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1. Introduction.

Let $G$ be a compact affine Nash group. We say that a $C^{\infty}G$ manifold $X$

admits a (resp. an afine, a nonajfine) Nash $G$ manifold structure if there exists
a (resp. an affine, a nonaffine) Nash $G$ manifold $Y$ such that $X$ is $C^{\infty}G$ diffeo-
morphic to $Y$ . In the present paper we consider Nash $G$ manifold structures
of compact or compactifiable $C^{\infty}G$ manifolds.

We have the following when $X$ is compact.

THEOREM 1. Let $G$ be a compact ajfine Nash group and let $X$ be a compact
$C^{\infty}G$ manifold with $\dim X\geqq 1$ .

(1) $X$ admits exactly one $a$]$fine$ Nash $G$ manifold structure up to Nash $G$

diffeomorPhism.
(2) If $G$ acts on $X$ transrtively then a Nash $G$ manifold structure of $X$ is

unique up to Nash $G$ diffeomorphism.
(3) If $X$ is connected and the action on $X$ is not transitive, then $X$ admits

a continuum number of nonaffine Nash $G$ manifold structures.

In the non-equivariant category, M. Shiota in [4] proved that any compacti-
fiable $C^{\infty}$ manifold $X$ admits a continuum number of nonaffine Nash manifold
structures. When $X$ is not compact but compactifiable, an affine Nash compacti-
fication of $X$ is not unique, and the number of affine ones can be investigated
by the cardinality of the Whitehead torsion of $X[6]$ . Here an affine Nash
compactification of $X$ means an affine Nash manifold $Y$ with boundary so that
$X$ is $C^{\infty}$ diffeomorphic to the interior of $Y$ .

We say that a $C^{\infty}G$ manifold $X$ is compactifiable as a $C^{\infty}G$ manifold if there
exists a compact $C^{\infty}G$ manifold $Y$ with boundary so that $X$ is $C^{\infty}G$ diffeomorphic
to the interior of $Y$ . We obtain the following.

THEOREM 2. Let $G$ be a compact $a$]$fine$ Nash group and let $X$ be a non-
comPact comPactifiable $C^{\infty}G$ manifold with $\dim X\geqq 1$ .

(1) $X$ admits an $aJfine$ Nash $G$ manifold structure.
(2) $X$ admits a continuum number of nonaffine Nash $G$ manifold structures.
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This paper consists of two parts. The first half is to investigate Nash $G$

manifold structures of compact $C^{\infty}G$ manifolds. We consider Nash $G$ manifold
structures of compactifiable (not compact) $C^{\infty}G$ manifolds in the latter half.

In this paper all Nash $G$ manifolds and all Nash $G$ maps are of class $C^{\omega}$

unless otherwise stated.

ACKNOWLEDGEMENT. The author would like to thank Professor M. Shiota
for many useful conversations and suggestions. Theorem 1 (2) is due to the
cooperation of Professor M. Shiota. The author would be grateful to Professor
K. Kawakubo for his advice.

2. Nash $G$ manifolds.

First of all we recall the definition of Nash groups.

DEFINITION 2.1. A group is called a (resp. an affine) Nash group if it is a
(resP. an affine) Nash manifold and that the multiPlication $Gx$ G– $G$ , the
inversion $Garrow G$ are Nash maps.

We remark that connected one-dimensional Nash groups are classified by

J. J. Madden and C. M. Stanton [2].

Let $G$ be an affine Nash group. In this paper, a representation of $G$ means
a Nash group homomorphism $Garrow GL(R^{n})$ for some $R^{n}$ . Here a Nash group
homomorphism means a group homomorphism which is a Nash map. We use
a representation as a representation space.

DEFINITION 2.2. Let $G$ be an affine Nash group.
(1) An affine Nash submanifold in some representation of $G$ is called an

affine Nash $G$ submanifold if it is $G$ invariant. A Nash manifold $X$ with $G$

action is said to be a Nash $G$ manifold if the action map $G\cross Xarrow X$ is a Nash map.
(2) Let $X$ and $Y$ be Nash $G$ manifolds. A Nash map $f:Xarrow Y$ is called

a Nash $G$ maP if it is a $G$ map. We say that $X$ is Nash $G$ diffeomorphic to $Y$

if there exist Nash $G$ maps $f$ . $Xarrow Y,$ $h$ : $Yarrow X$ so that $f\circ h=id,$ $h\circ f=id$ .
(3) A Nash $G$ manifold $X$ is said to be affine if there exists an affine Nash

$G$ submanifold $Y$ so that $X$ is Nash $G$ diffeomorphic to $Y$ .

Tubular neighborhood theorem and collaring theorem are well known in the
smooth equivariant category. They are proved in the Nash category by M.
Shiota (Lemma 1.3.2 [7], Lemma 6.1.6 [7]). Since M. Shiota’s proofs work in
the equivariant Nash category, the following two proPositions are obtained.

PROPOSITION 2.3. Let $G$ be a compact affine Nash grouP and let $X$ be an
affine Nash $G$ submanifold in a representation $\Omega$ of G. Then there exists a Nash
$G$ tubular neighborhood $(U, p)$ of $X$ in $\Omega$ , namely, $U$ is an affine Nash $G$
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submanifold in $\Omega$ and the orthogonal $pro_{J}$ ection $p:Uarrow X$ is a Nash $G$ map. $\square$

PROPOSITION 2.4. Let $G$ be a compact affine Nash group. Any compact affne
Nash $G$ manifold $X$ with boundary $\partial X$ admits a Nash $G$ collar, that is, there
exists a Nash $G$ imbedding $\phi$ : $\partial X\cross[0,1]arrow X$ so that $\phi|_{\partial Xx0}=id_{\partial X}$ , where the
action on the closed unit interval $[0,1]$ is trivial. $\square$

3. Compact $C^{\infty}G$ manifolds.

Recall a theorem proved by K. H. Dovermann, M. Masuda, and T. Petrie
[1], which is a partial solution of the equivariant Nash conjecture.

THEOREM 3.1 [1]. Let $G$ be a compact affine Nash group and let $X$ be a
compact $C^{\infty}G$ manifold so that $X$ is $G$ cobordant to a nonsingular algebraic $G$

set. Then $X$ is $C^{\infty}G$ diffeomorphic to a nonsrngular algebraic $G$ set. Here an
algebraic $G$ set means a $G$ invariant algebraic subset of some representation
of G. $\square$

PROOF OF THEOREM 1. The disjoint union XIlX is null cobordant. By
Theorem 3.1, XIlX is $C^{\infty}G$ diffeomorphic to a nonsingular algebraic $G$ set in
some representation $\Omega$ of $G$ . Since a $G$ invariant collection of connected com-
ponents of a nonsingular algebraic $G$ set is an affine Nash $G$ submanifold in
$\Omega,$ $X$ admits an affine Nash $G$ manifold structure $Y\subset\Omega$ . Let $Z$ be another
affine Nash $G$ manifold structure of $X$ in $\Omega^{\gamma}$ . We have to prove $Y$ is Nash $G$

diffeomorphic to $Z$ . Let $f$ be a $C^{\infty}G$ diffeomorphism from $Y$ to $Z$ . Let $F$

denote the composition of $f$ with the inclusion $Zarrow\Omega’$ . By [1] $F$ can be
approximated by a polynomial $G$ map $q:Yarrow\Omega’$ . By Proposition 2.3, we have
a Nash $G$ tubular neighborhood $(U, p)$ of $Z$ in $\Omega’$ . Since $Y$ is compact, if the
approximation is close then the image of $q$ lies in $U$ . Thus $k$ $:=p\circ q$ is an
approximation of $f$ . If the approximation is close then a Nash $G$ map $k:Yarrow Z$

is a Nash $G$ diffeomorphism. Therefore (1) is proved.

Next we prove (2). Let $X_{1},$ $X_{2}$ be two Nash $G$ manifold structures (may

not be affine) of $X$ and let $k$ be a $C^{\infty}G$ diffeomorphism from $X_{1}$ to $X_{2}$ . Fix
$x_{1}\in X_{1}$ , and let $x_{2}=k(x_{1})$ . Then the map $f_{i}$ : $Garrow X_{i}$ : $f_{i}(g)=gx_{i}(i=1,2)$ is a
surjective Nash $G$ map because $G$ acts on $X_{i}(i=1,2)$ transitively, and $f_{2}=k\circ f_{1}$ .

TO prove $k$ is a Nash map, it is enough to show $k$ is a $C^{0}$ Nash map. By
[4] we can find a $C^{0}$ Nash imbedding $I_{i}$ from $X_{i}$ to some Euclidean space $R^{s}$

$(i=1,2)$ . Let $X_{i}’=I_{i}(X_{i})(i=1,2),$ $f_{i}’=I_{i}\circ f_{i}(i=1,2)$ and $k’=I_{2}\circ k\circ I_{1}^{-1}$ . Then
$f_{i}’$ : $Garrow X_{i}’(i=1,2)$ is a $C^{0}$ Nash map. Since $GandX_{i}(i=1,2)$ are affine, there
exists a finite semialgebraic open covering $\{O_{t}\}_{t}$ of $G$ such that each $f_{i}’|O_{t}$ is
semialgebraic. Therefore $f_{i}’(i=1,2)$ is semialgebraic. Since $k’$ is $C^{0}$ Nash if
and only if $k$ is $C^{0}$ Nash, we have only to show that $k’$ is $C^{0}$ Nash.
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Since $f_{i}’(i=1,2)$ is a $C^{0}$ Nash map, there exist finite systems of coordinate
neighborhoods $\{\phi_{i} : W_{i}arrow R^{m}\}$ of $G,$ $\{\psi_{j} : U_{j}arrow R^{n}\}$ of $X_{1}$ , and $l\varphi_{l}$ : $V_{\iota}arrow R^{n}$ } of $X_{2}$

such that, for any $i,$ $j$ and 1, $\phi_{i}((f_{1}’)^{-1}(U_{j})\cap W_{i}),$ $\phi_{i}((f_{2}’)^{-1}(V_{l})\cap W_{i})$ are semialge-
braic, and that $\psi_{j}\circ f_{1}’\circ\phi_{i}^{-}$

‘ : $\phi_{i}((f_{1}’)^{-1}(U_{j})\cap W_{i})arrow R^{n},$ $\varphi_{l}\circ f_{2}’\circ\varphi_{i}^{\prime-1}$ : $\phi_{i}((f_{2}’)^{-1}(V_{l})\cap W_{i})$

$arrow R^{n}$ are $C^{0}$ Nash maps, where $m$ (resp. $n$ ) denotes the dimension of $G$ (resp.
$X_{1})$ . We have only to show that each $\varphi_{l}\circ k’\circ\psi_{j}^{-1}$ is semialgebraic. For a map
$h$ , let graPh $(h)$ denote the graPh of $h$ . For $j$ and 1, let

$K= \bigcup_{i}graph(\psi_{j}\circ f_{1}’\circ\phi_{i}^{-1})\cross graph(\varphi_{l}\circ f_{2}’\circ\phi_{l}^{-1})$ .

Then $K$ is semialgebraic in $(R^{m}\cross R^{n})\cross(R^{m}\cross R^{n})$ , hence the image $K’$ of $K$ by
the Projection $(R^{m}\cross R^{n})\cross(R^{m}\cross R^{n})arrow R^{n}\cross R^{n}$ is semialgebraic in $R^{n}\cross R^{n}$ . Since
$f_{i}’$ $(i=1,2)$ is surjective and $f_{2}’=k’\circ f_{1}’$ , graPh $(\varphi_{l}\circ k’\circ\psi_{j}^{-1})=K’$ . Thus each
$\varphi_{l}\circ k’\circ\psi_{j}^{-1}$ is semialgebraic. Hence $k’$ is a $C^{0}$ Nash. Therefore $k$ is a Nash $G$

diffeomorphism.
NOW we prove (3). By (1) we can assume that $X$ is an affine Nash $G$

submanifold of a representation $\Omega$ of $G$ . For any $x\in X$ , the orbit $G(x)$ of $x$ is
a $C^{\infty}G$ submanifold of $\Omega$ because $G$ is compact. Moreover $G(x)$ is a semialge-
braic set. Hence $G(x)$ is an affine Nash $G$ submanifold in $\Omega$ . Since the action
on $G$ is not transitive and by Proposition 2.3, there exists some Nash $G$ tubular
neighborhood $(U’, p)$ of some orbit $G(x)$ in $\Omega$ with $X\neq U:=U’\cap X$ .

For $0<c<1$ , set

$a=2^{2.6}(1+c)^{2}/(1-c)^{2}$ ,

$d=2+2^{0.6}3a+a^{2}-(a+ \gamma^{\Gamma}\overline{2})\frac{a^{2}2^{26}a}{+}$ .
Then $a>2^{2.5},1<d<2$ . Suppose $k$ is a Nash function satisfying

$\sqrt{2}(x+k(x))=(x-k(x))^{2}/a$ .
The graph of $k$ comes to a rotation of the graph of $y=x^{2}/a$ with center at the
origin. It follows from this and $a>2^{2.5}$ that $k$ and its Nash extension $k’$ to

$[1-- 2^{- 0.25}\sqrt{a}, 1+2^{-0.25}\sqrt{}\overline{a}](\supset(-1,3))$

is well-defined, and that $k’$ satisfies

$k’[1-2^{-0.26}\sqrt{a},$ $1+2^{-0.25_{\sqrt{a}]}^{-}}=[1-2^{-0.25}\sqrt{a}, 1+2^{-0.2S}\sqrt{a}]$ ,

the derivative of $k’$ is negative, $k’\circ k’=id$ .
Let

$N_{1}=(-\infty, d)$ , $N_{2}=(0, \infty)$ , $N_{3}=(0,1)$ .

Define the Nash maps $h_{1}$ : $N_{3}arrow N_{1},$ $h_{2}$ : $N_{3}arrow N_{2}$ by

$h_{1}(t)=t^{2}+k(t)^{2}$ and $h_{2}(t)=2t-t^{2}$ .
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Then $h_{1}$ and $h_{2}$ are Nash imbeddings so that $h_{1}(N_{3})=(0, d),$ $h_{2}(N_{3})=(0,1)$ . We
can extend $h_{1}$ to

$h_{1}’$ : $[1-2^{-0.26}\sqrt{a}, 1+2^{-0.25}\sqrt{a}]arrow R$

as a Nash function such that the derivative vanishes at only $0$ and that
$h_{1}’=h_{1}’\circ k’$ because the derivative of $k’$ is negative and $k’\circ k’=id$ .

Applying Proposition 2.3 to tbe boundary $\partial\overline{U}$ of the closure $\overline{U}$ of $U$ in $X$ ,

there exists a Nash $G$ collar $\phi:\partial\overline{U}x[0,1]arrow\overline{U}$ . Let $D(\epsilon)(0<\epsilon<1)$ denote
$\phi(\partial\overline{U}\cross(0, \epsilon))$ . Take a Nash diffeomorphism $f$ : $Rarrow(O, 1)(e.g.$ , the inverse map
of the composition of $f:(0,1)arrow(-1,1):f(x)=2x-1$ with $h$ : $(-1,1)arrow R:h(x)$

$=x/(1-x^{2}))$ . Set

$U_{1}=D(f(d))$ , $U_{2}=X-\overline{D(f(0))}$ , $U_{3}=D(f(1))-\overline{D(f(0))}$ .
Then each $U_{i}$ is an open affine Nash $G$ submanifold of $X$ . Let

$H_{1}=\phi\circ(id\cross(f\circ h_{1}\circ f^{-1}))\circ\phi^{-1}$ : $U_{3}arrow U_{1}$ ,

$H_{2}=\varphi’\circ(idX(f\circ h_{2}\circ f^{-1}))\circ\phi^{-1}$ : $U_{3}arrow U_{2}$ .

We define $X_{c}$ by the quotient topological space of the disjoint union $II_{i=1}^{3}U_{i}$ ,

and the equivalence relation $x\sim H_{1}(x)\sim H_{2}(x)$ for $x\in U_{3}$ on the union. Then
one can check that $X_{c}$ is a Nash $G$ manifold which is $C^{\infty}G$ diffeomorphic to $X$ .
Next we prove $X_{c}$ is nonaffine. To prove this, we use the following lemma.

LEMMA 3.2 (cf. REMARK 1.2.2.15 [7]). Let $f$ be a locally semialgebraic $C^{\infty}$

map from a Nash manifold $M$ to a Nash manifold N. If $N$ is affine then $f$ is a
Nash map. $\square$

Fix $0<c<1$ and $z\in S(f(1))$ , where $S(f(1))$ denotes $\phi(\partial\overline{U}\cross\{f(1)\})$ . Let $\psi_{c}$ :
$(f(O), f(1))arrow X_{c}$ be the composition

$(f(0), f(1))arrow S(f(1))\cross(f(0), f(1))arrow U_{3}arrow X_{c}$ ,

where the first map is $xarrow(z, x)$ , the second is the natural Nash $G$ diffeomorphism
from $S(f(1))\cross(f(O), f(1))$ to $U_{3}$ , and the third is the natural imbedding from $U_{3}$

into $X_{c}$ . Then $\psi_{c}$ is an imbedding. We extend $\psi_{c}$ as follows. Let $l_{ci}(i=1,2,3)$

be the natural imbedding $U_{i}arrow X_{c}$ and let $V_{ci}(i=1,2,3)$ denote its image. Then

$p\circ k_{1}^{-1}\circ l_{1}^{-1}\circ\psi_{c}=f\circ h_{1}\circ f^{-1}$ , $p\circ k_{2}^{-1}\circ l_{2}^{-1}\circ\psi_{c}=f\circ h_{2}\circ f^{-1}$ on $(f(0), f(1))$ ,

where $P$ denotes the projection $\partial\overline{U}_{3}\cross(f(0), f(d))arrow(f(O), f(d))$ and $k_{i}(i=1,2)$

stands for the natural imbedding $\partial\overline{U}_{3}x(f(0), f(d))arrow U_{i}$ . We extend $\psi_{c}$ to
$(f(O), f(1+\epsilon))$ for small positive $\epsilon$ . It suffices to consider $p\circ k_{2}^{-1}\circ l_{2}^{-1}\circ\psi_{c}$ because
the image of $\psi_{c}$ lies in $V_{c2}$ and $\lim_{tarrow f^{(1)}}\psi_{C}(t)\in V_{c2}$ . Now $p\circ k_{2}^{-1}\circ l_{l}^{-1}\circ\psi_{c}=$

$f(2f^{-1}(t)-(f^{-1}(t))^{2})$ on $(f(O), f(1))$ . Thus $p\circ k_{2}^{-1}\circ l_{2}^{-1}\circ\psi_{c}$ and $\psi_{c}$ are extensible to
$(f(O), f(2))$ and
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$p\circ k_{2}^{-1}\circ l_{2}^{-1}\circ\psi_{c}(t)=f(2f^{-1}(t)-(f^{-1}(t))^{2})$ on $[f(1),$ $f(2))$ .

Clearly we can extend $\psi_{c}$ to $[f(O), f(1)]$ , and $\psi_{c}((f(0), f(2)))\subset\psi_{c}([f(0), f(1)])$ .
Hence

$\psi_{c0}^{-}\circ\psi_{c}(t)=f(2-f^{-1}(t))$ on $[f(1),$ $f(2))$ ,

$f(1)$ is the only and nondegenerate critical point, where $\psi_{c0}$ denotes the homeo-
morphism $\psi_{c}$ : $[f(O), f(1)]arrow\psi_{c}([f(0), f(1)])$ . In the same way, $\psi_{c}$ can be defined
on $(f(k’(1)), f(O)]$ satisfying

$\psi_{c0}^{-1_{\circ}}\psi_{c}(t)=f(k’(f^{-1}(t)))$ for $t\in(f(k’(1)), f(O)]$ ,

and the critical point is only $f(O)$ and nondegenerated. Repeating this argument,
$\psi_{c}$ is extensible on

$(f(1-2^{-0.25}\sqrt{}^{-}\overline{a}), f(1+2^{-0.25}\sqrt{}\overline{a}))$ ,

and $\psi_{c}$ is locally semialgebraic, the image of $\psi_{c}$ is $\psi_{c}([f(0), f(1)])$ , and that for
any $e\in(f(O), f(1)),$ $(\psi_{c0}^{-1}\circ\psi_{c})^{-1}(e)$ is discrete and consists of infinitely many ele-
ments. The set of critical points of $\psi_{c}$ is $(\psi_{c0}^{-1}\circ\psi_{c})^{-1}(f(0))\cup(\psi_{c0}^{-1}\circ\psi_{c})^{-1}(f(1))$ , and
they are nondegenerate ones. Since $\psi_{c}$ is locally semialgebraic and not semi-
algebraic and by Lemma 3.2, $X_{c}$ is not affine.

Finally we prove that $X_{c}$ is not Nash $G$ diffeomorphism to $X_{c’}$ if $0<c$ ,

$c’<1,$ $\alpha=\log f(c’)/\log f(c)$ is irrational. Assume that there exists a Nash $G$

diffeomorphism $u:X_{c}arrow X_{c’}$ . Then we have to prove $\log f(c’)/\log f(c)$ is rational.
Set

$a=2^{2.5}(1+c)^{2}/(1-c)^{2}$ , $a’=2^{2.5}(1+c’)^{2}/(1-c’)^{2}$ ,

$\psi_{c}$ : $(f(1-2^{-0.25}\sqrt{a}), f(1+2^{-0.25}\sqrt{a}))arrow X_{c}$ ,

$\psi_{c’}$ : $(f(1-2^{-0.25}\sqrt{a}’), f(1+2^{-0.25}\sqrt{a’}))arrow X_{c’}$ .
We also write

$\psi_{co}=\psi_{c}|[f(0), f(1)]:[f(O), f(1)]arrow\psi_{c}([f(0), f(1)])$ ,

$\psi_{c’0}=\psi_{c’}|[f(0), f(1)]$ : $[f(0), f(1)]arrow\psi_{c’}([f(0), f(1)])$ .

Let $L_{1}$ be the composition of the diffeomorphism $S(f(1))\cross(f(-10d), f(10d))arrow$

$D(f(10d))-\overline{D(f(-10d))}$ with the projection $D(f(10d))arrow X_{c’}$ , and let $L_{2}$ be the
projection $S(f(1))X(f(-10d), f(-10d))arrow S(f(1))$ . By Lemma 3.2 and the infinite
vibration of $\psi_{c},$ $L_{2}\circ L_{1}^{-1}\circ u\circ\psi_{c}$ is constant. Let $z’$ denote this constant. Clearly
the images of $\emptyset(z’\cross f(N_{2}))$ and $\emptyset(z’\cross(f(1), f(d)))$ via $\pi_{c’}$ in $X_{c’}$ are affine Nash
$G$ submanifolds. Let $k_{c}$ be the natural homeomorphism from $\overline{U}_{3}$ into $X_{c}$ . Thus
$u\circ k_{c}\circ\phi(z\cross[f(0), f(1)])$ is not contained in these affine Nash $G$ submanifolds
because the image of $\psi_{c}$ is not affine. This implies that
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$u\circ k_{c}\circ\phi(z\cross[f(0), f(1)])\subset k_{c’}\circ\phi(z’\cross[f(0), f(1)])$ .

Applying the same argument to $u^{-1}$ , we have

$u^{-1}\circ k_{c’}\circ\phi(z’\cross[f(0), f(1)])\subset k_{c}\circ\phi(z\cross[f(0), f(1)])$ .
Therefore

$u\circ k_{c}\circ\phi(z\cross[f(0), f(1)])=k_{c’}\circ\phi(z’\cross[f(0), f(1)])$ .
For any $e\in(f(O), f(1))$ , let $(\psi_{c0}^{-1_{O}}\psi_{c})^{-1}(e)=\{e_{i}\}_{i\in Z},$ $(\psi_{c^{t}0}^{-1}\circ\psi_{c’})^{-1}(e)=\{e_{i}’\}_{i\in Z}$ . Then

(3.1) $\lim_{iarrow\infty}(f(1+2^{-0.25}\sqrt{a})-e_{-\ell-2})/(f(1+2^{-0.25}\sqrt{a}^{-})-e_{-i})=f(c)$ ,

(3.2) $\lim_{\iotaarrow\infty}(f(1+2^{-0.25}\sqrt{a}’)-e_{-i-2}’)/(f(1+2^{-0.25_{\sqrt{a’})-e_{-i}’)}}-=f(c’)$ ,

are obtained as follows. The map $tarrow f(k’(2-f^{-1}(t)))$ has fixed points only at
the end of the interval, it repels from $f(1+2^{-0.26}\sqrt{a})$ , attracts to $f(1-2^{-0.25}\sqrt{}^{-}a)$

and its derivatives at the latter point is $f(c)$ . Thus $(f(1+2^{-0.25}\sqrt{a})-e_{-i-2})/$

$(f(1+2^{-0.25}\sqrt{}\overline{a})-e_{-i})$ converges $f(c)$ because $e_{-i-2}=f(k’(2-f^{-1}(e_{-i})))$ . Hence we
have (3.1). A similar argument shows (3.2). Since

$u\circ k_{c}\circ\phi(z\cross[f(0), f(1)])=k_{c’}\circ\phi(z’\cross[f(0), f(1)])$ ,

for a pair
$e_{0}\in(f(1-2^{-0.25}\sqrt{}\overline{a}), f(1+2^{-0.25}\sqrt{a}))$

and
$e_{0}’\in(f(1-2^{-0.25}\sqrt{a’}), f(1+2^{-0.25}\sqrt{a’}))$

with
$\psi_{c’}(e_{0}’)=u\circ\psi_{c}(e_{0})$

there exists a homeomorphism

$\tau:(f(1-2^{-0.25}\sqrt{a}), f(1+2^{-0.25}\sqrt{a}))arrow(f(1-2^{-0.25}\sqrt{a}), f(1+2^{-0.25}\tau^{\Gamma_{a}}))$

so that $\tau(e_{0})=e_{0}’$ and $\psi_{c’}\circ\tau=u\circ\psi_{c}$ on $(f(1-2^{-0.25_{\sqrt{a}}^{-}}), f(1+2^{-0.25}\sqrt{a}))$ . Remember
that all critical points of $\psi_{c},$ $\psi_{c’}$ are nondegenerate. This shows that $\tau$ is of
class $C^{\omega}$ . Therefore, by Lemma 3.2, $\tau$ is a Nash diffeomorphism. Set

$\psi_{c0}^{-1_{O}}\psi_{c}(e_{0})=e,$ $\psi_{c’o}^{-1}\circ\psi_{c’}(e_{0})=e’$ ,

$(\psi_{c0}^{-1}\circ\psi_{c})^{-1}(e)=\{e_{i}\}_{i\in Z}$ ,

$(\psi_{c^{J}0}^{-1}\circ\psi_{c^{t}})^{-1}(e’)=\{e_{i}’\}_{i\in Z}$ .
Then $\tau$ satisfies

$\tau(e_{i})=e_{\ell}’$ for any $i\in Z$ or,

$\tau(eD=ei$ for any $i\in Z$ .
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A map $f\circ(translation)\circ f^{-1}$ takes $(f(1-2^{-0.25}\sqrt a), f(1+2^{-0.25}\sqrt a))$ to $(f(O)$ ,
$f(2^{0.75}\sqrt{a}))$ , and a similar map $f\circ(translation)\circ f^{-1}$ takes $(f(1-2^{-0.25}\sqrt{a’})$ ,
$f(1+2^{-0.25}\sqrt{a’}))$ to $(f(O), f(2^{0.75}\sqrt{}\overline{a’}))$ , we may suppose that $e_{i}$ and $e_{i}’$ are con-
vergent to $0$ as $iarrow\infty$ . Assume that $e$ and $e’$ lie in $(f(O), f(1))$ . Then it follows
from (3.1) and (3.2) that

(3.3) $\lim_{iarrow\infty}e_{-i-2}/e_{-i}=f(c)$ ,

(3.4) $\lim_{iarrow\infty}e_{-i-2}’/e_{-i}’=f(c’)$ .

Let $Z$ denote the Zariski closure of graPh $(\tau)$ . This is of dimension 1
because $\tau$ is semialgebraic. It is clear that $Z$ contains all $(e_{i}, e_{i}’)$ . Let $P(x, y)$

$=\Sigma_{j=1}^{s}\delta_{j}x^{\beta_{j}}y^{\gamma_{j}}(\delta_{j}\in R, \beta_{j}, \gamma_{j}\in N)$ be a defining polynomial of $Z$ . Then

$P(e_{\mathfrak{i}}, e_{i}’)=0$ for any $i\in Z$ .
Since $\alpha$ is irrational,

(3.5) $\beta_{i}+\alpha\gamma_{i}\neq\beta_{j}+\alpha\gamma_{j}$ for $i\neq j$ .

Set
$P_{i}(x, y)=x^{\beta}{}^{t}y^{\gamma i}$ .

For each $n\in Z$, let $E(n)$ denote the $s\cross S$ -matrix whose $(i, J)$ entry is

$P_{i}(e_{-n-2j+1}, e_{-n-2j+1}’)$ .
Then

$(\delta_{1}, \cdots , \delta_{s})E(n)=(P(e_{-n-1}, e_{-n-1}’),$ $\cdots$ , $P(e_{-n-2s+1}, e_{-n-2s+1}’))=0$ .

In particular $\det E(n)=0$ . On the other hand, we have

$\det E(n)=(\prod_{i=1}^{s}P_{t}(e_{-n-1}, e_{-n-1}’))\det F(n)$ ,

where $F(n)$ is the $s\cross S$-matrix whose $(i, J)$ entry is

$P_{i}(e_{-n-2j+1}, e_{-n-2j+1}’)/P_{\ell}(e_{-n-1}, e_{-n-1}’)$ .

NOW (3.3) and (3.4) mean that each entry of $F(n)$ converges to

$(c^{\beta_{i}}(c’)^{\gamma_{i}})^{j-1}=c^{(\beta_{i}+\alpha\gamma t)(j-1)}$

as $narrow\infty$ . Thus $\det F(n)$ converges to a Vandermonde’s determinant equals

$\prod_{t\triangleleft}(c^{\beta_{j}+\alpha\gamma}!-c^{\beta t^{+\alpha\gamma\downarrow)}}\neq 0$ ,

by (3.5). Therefore $\det E(n)\neq 0$ for large $n$ . This proves the result. $\square$
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4. Compactifiable $C^{\infty}G$ manifolds.

The same argument of the proof of Theorem 1 (3) proves Theorem 2 (2). To
prove Theorem 2 (1), we show a relative version of Theorem 3.1. After proving
Theorem 4.2, we give a proof of Theorem 2 (1).

DEFINITION 4.1. (1) An algebraic subset of a representation of $G$ is said
to be an algebraic $G$ set if it is $G$ invariant. Moreover we call it a nonsingular
algebraic $G$ set if it is nonsingular.

(2) Let $X$ be a $C^{\infty}G$ manifold and let $X’$ be a $C^{\infty}G$ submanifold of $X$ . A
pair (X, $X’$ ) is called algebraically $G$ cobordant if there exist a nonsingular
algebraic $G$ set $Y$ , a nonsingular algebraic $G$ subset $Y’$ of $Y$ , a $G$ cobordism $N$

between $X$ and $Y$ , and a $G$ cobordism $N’$ between $X’$ and $Y’$ such that $N’$ is a
$C^{\infty}G$ submanifold of $N$ .

THEOREM 4.2. Let $G$ be a compact affine Nash group, $X$ a compact $C^{\infty}G$

manifold, and $X’$ a comPact $C^{\infty}G$ submanifold of X. If the Pair $(X, X’)$ is
algebraically $G$ cobordant then there exist a nonsingular algebraic $G$ set $Z$ in
$X\cross\Omega$ for some representation $\Omega$ of $G$ , a nonsingular algebraic subset $Z’$ of $Z$ ,

and a $C^{\infty}G$ diffeomorphism $\phi:Xarrow Z$ with $\phi(X’)=Z’$ .

For any $C^{\infty}G$ manifold $X$ and $C^{\infty}G$ submanifold $X’$ of $X$ , the pair (XI1X,
$X’JJX’)$ is algebraically $G$ cobordant. Therefore we have the next corollary

because a $G$ invariant collection of connected components of a nonsingular
algebraic $G$ set is an affine Nash $G$ submanifold in some representation of $G$ .

COROLLARY 4.3. Let $G$ be a compact affine Nash group, $X$ a compact $C^{\infty}G$

manifold, and $X’$ a compact $C^{\infty}G$ submanifold of X. Then there exist an affine
Nash $G$ manifold $Y$ , an affine Nash $G$ submanifold $Y’$ of $Y$, and a $C^{\infty}G$ diffeo-
morphism $\phi:Xarrow Y$ so that $\phi(X’)=Y’$ . $\square$

PROOF OF THEOREM 4.2. By the proof of Theorem 1.3 [1], $X’$ is $G$ isotopic
to a nonsingular algebraic $G$ subset $Z’$ of $X\cross\Omega$ by an arbitrarily small isotopy,
for some representation of $G$ . Extending this isotopy, we may assume tbat it
maps $X\cross O$ to some $C^{\infty}G$ manifold $M$ in $Xx\Omega$ so that $M-X\cross O$ has compact
closure and that the composition of the inclusion $Marrow X\cross\Omega$ with the projection
$X\cross\Omegaarrow X$ is a $C^{\infty}G$ diffeomorphism. In particular $Z’\subset M$. Since $Z’$ is compact
and by Lemma 4.7 [1], one can find a proper $G$ invariant polynomial $\rho$ such
that $\rho^{-1}(0)=Z’$ . Let $\alpha:Xarrow\Omega$ be a $C^{\infty}G$ map with compact support so that

$M=\{(x, y)\in X\cross\Omega|y=\alpha(x)\}$ .

Take a $G$ invariant $C^{\infty}$ function $\beta$ : $X\cross\Omegaarrow[0,1]$ with compact support with
$\beta(x, y)=1$ when $|y|<2|\alpha(x)|$ . Let $\gamma:X\cross\Omegaarrow\Omega$ be
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$\gamma(x, y)=\beta(x, y)(y-\alpha(x))+(1+\beta(x, y))\rho^{2}(x, y)y$ .

Then $0$ is a regular value of 7, $7^{-1}(0)=M$, and $\gamma$ is equal to the polynomial
$\rho^{2}(x, y)y$ outside of a $G$ invariant compact set. By Lemma 5.1 [1], one can
$C^{1}$ approximates $\gamma(x, y)-\rho^{2}(x, y)y$ by an equivariant entire rational map $u$ :
$(X\cross\Omega, Z’)arrow(\Omega, 0)$ . Here an entire rational map means a fraction of polynomial
maps with nowhere vanishing denominator. This approximation is close on all
$X\cross\Omega$ . Thus

$w(x, y)=u(x, y)+\rho^{2}(x, y)y$

is $C^{1}$ approximation of $\gamma$ on $X\cross\Omega$ . Since $\rho$ is proper and by equivariant Morse
theory, there exists a $C^{\infty}G$ diffeomorphism from $Z:=w^{-1}(0)$ to $M=\gamma^{-1}(0)$ fixing
$Z’$ . $\square$

PROOF OF THEOREM 2 (1). Since $X$ is compactifiable, there exists a $C^{\infty}G$

manifold $X’$ with boundary $\partial X$ so that $X$ is $C^{\infty}G$ diffeomorphic to the interior
of $X’$ . Let $Y$ be the double of $X’$ . Applying Corollary 4.3 to the pair $(Y, \partial X’)$ ,

one can find a representation $\Omega$ of $G$ and a $C^{\infty}G$ imbedding $F:Yarrow\Omega$ such that
$F(Y)$ and $F(\partial X’)$ are affine Nash $G$ manifolds. Hence $F(X)$ is an affine Nash $G$

manifold. Therefore $X$ admits an affine Nash $G$ manifold structure. $\square$

On the other hand, T. Petrie [3] proved that any nonsingular algebraic $G$

set is compactifiable as a $C^{\infty}G$ manifold when $G$ is an algebraic group. A
similar proof shows the next theorem, because the number of connected com-
ponents of the zeros of a Nash map is finite.

THEOREM 4.4. Let $G$ be a compact affine Nash $grou_{P}$ . Then every affine
Nash $G$ manifold is compactifiable as a $C^{\infty}G$ manifold. $\square$

M. Shiota studied compactifications of Nash manifolds as either $C^{\infty}$ manifolds
[4] or Nash manifolds [5].

By Theorem 2 (1) and Theorem 4.4, we have the following.

THEOREM 4.5. Let $G$ be a compact affine Nash group. Then a $C^{\infty}G$ manifold
is compactifiable if and only if it admits an affine Nash $G$ manifold structure. $\square$
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