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0. Introduction.

The entropy of foliations is defined by Ghys, Langevin and Walczak
([G-L-W1)) as follows. Let & be a codimension ¢ foliation of class C° on a
compact manifold M. Fixing a finite foliation cover U of (M, &), we obtain
the holonomy pseudogroup .# of local homeomorphisms of R? induced by <.
We define an integer s,(¢) (n&EN, €¢>0) to be the maximum cardinality of
(n, ¢)-separating sets with respect to the holonomy pseudogroup 4. Then s,(¢)
is monotone increasing on n and monotone decreasing on ¢. The entropy
h(F, U) of the foliation F is defined by the following formula:

-0 n=—+c0

h(F, U) = lim lim Sup%log sn(€).

When we fix a sufficiently small positive real number ¢, we notice that the
monotone increasing map s,(¢) with respect to n represents the degree of the
expansion of the foliation. In [E1], we considered the growth type of s,(¢)
defined in the growth type set which is an extension of the usual growth type
set (cf. [H-H2]) and we proved that the growth type of s,(¢) depends only on
(M, ). Therefore it becomes a topological invariant for foliations. We call it
the expansion growth of (M, F). By computing the expansion growth of several
typical codimension 1 foliation of class C°, we showed that the expansion growth
of codimension 1 foliation of class C° takes uncountably many values.

In this paper, we compute the expansion growth of codimension 1 foliations
of class C?. The main result of this paper is the following.

THEOREM. Let F be a transversely oriented codimension 1 foliation of class
C? on a compact manifold M. Let K be an F-saturated set.

(1) If K has a resilient leaf, then n(K)=[e"].

(2) If K has no resilient leaf and level(K)< co, then p(K)=[n'eve'¢],

(3) Otherwise, n(K)=[1, n, n* ---].

Here n(K) means the expansion growth of (M, ) on K and the notation
[-] means the growth type defined in section 1 and level(K) means supremum
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of the level of leaves contained in K. Contrary to the case of foliations of
class C° our result says that the expansion growth of codimension 1 foliation
of class C? takes only countably many values. While there exists a codimension
1 foliation of class C* containing a leaf whose growth type is fractional ([C-C2],
[He], [T2]), we remark that the expansion growth is a typical growth type
except for one case. As a corollary, we can easily deduce that the positivity
of the entropy of codimension 1 foliation of class C? is equivalent to the exist-
ence of a resilient leaf, which was proved by Ghys, Langevin and Walczak

([G-L-W1J.

In sections 1 and 2, we review the growth type set which is an extension
of the usual growth type set and the expansion growth of foliations defined as
an element of this growth type set. In section 3, we compute the expansion
growth of codimension 1 foliations of class C®.

Finally the author would like to thank Professor T. Tsuboi for his helpful
advice.

1. Growth.

In this section, we review the growth of an increasing sequence of increasing
functions.
Let 4 be the set of non-negative increasing functions on V:

d={g: N—[0, «); gln) £ gln+1) for all n & N}.
Let J be the set of increasing sequences in J:
I = {(giexn T I; gj(n) < gju(n) for all j € N and n € N}.
We regard 4 as a subset of J by the map

Lg = gkﬁ <gy gr g, "') Ei(?j'

We define the growth type of an element of 4. We define a preorder =<
in J as follows. For (gj)ien, (hi)een<Ed,

(@pjen Z(hi)ren&=3IAB= N, Vje N, dke N, 3A>0
such that gn) < Ah,(Bn) for any n & N.

The preorder =< induces an equivalence relation = by
(g1)jen = (hi)ren & (i)jen = (hi)ren and (g5)jey = (hi)ren -
We define & to be the set of equivalence classes in J:

=3/

(S

I
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The equivalence class of (g;);enEJ is written by [g;]jeneé and is called the
growth type of (g;)jex. Thus & is the set of all the growth types of increasing
sequences of increasing functions and has the partial order < induced by the
preorder <. The equivalence class of geJCJ is simply written by [g]. Let
& be the set of such growth types:

e=1{lgl;gs49 cé.

Then ¢ is essentially equal to the partial ordered set of all the growth types
of monotone increasing functions in the usual sense (cf. [H-H2]) and & can be
considered as an extension of it.

The following relation is easy to be seen:

zMzshlz»1z =, nn, ]

Here [0] (resp. [1]) is the growth of the constant function whose value is 0
(resp. 1). We say [e™]=& the exactly exponential growth. For keNU {0}, we
say [n*]e¢& the exactly polynomial growth of degree k. We say [g;]jen<=E to
be quasi-exponential if

lim lim sup—1~log gin)>0.

jooo n—+co n

Next we define the finite sum and the finite product of elements of £. For
Lgilien, [hilrensE, we put

[giljen+[helrer = [gi+hiljen,
[giljen-[hilrenr =185 hjljen.

These definitions are clearly well-defined. The following relations are easy to
be seen:

[(n*1+[n'] = [nmaxtt-b],
[n*]-[n']=[n*"].
[(n*1+[e"] = [e"].
[n*]-le"] = [e"].

2. Expansion growth of foliations.

In this section, we define the expansion growth of a foliation on a compact
manifold. Let ¥ be a codimension ¢ foliation of class C° on a compact (p+q¢)-
dimensional manifold M.

Let U={(U,, ¢)}i: be a good foliation cover of (M, &). That is, it satisfies .
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the following conditions.

(1) {Uj &, is an open covering of M.

(2) ¢; is a homeomorphism of U, to B(0)X B%(o;), where 0=(0, ---, 0)=R?,
0;=@d, -+, 3eR? and BP(z)={x&R?; |x—z| <1} CR>?.

(3) If U,NU,; +#0, then there exists a homeomorphism ¢;; : @, (U;N\U;)—
@ (U;NU;") such that @;=¢;; @, on U;N\U,, where @,=pre-¢; and pr: R? X R?
—R? is the projection to the second factor.

We put B;=B{(0;)CR? and T;=¢7'({o} XB,)CM. Put T=U&, T;CM and
B=Ui,B;CR‘. We remark that @;|r, is a homeomorphism of T'; to B,. We
define a map ¢: B—~T by «(x)=(P;Ir) (x)eT,CT for x&B,CB.

We define a pseudogroup of local homeomorphisms of BCR? induced by a
foliation cover U. Put 4 ,={idg}\J{¢ii}#:-,. Then we define %, (nEN) as
follows :

Hp = {fn° °f1 s fl & ﬂinl}'

Here the composition map f,e/; is defined on domain(f,)" /i (domain(f,)).
Put 4=\Unen H,. We call & a pseudogroup of local homeomorphisms of B
induced by a foliation cover <.

Let x, y be points of B and let n be a natural number. We define a
number D;'i(x, y) as follows :

Div(x, y) =max{| f(x)—f(¥)]; f € K., x, vy = domain(f)}.

Let ¢ be a positive number. Two points x and y of B are said to be
(n, e, J)-separated if Dy 1(x, y)=e. Otherwise x and v are said to be (n, ¢, %,)-
close. Let K’ be a subset of BCRY. A subset SS B is said to be an (n, ¢, 4%, K')-
separating set if S is a subset of K’ and for any x, y=S, x and y are (n, ¢, 4,)-
separated. A subset RSB is said to be an (n, ¢, 4,, K')-spanning set if for any
x& K’, there exists ye R such that x and y are (n, &, 4,)-close. Put

sii(e, K') = max{#S; S is an (n, ¢, J4,, K’')-separating set},
ra(e, K') = min{#R ; KR is an (n, ¢, %,, K’')-spanning set}.
Let (e;);ex be a monotone decreasing sequence of positive numbers which

converges to 0. We can easily notice that (syi(e;, K'))jen and (rai(e;, K'))jen
are elements of J. We recall the following.

THEOREM 2.1 ([E1]). Let F be a codimension ¢ foliation class C° on a
compact (p+q)-dimensional manifold M and let K be a subset of M. Let U be
a good foliation cover of (M, F) and let (¢;);en be a monotone decreasing sequence
of positive numbers which converges to 0. Put @(K)=\Uit, O(KNU,)EB. Then

[35‘5‘1(51‘, ®(K))]j€N = |:7/ﬁ[1(5j’ @<K)>]j€N e é
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and this growth type is independent of the choice of U and (g;)jen. M

By [Theorem 2.1, [sn 1(e;, @(K))jen=L[rn1(c;, P(K))]l;en=E depends only on

(M, &) and K&EM and it is a topological invariant for foliations on compact
manifolds.

DEFINITION 2.2. We call the above growth type the expansion growth of
(M, ) on K and denote it by

7(K, F)or simply p(K)) € €.

Ghys, Langevin and Walczak defined the entropy A(F, U) of a foliation &
to be

h(&F, U) = lim lim sup;ll—log sii(e, B).

From the definition, we can easily see that the entropy of a foliation ¥ on a

compact manifold M is not zero if and only if n(M, F)eé has quasi-exponential
growth.

EXAMPLE.

(1) If (M, 4) is a bundle foliation, then (M, ¥)=[1].

(2) If (M, 9) is a Reeb foliation, then n(M, F)=[n].

(3) If (T™ &) is a linear foliation on the m-dimensional torus, then
P(T™, F)=[1].

(4) 1If (T* 9) is a Denjoy foliation, then (T2, F)=[n].

Finally we describe several properties of the expansion growth.
LEMMA 2.3 ([E]). Let K and K’ be subsets of M. Then
n(K) = yp(K).

p(KUK') = n(K)+n(K")
and if KEK’ then
n(K) =< n(K'). n

3. Expansion growth of smooth codimension-one foliations.

In this section, we restrict ourselves to a transversely oriented codimension
1 foliation & of class C? on a compact manifold M except for Lemma 3.3. The
following theorem is the main theorem of this paper.

THEOREM 3.1. Let F be a transversely oriented codimension 1 foliation of
class C* on a compact manifold M. Let K be an F-saturated set.

(1) If K has a resilient leaf, then yp(K)=[e"].

) If K has no resilient leaf and level(K)<co, then n(K)=[n'e"e'"],
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(3) Otherwise, n(K)=[1, n, n*, ---].
Here we define the level of a leaf L as follows:
level(L) =sup{l; Ly S - S L, = L such that L, is a leaf of ¥}.
We define the level of an F-saturated set K as follows:

level(K) = sup{level(L); L is a leaf contained in K}.

For the proof of [Theorem 3.1, take an 1-dimensional foliation 4 transverse
to §. Let ¢ be a good foliation cover of (M, ¥). We may assume that
U={U,, @))%, is a bidistinguished foliation cover of (¥, ). We use the
notations which we defined in section 2. Put T;=¢7'({o} XB;). We note that
U can be taken so that for i#:/, T;N\T;=0. Put T=\UL,T,CM. We identify
TcM with BCR by the map ¢'. Let 4, 4, and 4 be as in section 2. We
may assume that each element of 4 is orientation-preserving.

We define the growth of a leaf L as follows:

gr(iL)y=[#J4,(y)] ¢
where ye LNT.

We review the theory of the level of leaves developed by Cantwell and

Conlon ([C-C1]).

PROPOSITION 3.2 ([C-C1]). Let F be a transversely oriented codimension 1
foliation of class C* on a compact manifold M.

(1) If Y is a local minimal set, then level(Y)<oo.

(2) If L is a totally proper leaf, then L consists of finitely many proper
leaves and gr(L)=[n'®ve'®7],

(3) For a non-negative integer [, the union of leaves whose level is at most
[ is compact.

(4) The union of leaves whose level is finite is dense in M.

(5) FEach leaf whose level is infinite has no proper side. M

We recall the following result for codimension 1 foliations of class C° which

was proved in [E1].

PRoOPOSITION 3.3 ([E1]). Let F be a transversely oriented codimension 1
foliation of class C® on a compact manifold M.

1) pM)=[e].

(2) If L is a resilient leaf, then n(L)=[e™].

(3) If L is a totally proper leaf, then n(L)=gr(L).

(4) If M is a minimal set without holonomy, then np(M)=[1]. =

By (3) of Proposition 3.3 and (2) of Proposition 3.2, we have the following
lemma.
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LEMMA 3.4. If L is a totally proper leaf, then np(L)=[n'"'®]. m
The key step for the proof of is to prove the following.

PROPOSITION 3.5. Let Y be an open local minimal set without holonomy such
that Y #M. Then

n(YV) = 90 )+[n]-gr(dY).

where Y is the union of border leaves of Y (which consists of finitely many
leaves) and

gr(5Y) :L is a leaf c<§tained in Y gr(L) )

By this proposition, we can easily deduce the following lemma.

LEMMA 3.6. Let Y be an open local minimal set.
(1) If Y has a resilient leaf, then p(Y)=[e"].
(2) If Y has no resilient leaf, then n(Y )=[n'eve!d ],

PrROOF. (1) Suppose that Y has a resilient leaf. Then by (1) and (2) of
IProposition 3.3, we have n(¥Y)=[e¢"].

(2) We consider the case where Y has no resilient leaf. We remark that
Y is an open local minimal set without holonomy. Moreover by the theorem
of Sacksteder ([S]), ¥ has no exceptional local minimal set. So by (2) of
Proposition 3.2, Y —Y consists of finitely many totally proper leaves. So by
level(Y)<co and level(Y —Y)=level(Y)—1, we have gr(0Y)=[n'eve'®-1] and
7(dY)=[n'eve!® ] py Hence if Y M then by [Proposition 3.5

v(y) — n(ay)_i_ [7’2] 'gr(ﬁY) — [nlevel(Y)—1]+ [n] . [nlevel(Y)—lj — [nlevel(Y)] .

If Y=M then obviously level(Y)=0. So by (4) of [Proposition 3.3, we have
p(V) = [1] = [nlevei]. .

We prepare some arguments to show [Proposition 3.5, We fix a nuclear-arm
decomposition of ¥ (cf. [D]):

Y :XUKIU Lo UK;,

where X is a nuclear and K,, (m=1, ---, s) is an arm. We may assume that
&k, is a product foliation and that % |, is a foliated bundle. Moreover we
may assume that 0T does not intersect any K.

Let {I;}ex be the set of all components of Y NT. Identifying T and B in
the section 2 by ¢:B—-T, we put I,=(a;, b;) (&N). By taking sufficiently
large nuclear, we may assume that, if /; is contained in some arm K, and
I;Ndomain(f)#0 for some f<.4,, then I;Cdomain(f). By choosing the indices
7 carefully, we may assume that there exists a map x:N—N such that :<«k(n)
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if and only if there exists f€ .4, and xI;N\domain(f) such that f(x)eX. We
can easily see that [k(n)]=gr(0Y). Put

glz {fldomain(f)nli;fe ﬂl’ie N},

Gn="Afne - of1; fr €4} (nEN),
and

¢= \U4G,.

neN

We remark that for any f€4 or for any f=g, f can be extended to the
C*-diffeomorphism of domain(f) to range(f).

For each me{l, -+, s}, fix a component /;, of Kn,NT. For any component
I of K,NT, fix a map f,;=¢ satisfying the following conditions:

(V) frliy) =1

(2) When we decompose f;=gn° -+ °81 (§x €41, nEN), gre -+ <&:(I,) (k=
0, -+, n) are distinct components of K, NT.

Since |y is without holonomy, =,(Y) acts freely on each leaf J of 4ly.
Since Y is an open local minimal set, the subgroup G, of Homeo,(J) induced
by the action of z,(Y") has the minimal set /. So there exists a homeomorphism
hy of J to R (resp. S?!) such that the subgroup Gg (resp. Gsi) of Homeo,(R)
(resp. Homeo,(S!)) induced by h; and G, is a subgroup of translations of R
(resp. rotations of S'). We identify the group of translations of R with R.
By the above consideration, there exists a homeomorphism h; (eN) of I; into
R satisfying the following condition. For any f<g, there exists a;&Gpg such
that

h(f(x)) = h(x)+a, for any x & domain(f)

where h(x)=h,(x) if x=I,. Moreover we may suppose that ay;,=0 for any
component I of (K,\U--- UK)NT. We remark that if I; is contained in some
arm then hi(Ii):R.

LEMMA 3.7. There exists a large real number a such that

a> |ag|
for any fea,.

Proor. Fix me{l, -+, s}. Let f be an element of &, in the arm K,.
That is, domain(f) is a component I of K,,\T and range(f) is a component I’
of Ko.N\T. We consider the map fr'of-f; of I;,. Here we can decompose

f;‘,lcfofI:gno---ogl (gkegl, T’LEN)

Here gi° -+ °gi(I;,) (=0, -, n) are components of K,N\T. We remark that
any three components of these components do not coincide.
Put fr=gc -+ og: (k=0, ---, n). Let x, y be points of [; . Then
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falx) _ a gl amax)
fa) " = gl faa()

=11 ( 1+£’%Ji&ﬂ@i1§ﬁfl:i@’)).)
(

8i(fr-1(3))
DO TECod ERICD)
g [ r-1(9))

< TLU4C fror(X)= Fra(M)])

k=1

L e D feaa(x)— fraa(y)]

S—_ e4AC'
where z, is a point of f,_,({;, ) determined by the mean value theorem and

_ max{|g"(z)| ; g€ I, zEdomain(g)}
" min{g’(z); g€ %,, z&domain(g)}

and
n A
D1 aal®) = foa)] S231Te| = 44.
So
fa(x) < e*Cfa(y).
Since f, is a diffeomorphism of I, , there exists yel;, such that fr(y)=1.
Therefore

falx) = e*4¢

for any xe=1 Hence we have

im*

T bi
o T & Lag e, buy—e] (@i, bo) = 1o,
where
bim_" a;,
€= 9840
So

(yroror,) = gyl = (e Fo 2750 )) (20|
= hig(biy—)—hiy (@i, +0).
By a;,=a,,,=0, we have
®y = Qsilofos ;-

Since ¢ does not depend on the choice of f, there exists a large real number
., such that
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(22 > ia_f!
for any f<g, in the arm K,,.

The cardinality of elements of ¢, which is not in any arms are finite. So
there exists a large real number a such that

a> |ag|
for any f=g,. m

PROOF OF PROPOSITION 3.5. First we show that
7(Y) = 9 )+[nlgr(dY).

Obviously 7n(Y)=5(0Y). Fix a leaf FSoY. We show that n(Y)=[n]lgr(F).
We may assume that the negative side of F is contained in Y and b,€dl, is a
point of F. For each n=N and for each b= 4, (b)— H,_1(b), we fix f,ed(,
such that b=f,(b,). Since 0T does not intersect any arms, there exists cel,
such that f, is defined on [¢, b,] for any b= 4(b,). There exists a loop y based
on b; contained in F such that the holonomy map f; of I, induced by 7 is a
contraction to b,. Here we may assume that f, is defined on [c, b;]. Take a
large natural number N such that f,e%y.

Take a positive real number 0<<1 such that 6<|c—f(¢)| and d is sufficiently
small for . For neN, put

Sn - {fb(f)l’(c));b S ‘g[n(bl)’ l: ]-’ T, 77.}.

Then S, is an (A(N+1)n, 0, 4,, Y N\T)-separating set. For we take any two
points x, y of S,. We may assume that x<y and x=f,(fic)). We apply the
argument of Lemma 2.5 and Theorem 3.3 in along frlefi'€EH vivn-
Then there exists f& H svsnn such that x, yedomain(f) and | f(x)—f(y)|=4.
So x and y are (A(N+1)n, 0, 4,)-separated. It follows that

Satwena(®, YNT) = #S, = n-#4a(by).
Therefore

9(Y) = [n]gr(F).
Hence

p(Y) = n(0Y )+[n]lgr(dY).
Next we show that
n(Y) < n(0Y )+ [nlgr(dY).

Fix a positive real number . There exists a large integer n, such that |I;| <e
for any ¢>k(n,). We take a positive real number ¢ such that for any 7=k(n,)
and for any x, yel;, if |x—y|=¢ then |h;(x)—hy)|=0. We take points
zi, -+, 2v< R satisfying the following conditions.
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s hats) if L]z

aw = hibi—5) if 1Ll z e,

0 é Zk+1_zk < 5.

ZN—Z1 = .

hi{(I)N{zy, -+, zy} #0 for any i € N.

Fix a positive integer n. Put

e(n+ng)

R, = l_ul hi*{zy+la; k=1, , N, [=—mn, -, n}).
Let Ry be an (n, ¢, 4, 0Y NT )-spanning set with the minimum cardinality.

We will show that R, UR; is an (n, 2¢, 4,, Y NT )-spanning set. Take
any point x of YNT. Let I, be a component of YNT containing x.

First we consider the case where i<k(n+mn,). Let y&R, be a point which
gives the minimum value of |x—y|. We remark that y is a point of I;. We
may assume that x<y. We show that Dyi(x, y)<<e. Suppose Dji(x, y)=e.
Then there exists f=g, such that |f(x)—f(y)|=e. Let I, be a component of
YNT containing f(x) and f(y). By

[ 1;1 > [ f()—Ff()] =z e,

we have j=<&k(n,). Then

(F(x), Fonn(as+

by—=) # 0

£
2’ 2

and

| (f(x)—h(f(y)] = 0.
So

(h(F(x)), hi(F(YINN(z1, 28) # 0.

On the other hand, A;(f(x))=h(x)+a; and h;(f(y))=hi(y)+a;,. So
|hi(x)—hy(y)|=28. By feg, and Lemma 3.7, we have |a,|<na. So

(hi(x), hi(yNN\(z1—na, zy+na) # 0.
Therefore there exists a point

ze {zp+la; k=1, -, N, = —n, -, n}N(hy(x), h(p)) .
So
hii(z) € RaN\(x, ¥).

This contradicts the choice of y. Hence Dgi(x, y)<e.
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Next we consider the case where i>k(n-+n,). Obviously, |x—b;|<e. By
b;€dY NT, there exists y=R;, such that Dii(b;, y)<e. We show that
Di(x, y)<2e¢. Given any fe 4, such that x, yedomain(f). By fe 4, and
the choice of x(n), f(x) is contained in the arm K, containing x. So f is
defined on [a, b;] and (f(a,), f(b;))=1; for some j>k(n,). So

[f()—=f(bo)| < | fla)—Fb)] <e.

By Db, y)<e, we have |f(b)—f(y)|<e. Therefore |f(x)—f(y)|<2¢. So
Di(x, y)<2e.

By the above two results, R,\UR, is an (n, 2¢, 4, Y N\T)-spanning set.
Hence

rai2e, YNT) < # R, +#Ry < ria(e, Y NT)+N2n+1)-k(n+n,).
Then we can take a large positive real number C such that
ra12e, YNT) < rifi(e, Y NT)+Cn-k(2n)

for any neN. So
P(Y) < p0Y )+ [n]gr(dY).

This completes the proof of [Proposition 3.5 m

PrOOF OF THEOREM 3.1. If K has a resilient leaf then by (1) and (2) of
IProposition 3.3, we have n(K)=[e"].

We consider the case where K has no resilient leaf. We remark that K
contains no open local minimal set with holonomy. Moreover by the theorem
of Sacksteder, K contains no exceptional local minimal set. These facts imply
that each local minimal set contained in K is a totally proper leaf or an open
local minimal set without holonomy whose closure has no resilient leaf. By

Proposition 3.2, we can take a set {L,} ey of leaves contained in K satisfying
the following conditions.

(1) L, is a totally proper leaf or a leaf contained in some open local
minimal set ¥ without holonomy whose closure has no resilient leaf.

(2) Ujenx L; is dense in K.

(3) sup{level(L;); jN} =level(K).

(4) Any border leaves of components of M—K are contained in {L;} jen.

By and we have p(Lj)=[n'*"®'%2]. Put K,=
U;'n=1 L-j. Then

— [nlevel(Ll):|+ +[nlevel(Lm):| — [nlevel(Km)] .

We will show that
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n(]() — [nlevel(Kl), nlevel(Kz)’ nlevel(Ks)’ ] .

Fix a positive real number ¢<1. Then we can take a large natural number
m such that for any component I of T—K, if |I|=¢ or dINdT +#0 then [ is a
component of T—XK.

Let n be a natural number. Let R, be an (n, ¢, 4, KnN\T)-spanning set
with the minimum cardinality. We show that R, is an (n, 2¢, 4, KNT)-
spanning set. Take any point x&KNT. If x&K,NT then there exists yER,
such that D¥i(x, y)<e. We consider the case where xe(K—K,)NT. LetY
be a component of M—K,, containing x. By the choice of K,, Y is a foliated
bundle and (Y\UdY)NOT =0 and |I|<e for any component I of YNT. So
there exists z&€dY NT such that x and z are contained in some T;. Since z is
a point of K,NT;, there exists y&R,NT; such that Dyi(z, y)<e. We show
that Dii(x, y)<2¢. Take any f& 4, such that x, yedomain(f). By Y \UédY)
NOT =0, we have z&domain(f). By |I|<e for any component I of Y NT,
we have |f(x)—f(z)|<e. By Dii(z, y)<e, we have |f(2)—f(y)I<e. So
| f(x)—f(y)| <2e. Therefore D¥1(x, y)<2¢. Hence R, is an (n, 2¢, 4;, KNT)-
spanning set. It follows that

rii(2e, KNT) < #R, = rii(e, KuN\T).

On the other hand,
77<Km> — [nlevel(Km)] .

So there exists a large number C such that
rive, KaNT) < CnleveldEm
for any n=N. Hence
riv2e, KNT) = ria(e, KuN\T) = CnlevelEm)
for any n=N. This implies that

77<K) g [nlevel(Kl)’ nlevel(KZ)’ nlevel(Ks), ] .

Next we show the converse inequality. Obviously for any m&N,
n(K) = n(Kn) = [n'evelEmw ],
So there exists positive numbers 0, C such that
C-s731(0, KN\T) = nlevelEm
for any nN. This implies that

77([{) > [nlevel(Kl)) nlevel(Kz)’ nlevel(K3)’ ] .
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Finally if level(K)<co then

77(1{) — 77(]_{') — [nlevel(K)]
and otherwise
nK)=[1, n, n?, ---]. n

By [Theorem 3.1, we can easily deduce the following conclusion which is
proved by Ghys, Langevin and Walczak.

COROLLARY 3.8 ([G-1L~W7]). Let F be a transversely oriented codimension 1
foliation of class C* on a compact manifold M. Then the entropy of F is not
zero if and only if F has a restlient leaf. M

If g is a real-analytic codimension 1 foliation then level(M)<e by [C-C3].
So we have the following corollary.

COROLLARY 3.9. Let F be a transversely oriented codimension 1 foliation of
class C® on a compact manifold M. Let K be an F-saturated set.

(1) If K has a resilient leaf, then n(K)=[e"].

(2) Otherwise, n(K)=[n'"'¥]. m
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