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1. Introduction.

Let G be a compact affine Nash group. We say that a C*G manifold X
admits a (resp. an affine, a nonaffine) Nash G manifold structure if there exists
a (resp. an affine, a nonaffine) Nash G manifold Y such that X is C~G diffeo-
morphic to Y. In the present paper we consider Nash G manifold structures
of compact or compactifiable C*G manifolds.

We have the following when X is compact.

THEOREM 1. Let G be a compact affine Nash group and let X be a compact
C*G manifold with dim X=1.

(1) X admits exactly one affine Nash G manifold structure up to Nash G
diffeomorphism.

(2) If G acts on X transitively then a Nash G manifold structure of X 1is
unique up to Nash G diffeomorphism.

(3) If X is connected and the action on X is not tranmsitive, then X admits
a continuum number of nonaffine Nash G manifold structures.

In the non-equivariant category, M. Shiota in proved that any compacti-
fiable C* manifold X admits a continuum number of nonaffine Nash manifold
structures. When X is not compact but compactifiable, an affine Nash compacti-
fication of X is not unique, and the number of affine ones can be investigated
by the cardinality of the Whitehead torsion of X [6]. Here an affine Nash
compactification of X means an affine Nash manifold ¥ with boundary so that
X is C= diffeomorphic to the interior of Y.

We say that a C*G manifold X is compactifiable as a C*G manifold if there
exists a compact C*G manifold Y with boundary so that X is C~G diffeomorphic
to the interior of Y. We obtain the following.

THEOREM 2. Let G be a compact affine Nash group and let X be a non-
compact compactifiable C*G manifold with dim X=1.

(1) X admits an affine Nash G manifold structure.

(2) X admits a continuum number of nonaffine Nash G manifold structures.
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This paper consists of two parts. The first half is to investigate Nash G
manifold structures of compact C*G manifolds. We consider Nash G manifold
structures of compactifiable (not compact) C*G manifolds in the latter half.

In this paper all Nash G manifolds and all Nash G maps are of class C”
unless otherwise stated.
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2. Nash G manifolds.
First of all we recall the definition of Nash groups.

DEFINITION 2.1. A group is called a (resp. an affine) Nash group if it is a
(resp. an affine) Nash manifold and that the multiplication GXG—G, the
inversion G—G are Nash maps.

We remark that connected one-dimensional Nash groups are classified by
J.J. Madden and C.M. Stanton [2].

Let G be an affine Nash group. In this paper, a representation of G means
a Nash group homomorphism G—GL(R") for some R". Here a Nash group
homomorphism means a group homomorphism which is a Nash map. We use
a representation as a representation space.

DEFINITION 2.2. Let G be an affine Nash group.

(1) An affine Nash submanifold in some representation of G is called an
affine Nash G submanifold if it is G invariant. A Nash manifold X with G
action is said to be a Nash G manifold if the action map G X X—X is a Nash map.

(2) Let X and Y be Nash G manifolds. A Nash map f:X—Y is called
a Nash G map if it is a G map. We say that X is Nash G diffeomorphic to YV
if there exist Nash G maps f:X-=Y, h:Y—X so that foh=id, hof=id.

(3) A Nash G manifold X is said to be affine if there exists an affine Nash
G submanifold Y so that X is Nash G diffeomorphic to Y.

Tubular neighborhood theorem and collaring theorem are well known in the
smooth equivariant category. They are proved in the Nash category by M.
Shiota (Lemma 1.3.2 [7], Lemma 6.1.6 [7]). Since M. Shiota’s proofs work in
the equivariant Nash category, the following two propositions are obtained.

PROPOSITION 2.3. Let G be a compact affine Nash group and let X be an
affine Nash G submanifold in a representation 2 of G. Then there exists a Nash
G tubular neighborhood (U, p) of X in &, namely, U is an affine Nash G
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submanifold in £ and the orthogonal projection p:U—X is a Nash G map. [

PROPOSITION 2.4. Let G be a compact ajfine Nash group. Any compact affine
Nash G manifold X with boundary 0X admits a Nash G collar, that is, there
exists a Nash G imbedding ¢:0X x[0, 11-X so that @lsx«o=idsx, where the
action on the closed unit interval [0, 1] is trivial. O

3. Compact C*G manifolds.

Recall a theorem proved by K.H. Dovermann, M. Masuda, and T. Petrie
[1], which is a partial solution of the equivariant Nash conjecture.

THEOREM 3.1 [1]. Let G be a compact affine Nash group and let X be a
compact C>G manifold so that X is G cobordant to a nonsingular algebraic G
set. Then X is C°G diffeomorphic to a nonsingular algebraic G set. Here an
algebraic G set means a G invariant algebraic subset of some representation

of G. O

PROOF OF THEOREM 1. The disjoint union XIIX is null cobordant. By
[Theorem 3.1, XIIX is C=G diffeomorphic to a nonsingular algebraic G set in
some representation £ of G. Since a G invariant collection of connected com-
ponents of a nonsingular algebraic G set is an affine Nash G submanifold in
2, X admits an affine Nash G manifold structure YC&. Let Z be another
affine Nash G manifold structure of X in £’. We have to prove Y is Nash G
diffeomorphic to Z. Let f be a C*G diffeomorphism from Y to Z. Let F
denote the composition of f with the inclusion Z—£’. By F can be
approximated by a polynomial G map ¢:Y—£’. By [Proposition 2.3, we have
a Nash G tubular neighborhood (U, p) of Z in £’. Since Y is compact, if the
approximation is close then the image of ¢ lies in U. Thus %k :=p-q is an
approximation of f. If the approximation is close then a Nash G map k:Y—Z
is a Nash G diffeomorphism. Therefore (1) is proved.

Next we prove (2). Let X,, X, be two Nash G manifold structures (may
not be affine) of X and let © be a C=G diffeomorphism from X, to X,. Fix
x,€X,, and let x,=Fk(x,). Then the map f;: G—X;: fi(g)=gx; (¢t=1,2) is a
surjective Nash G map because G acts on X; (:=1, 2) transitively, and fo=Fk-f,.

To prove %k is a Nash map, it is enough to show k£ is a C° Nash map. By
we can find a C° Nash imbedding /; from X; to some Euclidean space R®
(=1, 2). Let Xi=I,(X,) (¢=1,2), fi=Lf; (G=1,2) and k’'=I;ck-I;'. Then
fi:G—X; (=1, 2) is a C* Nash map. Since G and X; (i=1, 2) are affine, there
exists a finite semialgebraic open covering {O.}, of G such that each f;|O, is
semialgebraic. Therefore f; (=1, 2) is semialgebraic. Since &’ is C° Nash if
and only if & is C° Nash, we have only to show that 2’ is C° Nash.
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Since f} (=1, 2) is a C° Nash map, there exist finite systems of coordinate
neighborhoods {¢;: W,—R™} of G, {¢;: U,—R"} of X,, and {¢,: V,—R"} of X,
such that, for any 7, j and !, ¢ ((fD) ' UNNW,), @((f2) "V )NW,) are semialge-
braic, and that ¢y fiog7': $ul(/D UNNWI—R", @i fhegi*: ¢(fOVINWY)
—R"™ are C° Nash maps, where m (resp. n) denotes the dimension of G (resp.
X,). We have only to show that each ¢,-%’-¢)7' is semialgebraic. For a map
h, let graph(h) denote the graph of . For ; and /, let

K= U graph(pie f1od7Y) X graph(p. f1-97").

Then K is semialgebraic in (R™XR")X(R™X R"), hence the image K’ of K by
the projection (R™X R™*)xX(R™ X R*)—R"X R" is semialgebraic in R* X R". Since

i (1=1,2) is surjective and fi=k’'cf1, graph(g,°k’-¢7")=K’. Thus each
¢iok’o5' is semialgebraic. Hence &’ is a C° Nash. Therefore 4 is a Nash G
diffeomorphism.

Now we prove (3). By (1) we can assume that X is an affine Nash G
submanifold of a representation £ of G. For any x&X, the orbit G(x) of x is
a C~G submanifold of £ because G is compact. Moreover G(x) is a semialge-
braic set. Hence G(x) is an affine Nash G submanifold in 2. Since the action
on G is not transitive and by [Proposition 2.3, there exists some Nash G tubular
neighborhood (U’, p) of some orbit G(x) in £ with XU :=U’'NX.

For 0<c¢<1, set

a = 225(1+c¢)/(1—c)?,
d =24+2"%3a+a’—(a++ 2)vVa*+2%%q .
Then a>2%% 1<d<2. Suppose k is a Nash function satisfying

The graph of %2 comes to a rotation of the graph of y=x2/a with center at the
origin. It follows from this and a>2%° that %2 and its Nash extension %’ to

[1-27%%{qa, 14278/ a (D (—1, 3))
is well-defined, and that %’ satisfies

k'»[l——Z—O'%\/E, 1+2—o.25\/‘a’j — [1_2—0.25\/&‘, 1_{_2—0.25\/5:"

the derivative of %’ is negative, k’-k’=id.
Let

NIZ(—OOy d)y NZZ(O; oo)’ NS‘—‘(O’ 1)‘
Define the Nash maps 4,: N;—N,, h,: N;—N, by
h(t) = 24+ k(@)?* and hy(t) = 2t—12
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Then h, and h, are Nash imbeddings so that A,(N;)=(0, d), h(N:;)=(0, 1). We
can extend A, to

Bi:[1—27%/a, 14275/ ¢ ] — R

as a Nash function such that the derivative vanishes at only 0 and that
hi=hi-k’ because the derivative of &’ is negative and k’-k’=id.

Applying [Proposition 2.3 to the boundary oU of the closure U of U in X,
there exists a Nash G collar ¢: 00U x[0, 1]-U. Let D(e) (0<e<1) denote
#©@U % (0, ¢)). Take a Nash diffeomorphism f: R—(0, 1) (e.g., the inverse map
of the composition of f:(0, 1)=>(—1, 1): f(x)=2x—1 with h: (=1, )>R: h(x)
=x/(1—x?). Set

U, = D(f(d), U,=X—-D{O0), Us= D(f(1))—D{0)).
Then each U, is an open affine Nash G submanifold of X. Let
H, = ¢od X (fohio f)e¢™ : Uy— Uy,
H, = ¢o(zd X (fohse [T : Uy — Us,.

We define X, by the quotient topological space of the disjoint union II:.,U;,
and the equivalence relation x~H,(x)~H,(x) for x<U, on the union. Then
one can check that X, is a Nash G manifold which is C*G diffeomorphic to X.
Next we prove X, is nonaffine. To prove this, we use the following lemma.

LEMMA 3.2 (cf. REMARK 1.2.2.15 [7]). Let f be a locally semialgebraic C*
map from a Nash manifold M to a Nash manifold N. If N is affine then f is a
Nash map. 0

Fix 0<c¢<1 and z€S(f(1)), where S(f(1)) denotes ¢(0U X {f(1)}). Let ¢.:
(f(0), f(1))—X. be the composition

(f(0), (1)) —> S(FANX(F(0), f1)) —> Us —> X,

where the first map is x—(z, x), the second is the natural Nash G diffeomorphism
from S(f(1))x(f(0), f(1)) to Us, and the third is the natural imbedding from U,
into X,. Then ¢, is an imbedding. We extend ¢. as follows. Let /,; (=1, 2, 3)
be the natural imbedding U;,—X. and let V,; (=1, 2, 3) denote its image. Then

pekitelilope = fohiof7Y,  pokzlels’ede= foheo 71 on (f(0), (1)),

where p denotes the projection U ;X (f(0), f(d)—(f(0), f(d)) and k; (=1, 2)
stands for the natural imbedding oU,x(f(0), f(d))—U., We extend ¢, to
(f(0), f(1+¢)) for small positive e. It suffices to consider pok;'elz7'e¢). because
the image of ¢, lies in Vi, and lime;,¢g()EVe. Now pokglelyled=
FRFUH—H)?) on (f(0), f(1)). Thus peokytely'e¢p. and ¢, are extensible to
(f(0), £(2)) and
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pokytelytop () = f2FTNO—(FT@)") on [f(1), f(2).
Clearly we can extend ¢, to [f(0), f/(1)], and ¢(f(0), F@NTPLLS(0), FD).

Hence

o) = f@—f7'®) on [f(D), f(2)),

f(1) is the only and nondegenerate critical point, where ¢, denotes the homeo-
morphism ¢, : [f(0), f(1)]—¢([f(0), f(1)]). In the same way, ¢, can be defined
on (f(k'(1)), f(0)] satisfying

wede(t) = f(R'(f7HD)) for t = (f(k'(1)), F(O)],

and the critical point is only f(0) and nondegenerated. Repeating this argument,
¢. is extensible on

(fAL=27""va), f(1+27* a)),

and ¢, is locally semialgebraic, the image of ¢, is ¢.([f(0), f(1)]), and that for
any e=(f(0), f(1)), (¢zt=¢c)"'(e) is discrete and consists of infinitely many ele-
ments. The set of critical points of ¢, is (¢ o) (S (O)\U(daPe)(f (1)), and
they are nondegenerate ones. Since ¢, is locally semialgebraic and not semi-
algebraic and by X, is not affine.

Finally we prove that X, is not Nash G diffeomorphism to X, if 0<c,
c’<1, a=log f(c’)/log f(c) is irrational. Assume that there exists a Nash G
diffeomorphism u: X,—X,. Then we have to prove log f(¢’)/log f(c) is rational.
Set

a = 28514/ (1—c)?, a’ = 225142/ (1—c"),
Ge: (fA=27""V a), f1427%V a))— X,

We also write

Geo = QeI LS(0), ST TA0), S(D] — @[O0, DD,
Gero = ¢er [LS0), (D] [F(0), FD)] —> ¢ (LS(O), F)).

Let L, be the composition of the diffeomorphism S(f(1))X(f(—104), f(10d))—
D(f(104))—D(f(—10d)) with the projection D(f(10d))—X,, and let L, be the
projection S(f(1))X(f(—10d), f(—10d))—S(f(1)). By and the infinite
vibration of ¢, L,oLi'eu-¢, is constant. Let 2z’ denote this constant. Clearly
the images of @(z’ X f(N.)) and ¢(z’ X(f(1), f(d))) via =, in X, are affine Nash
G submanifolds. Let k., be the natural homeomorphism from U, into X,. Thus
uok.od(zX[f(0), f(1)]) is not contained in these affine Nash G submanifolds
because the image of ¢. is not affine. This implies that
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uskeod(zX[£(0), F(V]) C kerod(z" XLf(0), FD).

Applying the same argument to u~!, we have

utokeor o (2 XLS(0), F(D]) C keogp(zX[/(0), F)D).

Therefore

uokeod(zXLf(0), F(V)) = kerog(z" X [F(0), F(DI).
For any e=(f(0), /(1)), let (o) (e)={eiticz, (Pelooper) (€)= {ei}icz. Then

(3.1) ££r£<f<1+2*°-25~/‘d)—e_i_2>/(f(1+2~°-2wa‘>Ae_i> = f(o),
(3.2) li{rg_}(f(1+2‘°'25»¢&’)~e’_i_2>/(f(l+2‘°'ZWd"’>~e’_i) = f(¢),

are obtained as follows. The map t—f(k'(2— f (1)) has fixed points only at
the end of the interval, it repels from f(14+272%4/a), attracts to f(1—27%%+v/a)
and its derivatives at the latter point is f(c). Thus (f(1+27%% a)—e_;_,)/
(f(14-27°24/a)—e_;) converges f(c) because e_;_,=f(k'(2— Y (e_;))). Hence we
have [3.I). A similar argument shows [3.2). Since

Uk @(zX[f(0), (DD = kerog(z" XT[S(0), S,

for a pair

e € (f(1—27%Va), f(14+27%+ a))
and

e = (f(1—27a’), f(1+27°%+/a"))
with

Sbc’(e(;) = U°¢C(€0>
there exists a homeomorphism
T (fA=27 @), fUA2PY @) —> (=27 a), 1427y a))

so that v(e,)=¢ej and ¢pet=u-¢, on (f(1—27°+/a), f(1+27%~+/a)). Remember
that all critical points of ¢, ¢. are nondegenerate. This shows that z is of
class C®. Therefore, by 7 is a Nash diffeomorphism. Set

ch_ol°¢’c(eo) =g, 9[)0—']0"‘/%'(30) = ¢,
(o ope) N (e) = {ei} iez,
(¢510°¢c’)_1<e/) = {ef} icz.

Then r satisfies
r(e;) = ¢; for any 1 < Z or,

t(e;) = e.; for any i1 & Z.
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A map fe(translation)of~! takes (f(1—27%2+/a), f(1+27"%+a)) to (f(0),
f(2*"+/a)), and a similar map fe(translation)of~! takes (f(1—27%+/a’),
FA+27%4/a%) to (f(0), f(2™+/a’)), we may suppose that e; and e, are con-
vergent to 0 as 7—co. Assume that e and ¢’ lie in (f(0), f(1)). Then it follows
from and that

(3.3) lime_;_./e_; = f(c),

(3.4) lim el /el = f(c).

i-rc0

Let Z denote the Zariski closure of graph(r). This is of dimension 1
because r is semialgebraic. It is clear that Z contains all (e;, 7). Let P(x, y)
=33-10;xPiy7i (3,€R, B;, y;=N) be a defining polynomial of Z. Then

P(e;, ¢j) =0 for any i€ Z.
Since « is irrational,
(3.5) Bit+ay; = Bi+ay; for i+ j.

Set
Pi(x, y) = xﬁiy”-

For each n=Z, let E(n) denote the sXs-matrix whose (7, 7) entry is

Pi(e_n_.z_u.l, el—n—2j+1) .
Then

(617 ) 58)E(n) - (P(e—n—-ly ein—l): Ty P(e—-n—28+1) e,—n—ZS»H)) - 0

In particular det E(n)=0. On the other hand, we have

det E(n) = (g Piers, eln_l))det F(n),

where F(n) is the sXs-matrix whose (7, j) entry is
Pie_n_zjsr, €n2js1)/Pie_ns, €lnoi).
Now and mean that each entry of F(n) converges to
(cPi(c/yriyi=t = ¢Birarp G-b
as n—oo, Thus det F(n) converges to a Vandermonde’s determinant equals
II (cPiteri—cBitaryy o« (),
i<Jj

by [3.5). Therefore det E(n)+0 for large n. This proves the result. O
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4. Compactifiable C*G manifolds.

The same argument of the proof of (3) proves [Theorem 2/(2). To
prove [Theorem 2 (1), we show a relative version of [Theorem 3.1. After proving
Theorem 4.2, we give a proof of [Theorem 2 (1).

DEFINITION 4.1. (1) An algebraic subset of a representation of G is said
to be an algebraic G set if it is G invariant. Moreover we call it a nonsingular
algebraic G set if it is nonsingular.

(2) Let X be a C*G manifold and let X’ be a C*G submanifold of X. A
pair (X, X’) is called algebraically G cobordant if there exist a nonsingular
algebraic G set Y, a nonsingular algebraic G subset Y’ of Y, a G cobordism N
between X and Y, and a G cobordism N’ between X’ and Y’ such that N’ is a
C=G submanifold of N.

THEOREM 4.2. Let G be a compact affine Nash group, X a compact C=G
manifold, and X' a compact C=G submanifold of X. If the pair (X, X’) is
algebraically G cobordant then there exist a nonsingular algebraic G set Z in
XX8 for some representation 2 of G, a nonsingular algebraic subset Z' of Z,
and a C*G diffeomorphism ¢: X—Z with ¢(X")=2Z".

For any C*G manifold X and C*G submanifold X’ of X, the pair (XI1IX,
X'IIX’) is algebraically G cobordant. Therefore we have the next corollary
because a G invariant collection of connected components of a nonsingular
algebraic G set is an affine Nash G submanifold in some representation of G.

COROLLARY 4.3. Let G be a compact affine Nash group, X a compact C=G
manifold, and X’ a compact C*G submanifold of X. Then there exist an affine
Nash G manifold Y, an affine Nash G submanifold Y’ of Y, and a C*G diffeo-
morphism ¢ : X—Y so that ¢(X")=Y". O

PROOF OF THEOREM 4.2. By the proof of Theorem 1.3 [1], X’ is G isotopic
to a nonsingular algebraic G subset Z’ of X X by an arbitrarily small isotopy,
for some representation of G. Extending this isotopy, we may assume that it
maps X X0 to some C*G manifold M in X X8 so that M—X x0 has compact
closure and that the composition of the inclusion M—X x & with the projection
XX L2—X is a C~G diffeomorphism. In particular Z’CM. Since Z’ is compact
and by Lemma 4.7 [1I], one can find a proper G invariant polynomial p such
that p71(0)=2". Let a: X—£ be a C*G map with compact support so that

M= {(x, y) € XX82|y = a(x)}.

Take a G invariant C= function §:XX&—[0, 1] with compact support with
B(x, v)=1 when |y|<2]a(x)|. Let y:XX2-—-82 be
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7(x, y) = B(x, y)(y—a(x)+14B(x, ¥)o*(x, ¥)y.

Then 0 is a regular value of 7, y"'(0)=M, and 7y is equal to the polynomial
0*(x, y)y outside of a G invariant compact set. By Lemma 5.1 [1], one can
C' approximates y(x, y)—p*(x, )y by an equivariant entire rational map u:
(XxQ, Z")»—(82, 0). Here an entire rational map means a fraction of polynomial
maps with nowhere vanishing denominator. This approximation is close on all
XX8. Thus

w(x, ¥) = u(x, y)+p%x, y)y

is C' approximation of y on XX &. Since p is proper and by equivariant Morse
theory, there exists a C*G diffeomorphism from Z :=w"'(0) to M=y"'(0) fixing
VAR O

PRrROOF OF THEOREM 2 (1). Since X is compactifiable, there exists a C*G
manifold X’ with boundary 0X so that X is C=G diffeomorphic to the interior
of X’. Let Y be the double of X’. Applying to the pair (Y, 0X’),
one can find a representation £ of G and a C*G imbedding F:Y—£ such that
F) and F(0X’) are affine Nash G manifolds. Hence F(X) is an affine Nash G
manifold. Therefore X admits an affine Nash G manifold structure. O

On the other hand, T. Petrie proved that any nonsingular algebraic G
set is compactifiable as a C*G manifold when G is an algebraic group. A
similar proof shows the next theorem, because the number of connected com-
ponents of the zeros of a Nash map is finite.

THEOREM 4.4. Let G be a compact affine Nash group. Then every affine
Nash G manifold is compactifiable as a C*G manifold. O

M. Shiota studied compactifications of Nash manifolds as either C* manifolds
or Nash manifolds [5].
By [Theorem 2(1) and we have the following.

THEOREM 4.5. Let G be a compact affine Nash group. Then a C*G manifold
ts compactifiable if and only if it admits an affine Nash G manifold structure. [
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