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§0. Introduction.

In recent years, a considerable number of works have been done on the
harmonic maps from compact Riemann surfaces to compact Lie groups or
compact symmetric spaces. Among many results we are interested in the
following two results;

(1) Uhlenbeck has constructed all the harmonic maps from 2-sphere S?
into unitary group U(n), at each of which the uniton number (£<n—1)
is attached ([U)).

(2) Burstall and Wood constructed all harmonic maps from S? to Gr,(C™)
(=Grassmann manifold of the set of 2-dimensional subspace of C*) by
finitely many times of forward (or backward) replacements to the
elementary harmonic maps ([(Bu-Woo]).

We have to remark about (2). At first, Ramanathan constructed all harmonic
maps from S? to Gr,/C*) ([R]). And Burstall and Wood generalized this con-
struction. Chern and Wolfson also constructed all the harmonic maps from S?
to GryC") by 0- and o-transform, recrossings and returnings ([C-Wol 1],
[C-Wol 2]). We also remark Gr,(C*) is canonically embedded into U(4) as a
totally geodesic submanifold. Thus any harmonic map from S? to Gr,(C*) is
also a harmonic map into UU(4), and has the uniton number. In this paper we
shall calculate the uniton numbers of all the harmonic maps from S? to Gr,(C*)
CU@4) from the view point of results [Bu-Woo].

First we shall strengthen results (2) to obtain that in results (2), at most
one forward replacement is sufficient. Then we calculate the change of uniton
number with respect to the forward replacements. We shall obtain the follow-
ing theorem (the terminology is recalled later):

THEOREM. All harmonic maps from S* to Gry(C*) are classified in terms of
isotropy and uniton number as follows :
iy isotropic case;
1) A constant map has uniton number 0,
2) A (anti-)holomorphic map has uniton number 1.
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3) A map which has uniton number 2 is one of the following :

« A map ¢ which decomposes to the form ¢ or ¢*=[fDc, where f is a
non (anti-)holomorphic harmonic map to CP* and ¢ is a trivial line
bundle.

« A Frenet pair.

« A non (anti-)holomorphic, harmonic map obtained by a forward re-
placement of a Frenet pair.

« A mixed pair ¢ defined by ¢=fDg where f is holomorphic and g
is anti-holomorphic with spans2Im ;| spanseIm w, namely a strongly
isotropic mixed pair.

« A non (anti-)holomorphic harmonic map obtained by a forward re-
placement of a strongly isotropic mixed pair.

il) non-isotropic case;

1) A map which has uniton number 2 is a mixed pair ¢ defined by
¢=fDg where [ is holomorphic and g is anti-holomorphic with
spans2Im ¢ ¥ spanszIm w;, namely a non-strongly isotropic mixed pair.

2) The map obtained by a forward replacement from a non-strongly
isotropic mixed pair has uniton number 3.

As a corollary, we also see the following.

COROLLARY. Let ¢:S5°—Gry(C*) be a full harmonic map. Then the uniton
number is equal to 2 if and only if ¢ is isotropic or a mixed pair.

In §1, we review the twister theory of harmonic maps from S? to U(n) due
to Uhlenbeck ([U]). In §2, we also review the twister theory of harmonic
maps from S? to Gr,(C") due to Burstall and Wood ([Bu-Wool). They found
that harmonic maps from S? to Gr,(C™) are obtained by finite times of certain
transformations (called “forward” or “backward” replacements) from holomorphic
maps, Frenet pairs or mixed pairs, which are some simple examples of harmonic
maps. We also review the notion of “diagrams”. In §3, we observe the more
precise information of §2 in the case when the target is Gr,(C*). In §4 we
observe that “forward replacements” appearing in [Bu-Woo] is a special case
of the transformation “uniton transformations” appearing in [U]. In §5 we
describe the diagram for Gauss bundles of holomorphic maps from S? to CP* !,
The Gauss bundle already introduced in §2 is a fundamental notion related to
forward replacements. The results we shall prove in §4 and §5 seem to have
been known among the experts in this field, but no explicit proof seems to be
available. In §6 we observe the isotropic conditions. In §7 we describe the
normalized extended solution of Frenet pairs and harmonic maps obtained by a
forward replacement from a Frenet pair via the fact in §4. In §8 we describe
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the normalized extended solution of harmonic maps obtained by a forward
replacement from a mixed pair by using the fact in §4. And lastly in §9 on
these grounds above we arrive at the conclusion.

Finally the author would like to thank Professor Takushiro Ochiai for many
useful advices and encouragements. The author also wish to thank Professor
Yoshihiro Ohnita and Doctor Mariko Mukai for helpful discussions and comments.
In particular Ohnita suggested the improvement of §7. Further the author is
indebted to Professors Francis E. Burstall, Seiichi Udagawa, John C. Wood and
the referee for reading the manuscript and making a number of valuable
suggestions.

§1. The twister theory of U(n).

Let 2 be a Riemann surface and through this paper we fix this notation.
Let U(n) be the unitary group of degree n, namely Un)={A€GL(n;C); A*A
=1}, endowed with the bi-invariant metric. We denote by u(n) the Lie algebra
of U(n), namely u(n)={AeM,(C); A+ A*=0}. We set that C*=C~{0}.

Let ¢: 2 —U(n) be a harmonic map. We consider the following system of
linear partial differential equations: fix p=23 as a base point,

EFE; = (1-2)-5 73

(. lEilaEx — (—2)5 9708
E(p)=1.

DErFINITION 1.1. If a solution F£; of (1.1) exists, we call E; an extended
solution of ¢.

In case X is simply connected the integrability condition of (1.1) is the
harmonicity of ¢ so that extended solutions exist. The following is the most
important result for the case 2=5? due to Uhlenbeck.

Facr 1.2 ([U]). Let ¢: S*—U(n) be a harmonic map. Then there exists
a map EF:S*XC*—>GL(n;C) as a solution of (1.1) satisfying the following
properties :

(1) There exist kN and T,:S*—gl(n;C) (=0, ---, k) such that E;{(x):

=E(x, A=24=0 Talx)A%

(2) E.=1.

3) E_i1=Q¢ for a constant QU(n).

@) (Ed*=(E;-n)™.

If 3=S?, there exist extended solutions for all harmonic maps and by Fact
1.2, we will assume that extended solutions satisfy the properties (1), (2), (3) and
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(4). For E in Fact 1.2, we call & the uniton number u(E) of E. Note that E
is not unique for ¢. Thus for ¢, the uniton number % can always be enlarged
in a fake way.

DEFINITION 1.3 ([U]). For a harmonic map ¢: X — U(n) with E;=3%_, T 24"
for some 0<k=<oo, we call the minimum of % in Fact 1.2(1) the minimal uniton
number uy; of ¢ and at that time ¢ the k-uniton.

Under the condition of span,es?lmage of Ty(x)=C™", it is known that E is
unique for ¢. We call such E the normalized extended solution of ¢. We know
by [U, Theorem 13.3] that if E is the normalized extended solution of ¢, then
u(E)=uy. We also know that for ¢:S*—U(n) a harmonic map, us<<n holds.

Fact 1.4. Up to the multiplication by constants of U(n), ¢ is 0O-uniton
(resp. l-uniton) if and only if ¢ is a constant (resp. (anti-)holomorphic) (see [U]).
We also know that a harmonic map whose image is included in a Grassmannian
in U(n) is 2-uniton if it is isotropic ([Sak], see also [Be-Gu]). (The definition
of ‘isotropic’ is given in Definition 6.1.)

§2. Harmonic maps into Gr,(C") (cf. [Bu-Woo]).

Let M be a Riemann manifold and G, (C*) a Grassman manifold of the set
of ¢-dimensional subspaces of C*. A smooth map ¢ from M to Gr.(C™) can be
identified as the subbundle ¢ of C"=MXC" of rank ¢ with fiber ¢(x) at x&M.
This bundle is equivalent to the pull back bundle ¢~ ', where g is the tauto-
logical t-plane bundle over Gr,(C"). It is easy to see that the holomorphicity of
¢ is equal to that of ¢ as a subbundle of C*. As in [Bu-Woo], a rank ¢
subbundle ¢ of C" is said to be harmonic if ¢: M— Gr,(C™) is harmonic.

We define ¢*: M—Gr,_(C") by ¢*(x):={¢(x)}* for x&M. Here for a
subspace VCC", V+ stands for the orthogonal complement of V in C™.

Let E— M be a vector bundle. We denote by /'(E) the space of C* sections
of E over M and by ['y(E) the space of C* sections of E over an open subset
Uof M. When E is a subbundle of C*, F has a natural hermitian metric and
the connection induced from the trivial bundle. We denote these by <, > and VZ
respectively. We set E* the subbundle of C* whose fiber is perpendicular to
that of E on each fiber of C*. We set np (resp. 73): C"— E (resp. E*) the
fiberwise hermitian projection.

Let ¢: 2 —Gr,(C") be a smooth map. From now through this paper we
endow ¢ and ¢* with the Koszul-Malgrange holomorphic structure ([K-M7J) as
in [Bu-Woo, § 1B].

Let ¢, ¢ be smooth maps from 2 to Grassman manifolds such that ¢ and

¢ are mutually orthogonal subbundles of C*=3XC". The second fundamental
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forms Ay 4, A}, are sections of Hom(¢, H)Q(TCE)* given by Aj 4(s)=m,0s
and A} y(s)=n4ds for s€l(g). We put Ap=Aj 41 and Aj=A} 4u. ”

Let ¢, -, ¢y be a set of mutually orthogonal subbundles of C" whose sum
is C*. By a diagram ([Sal]) of {¢,, -+, ¢} we mean an oriented graph such
that - -

- vertices are {¢,, -+, ¢u},

» Apy0,=0 if the edge from ¢ to ¢; is absent.

REMARK 2.1. In general, for holomorphic vector bundles V, and V, over a
Riemann surface Y and a holomorphic section A of Hom(V, V,), there is a
unique holomorphic subbundle Im A (resp. Ker A) with (Im A),=Im A, (resp.
(Ker A),=Ker A,) for all xcU where A achieve its maximal rank. For details,
see [Bu-Woo, Proposition 2.2]. We apply this for Aj and also for Aj. The
equivalence between the holomorphicity of A% and the harmonicity of ¢ is
well-known. For example, see [Bu-Woo, Lemma 1.3].

We call Im A} the 0-Gauss bundle of ¢ and denote it by G'(¢). Similarly
we call Im A} the 9-Gauss bundle of ¢ and denote it by G”(¢). If ¢:3—
Gr,(C™) is harmonic, then the Gauss bundles G'(¢) and G”(¢) are harmonic
[Bu-Woo, Proposition 2.3]. Denote by G (¢) the k-th 0-Gauss bundle of ¢
defined by G (@)=G'(¢) and G**V(¢)=G'(G*(¢)). Similarly we define the
k-th §-Gauss bundle G<*(¢) by G (P)=G"(¢) and G*P(P)=G"(G " (¢)).
We put G(¢)=¢. We say that ¢ is strongly isotropic (in the sense of
[(Bu-Wool) if ¢ 1 G®(¢) for any integer 7. A harmonic map ¢: 3 — Gr,(C") is
said to be d-irreducible if rank of ¢g=rank of G'(¢), and 0-reducible otherwise.

Let ¢ and ¢, be subbundles of C" over the same base space M. If ¢, and
¢, are orthogonal, we denote by ¢,(D@, the usual Whitney sum of ¢, and @,.
If ¢.C¢,, we define the subbundle of C*, ¢,&¢. by

<§él@(_52>r = (921);/’\(?2); for x € M.

Fact 2.2 ((Bu-Woo, Theorem 2.4]). Let ¢ be a harmonic subbundle of C".

(1) Let a be a holomorphic subbundle of ¢ such that aC Ker Ajie Aj.
Then, denoting Im(Ajla) by G’(a), the bundle %(¢, a) given by
F (¢, a):=(¢p0a)DG (a) is harmonic.

(2) Let B be an anti-holomorphic subbundle of ¢ such that SC Ker Ag.- A3
Then, denoting Im(A§|B) by G”(B), the bundle B(¢, ) given by

B(3, B):=(¢oB)DG”(B) is harmonic.

The procedure which produces the new harmonic map F(¢, a) (resp. (¢, B))
from ¢ in Fact 2.2 is called the forward (resp. backward) replacement of ¢ with
respect to a (resp. f3). The backward replacement is generally inverse to the
forward replacement, which was demonstrated in [Bu-Woo, Proposition 2.5].
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Now we recall the construction of all harmonic maps from the standard
2-sphere S® to Gry(C™) ([Bu-Woo]). For this we introduce two examples of
harmonic maps from Riemann surfaces to Gr.(C™).

ExaMpPLE 2.3 ([Bu-Woo]). Let h: XY —CP"! be a holomorphic map. Then
=G " (h)DG " Y (h) becomes a harmonic bundle. If G"*'(h)+0, then we have

a harmonic map ¢: X —Grx(C"). We say that ¢ is a Frenet pair associated
with 2 (more precisely »-th Frenet pair associated with h).

EXAMPLE 2.4 ([Bu-Woo]). Let f: Y —CP"! be a holomorphic map and
g:2— CP"! an anti-holomorphic map. If these satisfy flgand G'(f)Lg, we
see that ;é-——f@g_ becomes a harmonic bundle. We say that ¢ is a mixed pair.

Fact 2.5 ([Bu-Woo, Theorem 3.3]). Let ¢:S*—Gry(C") be a harmonic
map. Then there is a sequence of harmonic maps @, -+, dn: S*— Gry(C")
such that

(1) ¢@x is anti-holomorphic, a Frenet pair associated with a holomorphic

map h: S*—>CP"!, or a mixed pair.

@ go=9.

(3) For each i<N, there is a holomorphic line subbundle L, of ¢; such

that ¢,_, is obtained by forward replacement of ¢, with respect to L;
or backward replacement of ¢; with respect to ¢.©L..

REMARK 2.6. For the later purpose we have to recall the sketch of proof
of Fact 2.5 due to [Bu-Woo] when ¢:S*— Gr,(C") is 0-reducible. In this case,
rank of G'(¢)=0 or 1. We try to find suitable successive forward or backward
replacements from ¢ to achieve a holomorphic map, a Frenet pair or a mixed
pair.

(i) If rank of G’'(¢)=0, we see that ¢ is anti-holomorphic. We put gy=¢.

(ii) If rank of G'(¢)=1 and Aj((Ker Ay)*)=0, we see that ¢ is a Frenet

pair or a mixed pair ([Bu-Woo, Proposition 3.7]). We put ¢y=¢.

(iii) In the rest of case, i.e., rank of G'(¢)=1 and Aj(Ker Aj)*)+0, we

do the backward replacements with f=¢OKer Ay of ¢ in succession.
Finally these procedures produce the harmonic map ¢ which satisfies
#y((Ker Ag,)")=0 and that is in case (ii).

We call the set of harmonic maps {@,, -+, @y} the Burstall-Wood’s sequence of ¢.

§3. The case Gr,(C*).

Fact 3.1 ([R, Lemma 3.4]). Either ¢: S*— Gr,(C*) or ¢*:S*— Gry(C*) is
o-reducible.

By Fact 3.1, the harmonic map ¢: S*— Gr,(C*) or ¢* is obtained simply by
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the procedure in Remark 2.6.

LEMMA 3.2. Let ¢:S*—Gry(C*) be a harmonic map and we consider
{@o -, @n} the Burstall-Wood’s sequence of ¢. Then we have N=<I1 for ¢
or ¢*.

Proor. By Fact 3.1, changing ¢ to ¢* if necessary, we may assume that
¢ is o-reducible.

It is sufficient to prove that @i is strongly conformal, i.e., Ay -Ay:=0,
which provide by [Bu-Woo, Proposition 5.3] that ¢, is (anti-)holomorphic, a
Frenet pair or a mixed pair.

At first, we have a diagram

R $OB
Im(A318) B
Diagram 3.1.

where R=¢*OIm(Aj%|B), which is proved as the same way for Diagram 4.1.

By definition of ¢, ¢,=¢Op LIm(A%|B) so that by Diagram 3.1, we see
A;S1°A;5f~:A;3®ﬂ,R°AR,9_5®a+‘4:2®ﬁ,a°A;€,¢6a+A}_m(A;5Iﬂ),/3°A;€,I_m(A’s’ﬁlﬂ)- The back-
ward replacement of ¢ appearing in Burstall-Wood’s sequence is in case
B=¢Ker Ay so that the edge from ¢Oa to R in Diagram 3.1 disappears.
Thus we have -

3.1) A;ﬁ,"A;Sli =A% 5».5° A% 8.5 -

By the way, A%z Asw. 5.5 and Az s, 5 are holomorphic by [Bu-Woo, Prop-
osition 1.5] thus also A:=A% o . 5°Ar sw. 5°Ak .1 f— B is, so that 4 is
nilpotent (see [Bu-Woo, Proposition 1.8]). Since Aj r is of full rank, A%, .8
°Ar 8. 5 1s not of full rank so A'gw. . 5°Ak 3. »p=0. Therefore by (3.1),
Ag,°As1=0 and thus ¢{ is strongly conformal. O

§4. Forward replacements and extended solutions.
The Grassmann manifold Gr,(C™) (1<t<n) can be embedded in U(n) by
Gr{C™» 2V —— ap—nrt & Un)

and it is known that this embedding is totally geodesic. In general, if ¢ is
harmonic and ¢ is totally geodesic, then ¢-¢ is harmonic. So we regard harmonic



88 H.S. HasuicucHi

maps to Gr,(C™) as harmonic maps to U(n). We prove the following proposition,
appeared essentially in [Bu-Sal, Proposition 37.

PROPOSITION 4.1. Let ¢: 3 — Gr,(C") <> U(n) be a harmonic map and E% an
extended solution of ¢. Let F(¢p, a) be a harmonic map as in Fact 2.2. Then

Ef¢@ @ = E’Z}(ﬂaal_muwa) +37f$®1_m<‘4'¢1a))

is an extended solution of F(¢, a).

Proor. By [U, Theorem 12.1], it is sufficient to prove the following two
conditions :

(a) ﬂi@muwa)Azﬂam_m(A',,la):O

(b) ni@l__m(A’,ﬁla)<ana®I_m(A’qgla)_*‘Aiﬂa@I_m(A'gﬁla)) =0
satisfying EZ{#©=Q% (@, a) for some constant Q=U(n), where A;=(1/2)(ms—
)0y —mg)=—(A4,)*

(@): né@I_Ln(A’sﬁla)AzﬂaQI_m(A'.ﬁla)

1
= ?niQI_m(A;ﬁla)<”Q_7rZ) {a<ﬂgﬁ_7r§>} T a0im (41 a)d

1

= g(”gea—ﬂgiel_muww)
x [0 {(”q_s“ﬂé)ﬂaaal_mwg,! wl —(ﬁg—ﬁé)aﬂ'a@gm_ubl @]

1
= g(ﬂgea—ﬂglez_muwa))a(ﬂa_ R'Lmu'q;m))

1
—§<n¢j6a+ﬁgl@m(l¢la))a<7ra+7rm(.4’¢la))

= —ﬂgeaaﬂl_mm'w ) TR glorm 4y 0T,

We see that
$Ca ¢+ OIm(Asla)
a Im(Agla)
Diagram 4.1.

is a diagram of {a, gé@a, Im(Ajla), géL@Iim(A;;]a)}. Here we explain how to
obtain Diagram 4.1. Because a, Im(Aj|a) are holomorphic subbundles of ¢, ¢*
respectively, we have A;_,ea,a_—.o and A%L@,_m(,l'q,.a),,_,_n_u'q,[a)zo. And because
aC Ker Ay1- Ay, we have Allﬂ(A'Wa)’?:A;;J.1(1_7’{1_(14;5[&)):0. Further Im Aj g1e
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muyoCIm Ay gr=Im(Asla) and Im Ag, gremuy o CUm(Ag|a)t so Im Ay gte
,_m(Arg,la)ZO. Thus we obtain the above diagram.
By this diagram, we see that

7
ﬂgeaaﬂl_m<4'¢m) = ALLn(A'qsla),Qea =0
ﬂ@lemmwa)aﬂ'a = Ac’z,élel_m(zi'gsla) =0.

(b): a, Im(Aj|a) are holomorphic subbundle of @, ¢* respectively so we
have

ﬂg{)@aaﬂa =0
4.1) ;

Trélel_m(A'gsla)a”L@(A',ﬁla) =0.

On the other hand, we have

ﬂé@lﬂ(A'Sﬁla><a7ra®l_m(A’¢la) + AT aorm Ayl a)

= (”Qea+ﬂglem<A§;Ia))
- 1 -
><[a(nﬁm_muwm)Jrg(nrﬂ;) 1{5(7r9_s~7r§)}(m+7rmw¢m;)}
= ngaagﬂa—f'ﬂgeaaﬂl_mmwa)+ﬁglem(A5\a)gﬂa
+ﬂgiez_m(A'951a)3751_m<A;{,la>
1
+§'(x¢é@a+x9-’-9!ﬂ(1f¢la))(”?_ﬂ'-g)
X[0{(my—7)(Tat T magra)t — (T —75)0(M o+ T pm cayra0)] -

By [4.1), the first term and the fourth term of last side of the equation vanish.
Thus continuing this calculation, we see

. -
Taom (4! 0 (0T a01m VTIPS AT gorm 4yl @)

= MgealT myla) TTplorm a0 a

+_2_(7r<29a_7rg§l®1_m(11’¢la))g<ﬂa—”Lm(A's{,Wa))

1 -
— 5 (Tgoat Tytom iy )0(MatTimayim)

A 3 = =
= ‘Tnéeaaﬂl_m(zi',ﬁla)+né*@l_m(A'(ﬁJa)ana_ngeaazl_ﬂg(z{'wa}—n?-’-b‘f_m(zi'sﬁla)dﬂa

=0.
(¢): Since E.?I:Q(n?—n'@ for some constant QeU(n), we have

Ezfgb’ @ = Eﬁ1(ﬂ'a@mm'¢|a> -7[$®I_n_1(.4’¢la)>
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= Q@ — )T aorm gl ) — Taorm Ayl a))
=Q@a—Tgoa—Tmapiar T Tglomuayim)

L
= _Q<7r(q_59a)®l__m Agia) “Lg@@@mmgﬁm))

= —Q9(9, a). O

§5. Holomorphic map.
[terating the method in [Bu-Woo, § 1D], we have the following lemma.

LEMMA 5.1. Let h: S*—CP"! be a holomorphic map. Then the following
is a diagram of Gauss bundles of h:

—r— ey @ °

h G'(h) G4 () GWHh) R.
Here i is some integer and R=(2}-oG® (h))*. (It is possible that R=0.)

REMARK 5.2. It is known by [D-Z 1], [D-Z 2] and [GI-St] that holomorphic
maps from S% to CP"! are isotropic. (For the definition of isotropic, see Defini-
tion 6.1.) So by Proposition 6.4 below, holomorphic maps from S* to CP"™! are
strongly isotropic. Lemma 5.1 gives the another proof of this fact.

COROLLARY 5.3. Let h:S*—CP"' be a full holomorphic map. Then the
following is a diagram of Gauss bundles of h:

Py 3. 8- S o
L 4 P>

c,,—————>——8

h G'(h) ] G‘;(h)' G™B(h) G™N(h).

PrROOF. In general the diagram in is that of Gauss bundles of
h. We assume that R#=0. We can see that R is a holomorphic subbundle of
C" and also an anti-holomorphic subbundle of C" by [Bu-Woo, Proposition 1.4].
Thus R is a trivial bundle. This contradicts the fullness of A. 0

§6. Isotropic conditions.

First we recall the notion of isotropic ((E-Woeo]). Let ¢: Y —Gr,(C") be a
smooth map. It is well known that

O TV Gr, (C") = ¢ (T*RTH).

From now on we keep this identification. In this bundle, there is the Hermitian
metric and connection V induced by the subbundle metric of gCC™.

DEFINITION 6.1 [E-Woo]. A smooth map ¢: 2 — Gr,(C") is isotropic if
Image of ((Vs,;.)%¢), LImage of (Vs5:)°@).
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for all xX and a, B=N. Here d¢=0""¢p+0"'¢ is the decomposition with
respect to the complex structure of Gr,(C*), V@ :=0"°p and V*:=V(Ve!),

Facr 6.2 ([E-Woo, Theorem 1.1]). Let (V, X) be a pair of holomorphic
subbundles of the trivial bundle C*"=X% xC"® with

1 VvcX

2) rank(X)—rank(V) =1t

3) aI'V)C I'XRQTr*3),

Then the map ¢:2—Gr,(C") defined by ¢(x)=X.0V. (x&M) is harmonic.
Further ¢ is isotropic. All isotropic harmonic maps from X to Gr,/(C") are
obtained in this way.

It is well known that any harmonic maps from S? to CP""! are isotropic.
Now we mention the relation between the isotropic condition and the strongly
isotropic condition.

LEMMA 6.3. Let ¢: 2 —Gr,(C") be a harmonic map. Then on any holo-
morphic coordinate (U, z) and for any non-negative integer k,

{ t-i{lmage of (Vs5.)'0} = -, G (P)Ng* a.e. over X
i-i{lmage of (V;2:)°'¢} = Ziei GV (P)Ng* a.e. over X,
PrROOF. We shall prove only the first equation. The proof for the second

equation is similar. We use the mathematical induction on 4.
In case £=1, we have

(6.1) Image of (V;/5.¢) = Image of H(d@(%—)}“'o)_pm}
:M[%dgﬁ)(»z%:)}(M])-part} ae.
= Im A}
= G'(9)

For an integer /, suppose that 33i.,{Image of (Vy;.) ¢l =2, GO (g)Ng,
a.e. over 3. Then we have

(62 3 {lmage of Viuu((Vaso) ')

_ gL VB)s,t — (Vo V)V . s,
Span sfgg&)[%az {(Vara)'@)sit —((Vara.) ' @)V ;,5:)]

+

C 36PNt ae.



92 H.S. Hasmicucui

On the other hand, we can see

! 4
(6.3) 2 {Image of V5,5,((Vi)'$)t + 23 {Image of (V;5.)'9)
o span, span V8 (V) s

= spsan{ $hsse F(Z G®(d)Ng* )} a.e.
- G””’(gﬁ)ﬂgél.
By [6.1), (6.2) and (6.3), we have

L+1

2 GO(gNg* C 3 {Image of (Virz)'gl a.e.

L+ ) '
CHCO@Ng ae.
which conclude the proof. O

PROPOSITION 6.4. Let ¢:3—Gr,(C") be a harmonic map. Then ¢ is
strongly isotropic if and only if ¢ is isotropic. '

PrOOF. Let ¢ be strongly isotropic. Then from we can see
immediately that ¢ is isotropic.

Conversely suppose that ¢ is isotropic. We use the mathematical induction.
We have ¢ 1 G'(¢) clearly. Suppose that g_ﬁiG"”(gzi) for all £ with 1<k, We
must show that ¢ L G*(¢) for all & with 1<k=<(+1, which is equivalent to
GY(P) LGP (P) for all 7, j with —1<i<7<! (see [Bu-Woo, Lemma 3.1]). By
hypothesis of the mathematical induction, we have G (@) LG (¢) for all 7, j
with 0<i<s7<!{. So it remains to show that

(6.4) G"(9) LD G ().
Because ¢ isotropic, Image of V;/5; ¢ L 2t {Image of (V;,;;)'¢} by Lemma 6.3 so
that G”(6) L D}iG (). Thus [64] is proved. o

PROPOSITION 6.5. Let h:S*—CP" ! be a holomorphic map. Then for any
integer v, | with r=0 and (=1, the map ¢:S*— Gr,,,(C") defined by

o= G"”(h)
is an isotropic harmonic map.

PROOF. For any 7, 3}i.oG®(h) is a holomorphic subbundle of C*. Thus
¢ is an isotropic harmomc map by Fact 6.2. O

Putting /=1 in [Proposition 6.5, ¢ is a Frenet pair.
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§7. Frenet pairs, forward replacements and extended solutions.

Let QU (n) be the based loop group defined by QU(n)={y: S'—U(n)|y(1)=1}
and F a subgroup of QU(n) defined by F={yeQUn)|y(Ai)=7(A)yr(A) for
A, A,€S't. Then we have the following lemma.

LEMMA 7.1. For y&9%, there are non-negative integers [, m such that y(A)=
;. _18.A% satisfying (i), (i) and (iii):

(1) &a=8&.=E%,

(i) €.55=0 for a+p,

(i) 2Zreié.=1

Proor. We put y(A)=2%-_-&.4%. The base point condition y(1)=1I implies
I=y(D)=yA2 )=7y)y("") so that

[ = (D EANT &34 P) = 3 &.654775.
So we have (ii).
Comparing the coefficients of y()*=y(A)7'=y(A7") (respectively r(A®)=r(2)?),
we have &,=&¥ (respectively &,=£&%) which is (i).
By (i) and (ii), {£,} are hermitian projections whose images are mutually
orthogonal. On the other hand, by y(1)=/ we have X%-_.§,=/ namely

00

® _{lmage of &,} =C" so that >3- ..£,4° must be of finite terms. O

By Lemma 7.1, we can regard that the connected components of & are flag
manifolds.

Let E;: Y —>FCRU(n) be a smooth map of the form E;=3>%_,T,2*. By

Lemma 7.1, {Image of T,}s=0. ..z iS a set of mutually orthogonal subbundles of
C"=23xXC" whose sum is C".

PROPOSITION 7.2. E; is an extended solution if and only if E; satisfies

. { 0l (Image of T,)C I'((Image of T.DImage of T, ) QT *X)
(7.1)

ol'(Image of T, C I'((Image of T, DImage of To_)RQT"*3)
for 0Za<Lhk.

Proor. By [U, Theorem 2.3], it is sufficient to see that (1—A ") 1E70E;
and (1—A)"*E;'9E; do not depend on 2 if and only if E; satisfies (7.1). By the
direct calculation, we can see that (1—A"Y)'E79E, (respectively, (1—2)1ETGE;)
is independent in A if and only if 7,07 ;=0 for all @, 8 with a#g-+1 (respec-
tively, T,0T;=0 for all @, § with a#p—1). O

We have the following proposition. It is known also by using [Sak, Theo-
rem 4.1]. '
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PROPOSITION 7.3. We define a harmonic map ¢:S*— Gr,;,(C") as in Prop-
osition 6.5. Then

Ey = (eptle® o ARSI e ® o) (W[ ® iy HATSI Zle® ()

is an extended solution of ¢. If h is full, E; is the normalized extended solution
and in particular ugz=2.

Proor. By Lemma 81, the diagram of (275G (h), ¢(7H GO (h))*) is
the following :
— > o> o

r=1 r+l 1
EG«)(h), é, (E)Gm(h)) .
So we can see that F; satisfies (7.1). If A is full,
C" = span A(x) C span Im ms7-lgw () (x) = C™.
zeS82 ze8?2
The A°-order term T, of E, is ms7-l¢uw ) S0 that E; is the normalized extended
solution. O

DEFINITION 7.4. We say that a smooth map ¢ from a Riemannian manifold
M into Gr.(C™) is strongly full if
(a) the only subspace of C" containing each subspace ¢(x), for xeM, is
C" itself.
(b) the only subspace of C" containing each subspace {¢(x)}*, for x&M,
is C™ itself.

Now we consider extended solutions of harmonic maps obtained by forward
replacements from Frenet pairs. Let 2:S*—CP"™' be a full holomorphic map
and ¢:S*— Gry(C") the r-th Frenet pair associated with 4. (See Example 2.4).
We suppose that (¢, a): S*— Gr(C") becomes a strongly full harmonic map.
We define an extended solution E% of ¢ by

E% = (sp+let ARSI Mot (h))(ﬂz[;c}a(m ) +Z7f>l:,{=‘ola<k) )

as in [Proposition 7.3 and also an extended solution EF‘*® of F(¢@, @) by

E?’(gﬁ‘a) — E;}(jram_mmwa)—i—]iré@m_u@,la))

as in [Proposition 4.I. From the direct computation, we have the following
lemma.

LEMMA 7.5.
E39® = mar-igam () T a®Im Ayl a)

1
+A(@er ey Taom i) T T2l He® i) Taorm 4y w)
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2
+4 (Teftle )y TaoIm (4l +77-'2k tlew (n)ﬂa®1m<4¢na))

—{-Zs(ﬂé,::ola(k) (M R a0Im (A’¢la)) .

LEMMA 7.6. The coefficient of 2° in ET¢ ® vanishes.
PrROOF. The coefficient of 2° in EF“% @ is
Tefe® oo yle) = T[ 1B () Ta +7sr 2 GBI T m (A1 a) -

Since aC¢=G " (h)DG T V(h) we have msr-lewm@,=0. Furthermore we see
Im(Ayla)TIm Ag=1Im Az yostr+n ) and this is included in G"*»(h) by the
diagram in [Corollary 5.3, In particular eIl ® T m g0 =0. O

By Lemma 76 we know that EF“ « has only positive powers respect to A.
LEMMA 7.7. A'E{“ @ s the normalized extended solution of F(¢, a).
Proor. We must observe the coefficient of 2! in E¥“ % that is

(7.2) Tsis 010<k><h)77a@1m(A¢|a)+71'2k“0(k)(m75a®1mu¢la)

The first terms of [7.2) is 7x7- L6® mTaom 0 =Ts[Jewm since aDIm Ay

C 327 G®(h) by [Coroflary 5.3,

The second term of is

Teltle® mTadin iyl = Ts[Fle® mTat T3 e® ) Tim Alg1a)
== ”a

since Im(Agla)CG*®(h) (so that Im(Ay a)=G"*®(h)) and also aC 27} G* (h)
by [Corollary 5.3, Thus the coefficient of ' in E{® is wyj-tetrm +T,=

Tl te® (h)oa-
Now 4 is full so that

C" = span Im 7s;-lew o (x) C span Im ms7=la® yoa C C™.
reS? res?

Thus we see that 17'E{ % is the normalized extended solution of F(¢, a). O

We consider the following lemma under the same situation as Lemma 7.5,
7.6 and 7.7.

LEMMA 7.8. The following three conditions are mutually equivalent:
(i) The coefficient of A* in E3 ® vanishes.
(1) G*3(h)=0

(iii) r=n-3.
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PrOOF. First we prove the equivalence of (i) and (ii). The coefficient of
A2 in Ef¢ @ g
(7.3) USSHRRTAO) (h)ﬁéapgr_nm’gsm)
= W37 le® ) (TgoaT Tplorm yiw)

— 1 L
= Tgrtlew m Toa T TSIl ® T gtorm dylar -

The first term of vanishes since ¢OaC¢=G " (h)DG " (h).
Now Im(Ajla)CG*®(h) by [Corollary 5.3 so that Im(Ag|a)=G"*®(h) be-

cause the rank of both sides is 1. So we have
OIm(Ayla) = Z CHMD T, GHM)

which implies the second term of (7.3) is
T HleWw mTglomdgla) = Txy. ., .60 1)

Thus we see the equivalence of (i) and (ii).
We will see the equivalence of (ii) and (iii). We assume (ii). By this
assumption and the diagram of [Corollary 5.3, we have n—1<r+3 so

(7.4) n<=r+3.
On the other hand, (¢, a) is the map to Gr,(C") so that the rank of F(¢, a)=

(¢0a)DIm(Ayla) is 2. Hence Im(Azla)£0. And we see that Im(Ajla)C

G (h) so we have G"®(h)%£0. Thus again by [Corollary 5.3, we have
r+2<n—1 so

(7.5) r+3<n.
Therefore and imply (iii).
We can see easily that (iii) implies (ii) by O

By Lemma 7.6, 7.7 and 7.8 we have the following proposition.

PROPOSITION 7.9. Let h:S*—CP™' be a full holomorphic map and ¢:
S?— Gry(C") the r-th Frenet pair associated with h. Let a be a holomorphic
subbundle of ¢ and let F(§, a): S*— Gry(C") be as in Fact 2.10. Then (¢, )
satisfies the following :

(i) If r=n—3, then ugy »=1.

(if) If r#n—3, then ugy, »=2.

We shall confine our attention to non strongly full harmonic maps.



The uniton numbers 97

LEMMA 7.10, Let f:XY—Gry(C") be a harmonic map. Via the standard
inclusion fC, C'C, CH*™ we define a map ¢: 3 — Gri,n(C**™) by ¢=fDc where
c=C"™3C'. Then ¢ is a harmonic map.

Conversely for a harmonic map ¢: ¥ — Gry,n(C**™) such that ¢=fQDc and
¢ a trivial bundle over X of rank m, [:X—Griy(C*""Oc)=Gr,(C") is a
harmonic map.

PROOF. Let f:2—Gry(C") and ¢: 2 —Grp n(C**™) be a smooth maps
such that ¢=/fDc, where fc C'c, CH*™ is the standard inclusion and ¢=C'*™
oc.

For a section s of ¢, we have by the triviality of ¢, Ay(s)=n;A%(n,s) and
VY ;5= 40(n )+ Tcds, which provide the equality
(7.6) (Vgg;n(g, Q“QDT*I'O‘?A&,)(S) — V‘—mT*"OS(A;;,(s))—A;b(V‘—b s)

319z 3/9z
= (Vg/;?T”"’EonéA'f—A}oVaI/aE)(n'!s).
On the other hand, again by the triviality of ¢, we see

@.7) (Vojar L 10T A (m )

— (Te®T*L 03 7 pLeT*l 03, t A%LV{
= (V3 weAs+Vha g Ay—ApoVi )T ys)

_ Ler*1, 0y
= (Vg-'/afT ontA}—A}ng/az)(fris).

By and [7.7), we have for any sel'(¢),

(VHom . gH8T™ 03 A1) () = (VEOm (L [98T™ 05 41 (7 1)

so that by Remark 2.1 the result follows immediately. O

Let ¢: 2 —Gry(C™) be a harmonic map such that there exist a trivial line
bundle ¢ of C™ and ¢=fDc. Then by f is a harmonic map from
Y to CP"?, which is isotropic. Thus by Fact 6.2 there is a pair of holomorphic
subbundles (V, X) of €*™* such that VCX, oI'(V)cI'(X) and f=XOV. Then
it is easy to see that E; satisfies (7.1). Thus by [Proposition 7.2 or by [Sak,
Theorem 4.1], we have the following.

PROPOSITION 7.11. Let ¢p: X — Gry(C™) be a harmonic map such that there
exist a trivial line bundle ¢ of C" and ¢=fDc. Then (V, XDc) is a pair of
holomorphic subbundles of C" in Fact 6.2 for ¢. In particular ¢ is isotropic and

EY i= (% yoot+ AT ko) (Ty+ A7)

is an extended solution of ¢.
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Let ¢p: ¥ — Gry(C*) be a non strongly full harmonic map. Then ¢ (or ¢*)
decompose to the form ¢ (or ¢*)=7Dc, where f is a harmonic map from 2 to
CP? and ¢ is a trivial line bundle over Y by [Lemma 7.10. If f is not (anti-)
holomorphic, ¢ is isotropic and u,=2 by [Proposition 7.11.

§8. Mixed pairs, forward replacements and extended solutions.

PROPOSITION 8.1. Let f:X—CP" ! be a holomorphic map and g : ¥ — CP"™!
an anti-holomorphic map which satisfy G'(f) L g. Let ¢=fDg, i.e., ¢ 2 —Gry(C™)
a mixed pair. Then

E{ = (ay+2An g)(m o+ An%)

is an extended solution of ¢@.

PROOF. Now f and g* are holomorphic subbundles of C*. By the defini-
tion of mixed pair, we see G'(f)Lg so that dI'(f)CI'(g*). Thus we have the
diagram

*+— e )

[ (o g

So by [Proposition 7.2, E$ is an extended solution of ¢*. It is easily seen that
E? is an extended solution of ¢* if and only if E? is an extended solution

of ¢. d

REMARK 8.2. For a mixed pair ¢ defined by ¢=fDg as in [Proposition 8.1,
(f, g4) is a pair of holomorphic subbundles in Fact 6.2 for ¢*. Hence ¢* is
isotropic. And also by [Sak, Theorem 4.17 we can see [Proposition 8.1,

Now we compute the uniton number of the harmonic maps obtained by the
forward replacements from mixed pairs. Let ¢:S*—Gr,(C™) be a mixed pair
as in [Proposition 8.1. And F(¢, a): S*— Gr,(C™) is a harmonic map defined by
Fact 2.2.

We set

Ef{ = (w§+2An )(x ;+An)

which is an extended solution of ¢ by [Proposition 8.1, and also set

EE{(qﬂ.a) — E?(ﬂaQLm(Awa)—I—-Zﬂ';‘;mm(Abm)) ’

which is an extended solution of F(¢, a) by Proposition 4.1. From the direct
computation, we have

LEMMA 8.3.

(b a)
(8.1 Ef¢ o = T T a0 rm (4lg1 0
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+A(T s T a0 m a1 a0 T ot Taom wyim)
+A(TqopiTaomuyia T TgTaorm yia))
-‘r]a?fgﬁé@mmwa) .
LEMMA 8.4. Assume that fis full. Then ET% @ isthe normalized extended
solution if and only if az£g.

Proor. The coefficient of 2° in ET¢ @ is
ﬁ!ﬁa®1ﬂ(A¢la) == ”[ﬂa+”17me(A’¢,la> .

Since Im(Ajla)T¢*C [+, we have T % muyiw=0.
Assume that azg. Both @ and g are holomorphic subbundles of ¢, so we
have a#g a.e. over S?, that is to say a4 f a.e. over S>. Thus we have

T . # 0 a.e. over S

Observing that Im x,n,CIm n,=f and that the both sides are generically rank

1, we have Im m,;m,=f a.e. over S®. By the fullness of f, we have
span Im 7 ,mw,(x) = span f, = C",
zeS? - ze82 T

which conclude the lemma. O

LEMMA 8.5. The coefficient of A* in EF% ® does not vanish if and only if
azEg.

ProoOF. The coefficient of 2* in EF%*® is 7,Ms0muyi by Lemma 83. We
assume that 7,Tiormuyio=0. Then gCaDIlm(Ala) so that gCa since gC¢
and Im(Aj3la)C¢*. Because the rank of both sides of gCa is 1, we have
g=a. Conversely g=a implies 7, T50rm ayio =0. ]

REMARK 8.6. If a=g, since g is an anti-holomorphic map we have Im(A4j|a)
=0 so that the rank of (¢, a)=(pOg)DIm(Ala)=f is 1. In this paper we
consider only the case F(¢, «) is the full map to Gr,(C"). So in our case we
may assume az=g.

By [Lemma 8.3, 8.4, 8.5 and Remark 8.6, we obtain the following proposition.

PROPOSITION 8.7. Let ¢: S*— Gry(C™) be a mixed pair as in|Proposition 8.1
Assume that f is full. Then the strongly full harmonic map F(@, a): S*— Gry(C™)
is a 3-uniton. '

From now we do not assume the fullness of f.

PROPOSITION 8.8. Let ¢: S*— Gry(C? be a mixed pair as in Proposition 8.1.
Assume that f is not full. Then the strongly full harmonic map (@, a): S*—
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Gry(C™) is a 3-uniton if and only if spang2 Im m; kspanse Im 7.

PrOOF. We compute consecutively. Using the relations fDg L Im(Agla),
Im(Agla) L ¢ and ac¢@, we obtain

E¢® =g,x,
AT T+ T mayiw)
+/Z2(7fglel_mu'¢|a>+7rg7r,,)
+ A7y,
We set a subspace V, of C™ by V,:=span.cs?Im n,(x). Because f is not full,

V. is a proper subspace in C*. We also set m,:=my,. m,+4"'7i is a constant

of QU(n) so that (m,+A"'nt)EF¢ @ is also an extended solution of F(¢@, a). We
have

(m+ 272 E 0 = 2'nin,m,
F T Rt R T+ TR gt 0
+2(7C17fl7?-‘$+71'17l'mu;ﬁxa)+7l'it7fglez_m_(,q,|a)+7l'1*7fgﬁa>
+ AT yrom iy T TT gt TIT7E)
+ BT Ty,

Since m,7,=n,, miw,=0 and n%nmuwd,zﬁxmmzo, we have

(2,42 AHE] 9 = 77,
AT T+ T im a1 T T Lomm i HTTT L)
+ (T prom i+ TT T+ T T, 7E)
+ BTy

(,+A"1ni)2EF @@ s also an extended solution and we obtain the following
equation after the similar calculation :

(8.2) (M, + AP ETS® = niMgiomuyi o+ AT Hat T Ta
TR T+ T Mt T a1 0)
+A(T1 T grom g+ TT L)
+m ;.

Now there are two cases: (1) (m,+A'n+)*EF% @ is the normalized extended
solution; (2) or not. Consider the first case. The coefficient of A*-order term
of (m,+Ax$)2EF¢® vanishes if and only if

Immgrny(x) Lspan Im w, for any x = S?
g o £
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namely

(8.3) span Im wgrn; | span Im ;.
S2 s2 =

On the other hand F(¢, a) is a map to Gr,(C") so that gFa and thus the points
x of S* which satisfies g.=a are discrete. Hence spangzIm m mwz=spans: Im 7.
So we see that A%-order term of (m,+A7'zf)2EF @ 2 vanishes if and only if
spangz Im 7, | spangz Im 7.
There remains the case (2). We set a subspace V, of C™.
Vyi=span Im(nigsemayia + TR TatT (7 )

= span Im(Tyiomuyia T T gTat T Ta).

Because we are in case (2), V, is a proper subspace in C". The definition of
V, implies V.CV. Set my:=ny, Since m+A7'ni is a constant in QUn),
(mo+ 27 1) (m+ A )2 EF % @ is an extended solution of F(¢, @). By the rela-
tions V,CV,, we find

(8.4) 3wy =0, mym,=m, and mzm,=0.
Using and the definition of V,, we have
(8.5) (a2 7 ) (7, A TR ES @ @)
= MmN+ i M glomuyla H A Tgha+ T Ta
FA(@t TG+ T R Tty a0)
+22(”17rglel_m(A'¢|a)+71'17557fa)
+Amm ;.
Let’s consider the normalization of (mp+A7'7ms) (7, +A 172 ES% @ We have
SDS%HIm(ﬂzfﬂgﬂi’?‘?ff‘ﬂglemuwa)-{—ﬂ-‘ll?fgﬂa‘\'?f[%a)
= SI?;%n ]m(ﬁgﬁé+ﬁgl91~mm;ﬁxm+7fg7fa+7f17fa)
= S%azn [‘Hl(ﬁ'g‘f*?fglem(,iwa)Jrﬂ'zﬂ.'a)
D s%%n ¢=C"
Hence (mo+A"tns)(m,+A"1nt)2ET¢% @ is the normalized extended solution. The

coefficient of A%*-order term of (m,+A7'ms)(w,+A'nd)2EF% ® vanishes if and
only if spangsz/m m x| spans2 Im n; namely spanszIm 7, | spangefm x;. 7

PROPOSITION 8.9. Let ¢: S*— Gry(C*) be a mixed pair. Suppose that F(@, a)
is strongly full into Gro(C"). Then ugy =3 if and only if spanszImm, 4
spanszIm x,.
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Proor. Let f:S*-—~CP"! be a holomorphic map and g:5*—CP"! an
anti-holomorphic map. Let ¢ be a mixed pair defined by ¢=7Dg. Then by
Proposition 8.7 and [Proposition 8.8, we conclude the proposition. O

We observe the condition appearing in [Proposition 8.9

PROPOSITION 8,10, Let f:S*—CP" ' be holomorphic and g:S*—CP*™!
anti-holomorphic. Let ¢ :S*— Gry(C™) be a mixed pair defined by ¢=fDg.
Then ¢ is strongly isotropic if and only if

spangz Im w, 1 spangz Im 7 .

PROOF. We assume that ¢ is strongly isotropic. Then there exist non-
negative integers 2 and [/ such that

g
&—---—»& T S
GoB(P) GUO(g) GI(g)
AQ
> & > L - —— o
f G G®¢) GY¢g) R

is a diagram, where G ?(¢)=G?(g) and G®(p)=GD(f) for i=1. On the
other hand, by Lemma 5.1,

o
L 4

> L > &> & o
f G' () G G®(¢) R
is a diagram so that f(DDi., G (¢) is a trivial bundle. So we have spans: Im =,
Cspans2f QD=1 G P (d)=fDDi-, GD(P). We have also spans:Im x,C gD},
G(¢) similarly. On the other hand fODi-iGP(¢)LgDDi-,G (), we
obtain spangzIm 7, | spans: Im .

Conversely we assume spangzIm 7z, | spang2 Im =, We have

D G(H T spsazn Im x;

TGP (g) C span Imz,,
where those left sides are finite sums. By the assumption, we have

T GO(f) LD G TP (g).
On the other hand, for =1,

GM(g) = GD(f)
{ GO (P) =G (g)

so we have G (¢) LGP () for i#. O
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§9. Conclusion.

PROPOSITION 9.1. Let ¢: 2 — Gr,(C") be a harmonic map from a Riemann
surface to a Grassmann manifold. Suppose that ¢ is strongly isotropic. Then a
harmonic map F (P, @) is also strongly isotropic.

PROOF. Since ¢ is strongly isotropic, we have (,é_LG"“(ng) for any kz=l.
Now we have the following diagram

*—> o —> & —>» —--—>» o> @

R é G'(¢) G () GU).
We set
{ Q= Im A&(i—l)(¢),a(i) () i (2431

Bii= G (P)Oa;.
Then we get the diagram ([Bu-Woo, p. 275])

¢@a ‘Bl ﬁz ,31-1 /91

So we have
G'(F(g, a)) = a:Dp
C®(F (P, a) = asDPs
: { ara@pr for any 1=k < /-1,

for &k =

GO(F (P, a) =

which imply G*(F(@, a)) L9 (@, a) for any k=1. That is to say, (¢, a) is
strongly isotropic. 0

By [Proposition 6.4}, 6.5 and [Proposition 9.1], we obtain the following corollary :

COROLLARY 9.2. The harmonic map from a Riemann surface to Gr,(C")
obtained by finite times of forward replacements from a Frenet pair is isotropic.

Now we are in position to state our main theorem. Putting together
Lemma 3.2, Proposition 7.3, 7.9, 7.11, 8.9, 8.10 and 9.1, what we obtain is the
following :

THEOREM 9.3. The set of the full harmonic maps from S* to Gry(C*) is
classified with respect to the isotropy and the uniton number as follows:
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1) 1isotropic case;
1) A constant map is a O-uniton.
2) A (anti-Yholomorphic map is a l-uniton.
3) A 2-uniton is one of the following :

+ A map ¢ which decomposes to the form ¢=jfDc, where [ is a non
(anti-Yholomorphic harmonic map to CP? and c is a trivial line bundle
or a map ¢ that ¢* decomposes to the form ¢*=fDc as above.

» A Frenet pair.

« A non (anti-Yholomorphic, harmonic map obtained by a forward re-
placement of a Frenet pair.

« A mixed pair ¢ defined by ¢=fDg where f is holomorphic and g
is anti-holomorphic with spang: Im n; | spang: Im ©t,, namely a strongly
mixed pair.

« A non (anti-)holomorphic harmonic map obtained by a forward re-
placement of a strongly isotropic mixed pair.

ii) nom-isotropic case ;
1) A 2-uniton is a mixed pair ¢ defined by ¢=fDg where f is holo-
morphic and g is anti-holomorphic with spans:Im m; kspanseIm mwg,
namely a non-strongly isotropic mixed pair.

2) The map obtained by a forward replacement from a non-strongly
isotropic mixed pair is a 3-uniton.

REMARK 9.4. We will observe that we can always do a forward replace-
ment from every mixed pairs. Let ¢: Y —Gr(C™ be a mixed pair from a
Riemann surface defined by ¢=fDg where f is holomorphic and g is anti-
holomorphic. Then f is a holomorphic subbundle of ¢ so that we can do a
forward replacement of f from ¢ :

G (g, ) = (PO ) DIm(Ag| f)
= gOC'(f).

Hence there exist 3-unitons into Gr.(C*) actually.
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