 to this case.

Case (B-1): (f, X, Y, L) is the type (3-1) in Theorem 1.1.3.

This case cannot occur. Indeed, let E=P" ! be as in (3-1) in [Theorem 1.1.3.
Either E cannot be a fiber of f, or the restriction of f to £ cannot be a sur-
jection since P”°' has no fibration over a curve. If £ is in a fiber of f, the
fiber is not irreducible and L* 'F>1, which is a contradiction.

Case (B-2): (f, X, Y, L) is the type (3-2) or the type (3-3) in [Theorem 1.1.3.

In these cases, L® 'F>1 which are contradictions.

Case (B-3): (f, X, Y, L) is the type (3-4) in [Theorem 1.1.3.

Let F=P¢(&), Lr=0pw&ry(1), and 7 : P¢(&)— C the projection, where & is a
locally free sheaf of rank n—1 over a smooth curve C.

We may assume that & is ample. det & is also ample.

By Riemann-Roch formula on C and vanishing theorem,

h*(Kco+det &) = A(Kco+det &)
= g(C)—1+deg(det &).

If h°(K;+det £)=0, then we have g(C)=0 and deg(det &)=1.
Then

€ = 0(a)Do(a)D - Po(arn_1)
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by Grothendieck’s theorem.
Since € is ample, a;>0 for any . Hence

deg(det&) =n—1=2

since n=3. This contradicts deg(det &)=1.
Therefore by the formula Kr,c=0p @) (—(n—1))Qr*det &,

hY(Kp+(n—1)Lr) = h*(z*(Kc+det &)
= h%(Kc+det &) > 0.

But by Grauert’s theorem, f«O(Ky,y+(n—1)L)=0.

This contradicts the assumption.

Therefore this case cannot occur.

Case (1) is complete.

Case (2): g(¥)=0, ie., Y=P!

In this case, g(L)=0. So by Fujita’s classification of (X, L) with g(L)=0
([Fj2]), (X, L) is one of the following three possible types:

A (X, L)=(P", o).
(B) X is a hyperquadric in P"**!, L=0x(1).
(C) (X, L) is a scroll over P*.

Note that X with Pic X= Z has no fibration over a curve.

Case (A)

This case cannot occur since X has no fibration over a curve.

Case (B)

Since n>3, Pic X=Z by Lefschetz’s ((7.1) in [F38]). Hence this
case cannot occur.

Case (C)

Let h: X— P! be the structure morphism of scroll, and F, (=P" ') any
fiber of h, which has no fibration over a curve for n=3.

Then dim f(F)=0.

Hence there is a morphism p: P'—Y such that f=pg-h ((4.4) in 11D.
Since f has connected fibers, g is isomorphism ((7.1) in [Mu]).

Therefore (f, X, Y, L) is a scroll. ]

When dim X=2, we obtain the following.

ProproSITION 1.4.3. Let (f, X, Y, L) be a polarized fiber space, X a surface,
and Y a curve. Assume that g(L)=g") and (f, X, Y, L) is not a scroll.

Then (f, X, Y, L)=(x, P*X P, P!, L) as a polarized fiber space, where ©
is one projection such that LF,=2, where F; is a fiber of =.

PROOF. Let F be a general fiber of f.
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Case (1): g¥)=1.

Case (1)-1: g(F)=2.

In this casg, by Theorem 5.5 in

Hence this case is excluded.

Case (1)-2: g(F)=1.

In this case, k(X)<k(F)+dim Y=1 ([Ii1]). Let (f’, X', C, L") be the rela-
tively minimal model of (f, X, C, L) and p:X—X’ its birational morphism,
where L’=p4L in the sense of cycle theory. By the canonical bundle formula
for elliptic fibrations ([(BPV]), Ky-L=Ky.-L'=22g(Y)—2. Hence taking it into

account that g(L) is an integer, we have g(L)=g(Y)+1, which is a contra-
diction.

Case (1)-3: g(F)=0.

In this case, #(X)<k(F)4+dimY=—co, Then g(L)=q¢(X) ([Fk1]). Since
g(L)=g(), we have g(L)=g(¥)=¢(X). Thus by the classification and
[FkI], (X, L) is one of the following two types.

(A) (P? o)), r=1 or 2.

(B) X is a P'-bundle over a smooth curve C and L|pm=0(1), where F’ is
a fiber of the projection 7w: X— C.

(Fk1], g(L)zg(Y)+1.

Case (A) is excluded, since P? has no fibration over a curve.

Case (B)

Since 7 is a P'-bundle and g(¥Y)=1, there is a morphism p: C—Y such
that f=pem ((4¢.4) in III). Since f has connected fibers, g is isomorphism
((7.1) in [Mu]).

Hence (f, X, Y, L) is a scroll.

Case (2): g(¥Y)=0.

By hypothesis, g(L)=g(Y)=0. By the classification [L-P], and [Fj3],
(X, L) is one of (A) and (B) of the previous Case (1)-3. Hence (X, L) has a
structure of scroll, since (A) never becomes a polarized fiber space as remarked
previously.

Let 7,: X - C=P*' be the P'-bundle such that (z;, X, C, L) is a scroll. We
put X=P¢(€) and £€=0cP0-(—e), where ¢=0. Let H be the —oo section of =,
which is a member of the complete linear system associated to the tautological
invertible sheaf Op(1) over X and F; a fiber of 7,. We remark that H*=—e¢
((Hal]). Let F, be a fiber of f. Then we can write Fy=aH-+bF, for some
a, beZ. Since F}=0, —a%e+2ab=0. If a=0, F,=bF, and b>0. f factors
through =;, which is an isomorphism since f has connected fibers. Hence we
can prove (f, X,Y, L)=(n,, X, C, L), which is a scroll against hypothesis.
Thus a+0, 2b—ae=0 and F,=aH-+(ae/2)F,. Since F; is nef, we have F,-I}
=a>0 and H-F;=—ae/2=0. Therefore e=0, X=P'X P! and let =, be one
projection and =, the other projection. Then H is a fiber of m,. Since Fy=aH
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for some a&N, there exists a morphism #: P'—Y such that f=0-m, Since
f has connected fibers, # is an isomorphism. Hence (f, X, Y, L)=(m,, P'X P!,
P L), O

ExAMPLE 1.4.4. Let X=P'X P!, p,: P'XP'— P! the i-th projection, and
F; a fiber of p;. Then Ky=—2F,—2F,. We put L=2F,+F, We remark that
L is ample and g(L)=0.

Then (p,, X, P!, L) is a scroll, but (p,, X, P', L) is not a scroll.

§2. Some special cases of dim Y =2.

In this section, we shall consider some special cases.
First by we can prove the following lemma:

LEMMA 2.1. Let (f, X, Y, L) be a quasi-polarized fiber space with dim X>
dim Y =1 and x(F)=0, where F is a general fiber of f. Then Ky, L"*=0.

PROOF. Since k(F)=0, we have f+OCKx,»)#0 for t>0.
By Viehweg’s¥theorem ([V3]), f«O(Kx,y) is weakly positive. Hence by
and Remark 1.3.2, Kx,y L '>0. 0

THEOREM 2.2. Let (f, X, Y, L) be a quasi-polarized fiber space with £(X)=0
and dim X=n=3, where Y is a normal projective variety with dimY=m and
k(Y)=0 or 1. Then g(L)=q(Y)+[((n—1)/2)L™"|—m~+1. In particular, g(L)=q(Y)
holds if L™=2.

PrOOF. Note that a quasi-polarized fiber space (f, X, Y, L) with Y a
normal projective variety can be replaced to a quasi-polarized fiber space
(f, X', Y’, L’) with X’ and Y’ smooth projective varieties and with g(L)=g(L")
and X’ and Y’ are birational to X and Y, respectively. Hence we omit the
prime. Indeed, let #:Y’—Y be a resolution of Y. By Hironaka theory [Hi],
there exist a birational morphism 4: X’ — X, and a surjective morphism with
connected fibers f': X’'—Y"’ such that fed=p-f".

We remark that (f’, X', Y/, L) is a quasi-polarized fiber space and g(L)=
g(L"), where L'=(A)*L.

Case (1): £(¥)=0.

By Kawamata’s theorem, ¢(¥)<dim ¥V =m.

Hence by Lemma 2.1,

1 —
g(1) = Lt KL L Ly poi( Ly

2 L D g SR AL
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Since f*Ky(L)"'z0, and g(L)eZ, we have

n—1

2

g(l) =z m+[ Ln]—m+1

n—1

2 )+ L |-mL.

Case (2): x(Y)=I1.

By litaka theory ([Iil]), there exists a fiber space g:Y— C onto a curve
C with a general fiber F of &(F)=0.

By B in Appendix and Kawamata’s theorem, ¢(Y)<g(C)+q(F)<
g(O)+dim F< g(C)+m—1.

Hence if g(C)=0, ¢¥)<m—1.

Hence

(D)= 1+ [ 1]

> m~1+[£j2iL"-|-m+l

> q(y>+["—"2'iu]—m+1.

If g(C)=1, applying [Theorem 1.3.3 to (g-f, X, C, L), we have g(L)=g(C)+
[(n—1)/2)L™], since £(F)4dim C=£(X)=0 ([Iil]).
Hence
g(L) = g(C)+m—l—|—P£;2——1Ln]_m+1

= o[ L mer, O

Next we prove that Conjecture 2 is true if £(X)=0, x(Y)<1, and dim Y =2,

THEOREM 2.3. Let (f, X, Y, L) be a quasi-polarized fiber space with £(X)=0
and dim X=n2=3, where Y is a normal projective surface over C with k(Y)<1.
Then g(L)zq(Y)+[(n—1)/2)L"]—1.

Proor. As in the proof of [Theorem 22, (f, X, Y, L) is replaced by
(f, X, Y, L) If gY)=0 or 1, then, by g(L)zq(Y)+
[((n—1)/2)L™]—1 holds.

So we may assume that g(})=— oo,

If ¢(Y)=0, it is obviously proved. Since #(X)=0 and g(L) is an integer,

2(L) gl+{";1L"].
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If ¢(Y)=1, there exists an Albanese map #:Y— C where C is a smooth curve
of genus ¢(Y). Hence h==n-f: X— C is a fiber space. Since x(Fy)+dim C=
£(X)=0 and g(C)=1, applying [Theorem 1.33 to (z-f, X, C, L), we have

g(L) = g(C>+P—tziLn] > q(Y)~1+[,E;L,Z],

where F, is a general fiber of A. O

Appendix.
First we shall prove the following theorem by the same method as [V3].

THEOREM A. Let X and Y be smooth quasi-projective varieties over C, .L
a semiample tnvertible sheaf over X, f: X—Y a projective surjective morphism,
and oyy=wxQf*wy'. Then for any positive integer k, fx(Wx;y&L)®*) is
weakly positive in the sense of Viehweg [V3].

REMARK. If .£ is semiample over f~'(UU) for an open set UCY, then we
can prove that for any positive integer %, f«((@x/yQL)®*) is weakly positive
by the same method as the following argument.

We use the same notations as in [V3].
Let & be a torsion free coherent sheaf over Y and g** the double dual of
. Let SPF denote the double dual of the B-th symmetric power of &.

DEFINITION. The sheaf ¢ is said to be generated over an open set U by
global section if the canonical map

Oy QH Y, ) —> y

is a surjection and U is an open set dense in Y. An invertible sheaf .L is said
to be semiample over U if some tensor power of £ is generated over U by
global sections. Note that $=0 is said to be generated over Y by global
sections. & is said to be weakly generated over an open set U if the double
dual of some symmetric power of & is generated over U by global sections.

Note that letting 7: Y (4)CY be the biggest open set such that & is locally
free, S*(F)=14S*(*9).

DEFINITION (Viehweg [V3]). The sheaf & is said to be weakly positive if
there exist an ample invertible sheaf 4 over Y and an open set UU such that
for any positive integer a, S*(F)X.4 is weakly generated over an open set U
by global sections.
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Note that $=0 is weakly positive and that since & is torsion free, & is
locally free in codimension one. Hence H'(Y, SA(F)=HY (%), S#(F)). Hence
to prove fi((wyx,yQ-L)®*) is weakly positive, we may replace ¥ by Y —S over
which fyx((@x,y&Q-L)®*) is locally free with codim(Y —S)=2.

At first we shall prove the following lemmata.

LEMMA A.l. fulwx QL) is weakly positive.

PROOF. Since .£ is semiample, for some Nz=2
L% = o(SvD),
J

where D; are non-singular prime divisors with y;=1.
Let ,C(l):I@l(_Z][ZV]/N]D]) By Lemma 5.1 in , f*(pf(i)®(l)X/y> is
weakly positive. But since N>2, we have £ ®=_. Therefore

fe@xyQLD) = fulwxr&L)

is weakly positive. O

LEMMA A2, Let f, X, Y be as above and L a semiample invertible sheaf
over X,

(1) Let A be an invertible sheaf over X and X e;E; an effective divisor’s
irreducible decomposition such that for N>0, A®VN=0x(2;e,;E;). Suppose that
the support of 2 e;E; is normally crossing over f~YU) for a dense open set
ucy.

Then, for 0<i<N—1, the sheaf fu(A®(—22;[i-e;/N1ENQwx vy QL) is weakly
positive. (Therefore for 0<i<N—1, the sheaf f4(A*(—2;8;E)QRQwyyRL) is
weakly positive if

f'*(uz‘l@i(— Z[%VQ'J."]E;)@wX/Y@J’) —> f*(u@i(—— ZJ] g,E;)@wX,y(X),E)

is an isomorphism over a dense open subset of Y.)

(2) Let J1 be an invertible sheaf over X which is generated over [~ U) by
global sections for an open set UCY. Then NN=0x(B+2X;d;D;) as the irreduc-
ible decomposition such that B is nonsingular over f~*(U) and the support of
2;d;D; is contained in 'Y —U).

PROOF.

(1) We take a blowing up p: T— X which is an isomorphism over f~'(U)
such that (u* A)®Y=0x(2; 1 f; +F; 1) with the support of the irreducible decom-
position 33; x F; » normally crossing. Note that e¢;|f; :, and the centers of the
blowing up never meet the points where 3}; F; is normally crossing. Let d be
a composite of a desingularization Z — Spec(Pi'(p*A)"") and the structure
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morphism Spec(P¥5 (p*A) ) —T. Then by (2.3) in [V3], we have
N-1 _
dx@zy = 1@0 (* AP Qwryy) .
Hence
N-1 )
froptaeds(@zpyQd*e p* L) = @)f*w*((p*dl)“’®wmy®ﬂ*-€) .

By Lemma A.1,
f*°[l*°d*(wzm®d*°#*=f)

is weakly positive. Hence

Fxo ps((p* AP Qg yQu* L) = f*"ﬂ*((#*uq)m(“‘ ]‘.Zk [ z*{\? g :le. k)@wr/y(g)/!*of)

is weakly positive. The following natural map is an isomorphism over U

f*"#*((#*d’l)@i(— j,zk [i{\; : ]Fj, k)@wT/Y@).U*J)

- f*“ﬂ*((ﬂ*«/l)@i(— 2'['1“:’%‘i]FJ‘, k)@wT/Y®ﬂ*=j:)

if in the last term the sum 3’ tends over Fj:’s intersecting on (feu) ().
Hence the last term is weakly positive. On the other hand &(Z;[7-e;/NIp*E;)
=022+ f5.2/N1F;4) over (fou) '(U).

Hence over U

f*°#*((#*dl)®i(" E'[L{\]LH]FL p)®wT/y®/,e*,£'>
= f*oﬂ*((ﬂ*uq)®i('—;[iﬁi]ﬂ*Ej)®wT/Y®ﬂ*o£)
= f*(Jl@i(— ;[L;i]Ej)@)wX/Y@I)

is weakly positive,

(2) Let 1=0x(B+2>:d;D;), where D;C f~*(Y—U) for each 7. Since I is
generated over f~!(U) by global sections and 71| ;~1qn=0x(B)| -1, @ general
section B of JI| ;-1 is nonsingular over f~'(U) by Bertini’s theorem. O

LEMMA A.3. Let X, Y, f, L be as above and % an ample line bundle on Y
such that for given k>0 and some v>0 the sheaf S*(fx((@xvQL)P*)QIH®*) is
generated over an open set U by global sections.

Then fu((@x,yQL)P*Qf*H®*™Y) is weakly positive.



A lower bound for sectional genus 355

Proor. By (1.31iv) in we may replace Y by Y—S, as long as S is a
closed subvariety of codimension =2. Hence we may assume that fx((@x &
LRf*9)®*) is locally free on Y.

We put

M = Im(f*(fe((@x v QLRf*I)®*)) —> (@x xR LR f*I0)®F)**,

where ** denotes the double dual.
Then % is a line bundle, i.e.,

M= @y yQLR*IH)®*ROx(—7Z),

where Z is an effective divisor on X.
Then there exists a blowing up of X, p,: X’ — X such that

ot fA(fl(@x yQ LK f*IH)*H)) —> pH(@x iy QL& f*IH)®*)QpT0(—Z)K0(—E)

is surjective, where F is an exceptional effective divisor.

In order to have the support of p¥(o¥Z+ E)=D in a normal crossing divisor,
we take a blowing up p,: X” —X’. Here we put p,°p.=p and f-p=g.

The pullback of the map above

0% [ fa((@x iyQLRS*H)%H) —> p*(0x iy QL& f*H)*F)QO(— D)
is a surjection, whose image we denote by JI. Note that gxTlDf«(Wx;yQLE
I = gx(0xyQp* L) )RQ4®* and that pwf=w$*. Then we have

G*(f(@x QLY f*I)®") = g*(fal(@x xQL)IPF)RI®*)
= g*(gx((@xyQp* L)®H)RQH®*).
We remark that
[x((@xy&-LIP)RICF = gx((@xnr@p* L)PHRHCF,
and
S*(fa((@xy@LIPNRIHEE) = S (gsl(@xny@p*.LIPF)RQIE*).
Since :
g (gx((@xryQp* LY*H)RQ.H®*) —> p*(@x v QLR f*I0)**)RO(— D)

is surjective,

g*S*(g#(@xry@p* L)*F)RIH®*) —> S*(p*(wx 1y QLR f*I)®*)RO(— D))
= p*(0x1¢Q-LR*I®F)NRQO(—vD)
is surjective.
Hence by hypothesis, 71®*=p*(wx,yQLQf*I)®*)QRC(—vD) is generated
over g }(U) for an open set U of ¥ by global sections.
Hence we apply Lemma A.2 to (p*(wyx;y&-LERf*I))2*=NR0O(D).
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Then gw(@xrv@o* LE(0*(@x/yQLRf*9)2* H(—[(k—1)/k)D])) is weakly
positive.

Since pwwy,=wyx, we have
(1) gx(0x-n®p* LB(pHrn@ L& 30 (- £ D))
C gx(@xry@0* LQ(0*(x /v QLRf*9))® 1)
= fx((0xyQLYPF)QHC* 7,
and since O([((k—1)/k)D])CO(D) and p*wxCwy,

(2) AR C Orn@p*LBoHwrn@L@ ([ £ D))

Since guNDfs((Wx,yRLR*90)%%), we have by (1) and (2)

k—1
2xNQH™ C g*(“’X”/Y®P*vf®P*(G)X/Y®~5®f*ﬂ)®k41(_[%75#0]))
C ful(0xp@LIPF)QH®*
three of which all coincide and are weakly positive. O

LEMMA A4, Let f,X,Y, L be as in Theorem A, Y’ a smooth quasi-
projective variety, v:Y'—Y a flat projective morphism, S=XXyY’', S’ the
normalization of S, and X' a desingularization of S’'. We have the following
diagram :

d o Ty
X — 5 — S — X

el e e s
Y’ Y’ Y’ Y
id id T

We put t,=7:°0 and v'=1,°d.
Assume that S’ has only rational singularities.
Then for any k=0 there exists a homomorphism

it f:k((wx'/y'@(‘l'/)*of)@k“) —> e f((@x yQRL)®FHY)
which is an isomorphism over an open subvariety of Y'.
PrROOF. By the proof of Lemma 3.2 in [V3],
0o du(@PR) —> TH L

is an isomorphism over A (U) for an open subvariety U of Y’. Then
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Oxodx(@x )y Q(T)¥LYF) = gyody (@3 )RQTF LT
— tF(0x iy RL)PF)

is an isomorphism over A Y(U).
Hence since 7 is a flat morphism, by the flat base change theorem ([Hal]),

fill@xr p Q@ )* L) —> hyotF(0x )y QL)PE)
= ¥ fu((@x)p&@L)®FT)

is an isomorphism over U. ]

PROOF OF THEOREM A. Let 4 be any ample line bundle on Y.
Only to prove [Theoreml A, by (1.3 iv) in [V3], we may assume that
fe(lwx x&.LY2F) is locally free on Y.

r=Min{s>0: fxl(@yx,yRL)E)RQH®** "1 : weakly positive}.
Then there exists a positive integer v such that

S*(fs((@x 7@ L)PF))RIHETED R4S

is generated over an open set by global sections.

By Lemma A.3, f+((0yyRLIPHRHET ™D is weakly positive. Then by the
choice of », (r—1)k—1<r(k—1). Hence we have »r<k. Hence for any surjec-
tive morphism and any «, f«(@0y,yQ.L)PH)RIH®*** is weakly positive.

Next we take 7:Y’-—Y : a finite surjective morphism such that z*4 =(%’)®¢
for a Cartier divisor %’, where Y’ is a smooth quasi-projective variety and d
is given below. (We can take this. See [B-GJ, [Kal], [V3].)

We use the same notations as in Lemma A.4.

We blow up X if necessary, so we may assume that the support of the
ramification locus A(S’/X) (see [V2]) is a normal crossing divisor. Then the
assumption of Lemma A.4 is satisfied. (See [VI].)

By the same argument above for f': X'—Y’ and Lemma A.4, we can
prove that 7%e fy((@yyXL)PHR(H )P * is weakly positive.

Let « be a positive integer, and we put d=2(k*—k)a+1.

For a sufficiently big integer B,

(1) S8 (t¥e fr((@x v LIZR(I ) )AL )®P
= t*S*P(fa((wx p@LIPFNR(c* )P

is generated over an open set by global sections.
Since the trace map t«Oy' — Oy is surjective,

(2)  Taet¥ (S (fa((@x p@LIPNRI®E) ——> S*8(fr((@x jpRL)PF)NR ISP

is surjective.
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By (1),
POy —> S E( fr((x 1y QL)) Qr* 4 87

is surjective over a dense open set of Y.
Since 7 is finite surjective,

D40y —> T K S (fu((@x rQL)PNRH®F)

is surjective over a dense open set of Y.
Hence by (2)

(PrsOy )RIH®F —> S fr((@x 1y QL)) H P

is surjective over a dense open set of Y.
For a sufficiently big integer 8, 74Oy XK ®f is generated by global sections.
Hence S**f(fyl(wx,yQL))®*))X 4% is generated over an open set by global
sections. Therefore f«((wx,y&-L)®*) is weakly positive. =

We can also prove the following theorem. (This theorem was pointed out
by the referee.)

THEOREM A’. Let X and Y be smooth quasi-projective varieties over C, L
a semiample invertible sheaf over X, and f:X—-Y a projective surjective
morphism. Then for any positive integer k and i, fo(@¥y®L®) is weakly
bositive.

PROOF. Let n:X’'— X be a finite cyclic covering defined by the nonsingular
divisor B such that .L®¥=0O(B). Then ywwy y=P (@x,y&Q.L®). Since X' is
nonsingular and 7 is affine,

(7]*wX’/Y)®k = 7}*(603%/?)-

Hence we have
R(N_-1)
(fon)u(@§iy) = L@O Fe(@0%yQLEH)Sx®),

which is weakly positive by Viehweg [V3], where (&35! x9)* =344 "2 a(t)x’.
Thus fx(@$yQL®) is also weakly positive for 0<t<k(N—1). Tend N— oo
and we complete the proof. 0

THEOREM B. Let (f, X, Y) be a fiber space with n=dim X >dim Y =s.
Then q(X)<q(F)+q(), where F is a general fiber of f.

ProOOF. Note that H(X, f*QL)=HY, 2%) since (f, X, Y) is a fiber space
and that there exists the canonical restriction: H°(X, 2% — HYF, 2%), ¢ — ¢».
By the following claim proved soon, we can show the inequality

dim H(X, Q%)/H (X, f*Q%) < dim H(F, 2%).
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Indeed let (¢;):s:sq be a basis of representative 1-forms of H(X, 2%)/HX, f*2%).
If there exist complex numbers (a;)sisq sSuch that (39-, a:¢;)»=0, by the claim
24 a:0:,=0 mod H°(X, f*Q}), which implies the image of the basis is linearly
independent in H°(F, 2%). It is enough to show the following claim:

CLAIM. Let ¢ be an element of H*(X, Q%) such that ¢r=0 for a general
fiber F of f. Then there is a ¢=H'(Y, 2%) such that ¢=f*), where Q% (resp.
¥) is the sheaf of differentials of X (resp. Y).

Let Y, be a Zariski open set such that f,: Xo=f"'(Y, —Y, is smooth and
S(f)=Y—Y, Let D be irreducible components of >} (f) of codimension 1 in
Y and D=\J!.,D;. Then we may assume that D and f (D) are normal
crossing divisors. Indeed, if \Ui{-; D; is not a normal crossing divisor, then by
taking some blowing ups py:Y,—Y, (u¥(D))rea is a normal crossing divisor.
Then there exist a birational morphism g, : X;— X and a surjective morphism
f1: X,—Y, with connected fibers such that pyefi=fop,. Let 3 (f)=ps'(Z(f))
and Y,,,=Y,—>3(f,). Then Y,, is a Zariski open set such that f,: f7'(YV; 0=
X, o—Y,, is smooth. Let A be the union of irreducible components of > (f,)
of codimension 1 in Y,. Then A is a normal crossing divisor. If (f7'(A))req i
not a normal crossing divisor, then we take some blowing ups p,: X,— X,
such that ((fiept2) "(A))reqa is @ normal crossing divisor. We remark that f,=
fieps: Xo—Y, is a fiber space, ¢(X)=q(X,), ¢(Y)=q(Y,), and ¢(F)=¢(F;), where
F (resp. F,) is a general fiber of f (resp. f,). If we can prove ¢(X,)<Zq(F,)+
q(Y,), then ¢(X)<q(F)+4q(Y) is proved.

(Step 1)

We remark that there is an exact sequence

0— f?:kgxlfo —> Q,IYO —> vao/yo —>0,

where £%,/v, is the sheaf of relative differentials of X, over Y.
Hence

a B
0 —> H'X,, [§8%,) —> H(Xo, k) —> H*(X,, Qxyv,)

is exact.

Let o H(X, 2%). We assume that ¢p,=0 for some ycY, where F, is
the fiber of f over v.

Note that

HYXo, Lxyive) = H' (Yo, f+2x,v,) = Hom(Op,, Fs8x,v,) .

Hence there corresponds @ : Oy, — f+2x,/v, to the given B(¢x,).
By Hodge theory, dim H(F,, .Q},wy) is constant for any vy=Y,  Thus
[582x017,Q0y/my=H"F,, Lk,) for any yeY, Hence ¢r,=0 for some yeY,
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implies the following composite map is zero; Oy, — f+&x,»,&0,/m,. By NAK
lemma, the map Oy,— fxLx,r,Q0, is zero and @ :0p,— fxRx,r, is zero.
Hence B(px,)=0.

Therefore by the above exact sequence there exists ¢,=H(X,, f¥2%)=
HYY,, 2% such that f¥p,=¢ on X,.

(Step 2)

Let A=Y —(DUY,) and Y ,=AUY,. Then A is an analytic subspace of Y,
and codim(A4)=2 in Y. Hence by Hartog’s theorem, there exists ¢, H(X,, [*2%)
such that f*¢,=¢ on X,=f"'(Y ).

(Step 3)

The following argument is the same as in the proof of Proposition 6.7 of
[F-R] p. 975.

Let D=\Ui, D;, f"{(D)=W=\J,;W; and for each D; we take an irreducible
component W; of f~*(D;) such that f(W,)=D,.

Let Miy={xeW,|fw,: W;— D, is of maximal rank at xeW\U;.;W; and
f(x)&D; for j#i}, and N;={yeD;|y=f(x), x&M;}. We remark that D; and
W, are smooth by assumption. Let x=M,;. Then we take a coordinate system
(x4, Xa, -+, Xp) on X around x=M,; and a coordinate system (y;, Vs, -+, ¥s) ON
Y around y=f(x) such that W;={x,=0}, D,={y,=0}, and f is defined by
(X1, Xo, v, Xn)— (x4, Xo, =, X9)=(¥1, Yo, -, ¥s) around x, where p&N. Let
Ti(x) be the germ of manifold defined by x;,,= - =x,=0 around x. We will
identify T (x) with a representing neighbourhood of x. Then U;(y)=f(T(x))
is a neighbourhood of y in Y. Let G be the group generated by geAut(T(x)),
where g: (xy, x5, -+, x5) —(0Xy, X5, -+, X5) With p=exp(@ni/p). Then f(T.(x))
is the quotient of Ty(x) by G. By (Step 2), we have ¢{,€H°(U;(y)—D;, 2%)
such that @=r*¢¥, on fUi(»)—f(D). Hence grym=g*prum off W,
where ¢r,» is the restriction of ¢ to T (x). This implies that ¢r,w is
G-invariant as a holomorphic 1-form. Hence ¢r,, is a pullpack of a holomor-
phic 1-form (¢ ) on U, (»)=f(T«(x)=T(x)/G. We remark that (§;)" is an
extension of ¢¥,. Therefore o=f*((¢¥.)") on f(U(y)—f'(D;. Since ¢ and
(¢4 )" are holomorphic, o= f*(¢f.)") on fHU(y)).

(Step 4)

Let Yo=Y ,U U1 (Uyen, Us(»). Since ¢, and (¢4 ;)" are holomorphic, there
exists ¢.=H(Y,, %) such that ¢=f*@, on f7'(Y, by the above argument.
Because Y —VY, is contained in an analytic subset B of Y with codim(B)=2 in
Y, by Hartog’s theorem, there exists ¢=H(Y, £2%) such that p=7f*¢ on f~'(Y,).
Since ¢ and ¢ are holomorphic, ¢=f*¢ on X=/F"'(Y). O
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