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Let *(R/Z) be a real vector space of bounded integrable functions on the
circle which is invariant under the composition of any Lipschitz homeomorphism
of the circle. That is, for any o= and any Lipschitz homeomorphism f of
the circle, ¢of=X. Such a function space X gives rise to a group G**(R/Z)
of Lipschitz homeomorphisms of the circle: an element of GY*(R/Z) is a
Lipschitz homeomorphism f of the circle such that log f/(x—0) belongs to X.
The verification of the fact that G- *(R/Z) is a group is elementary ([19]).

The groups G***(R/Z)=Diff***(R/Z) (0<a<1) are of course examples of
such groups. This G'**(R/Z) is a subgroup of G=Vv«(R/Z) defined in [19].

In order to define the group G* “V5(R/Z), we need the notion of S-variation
for a real number B=1. For a function ¢ on R/Z and a finite subset A=
{xy, «-+, x3} of R/Z, we put

k
velp, A) = sup 2} lo(x)—p(x;-0 P,
where x,, ---, x,=x, is in the cyclic order. Then we put

V(o) = supvs(p, A),

where the supremum is taken over all finite subsets A of R/Z. We call it the
B-variation of ¢. The functions on R/Z whose §-variations are bounded form
a linear space Vs(R/Z) with the B-pseudonorm || || defined by

llglls =V p(@)/? .

We define GXY8(R/Z) to be the group of Lipschitz homeomorphisms f with
compact support such that log f/(x—0) exist as elements of <Vz(R/Z).

Then it is easy to see that GXVE(R/Z) contains both G***/#(R/Z) and the
group of class P ([8]) which is denoted by G*Vi(R/Z) in this paper. Note
that G*Y1(R/Z) contains the group PL(R/Z) of piecewise linear homeomor-
phisms whose homological property is rather well known by the work of

Greenberg ([7).
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In this paper, we study dynamical properties and homological properties of
G *(R/Z) and G V3(R/Z).

As a dynamical property, it is interesting to know whether there exist the
Denjoy-Pixton actions ([1], [13]). A Denjoy action is an action @ of Z* (k=1)
on the circle without fixed points but with a wandering interval. A wandering
interval is an interval I such that @QA)(I) A=Z*) is a disjoint collection of
intervals. On the other hand, a Pixton action is an action @ of Z* (k=2) on
the circle with fixed points and with a wandering interval.

Denjoy ([1]) proved that the Denjoy homeomorphism (Z action) does not
exist in GEYVI(R/Z). Herman showed that Denjoy homeomorphisms exist in
G (a<1) ([8], the existence of Denjoy homeomorphisms for this case is
attributed to Sergeraert).

It has been known to specialists that there are no Pixton actions in G&V(R)
and that Kopell’s lemma ([10]) holds. (I was taught this fact by Vlad Sergiescu.)
In §1, we first show that there is a Z* Pixton action in G¥V3(R) (8>k—1).
As a simple smoothing of this action, we obtain a Z* Pixton action in G;**(R)
(a<1/k). The verification is rather easy in this case and this is used in §2.
By a similar construction, we obtain Z* Denjoy actions in G'**(R/Z) (a<1/k).

By a little more careful construction, we obtain a Z* Pixton action in
G *(R) (a<1/(k—1)). In particular, we have a Z? Pixton action in G}**(R)
(a<1) and we have a sharp estimate on the regularity. This gives examples
of foliations of class CI**(R) (1/2<a<1) with a topological behavior different
from the foliations of class C%2. For Z? Pixton actions in G:**(R) (1/2<a<),
the Hurder-Katok-Godbillon-Vey class 9] is defined and it is very interesting
to know whether this class vanishes.

In [17], we used the existence of C! Pixton actions of arbitrarily big rank
to show the acyclicity of the group GLR)=Diff}(R) of C' diffeomorphisms of
R with compact support. The same method of proof shows that the existence
of well controlled Pixton actions implies the vanishing of the homology in small
dimensions and we show in § 2 that as 8 tends to o, BG*“V3(R)’ and BG}*'/#(R)’
become acyclic in arbitrarily large degrees. Hence the classifying spaces for
the codimension 1 foliations of corresponding transverse regularities become
contractible in arbitrarily large degrees. Note that the Godbillon-Vey invariant
([6, 9, 5, 3, 19]) exists and nontrivial in H*(BGEL V8(R)? ; R) and HX(BG!''*(R)’; R)
(8<2). We do not know whether there are nontrivial cohomology classes for
BGEY8(R)® and BGI*V#(R)® (8=2).

We could not calculate the homology of BG*V&(R/Z)’ (8>1) except for
the 1 dimensional homology. We show in §2, H(BG>V8(R/Z) ; Z)=0 (>1).
Note that H,(BG-Y«(R/Z)’; Z) is nontrivial and very big, and H,(BG**“(R/Z)’;
Z)=0 (a<1) by the results of [12].
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In the 2 dimensional homology, H.(BG* Y (R)’; Z) is very big because the
first homology is highly nontrivial ([12]) and there are at least two nontrivial
Godbillon-Vey invariants ([19). However, the image of this group in
Hy(BGIE(R)Y; Z) (B>1) does not contain the effect of the 1 dimensional
homology and hence H,(BGL VS(R); Z) would be easier to understand. In this
direction, we can show that the image of H,(BPL(R)’; Z) in H,(BGF* V3(R) ; Z)
(1=£8<2) is isomorphic to R and this isomorphism is given by the discrete
Godbillon-Vey invariant ([5]). We include the proof of this fact in Appendix.
The proof is rather independent of the body of paper and we use some results
shown in [20]. This fact is used in characterizing the Godbillon-Vey invariant
in terms of foliated cobordisms and perturbation of foliations ([217].

I would like to thank 1'Université de Genéve and ’Ecole Normale Supérieure
de Lyon for their hospitality where I could perform this work. I also thank
André Haefliger, Etienne Ghys and Vlad Sergiescu for their interest taken for
this work. This paper is dedicated to the memory of Peter Greenberg who
initiated the study of transversely piecewise smooth foliations.

§1. Centralizer of Lipschitz homeomorphisms.

The theorem of Denjoy in [1] describes the centralizer of a homeomorphism
in G-V (R/Z) which has an irrational rotation number. On the other hand,
Kopell’s [Lemmal in describes the centralizer of a C? contraction on the
line. Both of these results state that the centralizers are cyclically or linearly
ordered. These are important results for the investigation of 1 dimensional
dynamics.

These results fail if the homeomorphisms are less regular. Herman (8]
gave C'** (a<1l) examples of the Denjoy actions and Pixton ([13]) gave C!
examples of non-linearly-ordered centralizers.

We first show that there are Z* Pixton actions in G¥3(R), where f>k—1.

THEOREM (1.1). Let k be a positive integer and B a real number greater
than k—1. There is a homomorphism @ : Z*—GEV3(R) with an open interval
U such that QAU) A Z*) is a disjoint collection of intervals.

PROOF. Let ¢ be a positive integer. Let u; ,: Z—R be the function de-
fined by

Up, (n) =+ n|)"F=.

This u, , is a strictly decreasing function on |n]. For

A= éziei:(zl, A EZF,
i=1
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put
azzuk.,(megX{llil}).

We consider the intervals of length a;. For m<k and (4, -, An)EZ™, put

Ly

= a;.
)
" A€ Ay x ZRk-m

Then the total length L, is bounded. In fact,

L,= 2] a;

iezk
< z-k-s+:§ (2n 1)k —2n—DF) (e+n)*~

< ghe 2k bem Yt L oo
We divide the interval [0, L(,] into the intervals
I, 2[, 2] L(z'I), ,2 L(l;)] (4LeZ)
Asa-1 252
of length L;,. Then we divide this interval I(,,, into the intervals I, 2, of
length L(;,.1,. We continue this process and obtain the partition of [0, L,]
into the intervals I¢;,...1,, Of length L, ..2p=0G, 1,

We define the homeomorphism @(e;) of R as follows. @(e;) is the identity
on R—[0, L.,] and is the similarity transformation which sends the interval
I, ;0 1, onto the interval Iq,...2,41.2,p O0 laiy.24..2,. Then the
homeomorphism @(e¢;) commutes with the homeomorphism @(e;), and we obtain
a homeomorphism @ : Z*—Homeo.(R). We put U=1...., then @D)U) A=Z*)
is a disjoint collection of intervals.

Now we show that @(e;) (=1, ---, k) is an element of G¥ V5.

The derivative (@(e;))’ on the interval I(z,....2;... 1, iS equal to

1 if

2¢+%[ < max{[4;},
ARy 2gat, o ) I#t
(27 DRSS PR - uk,l(llﬁrll)
ue, (14:])
Note that the intervals I(;,... 2,_,) are invariant under @(e;) and the their end-
points are the fixed points of @(e¢;). Moreover at the endpoints of the interval
Iz, .. 1,,), the derivative (@(e;))’ exists and equal to 1.
We need to estimate V(log (@(e;))"). Let A be a finite subset of R. By
adding at most 2 points between the subsequent points of A, we obtain A’ such
that A’'NIq,....1,.,* @ implies 0l(;,....,_h»CA’. By the argument of Proposi-

tion (2.12) of [19],
vp(log (D(ey)), A) < 3F-1vg(log (D(ey)), A').

otherwise.
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On the interval I, ..a,-,, l0og (@(e;)) is described as follows. First we
look at log (@(e,))’ for i<k. If |A;+1/2|<maX;,; j<x{|4;]}, then

log (@(e)) =0 on Iy, i -
If |2,+1/2]>maX;.s <1 {1451}, then
1 on I, iy p1p for |Axl> 2[ and
(D(ey)) =
up, (|4:+11)

on ](21 widp-1.4p) for \2 l<‘2z+

ug, (14:]) 2\

Hence vg(log (@(e,))’, A’) is smaller than the sum of
211og (ur, (|2 +11)—log (us, (14:1))]?

over all (4,, -+, Az-y) such that |4;+1/2| >maX;,; <z {l4;]}. This sum is equal
to

2,2,(”“)”2!10% (s, (n+1))—log (us, (n))|?

= 4 5+ (—k—e) log (14 )1°

< 4tk+e St ()

= 4(k+8)5(‘8-—k+1)-1(g__1)k—1_,3 < oo,

where we used 8>k—1. Thus @(e;) ((<k) is an element of GL V5,
Now for i=k, we have

(1 2+1
el 1) o g v dgop 2, for 2k+i|>max{mj1} and
uk.z(lxkf) ! ! 2 i<k
(D(er)) =
1 on Iy . 1,2, for

Note that log (®(e))’ is 0 at the endpoints of /(;,,..1,_,, and does not increase
outside of I, ..1,_,.2,p for |A;+1/2]<maX;<,{|4;|} where the value is 0.
Since the maximal value and the minimal value on I, A Apop aT€

* {log (us,(max{[4;|}))—log (u,, (max{|2;{} +1)},
i<k J<k
vp(log (D(e;))’, A’) is smaller than the sum of
(2°4-2)|log (us, (max {[4;]}))—log (uy, (max {|2;|} +1))|?
J<k i<k

over all (4, -, 4,-;). Now we have
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(2°+2) = |log (1. .(max{|4;]}))—log (us, (max{|2;|} +1)!#
Qg g _peZk-1 i<k i<k
1 |6
— (98 b
(2 +2) ().1.'%1;1)62}3_1!( k 8) log (1+Z+maXJ<kHZ]|}>‘i

1 ; B

; 5|
= (29_}_2)(21‘”.‘ 2 k—1<k+€) lﬂ-i-maX;(k {141}

lp-pEZ
= <25+2>(k+s)ﬂ{e-/’+ 21{<2n+1>k-1~(2n—1>k—1}(Hn)-ﬁ}

< @P+2)(k+)f {07F 24k —1)(B—k+ 1) 65 1P}
Since B>k —1, this sum is bounded. Thus @(¢,) is an element of G* 5.

REMARK. The estimates above shows that the above action would not be
in G %+-1 and its smoothing defined later would not be in G'*¥/¢*-1, For k=2,
it is known that there are no such homomorphisms Z?—-G%'(R). For the group
of C? diffeomorphisms, this fact has been known as Kopell’s (10]. 1
was told by Vlad Sergiescu that this lemma holds for G* 1, Here is a sketch
of the proof of that fact.

PROPOSITION (1.2). If there exists a homomorphism @ : Z*—GEVs(R) with
an open interval U such that QQQ)U) (A=Z?®) are disjoint, then B>1.

SKETCH OF THE PROOF. First we choose a basis for Z2. Let e,=Z? be the
element such that @(e;)(U) is the nearest interval to U among those intervals
OAU) (A=Z*) which are contained in (b, =), where U=(a, b). It is clear that
¢, is primitive and one can choose ¢, as an element of a basis. Put

a,=inf U OUme,)(U) and b,=sup U P(me)U).
mez meZ
Then a, and b, are fixed points of @(e,). The other element ¢, of the basis is
taken so that @(e,)(a,, b)) is the nearest interval to (a,, b,) among those
intervals @(A)({(a,, b)) (A=Z?* which are contained in (b, ). Then we see
that the action of Z? looks similar to the example given in 1.1).

Since @(d,e1)(a,, by) (A,=Z) is a disjoint collection of intervals, by the proof
of Denjoy ([(I]), V.(log (@(4.e) |(a,, b)) (A, =Z) is bounded by V,(log (D(e,))").
If we take 4, large enough, the variation V,(log (@ (4:¢.))" |(a,, by)) is bigger than
3V,(log (@(ey))’). Hence the variation V,(log (@(:e.))'|D(4.e,)(a,, by)) is bigger
than V,(log (@(e,))’). Hence the variation V,(log (@ (1,e,))’) is not bounded.

We are going to construct a Z* Pixton action in G:**(R) by smoothing the
above Z* Pixton action in (1.1). First we introduce a family of
diffeomorphisms which we use to perform the smoothing, and establish some
useful estimates.
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Let &(x)(@/0x) be a C= vector field on [0, 1] such that

Ex)y=1x near 0
£x)=0 on [% 1] and

'aglq

Let ¢.(x) be the solution of the differential equation

Y () = gl

goo(x) =x.

Consider the diffeomorphism x—b-¢.(x/a) which sends the interval [0, ¢] onto
the interval [0, b]. The derivative of this diffeomorphism is equal to /a on
[a/2, a] and is equal to (b/a)e’ at 0. For real numbers a’, a, b’ and b such
that a’<0<a and '<0<b, let ¢3'*: [0, al-[0, b] be the diffeomorphism de-
fined by

, X
gbf,‘,;b“(x) = b'¢10g<b'a/a'b)(—a‘> .

Then it is easy to check that for real numbers a’, a, b’, b, ¢ and ¢’ such that
a’'<0<a, b’<0<b and ¢’ <0<,

a a_ a',a
— Yer)e -

To show the Holder continuity, we use the following estimates. First note that

d d¢. o& d0s
(dt6x>() “(qoz(x)) = ().

Hence

1og(a9”‘)<x) Sgs—log a¢“)<x>ds—g g—i(gos(x))ds

Since |(0&/0x)(x)| <1, we see that

Bixyset and lpde)—pie)l S o raml.

Now

agbg”,'ba
0x

log (x) = log = +log ((%)(Plog(b'a/a'b)>(§")

and

‘log a S )Proswaran)| < llog—-‘ = \log log—z—\-
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Suppose that |0%£/0x%| <C for a positive real number C. Then we have

@

o e
I R o))

Slog(b'a/a,’b)

)|

esds)
0

IA
2|0 2|0 o~

—1].

Let X¢: [0, a]—[0, b] be the diffeomorphism defined by

. Gl 53 (x) for x<[0, a/27,
He = { b—¢zi5/Fa—x)  for x=[a/2, a].
Then for positive real numbers a, b and ¢,
0xy =212
and
() s | =5 151,

The definition of the smoothing ¥': Z*—>G*(R) of @: Z*—GL Vs(R) is as
follows. This smoothing is similar to that in [13].

To define ¥(e;) (1<i<k), we replace the similarity transformation sending
the interval I(,,..2;...1, Onto the interval I, .., 1;41....2,) in the definition of
@(ey), by the diffeomorphism 2f(x—w)+w’ if

T aperp =[w, wt+al and Iq;y,..2;401.02,) = (W), w'+b].

Then the above equality XX5=2X¢ implies that the homeomorphism ¥(e;) com-
mutes with the homeomorphism ¥(e;) ((#7), and we obtain a homomorphism
¥ . Z*—~Homeo.(R). We put U=I...s,, then TA)U) (A= Z*) are disjoint.

Now we examine the regularity of this action and we obtain the following
proposition.

PROPOSITION (1.3). The above smoothing ¥ is a Z* Pixton action of class
14+a for any a<l/k.

Proor. We look at log (T(e;))’. By definition, log ¥ (e,))’ has the same
value as that of log (@(e;))’ on the middle two quarters of the interval I(4,,... 2,),
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and it is zero at the endpoints of Iz .. 1,).
Hence for x, and x, on I,,...2,), we have

log (¥ (e4))"(xs)—log (¥ (e))’(x)

Xo— Xy

2C | a
< |
= a lb ll'
with a, b being u, ,(n) or u; (n-+1). Hence this is smaller than

2C Up, (1)

Up, (n+1) 1 ug, (n+1) —ll )
Thus
llog (¥ (ey)) (x5)—log (¥(e)) (x,)]
| x;—x|®
2C U, (n) -
= ug, (n+1) uk.4(n+l)~1 He.n)

= 2C(n—f—1+g)k+5 <1+ _I__)kju_ll(n_*_l_{_g)-(kﬁ)(l—a) .

n++¢

The last term is bounded if a<1/(k+¢). Since log (¥ (e;))’=0 at the endpoints
of intervals, for x, and x, (x;<x,) which are not on the same I,,...1,_,, We
can find x; and =x; such that x,<x1<xj<x, x, and x; are on an interval
Ia,1,_p» %2 and x; are on another interval /(... 1,_p, and log (¥ (e)) (x1)=
log (T (e,))(x5)=0. Hence it is easy to see that log (¥(e,))’ is a-Holder.

As for the Z* Denjoy actions on the circle, the usual construction ([8],
[13]) is as follows. Take an injective homomorphism p: Z* — R/Z and a
family of intervals I; (A€ Z*) with the sum of lengths being bounded. Then
insert the interval I; at p(4)(0) and extend the homomorphisms to the inserted
intervals. If we use the above intervals used in (1.1), and affine ex-
tensions on the intervals, this Denjoy action is of class C:Vs for f>k. Its

smoothing in the way of (1.3) is of class C'** for a<1/k. Thus
we obtain the following proposition.

PROPOSITION (1.4). Let k be a positive integer and @ a positive real number
smaller than 1/k. There is a homomorphism W : Z*—G***(R/Z) without fixed

points with an open interval U such that TQA)U) A€ Z*) is a disjoint collection
of intervals.

The Holder regularity for the Z* Pixton action obtained in (1.3)
is not the optimal one. In fact we show in (1.5) below that there is
a Z* Pixton action in Gi**(R) (a<1/(k—1)). Thus for #=2, we have a sharp
estimate for the existence of Z? Pixton actions.

On the other hand, the Holder regularity for the Z* Denjoy action obtained
in (1.4) seems optimal. Note that in the smoothing of Denjoy ac-



10 T. TsuBol

tion, the derivative at the end-points of the interval I; should be 1 and this
makes the difference between the constructions of the Pixton actions and the
Denjoy actions.

In C'*« actions (1/2<a<1), there seems no Denjoy actions but there exist
Z* Pixton actions. For Z? Pixton actions, the Hurder-Katok-Godbillon-Vey
class [9) is defined and it is very interesting to know whether this class
vanishes.

It is also interesting that there are Z°® Pixton actions for a<1/2. For, we
need to use Z° Pixton actions in the next section to show the 2 acyclicity of
G:"*(R) (w<1/3), and this estimate a<1/3 seems to be replaced by a<l/2 by
a development of technical constructions.

THEOREM (1.5). Let k be a positive integer and a a positive veal number
smaller than 1/(k—1). There is a homomorphism ¥ : Z*—G**(R) with an open
interval U such that TQRQ)U) (ASZ*) is a disjoint collection of intervals.

PrOOF. This action is obtained by smoothing another action.

Let ¢ be an integer greater than % and let ¢ be a positive real number.
For

A= Aie; =4y, -, ) e Z*,

i~

k3

put
k 1/2
oi=(r+2%)" and b= @)

We consider the intervals I, of length b, and define L(,,... 1, as in the proof
of (1.1). We see that the total length L., is bounded. For,

Bag 1) Z (/D B12y1 01125140

and L., is smaller than the integral

2-(k+s>/2ng(€2+2 xH~Erazdx, - dx,

— 2—(k+s)/253k 1d Volsk_lsmrk—lw+r2)—(k+s)/2 < oo
- 0

Then we define the homeomorphisms @(e;) as in the proof of
(1.1), and @ is again a homomorphism to G¥ “V8(R) (3>k—1). Now by smooth-
ing this @ in the following way, we obtain a homomorphism to G:**(R) (a<
1/(k—1)).

To define ¥(e;) (1<k), we replace the similarity transformation sending the

interval I(a,,.., 2. 2, onto the interval I, .. 2,41,... 2, in the definition of @(e,),
by the diffeomorphism ¢ (x—w)+w’ if
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I, ag -y =[w+a’, wl,
Tz =[w, w+al,
Toag o ngiriap-n = [w'+b", w'], and
T agete 2 = (W, w'+b].
To define ¥'(e,), we replace the similarity transformation sending the interval
Iz, .. 241, ONto the interval Iy, .. 2,....2,+» in the definition of @(e,), by the
diffeomorphism ¢%; $(x—w)+w+a if
I, iy ty-y =[w+a’, w],
Iy dj2p =[w, w+a], and
Iy ag2pey = [w+a, wt+a+b].

Then the above equality ¢t 28 *=¢& 7 implies that the homomorphism ¥(e))
commutes with the homeomorphlsm U(e;) (G+7), and we obtain a homeomor-
phism ¥': Z*—Homeo.(R). We put U=I,...o, then TQA)U) (A= Z*) are disjoint.

Note that the smoothing of @ in (1.1) by this way is not as re-
gular as the present one. The reason is that the values of the derivatives of
the previous homeomorphisms @(e;) change on special endpoints of intervals

I, ... 1, While those of the present ones change on all the intervals. This
gives the effect of raising the regularity.

We show that ¥'(e,) (¢=1, ---, k) is C**4,

We look at log (¥(e;)’. By definition, log (¥'(e;))’ has the same value as
that of log (@(e))” on the bigger half of the interval I(;,,...1,,, and on the smaller
half of I,..1,, the value depends on the values of log(@(e)))’ on I, .2,
and on I(z,,..2,-n. If they are the same, log (T(e)) is constant on the interval
1(11""'112)‘

On the interval I(z,,..1,_p, log (¥(e))” for i<k is described as follows.

First we look at log (T(ey) for i<k. Since

_ -b2 -1, b} Py oy A
@)y = e giardieiage Mhdeniy on Lo, .,

for x, and x, on I<21-~~.2k>’ we have

log (¥ (ed))’(x0)—log F(ey))’(x1) i

X ——.?Cl
C b)l Ag+1,. jk-lb)'l""'i-i"",lk _1’
= bll,...,li,...,).k bll""' 1,v""}‘k‘lbllv"'»xi*'lv"'-zk
- C ((511 Rgrt,on i =102, 2g, e 1k)2)—(k+s>/z_1]
bay o dyondy (511‘., 1 p-1)’ (511 2t 1)
C (1+2'21><1 217}.;) -(k+e)/2 !
- +1 ~11.
by 2g 1 <(521,.‘ gV 08y, 2get 2 ) ) l
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Here

(R

(1+2/21)(1 2/{;2) —(k+e)/2 !
1 —1
((51 w2 p=1)2(02,, 0, 2541, zk)2+ )

is bounded, say by a positive real number B. Hence we have

| log (¥(e0))'(x2)—log (¥ (ew)’(x1)|

| Xo—x,]%

2 kl‘“(ézl,,.., 14 gk)_zB

= BC(511,..., P ,zk)‘“<—k~e)—2 )

The last term is bounded if a<l/(k—1)=2/k. One might expect a bigger
regularity because of this calculation. But it cannot have a bigger regularity
than stated in our theorem because the A-norm of ¥(e;) is not bounded for
B=<1/(k—1) by the proof of [Theoreml (1.1). The estimate becomes a little com-
plicated when x, and x, belong to fy,..2,_p-

We use frequently the following lemma.

LEMMA (1.6). Let f be a function on B. For x,<x,<Xs, if
| (x0)— f(x1)| <K and | f(xs)— f(x2)|

| xo— % | x3—x5]®

<K,

then
| f(xs)— f(x)]

< 217eK,
| x3— x| -

If x, belongs to /,... 1, and x, belongs to 1(;1,...,1%), then

_ =Dy, b
(w.(ez)) (xl) a Sb-bﬁl,,..'gl zkj; 1, bé} fz ﬂ,}.,kgk and

9 -
— T2y A A =1 BAp e Ay Ay
TF(e)) (x:) = ox ¢-bxi,...,22 k,qkf_l T S S

If 4,’=2,+1, then taking x, to be the common endpoint of the two intervals,
we use (1.6) to get the desired estimate. If |1,'—A,|<2, we can use
(1.6) again to get the desired estimate.

We assume that 1<4,<4,” and show that we have a desired estimate.
Then this implies a similar estimate for —1>4,>4,’ and two such estimates
imply the general case by [Lemmal (1.6).

Note that, for 4,=0, log (ba,, . 2,41, 25)/(0ay - 24 2,) 1S moOnDOtONe in A4,.
Hence by the estimate on log (3/8x)¢ 2(x), we see that |log (¥(e))) (xs)—
log (W (e,))’ (x,)| is smaller than
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b/z e Al e A= bl ey A1, Ayt
2'10g bl, DAl A 1—108“ bl- cAgrlie Ay
g Agiom g1 Qoo Agoomy A"

—9l10 b,{l,..., 241, 1k_1b11,..., g A g’
=408y b
Ao g, =102 0 2pwt, o 1y

k+e (02, 2yt 2 5-0202 e 2 200
:2 1 e Agt L AR IR AR ]
I R TSN ¢ O

e )k,)z)}.

@2y t0m 2 g0y g1 d
On the other hand, x,—x, =337 1 ba, o2y 2pe
First we estimate x,—x, as follows.
[ Xo— x| S A" —2e=Dbay iy 2y -
We look at the following equality.

(22:4+D@"*—(4:—D? i i-a
((511,...,zi,...,xk_x)a(axl,..-,1i+1,....zk')2 A== Lba ez

221"‘}“1 511‘..., Do X g! _(Ql' Agowen R k')2 l

02y e Agoms A =102, Qg =1 (02 2441, zk')Ql

A=A +D" (A =2 +D7 A+ 2 —1) |

A" == (52, 2pm 1) 022y 2y |

N

X Iall Ao gt \ —a~-1+(k+e)a .

This is bounded if (0, ... 2, 2,)/(01, . 2, 2,-1) is bounded and (k—1+4e)a<1.
Hence if 4,/<24, or (1,/)?°<£4(0:*—2,%, then we obtain the desired estimates.
Secondly, if 1,224, and (1,)*=4,;%—41,%, we estimate |x,—x,|

I as follows.
Note that 2V°1n=0;, ... 1;-1.» for 4,<n=<21,’. Then we have

2p' =1
[xz_x1| > kz 2—(k+e>/21nl—(k+s)
T on=dg+1

2 (}3_1+8>—12—<k+e)/2<uk+1I—k+1—s__ |)tk/1_k+l_5>

= (k—1+e>‘12‘<'~'+5)/2(1—(];j,l)k_‘”)|2k+1 | -4+is
> (le—1+s>"12-<k+£>/2(1—(—;—)H“)12k+1{-kﬂ-f .

Hence we obtain
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t (22 + 14" 2— (2 —1)?)
02y 2o =100 e 251, 257)°

k+1] (=k+1-8)(~a)

— ‘ 2A+1D(4—1) A,+1 /zk/o“*(/zkwl)z (21| -rrt-ota-1

Bty rgtn P A= (81 2gen 2,
This is bounded if (k—1+4+g)a<1.
Finally, if 2,/=24., (A.)?=4(0,°—1:>) and (1,)°<d,;°—1,% we estimate
|x,—x;| as follows. Let 4,” be the smallest integer not less than (§;2—2,%""
Then 2,7<4,’/2+1. Now we have

Ap' -1

(k+s)/2] (k+z)
E 2- In|~
n= Zk +1

I
| x

!
Ko X1 |

II\/

2 (k—1+8>~12_(k+5)/2<‘Zk/’—*—l|‘k+1_5—- izk/i—k+1~e)

2" +1
kﬁ’)

Here (4,7 +1)/A.' <A /2+2)/A,'<1/2+1/¢6<1 if ¢=3. Hence we obtain

<2,z-+1\<,2k'2 (Ax—1)) | ks (e
- R ” 1 (-k+1-s)(~a)
!(511,-- o A= ) (521 Ag+1,- xkf)z]! ¢ |

v

(k—1+s)’12“k+5’/2(1 ( )u/+1|~k+1-5.

] Zk”ﬂLl I (mk+1-e)(—a)—1

_ ‘(221'1‘1)(2};”‘!'1) AP — (A, —1)°
— (0, 2p-02 (02,0 2ga1,m0 2 ,0)°
This is bounded if (A—1+e)a<1.

Now for x, and x, (x,<<x,) which are on distinct intervals /.. 2,_,, and
Iy 2,2y, We put x,” and x,” to be the upper endpoint of /¢, .. z,_,, and the
lower endpoint of I(r,..1,_,, respectively. Since log T (e)) (x,) =
log(@'(e,))(x,)=0, we obtain the desired estimate by (1.6).

If x; or x, does not belong to an interval I, .. 1,_,, then log @ (e)))
vanishes there and we obtain the desired estimate.

Thus log (T(e,)) G<k) is a-Hoélder.

Now for i=£k, we have

’ 52 £ Ap-102 z.,..,_x
(W(ék)) 6% ¢b 1 /z ,111 2:+1 on ](117---.2,‘@) .

For x, and x, on I, .. 1,,, we have

log (¥ (ex))'(x5)—log (F(es)) (x,)

Xe— X,

C (bz1 1)

bh,'"»liy“'»lk b,zl,... o Ap- 1b,11 JA g A+l

—1
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—_ c {( (511""'11‘"“-112)4 )—(k+s)/2—— ]
bay w2y 2y | (02, 2g0em 2 =1)"(02y e 250 2p+1)”

— C 42]32_2(51)2—1 -(k+e)/2
bay g2y ((5,11,.“,21-,...,zk..1>2(511_...,,zi,...,;k+1)2+1) —'11'

Here

02,2z 2,)°

421;2—2(52)2—1 —(k+e)/2 !
1 _
(@I,m,;i,...,zk_l>2<511,u.,xi+l,...,l,,>2+ ) 1|

is bounded, say by a positive real number B’. Hence we have

|log (¥ (ex))’(x5)—log (T (ex)) (x1)]

| Xo—x, 17

bh: . . 1= -2/
S p ey @i B
= B'C(02,, . aj2,) 2 TFO2,

The last term is bounded if a<1/(k—1)<2/k.
As before we look at the case where x, belongs to /;,....2,, and x, belongs

tO 1(,11‘...,,21@’). Then
(w‘( ))//x ) _ ;Q O e Ay A =102 A Ay, nd
€r))(X1) = ax —bjl,...,gi,... A bzl' G Ap+l a
w‘ ))/( )___ i TOAg e A A =102 e Ay e, A
W (er) (xy) = axgb—bzl,...,zi,...,;k:_ DAL Agr e ARt H1

It is sufficient to show that we have the desired estimate when 1<<2,<<A4,’.
Since, for 2,=0, log (ba,.... 25 2,+1)/(b2,...2;.,2,) 1S monotone in A,, we see
that |log (¥ (e,)) (x,)—log (T (er)) (x,)| is smaller than

ba, a2 Da i 2y
ztlog poolinlh Jog Sdenlein
bll"""zi’""zkfl ]1,...,11:,---.1}2'
:lelog bzl""-Zi""'xkbxl-”"Zilv'"»xk'
b/h,-",11',---,Xk—lbh,---»li---nik'“

kR+e (02, 2g e 20500 e 2o 27)°
=2 log — - fLrntin Ak Lo Agn Ag
l 2 o8 (521 g zk—1)2(511,,.., Ao gkv“)z

R’ =2+ 1)(—2(0,)2+ 22,2 4+24,2+22, 2+ 2, — 2, —1)
= (k 1 .
(kv g (1 @t 1 Oy ty 1) )
Here, this is bounded if (82,....2;,1,")/(02,, . 25, 2,-1) i bounded and (k—1+¢)a

<1. Hence if 12,’<24, or (4,/)’=<4(3,°—4,"), then we obtain the desired
estimates.

Secondly, if 4,/=221, and (4,)?=0:>—4,% we estimate |x,—x,| as before
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and we have
. (A" =2 +1)(—2(0,)2+ 24,2+ 22, 41"+ 2, — 2" —1)

Oy 2o 20202y 2o 27 41)°

‘2k+1|(—k+l—s)(—a)

A=A+l —200:)°4+22:2 4204+ —A =1 A+l

1511,..., Rgen dgat 02y e 2om 2, =100y 2o 27 41) 02y 2gom 241

X llk_*_ll (=k+l1-g)(—a)-1 .

This is bounded if (k—1+¢)a<1.

Finally, if 2,/=24,, (A.)?=4(0;*—1,% and (4;)?<0;2—4,%, we estimate
|x,—x,| as before using 4,7, the smallest integer not less than (9,2—2,%)"%.
Now we have

1 (A’ — A+ D)(—2(0,)2 4242+ 224"+ A — A, —1)

(02, 25 2000, o 240 27 41)"

lzk” } (=k+l-e)(~a)

A=+l =202 42424224+ 2, — A —1 A" +1

02y e 2o At B2y 2y 21002 2gom 27 41) Oy e 2y i1

X lzk//__l_l] (—k+l-g)(~a)-1 .

This is bounded if (k—14¢)a<1.

Now for x, and x, (x;<x,) which are on distinct intervals I, ...z,_,, and
Iy 2,_yH, We obtain the desired estimate by (1.6) as before. If x,
or x, does not belong to an interval Iz, ..a,.,, then the log (¥(e:))’ vanishes
there and we obtain the desired estimate.

Thus log (T (e.))” is a-Holder.

§2. Homology of groups Lipschitz homeomorphisms.

The following theorem was shown by Mather in [127]. This can also be
proved by the method of [15].

THEOREM (2.1). If 0<a<l, G}**(R) is a perfect group.
In this section we show a similar result for G V5(R).
THEOREM (2.2). If 8>1, GEVE(R) is a perfect group.

The strategy for showing these theorems is as follows. Let h, and A, be
the similarity transformations x—(x+1)/(24¢)F 1 and put U=(—¢/(2+¢), ¢/(2-+¢))
=(a, b), where ¢ is a small positive real number which we choose later. Note
that any element is conjugate to an element g with support in the U. For g,
we construct G, and G, with support in [—1, ¢] and [b, 1], respectively, such
that gGoG1=hy'Gohoh7*G,hy. GG, is in fact a product of infinitely many con-
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jugates of g divided into finitely many pieces and this is the reason for the
above equality. Then g is written as a product of 2 commutators. What we
really treat is the isotopy ¢ to the identity for the element g and the isotopy
to the identity for gG,G, is obtained as Io (the infinite iteration of ¢) in [15].

For GL98(R), we need to show the existence of a nice isotopy to the
identity for any element f of it. Then we show that the construction of an
infinite iteration in for such a nice isotopy a: [0, 1]-GE“V8(R) belongs to
G Y8(R) again. These can be carried out as follows.

For any element f of G¥“8(R), we can consider the following linear iso-
topy to the identity.

@u(x) = f(x)+t-(x—f(x)).
In general, for elements fy, -+, fn of GEVE(R) and 1=t = -+ =1, =0, put
Pityoty(X) = froo fu()Ft(fo e fa()—fro falx)+ - Htn-(x—fn(2).
We have the following lemma.

LEMMA (2.3). There is a positive real number C depending on fi, -, [n
such that

m log aix(‘t"w et Pty

| =Cc3 il

ProOF. We would like to know the regularity of (3/0x)(Q,. ...ty @ cs. ey
Since

-1
Pty tq Pty et

-1 -1 -1
=((P(t1,~-,tm>s0<ti,t2,m,tm) )(90(:;,t2.~~-,zm>90<:1.té,:3,...,em> )“'(90“'1'""t'm-r‘m)(fo“i"""{n’ )s

it is enough to look at the regularity of (0/0%) (@, .ty .t tpey i tm) Pt oty
t'k,tkﬂ,...,zm)”l). Put

v

0
Eelty, -~ tm, X) = (a;;‘ﬁm.m,tm))(‘Pulw,tm)_l(x))

= (fk+1 fm)(‘P(tl,-n,tm)_l(x))_(fk fm)(QD(zl,u.,tm)_l(x))-
Then

a -
§;€k(tl’ E tm; "\’)

=((frer - ) —(Fr fm)/)(QD(tl,u.,szl(x))’ aixﬁDul,...,tmfl(x)

_ (Frer - ) = r - fm)l)(SD(tl,m,tm)—l(x))
(frefm) b (o fr) —(Fre fa)) A tm U= F Qe oty (X))
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For 1=t,= -+ 2t,20, we look at the family of mappings (0, co)*—R™
given by
Xg—Xl
X1+t1'(X2_’X1)+ +tm'(1““Xm>

X X,—X,
— Xl“”tl'(Xz“‘Xl)"l' +tm'<l*Xm) .

1-X,
X1+t1‘(X2_’X1)+ +tm'(1_‘Xm)

Then
O < min Xz é X1+t1'(X2‘X1)+ +tm‘(1"'Xm) § maXXi

and in fact this is a family of diffeomorphisms onto
{Yy, -, Ya)e R™; 1+(1—1t)- Y1+ - +(1—tn)-Y > 0}.

The inverse mappings are

I—t;-Yi— o —tw Y
I+(1—t)Y i+ - +1—tn) Y
Yy I+ (I—t) Y =ty Yo - —tn-V
( : )»——» I+A=1)-Y i+ - +(0—tn) Y
Y :
1+(1—t1)-Y1+ +(1_tm—1)‘ym-1"tm‘ Ym
I+A—1) Yt = +(A—tw) Y m

Since the set of parameters {(ty, -+, tn); 1=t,= --- 21,20} is compact, this
family of diffeomorphisms is uniformly Lipschitz on a bounded set. By compos-
ing with the exponential map log X;—X;, and by taking a component, the
mapping

(log (f1+* fm), =+, log fr) —>

(frar = fm) =(Fa - ) )@y, by (X))
((Frfm) +t(for ) —(Fr fad)H o Atm Q= L@y, oty TH(X))

is uniformly Lipschitz. Hence

0
’ ’
m ax &k(tly Ty 7'lk—l’ Sk, tk+11 Tty tm: gp(ti,---.tk_l,sk.tk.;-l,-",tm)

XgD(c'l_...,c'k_l, tp' .Lk+1,---,tm)—1(x))“lﬁ

is uniformly bounded.
On the other hand,
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» (%)

log ax (90(61, "'Vk-rtk't’ﬁl""s‘m)@(tl’,m. !];-l't;artk+1-“',[m

0 -
= 10g(37¢u;,.‘., Uy o e bpa g ‘W)((P“i"”"}e-rt}e’ Lhtp o bm) 1(x))

0
—log(a §0<t;.~»-,l'k_r"k"kﬂ""‘M’)QD“;""’V}z-x"'k’t“"""bm)_l(x))
ty 0 0 -
— Slk a 10 (ar SD(l 'k_l»Sk«Zk‘rl""'Lm)>((p(ti’""L’lz—]'t;e’lk+1""'tm) I(X))dSk
t ’__ 4
:S E(frer o ) — (fa fml( WUy U Lyt “Hx)dse

4 >
by a(/’“']wnl'k_r%, tk+1.~--,tm)/ax okt

ty 0
R 7 / -1 3
= St, *8;51\3(1‘1, et Sk then, vy T @, Uy S brag 0 Pl Uyt by (x))dsg.

Since $>1, by the Hélder inequality,

5 .
108 2 (e ty st 0108 2 Pty oy 0D |

A
< |\
ty

0
—_a_rék(t;’ oy ety Sky Tty s Ty Qs 0Py,

0 , N
z{;’gk(th oy bty Sk, tren o, By Psp Pty Y(x2))

L) l ds,

t
= ‘Sj (1, =5 te-1, Sk, tear, 0, tm, QD(A..,sk,.-»SD(-..,z'k,.u)_](xz))
k
0 _ B 1/8
_5;513(2({, oy ety Sky teer, 0y Ty Plsp Pty 1(—’51))l dsy
1-1/8
X ‘S 1d S .

For a finite set {x,, ---, x;} of R,

S 1og 2 s, log ey’
;1\ 0og —67(90(‘..,gk,...)<p<...,trr..A) ) X1 0g x (p(...,zk‘A..)gD(A..,c'k,...) j

=315

0 _ B
——a;é'k(l‘;, oty ey Sk Tty 7y By Pl 0Pl by 0 1(761))|(13k\

5 == &x(t1, v, they, Sky tear, 0, U, 90<.--,sk.-~~)(,0<---,t'k.m)‘l(xz))
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A
I M )

iS :c Ek(th ) tl’evly Skv tk+1r Ty tm, Sp(u._sk_...)gD(.,.'t’k_...)—1<.XQ>)
k

0 ’ 1 B 1B
—Tf (tl) T tk~11 Sk, ZlI«H-lv T tm, (P(-~-,sk,---)¢(-<-.t%.---) (xl)) dsk

X[
i

~3~;5k(t{, oy beety Sk, tewr, 0, By (p(.‘.,sk,...)(p(...,t'k.i..)_l(xl))

1—1/,3‘;9

!

0 , , )
ﬁfk(l‘l, ey, Sk Teat, By Qs Pt H(x4))

ﬁdski

X |te—tp] P71

A

‘Sizsgzp <\|l%5k(ti’ oy bhen Suy Leen v (,0<...‘Sk..-.>€0<...,t’kn..)_l(x))m,a)fisk

X ty—t5) P71

a , ] .
é ss‘;p ("‘5;573(1‘1' T tk—l, Sk, tk+1; Tty tmv 29(..»,312,.‘.)@(.“, tl;"") I(x»mﬂ) ‘tk—f;;\ﬁ

Hence

m log %(@(-n. Ly P, '")-I)Uﬁ

0 : ,
p ﬂ&k(t;; ) l(l/e—l, Sky tevry 0, tm, (ID(A.A,sk‘...)(p(....lev...)—1<x)) Mﬁ,tk—tk]

PROOF OF THEOREM (2.2). We proceed using the construction given in [15].
We use the two similarity transformations x—(x+1)/2+¢)F1 and put U=
(—e/(2+¢), ¢/(2+¢)), where ¢ is a small positive real number which we choose
later. Let f be an element of GF“8(R) with support in U. Let ¢:[0, 1]—
GEY5(R) be the path defined by a(t)(x)=f(x)+t-(x— f(x)). We are going to
show that Is defined in [15] is a path to the group of Lipschitz homeomor-
phisms. For the path ¢, by (2.3), we have

I

for some positive real number C. We show that

<~

Let A be a finite subset of [—1, 1], then by adding at most 2 points between

a NnN-1 ’
mlog%(o(t)o(t) W < Cle—t'|

o8 2 ooy
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the subsequent points of A, we obtain A’ such that for A€Z.xZ,, AU)NA
# @ implies 09(A){U) A’. Then we see that mesh (A’)<mesh (4) and

vs(log %(10(0)(10(1»-1), A) = 3#7vg(log aix(low)(la(l))-l), a)

as in the proof of (2.9) in [19]. Then A;=0Q)"(PA)UT)NA") is a

subset of U and

v3(10g = o OUo W) FAD), FATNA)

= vy(108 o (BW (ToOTaL)™)| FDDTHFR), As)
< CA9-sudy

Hence

v,a(log 58; (Ia(0)(Ta(L)™"), A) < 3ﬁ-lv,9(1og 58;(10(0)(10(1))“), A’)

<3813 3 ChaA

E=0 I(A)=Fk

< 38-13) CAQu-Hrk

k=0
< 0o,

Thus by an argument as in [15], we see that f is a product of two com-
mutators.

As we saw in §1, if 8 is big, there are Pixton actions of big rank in
GL“YVB(R). We prove the following theorems by an argument similar to that

in [17].

THEOREM (2.4). For any positive integer m, there is a positive real number
Bn such that BGE VE(R) is m-acyclic for B> fn.

THEOREM (2.5). For any positive integer m, there is a real number 0<a,<1
such that BG:**(R) is m-acyclic for 0<a<an,.

Here are estimates for the values of a, and 8, which we obtained by our
proof.
a, = 1 » ﬁl = 1 H

ag_z_-l/?), {92§3;
an =1/5-3m7%), Brn £5:3"2=1 (mz=3).

PROOF OF THEOREM (2.4). We use the Z7V action constructed in the proof
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of (1.1). It is only necessary to check whether the chains constructed
in are chains of BGEY8(R). For a cube of BGXVA(R), we consider the
sum of the simplices obtained by cutting the cube along the generalized dia-
gonal and we consider the simplices of BGL V8(R) obtained by the linear iso-
topy in (2.3). We perform the constructions in for this sum Q.

If we show that I(/4, m)Q is also a chain in BGL VB(R), then this shows
certain acyclicity of BGE VE(R).

Let Q be a cube of dimension m. Then I(A, m)Q is constructed by using
the action of the semigroup A of Z?¥, where N=5-3""% In A there are
(k+1D™ elements of length k. By (2.3), the B norm of a piece corre-
sponding to an element of length 2 of A is estimated by mC/(k+1). Here
the 8 norm means the maximum of the 8 norms of the logarithms of the first
derivatives of the holonomies. Hence the § variation of the logarithms of the
first derivatives of the holonomies of I(A, m)Q is estimated by >.(k+1)™
-{mC/(k+1)}#. This converges if f>m+1. (Note that a is estimated by the
dimension m here.)

When we treat locally degenerate chains, we need to repeat the above con-
struction locally (see (5.1) of [17]). In that case, using the terminol-
ogy of [17], if @ is supported in the family {CI(@A)Uy)); A=B}, the sum
of f variations of Q|@(A)Uy) is estimated by the 8 variation of Q. Since
the f variation of the construction for each Q|®@,(A)(Uy) is estimated by the
B variation of Q|9;(A)(Uy), the B variation of the construction for Q is
bounded.

Thus the proof in goes on and we see that if >5-3™"2—1, then there
exists a Z®*"™* action given in (1.1) and we see that BGEV5(R) is
m acyclic.

In the case where, m=2 we can do better. If §>2, then there is a Z°
action given in (1.1). By the above argument, any 2-cycle is homo-
logous in BGEYS(R) to a locally degenerate cycle which is a sum of locally
degenerate tori if 8>>2+1=3. Then the proof of (8.2) of shows
that these tori are homologous to zero. In fact, [,,Q in can be constructed
by using the action of the semigroup (Z,)**C(Z,)**. In the semigroup Z¥*,
there are 2%* elements of length 2. By (2.3), the B norm of a piece
corresponding to an element of length 2 of A is estimated by 2C/2*. Hence
the B variation of /,,Q is estimated by

N22E(2C /2% B = N 28CH2-Brk
& k
This converges if f>2. Thus if 8>3, BGE7H(R) is 2 acyclic.

PROOF OF THEOREM (2.5). We use the Z% action given in (1.3).



Lipschitz homeomorphisms of the circle 23

(Even if we use (1.5) instead of (1.3), we could not get
sharper the result until the present.) As in the proof of (2.4), it is
only necessary to check whether the chains constructed in [17] are chains of

BG:!**(R). Note that there is an open interval U where the smoothed action
¥'(2) is affine and

@/0x)F ) |U=¢"*/(¢+max{[A;[})¥*e.

Let Q be a cube of dimension m of BG:**(R). As before, I(A, m)Q is
constructed by using the action of the semigroup A4 of Z¥, where N=5-3""2,
Then for A€ A4 of length 2, the C*** norm of @(A)Q; in is estimated by

N+e —a
+(ogwm) Qe
Hence if —14+a(N-+¢)<<0, then I(A, m)Q is of class C'*%, (Note that a is esti-
mated by the rank N here.)

When we treat locally degenerate chains, we need to repeat the above con-
struction locally (see (5.1) of [I7]). However the estimate is similar.

Thus the proof in goes on and we see that if a<<1/(5-3™7?), then there
exists a Z*3"™* action given in (1.3) and we see that BGi**(R) is
m acyclic.

In the case where, m=2 we can do better. If a<1/3, then there is a Z*
action given in (1.3), and using this we see that any 2-cycle is
homologous in BG}**(R) for a<1/3 to a locally degenerate cycle which is a
sum of locally degenerate tori. Then the proof of [Theoreml (8.2) of shows
that these tori are homologous to zero. In fact, as in the proof of
(2.4), I,Q in can be constructed by using the action of the semigroup
(Z ) (Z,)** as before. In the semigroup (Z,)* there are 22* elements of
length % and the derivative on U of these elements is (2+¢&)7%*. Hence the
C'*« norm of the part of length 2 of I,,Q is estimated by

2+e)* 27 % Qllc1+a .
This tends to zero if 2a—1<0. Thus if a<1/3, BG}**(R) is 2 acyclic.

Appendix. Piecewise linear Reeb foliations.

Let PL.(R) be the group of piecewise linear homeomorphisms of R with
compact support. PL.(R) is a subgroup of G&“(R).

In this section, we show that the image of H,(BPL.(R)’;Z) in
H,(BGEY(R); Z) is isomorphic to R and this isomorphism is given by the
discrete Godbillon-Vey invariant ([5).

Now the classifying space BI'ZL for the piecewise linear foliations is de-
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scribed by Greenberg ([7]). The foliated cobordism group F2%% of transversely
piecewise linear foliations, m,(BI'5L), H,(BI'5t; Z) and H,(BPL.R):Z) are
isomorphic to each other and they are isomorphic to RQeR. Greenberg
showed that the generator a®b of FQF% is represented by the piecewise linear
Reeb foliations of S*® which is defined as follows. Consider the foliation of
R*X[0, c0) by planes R?X {x}. This foliation is invariant under the similarity
transformation with center (0, 0, 0) and with ratio ¢* and the foliation induces
a foliation of the solid torus

(R*X[0, 0)—(0, 0, 0))/(x, y, 2) ~ e*(x, y, 2).

By attaching two such foliated solid tori, we obtain a piecewise linear Reeb
foliations of S°.

Let f, be a piecewise linear homeomorphism of R with support in [—1, 0]
such that log f,(—0)=a and let g, be a piecewise linear homeomorphisms of R
with support in [0, 1] such that log g,(+0)=b. Then the piecewise linear Reeb
foliation of S*® whose compact toral leaf has the germs at 0 of f, and g, above
as holonomies is mapped to the class of (fq4, g5)—(gs, fo) in Hy(BPL.(R); Z)
by the isomorphism. (In particular, the homology class of this 2-cycle does
not depend on the choice of f, and g,, which is also a consequence of the fact
that PL.(R) is a perfect group (H\(BPL.R)’; Z)=0). [2])

It is easy to check that the value of the (discrete) Godbillon-Vey invariant
on (fa, g)—(gs, fa) is equal to ab [5].

Now we show the following theorem.

THEOREM (A.l). Let a, b, a’, b’ be real numbers such that ab=a’b’. Let f,
and f, be piecewise linear homeomorphisms of R with support in [—1, 0] such
that log fo(—0)=a and log f..(—0)=a’, respectively, and let g, and g, be piece-
wise linear homeomorphisms of R with support in [0, 1] such that log gi(+0)=b

and log gy (+0)=>b". Then the 2-cycles (fa, 8)—(8v, fa) and (far, 8o)—(8v, fa’)
are homologous in BG* 1,

REMARK. GV ((fa, 80)—(&o, fa))=ab=0a'b'=GV((far, 8o')—(gs, fa+)) but they
are not homologous in BPL.(R) if a®zb+a’®z b’ by a result of [7].

COROLLARY (A.2). The foliated cobordism class (within the category of folia-
tions of class CL'Vs (B=1)) of transversely oriented transversely piecewise linear

foliations of closed oriented 3-manifolds is characterized by its (discrete) Godbillon-
Vey class.

To prove (A.1) we need the following proposition which is shown
in [20, Theorem (3.2)]. A piecewise linear homeomorphism of R with compact
support is said to be elementary if it has at most 3 nondifferentiable points.
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PROPOSITION (A.3). There exist positive real numbers ¢ and C satisfying
the following conditions. Let € be positive real number such that e<c. Let [
be an elementary piecewise linear homeomorphism of R with support in [1/8,7/8].
Assume that

Hog f/ll: < &*.

Then f is written as a product (composition) of 3 commutators of piecewise linear
homeomorphisms of R as follows.

f=1g, g.1Lg: g:1[&s, 86],
where the supports of g; ¢=1, -+, 6) are contained in [0, 1] and

lllog gill: = C..

PROPOSITION (A.4). Let (a;, b;) (i=1, 2, ---) be disjoint open intervals whose
union is bounded. Let f; be a piecewise linear homeomorphism of R with support
in [(Ta;+b,)/8, (a;+7b;)/8]) which is a composition of at most k elementary piece-
wise linear homeomorphisms. Suppose that ||log fill,}/*<oco. Then f=IIf; is
written as a product (composition) of 3k commutators of piecewise linear homeo-
morphisms of R as follows.

3k
f= Ill[gzj—l, g2i],
]:

where g,€GEV1(R), the supports of g; (=1, ---, 6k) are contained in Cl\U[a;, b;].

PROOF. By (4.1) of [20], we can take the elementary PL homeo-

morphisms h{" (=1, ---, k) satisfying the following conditions.

fi= h{® - hSD,

the support of ;¥ is contained in [(7a;+b;)/8, (a;+7b;)/8] and

lllog (R5*)Il < 2Jilog fill.
By (A.3), we write A" as a product of 3 commutators of piecewise
linear homeomorphisms with support in [a;, b;] whose norms are estimated by
lllog fill;¥2. Since X jlog filli}/2< oo, TI:h5® is written as a product of 3 com-
mutators of elements of GZX “Vi(R) with support in CI\U[a;, b;]. Thus the pro-
position follows.

COROLLARY (A.5). Let (a;, by), fi: and f be as in Proposition (A.4). Let g
be an element of G “Vi(R) such that Int Supp gN\\J: (@i, b)=@. Then the 2-cycle
(f, 8)—(g, f) is homologous to zero.

PROOF OF THEOREM (A.l). When f and g are commuting PL homeomor-
phisms of R, we write the homology class of the 2-cycle (f, g)—(g, f) by
{f, g}.

Let h be a piecewise linear homeomorphism with support in [—2, 2] such
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that hA(x)=(x+2)/2 for x=[—1, 2]. Put U=(—2/3, 2/3). Then h/{U) are dis-
joint.

For a real number u such that |u|<1, let f, be an elementary PL homeo-
morphism of R with support in [—1/4, 0] such that log fu(x)=u for x&
[—1/2% 0) and |log full.<4|u|. In the same way, for a real number v such
that |v|<1, let g, be an elementary PL homeomorphism of R with support in
[0, 1/4] such that log gi(x)=v for x=(0, 1/2*] and ||log gilli.<4|v|. We may
assume that fq, far, g» and g, in (A.1) are those defined above.

Note that it is sufficient to prove the proposition when 0<a<1, 0<b<1
and ¢’=1. Let

a= gt (a0, 1)
i=12
be the dyadic expansion of a. Put
A= T
2 Qg
/41:: gi ézfi

Then a=A,+2A4,. Since

{fa, 8o} = {fAO, Zo} +2{f.41, 8o},

it is sufficient to show the proposition for a such that the dyadic expansion
of a is

o 2t
a= 255
i=1

s (e 0, 1)),

For a nonpositive integer j, put

oy Qo
= 21i=21+172% '
Then
= 1 .
GEP R ST

Let F, and G, be the homeomorphisms defined by
Fi= T W f.,h? and G, = TIh'gywih™,
j=o0 J=0
respectively. Since

lilog (h?fe;h~7)'lll. = lllog (fe)'ll < 4c;

and X c¢;<co, F, is an element of G» Y1, Similarly, G, is an element of G% V1,
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Moreover, since 3 c¢}/?<oo and 33(b/27)V/?< oo, by [Proposition| (A.4) we have the

following lemma.
LEMMA (A.6). Let O be a subset of Z.. Then
11 hjfcjh_j and TI h'gyih™
jie® >

i@
are written as products of 3 commutators of elements of GEVi(R) with support
in \Ujee W(U).

Consider the homology class {F;, G} of the 2-cycle (Fy, G,)—(G,, F;). Since
the conjugation acts as the identity of the homology of the group,

{Fl, Gl} = {hFlh-l, hGlh_l}.
LEMMA (A.7). {hFh™Y, hGh Yy =2{hF\h*, G,|[2/3, 2]}.

PRrROOF. First the supports of (G,|[2/3, 2])? and hG,h™* are both the union
U7 K([—1/4, 0]) and these two homeomorphisms coincide on the union
\UF hP([[—1/2%, 0]). Hence the supports of (G;|[2/3, 2])*hG7'h~! is contained in
the union \U3, A/([—1/4, —1/2*]). Since

lllog (G| W[ —1/4, —1/2*D*hGT R~ W ([—-1/4, —1/2* D),
is estimated by (4b/2+4b/244b/2- )2 =p/21>2 by (A.4), this is

written as a product of at most 9 commutators of elements of G&“V1(R) with

support in the wunion \U%, h/([—1/2,0]). Hence by (A.5),
{Fi, (G{|[2/3, 2])hGT*h™} =0 in Hy(GLE Y (R); Z). Thus the lemma is proved.

Note here that

LS Qe o 2 Gy Oy
20—, =0 -2 3 =

iz 2% G2t 2

Put
F,= Jf_[lhf Fagh™7 .
The proof of the following lemma is similar to that of (A.7).
LEMMA (A.8). {F,, G.I[2/3, 2]} ={(F\|[2/3, 2])*hFih~*, G,|[2/3, 2]}.
By the perfectness of PL.(R), we have

{F,, G\t = {Fi|U, G:\|U}+{F\1[2/3, 2], G.[2/3, 27}.

Hence we have



28 T. TsuBol

{fa got = {F\IU, G:IU}
= {F, Gi} —{F\|[2/3, 2], G:[[2/3, 2]}
=2{hF\h™, G,|[2/3, 2]} —{F\1[2/3, 2], G.,|[2/3, 2]}
= {F,, G:1[2/3, 2]}.
This formula is similar to

_ K _G b a b e b as b
eb= Do =5 gt mta ut T

2¢ 2t
The next step is to show the formula corresponding to the following.

a, b a, b a¢ b ag b
ot ety ptyw

2 2
(G e R ror o) -

1 ab 1 ab 1 asb 1 ab
—e- B2, - B4, - BV, - BT
T2 +22 22 +23 28 +2“ 24 T

That is, let G.3be a homeomorphism defined by

G.= 11 hjgazjb/zjh—j .
j=1

Since the support of G,(G.)™' is contained in the union \Ug,,-0 #/([—1/4, 0]) and

the support of F, is contained in the union U, . A/([0, 1/4]), by
(A.4) and (A.5),

{Fy, G11[2/3, 21} = {F;, Ga}.

Now let F; be the homeomorphism such that
FS = ﬁ hjfl/gjh-j .
j=0

Since the support of (F,|[2/3, 2])(F,)"* is contained in the wunion
Uagy=0 h'((—1/4,0])) and the support of G, is contained in the union
Usgges (0, 1/47), by (A.6) and (A5),
{Fy, Go} = {F3|[2/3, 2], G.}.
The final step is to show the formula corresponding to the following.
_l_.g_gé 1 ab . 1 ab 1 agb Ass

5 2+2_2._2.2.+ Rad gl il g SRITE— S 5

b
2_3- 923 PrDY = 1(ab) .

2Qi
Put



Lipschitz homeomorphisms of the circle 29

x azib

t=j+1 2” :

dj:2j

<.

Let G; be the homeomorphism defined by

G3 = ﬁ hjgdjh—j .
j=0

Then as in (A.7),

{Fs, G} = {hFsh™', hGsh™'} = 2{F;|[2/3, 2], hG:h™'}.

As in (A.8), we see that

{Fs102/3, 2], Go} = {F,112/3, 2], (G,1[2/3, 2])7'hG4*h7'} .

By the perfectness of PL.(R), we have

{Fy, Gs} = {F:\U, Gs|\U} +1{Fs1[2/3, 2], G,1[2/3, 2]}.

Thus we have

{f1, gt = {F:lU, Go|U}
= {Fy, G} — {Fs|[2/3, 2], G.|[2/3, 2]}
= 2{F:|[2/3, 2], hG:h7'} —{F,[[2/3, 2], G+[2/3, 2]}
= {F:|[2/3, 2], G4} .

Thus we obtain {f., g} ={f1, Z«s} and we proved (A.1).
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