A generalization of H-surfaces and a certain duality

By Atsushi FUJIOKA

(Received Feb. 5, 1993) (Revised June 30, 1993)

§ 1. Introduction.

In 1970 Lawson [2] showed that for a simply connected Riemann surface M there exists a bijective correspondence between minimal immersions of M into S^3 and isometric immersions of M into R^3 with constant mean curvature $(\neq 0)$.

As a generalization of surfaces of constant mean curvature $H\neq 0$ (in abbreviation H-surfaces), we can consider solutions of

$$\Delta f = 2H \frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial y},$$

where (x, y) is an isothermal coordinate system,

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

and

$$\frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial y} = \begin{pmatrix} \frac{\partial f^2}{\partial x} \frac{\partial f^3}{\partial y} - \frac{\partial f^2}{\partial y} \frac{\partial f^3}{\partial x} \\ \frac{\partial f^3}{\partial x} \frac{\partial f^1}{\partial y} - \frac{\partial f^3}{\partial y} \frac{\partial f^1}{\partial x} \\ \frac{\partial f^1}{\partial x} \frac{\partial f^2}{\partial y} - \frac{\partial f^1}{\partial y} \frac{\partial f^2}{\partial x} \end{pmatrix}$$

(see § 2).

In this paper we shall show the following generalization of Lawson's result.

Theorem. Let M be a simply connected Riemann surface. Then there exists a bijective correspondence between

$$\{\varphi: M \longrightarrow S^3 | \varphi \text{ is a harmonic map}\} / SO(4)$$

and

$$\{f: M \longrightarrow \mathbb{R}^3 \mid f \text{ satisfies } (1.1)\} / SO(3) \ltimes \mathbb{R}^3$$
.

184 A. Fujioka

If f is isometric so is φ and vice versa. This part of correspondence is exactly one cited above in [2] by Lawson. Therefore our proof gives an alternative proof of Lawson's result in [2].

ACKNOWLEDGEMENT. The author would like to thank Prof. T. Ochiai for his useful suggestion and consistent encouragement.

§ 2. Preliminaries.

Let (M, g), (N, h) be Riemannian manifolds. A map φ from M into N is called harmonic if it extremizes the energy functional

$$E(\varphi) = \frac{1}{2} \int_{M} |d\varphi|^{2} dVol_{M}$$

on every compact subdomain of M. The Euler-Lagrange equation for E is

$$g^{jk} \left\{ \frac{\partial^2 \varphi^{\alpha}}{\partial x^j \partial x^k} - {}^{M} \Gamma^{l}_{jk} \frac{\partial \varphi^{\alpha}}{\partial x^l} + {}^{N} \Gamma^{\alpha}_{\beta \gamma}(\varphi) \frac{\partial \varphi^{\beta}}{\partial x^j} \frac{\partial \varphi^{\gamma}}{\partial x^k} \right\} = 0$$

in local coordinates, where the Γ are the Christoffel symbol of M and N.

Now let M be a simply connected Riemann surface and N a compact Lie group G with its Lie algebra \mathfrak{g} .

Let ζ be the Maurer-Cartan form on G and α a g-valued 1-form on M.

Since M is simply connected, $\alpha = \varphi^* \zeta$ for some map $\varphi : M \to G$ if and only if α satisfies the Maurer-Cartan equation

(2.1)
$$d\alpha + \frac{1}{2} [\alpha \wedge \alpha] = 0,$$

where $[\alpha \land \alpha](X, Y) = 2[\alpha(X), \alpha(Y)]$ for $X, Y \in TM$. φ is unique up to left multiplication by an element of G.

And $\varphi: M \rightarrow G$ is harmonic if and only if $\alpha = \varphi^* \zeta$ is co-closed, i.e.,

$$(2.2) d*\alpha = 0$$

(see [3], [4]).

So if we consider harmonic maps from M into G, it suffices to consider g-valued 1-forms α on M satisfying (2.1) and (2.2).

For harmonic map theory we refer to [1] as a survey article.

Let M be a Riemann surface. For a 2-form θ on \mathbb{R}^3 such that $d\theta = 2Hdx^1 \wedge dx^2 \wedge dx^3$ ($H \in \mathbb{R} \setminus \{0\}$), we call $f: M \to \mathbb{R}^3$ is an H-surface (a surface of constant mean curvature H) if it is conformal and extremizes the functional

$$\Phi_H(f) = E(f) + \int_M f^* \theta$$

on every compact subdomain of M.

In an isothermal coordinate system a simple computation shows that the Euler-Lagrange equation for Φ_H is (1.1). So we can consider solutions of (1.1) as a generalization of H-surfaces. For geometric meaning of Φ_H see [5, p. 180].

§ 3. Duality.

We consider R^3 as a Lie group under addition. Then its Lie algebra is R^3 . The Maurer-Cartan form η on R^3 is given by

$$\eta = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} dx^1 + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} dx^2 + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} dx^3.$$

Let M be a simply connected Riemann surface and β an \mathbb{R}^3 -valued 1-form on M. Since M is simply connected, $\beta = f^*\eta$ for some $f: M \rightarrow \mathbb{R}^3$ if and only if β satisfies

$$(3.1) d\beta = 0.$$

f is unique up to addition by an element of \mathbb{R}^3 .

LEMMA 1. $f: M \rightarrow \mathbb{R}^3$ satisfies (1.1) if and only if $\beta = f * \eta$ satisfies

$$(3.2) d*\beta + H*(\beta \wedge \beta) = 0,$$

where * is the Hodge star operator on M and $\beta \wedge \beta = 2a \wedge bdx \wedge dy$ for $\beta = adx + bdy$ (a, $b \in \mathbb{R}^3$).

PROOF. We take an isothermal coordinate system on M. Since

$$\beta = f * \eta$$

$$= (f * \eta) \left(\frac{\partial}{\partial x}\right) dx + (f * \eta) \left(\frac{\partial}{\partial y}\right) dy$$

$$= \eta \left(\sum_{j=1}^{3} \frac{\partial f^{j}}{\partial x} \frac{\partial}{\partial x^{j}}\right) dx + \eta \left(\sum_{j=1}^{3} \frac{\partial f^{j}}{\partial y} \frac{\partial}{\partial x^{j}}\right) dy$$

$$= \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy,$$

$$d*\beta = -*d*\beta$$

$$= -*d* \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right)$$

$$= -*d \left(\frac{\partial f}{\partial x} dy - \frac{\partial f}{\partial y} dx\right)$$

$$= -* \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right) dx \wedge dy$$
$$= -\left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right) * (dx \wedge dy).$$

And

$$\beta \wedge \beta = \left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right) \wedge \left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right)$$
$$= \left(\frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial y}\right) dx \wedge dy + \left(\frac{\partial f}{\partial y} \wedge \frac{\partial f}{\partial x}\right) dy \wedge dx$$
$$= 2\left(\frac{\partial f}{\partial x} \wedge \frac{\partial f}{\partial y}\right) dx \wedge dy. \quad \blacksquare$$

Note that an element of \mathbb{R}^3 acts on solutions of (1.1) as a parallel displacement and an element of a Lie group G acts on harmonic maps into G. We are now in a position to prove the main lemma.

Lemma 2. Let M be a simply connected Riemann surface. Then there exists a bijective correspondence between

$$\{\varphi: M \longrightarrow SU(2) | \varphi \text{ is a harmonic map}\} / SU(2)$$

and

$$\{f: M \longrightarrow \mathbb{R}^3 \mid f \text{ satisfies } (1.1)\}/\mathbb{R}^3$$
.

PROOF. It is easy to see that equations (3.1) and (3.2) are equivalent to

$$(3.3) d*(*\beta) = 0,$$

$$(3.4) d(*\beta) - H(*\beta \wedge *\beta) = 0.$$

We define a bijective map

$$eg: \mathbb{R}^3 \longrightarrow \mathfrak{gu}(2)$$

by

$$c\begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} = \begin{pmatrix} ix^1 & -x^2 + ix^3 \\ x^2 + ix^3 & -ix^1 \end{pmatrix}$$

for

$$\begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} \in \mathbf{R}^3.$$

Then we have $\iota(a \wedge b) = -[\iota(a), \iota(b)]/2$ for $a, b \in \mathbb{R}^3$. ι is extended to a map from \mathbb{R}^3 -valued 1-forms on M into $\mathfrak{gu}(2)$ -valued 1-forms on M. We also denote

it by c.

Then using the Hodge star operator * we can define a "dual" map $\iota \circ *$. An easy computation shows that equations (3.3) and (3.4) are equivalent to

$$d^*(\iota(*\beta)) = 0,$$

(3.6)
$$d(\iota(*\beta)) + \frac{H}{2} [\iota(*\beta) \wedge \iota(*\beta)] = 0.$$

Since we may assume H=1 by rescaling, equation (3.6) is the Maurer-Cartan equation for $\mathfrak{Su}(2)$ -valued 1-forms on M and (3.5) is harmonic map equation (see (2.1) and (2.2)). So we can obtain a harmonic map from M into SU(2).

We identify SU(2) with the standard unit 3-sphere S^3 by

$$\begin{pmatrix} y^0 + iy^1 & -y^2 + iy^3 \\ y^2 + iy^3 & y^0 - iy^1 \end{pmatrix} \in SU(2) \longleftrightarrow (y^0, y^1, y^2, y^3) \in S^3$$

and take a coordinate system $\{u^1, u^2, u^3\}$ with

$$u^{j} = \frac{y^{j}}{y^{0}}$$
 (j = 1, 2, 3)

in $\{(y^0, y^1, y^2, y^3) | y^0 \neq 0\} \subset S^3$.

LEMMA 3. The Maurer-Cartan form ζ on SU(2) is given by

$$\zeta = \begin{pmatrix} i\omega_1 & -\omega_2 + i\omega_3 \\ \omega_2 + i\omega_3 & -i\omega_1 \end{pmatrix}$$
,

where

$$\begin{split} & \boldsymbol{\omega}_1 = \frac{1}{1 + \sum_{j=1}^3 (u^j)^2} (du^1 - u^3 du^2 + u^2 du^3), \\ & \boldsymbol{\omega}_2 = \frac{1}{1 + \sum_{j=1}^3 (u^j)^2} (du^2 - u^1 du^3 + u^3 du^1), \\ & \boldsymbol{\omega}_3 = \frac{1}{1 + \sum_{j=1}^3 (u^j)^2} (du^3 - u^2 du^1 + u^1 du^2). \end{split}$$

PROOF. It is an easy exercise. So we ommit the proof.

If we consider $SO(3) \ltimes \mathbb{R}^3$ action on solutions of (1.1) and SO(4) action on harmonic maps into $SU(2) \cong S^3$, we obtain the following main theorem.

Theorem 4. Let M be a simply connected Riemann surface. Then there exists a bijective correspondence between

$$\{\varphi: M \longrightarrow S^3 \mid \varphi \text{ is a harmonic map}\}/SO(4)$$

and

$$\{f: M \longrightarrow \mathbb{R}^3 \mid f \text{ satisfies } (1.1)\} / SO(3) \ltimes \mathbb{R}^3$$
.

PROOF. We may assume H=1. Let f be a solution of (1.1) and φ a corresponding harmonic map in Lemma 2. Then

(3.7)
$$-\frac{\partial f^{j}}{\partial y} = \varphi^{*}\omega_{j}\left(\frac{\partial}{\partial x}\right) \qquad (j=1, 2, 3)$$

(3.8)
$$\frac{\partial f^{j}}{\partial x} = \varphi^{*} \omega_{j} \left(\frac{\partial}{\partial y} \right) \qquad (j=1, 2, 3).$$

Put $u^{j} \circ \varphi = \varphi^{j}$ (j=1, 2, 3). Then by Lemma 3,

$$(3.9) \qquad -\frac{\partial f^{1}}{\partial y} = \left(\frac{\partial \varphi^{1}}{\partial x} - \varphi^{3} \frac{\partial \varphi^{2}}{\partial x} + \varphi^{2} \frac{\partial \varphi^{3}}{\partial x}\right) \frac{1}{1 + \sum_{j=1}^{3} (\varphi^{j})^{2}},$$

$$(3.10) \qquad -\frac{\partial f^2}{\partial y} = \left(\frac{\partial \varphi^2}{\partial x} - \varphi^1 \frac{\partial \varphi^3}{\partial x} + \varphi^3 \frac{\partial \varphi^1}{\partial x}\right) \frac{1}{1 + \sum_{j=1}^3 (\varphi^j)^2},$$

$$(3.11) \qquad -\frac{\partial f^3}{\partial y} = \left(\frac{\partial \varphi^3}{\partial x} - \varphi^2 \frac{\partial \varphi^1}{\partial x} + \varphi^1 \frac{\partial \varphi^2}{\partial x}\right) \frac{1}{1 + \sum_{j=1}^3 (\varphi^j)^2},$$

$$(3.12) \qquad \frac{\partial f^{1}}{\partial x} = \left(\frac{\partial \varphi^{1}}{\partial y} - \varphi^{3} \frac{\partial \varphi^{2}}{\partial y} + \varphi^{2} \frac{\partial \varphi^{3}}{\partial y}\right) \frac{1}{1 + \sum_{j=1}^{3} (\varphi^{j})^{2}},$$

(3.13)
$$\frac{\partial f^2}{\partial x} = \left(\frac{\partial \varphi^2}{\partial y} - \varphi^1 \frac{\partial \varphi^3}{\partial y} + \varphi^3 \frac{\partial \varphi^1}{\partial y}\right) \frac{1}{1 + \sum_{j=1}^3 (\varphi^j)^2},$$

$$(3.14) \qquad \frac{\partial f^{3}}{\partial x} = \left(\frac{\partial \varphi^{3}}{\partial y} - \varphi^{2} \frac{\partial \varphi^{1}}{\partial y} + \varphi^{1} \frac{\partial \varphi^{2}}{\partial y}\right) \frac{1}{1 + \sum_{j=1}^{3} (\varphi^{j})^{2}}.$$

Let $A \in SO(3)$. Put $\begin{pmatrix} \tilde{f}^1 \\ \tilde{f}^2 \\ \tilde{f}^3 \end{pmatrix} = Af$ and $\begin{pmatrix} \tilde{\varphi}^1 \\ \tilde{\varphi}^2 \\ \tilde{\varphi}^3 \end{pmatrix} = A \begin{pmatrix} \varphi^1 \\ \varphi^2 \\ \varphi^3 \end{pmatrix}$. Then a direct computation

shows that in (3.9)-(3.14) we can replace f^i (i=1, 2, 3) and φ^i (i=1, 2, 3) with \tilde{f}^i (i=1, 2, 3) and $\tilde{\varphi}^i$ (i=1, 2, 3). Note that SU(2) is inclused in SO(4) by

$$\begin{pmatrix} y^{0}+iy^{1} & -y^{2}+iy^{3} \\ y^{2}+iy^{3} & y^{0}-iy^{1} \end{pmatrix} \longmapsto \begin{pmatrix} y^{0} & -y^{2} & -y^{1} & -y^{3} \\ y^{2} & y^{0} & -y^{3} & y^{1} \\ y^{1} & y^{3} & y^{0} & -y^{2} \\ y^{3} & -y^{1} & y^{2} & y^{0} \end{pmatrix}.$$

Since for any element $A' \in SO(4)$ there exists a decomposition

$$A' = A'' \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}$$

such that $A'' \in SU(2)$ and $A \in SO(3)$, the theorem is proved.

PROPOSITION 5. In theorem 4 conformal (resp. isometric) harmonic maps correspond to conformal (resp. isometric) solutions of (1.1).

PROOF. For $(y^0, y^1, y^2, y^3) \in S^3$ we use a coordinate system $\{v^1, v^2, v^3\}$ with

$$y^{0} = \frac{\sum_{j=1}^{8} (v^{j})^{2} - 1}{1 + \sum_{j=1}^{8} (v^{j})^{2}},$$

$$y^{1} = \frac{2v^{1}}{1 + \sum_{j=1}^{3} (v^{j})^{2}},$$

$$y^{2} = \frac{2v^{2}}{1 + \sum_{j=1}^{8} (v^{j})^{2}},$$

$$y^{3} = \frac{2v^{3}}{1 + \sum_{j=1}^{8} (v^{j})^{2}},$$

(this is a stereographic projection) in $\{(y^0, y^1, y^2, y^3) \in S^3 | y^0 \neq 1\}$. Then

(3.15)
$$\omega_j = \frac{\Omega_j}{(\sum_{k=1}^3 (v^k)^2 + 1)^2} \qquad (j=1, 2, 3),$$

where

$$\begin{split} & \mathcal{Q}_1 = 2(-(v^1)^2 + (v^2)^2 + (v^3)^2 - 1)dv^1 - 4(v^3 + v^1v^2)dv^2 + 4(v^2 - v^3v^1)dv^3, \\ & \mathcal{Q}_2 = 2(-(v^2)^2 + (v^3)^2 + (v^1)^2 - 1)dv^2 - 4(v^1 + v^2v^3)dv^3 + 4(v^3 - v^1v^2)dv^1, \\ & \mathcal{Q}_3 = 2(-(v^3)^2 + (v^1)^2 + (v^2)^2 - 1)dv^3 - 4(v^2 + v^3v^1)dv^1 + 4(v^1 - v^2v^3)dv^2. \end{split}$$

Let f be a solution of (1.1) for H=1 and φ a corresponding harmonic map. Put $v^j \circ \varphi = \varphi^j$ (j=1, 2, 3). Then by (3.7), (3.8) and (3.15) a direct computation shows that

$$\frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial y} = -\frac{4}{(\sum_{j=1}^{3} (\varphi^{j})^{2} + 1)^{2}} \frac{\partial \varphi}{\partial x} \cdot \frac{\partial \varphi}{\partial y},$$

$$\left(\frac{\partial f}{\partial y}\right)^{2} = \frac{4}{(\sum_{j=1}^{3} (\varphi^{j})^{2} + 1)^{2}} \left(\frac{\partial \varphi}{\partial x}\right)^{2},$$

$$\left(\frac{\partial f}{\partial x}\right)^{2} = \frac{4}{(\sum_{j=1}^{3} (\varphi^{j})^{2} + 1)^{2}} \left(\frac{\partial \varphi}{\partial y}\right)^{2}.$$

Since the metric of S^3 is given by

$$\frac{4}{(\sum_{j=1}^{3}(v^{j})^{2}+1)^{2}}\sum_{j=1}^{3}dv^{j}\otimes dv^{j},$$

the proposition is proved.

References

[1] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385-524.

190 A. Fujioka

- [2] B. Lawson, Complete minimal surfaces in S^3 , Ann. of Math., 92 (1970), 335-374.
- [3] A.I. Pluzhnikov, Some properties of harmonic mappings in the case of spheres and Lie groups, Soviet Math. Dokl., 27 (1983), 246-248.
- [4] J.H. Rawnsley, Noether's theorem for harmonic maps, Diff. Geom. Methods in Math. Phys., Reidel, 1984, pp. 197-202.
- [5] M. Struwe, Variational Methods, Springer, Berlin-Heidelberg-New York, 1990.

Atsushi FUJIOKA

Department of Mathematical Sciences University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 Japan