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Section 1. Introduction.

In this paper, we study a certain “pushing up” problem of finite groups.
So-called pushing up problems have been born in the study to classify the finite
simple groups. Among them, one of the most interesting thing is to determine
the isomorphism classes of amalgams of finite groups. Here, by an amalgam,
we mean a triple (X, B, Y) of finite groups satisfying the following conditions:
B is a common subgroup of X and Y ; no nonidentity subgroup of B is normal
both in X and in Y.

Many group theorists have been investigating those problems, and obtaining
several results. Some of them have been applied to revising the classification
of the finite simple groups of characteristic 2 type, where, by definition, a finite
group G of even order is of characteristic 2 type if every 2-local subgroup L
of G satisfies the condition that Cp(O,(L))S O,(L). For example, we have
determined the isomorphism classes of amalgams of 2-irreducible solvable groups
[71, [13], [14], [8]; the results are applied to the alternative proof [1], [4],
of the theorem of the combined work of Janko [9], Smith [10], Gorenstein and
Lyons [6], which classifies the finite simple groups with solvable 2-local sub-
groups. ,

A finite group G is said to be Z-irreducible if a Sylow 2-subgroup of G is
contained in a unique maximal subgroup of G. In the course of the analysis in
[14], [8], we needed the following theorem in order to delete the case that
either X or Y is 2-closed in an amalgam (X, B, Y).

THEOREM A ((2.3) of [14]). Let G be a 2-irreducible solvable group with
Ce(O(G)S04(G). Let S=Syly(G), and let A be a group of automorphisms of
S of odd order. Then some nonidentity A-invariant subgroup of S is normal in G.

The purpose of this paper is to generalize Theorem A for nonsolvable
groups. We obtain the following theorem.
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THEOREM B. Let G be a 2-irreducible group with Cg(Ox(G)S0(G). Let
ScSyl,(G), and let A be a group of automorphisms of S of odd order. Then
some nonidentity A-invariant subgroup of S is normal in G.

In his papers [11], [12], Stellmacher already proved the similar theorem
under the additional hypothesis that G/0,(G)=SL,(2") (n=1). Thus we can
say that Theorem B is a generalization of his result as well.

Since our aim is to analyze the 2-local structure of finite simple groups of
characteristic 2 type, we will prove Theorem B for X-groups, that is, finite
groups all of whose simple sections are isomorphic to known simple groups.
Considering that Theorem A already contributes to revising the classification
of the finite simple groups, we can hope that Theorem B also does in the near
future.

The proof of Theorem B (including the proof of Theorem A) is given in
Section 3. If Theorem B is false, then no nonidentity characteristic subgroup
of Sis normal in G. A discription of such a X-group G is already given in [2],
which asserts that J(G)=T X L (mod Z(J(G))), where T is a 2-groupand L is a
direct product of copies of SL,(2™)E;m(m=1) or copies of X, Esm(m=2'=1).
With the help of the properties of GF(2)-representations of SL,(2™) and Y,,4,
collected in Section 2, we conclude that <O,(L)4> <G, thereby proving Theorem B.

Throughout the remainder of this paper, all groups are finite and all GF(2)-
representations are finite dimensional. We close this section with some defini-
tions.

Let G be a group. We denote by A(G) the set of elementary abelian 2-
subgroups of G of maximal order. Define J(G)=<{A(G)», the Thompson sub-
group of G. Let V be a GF(2)G-module. Suppose that V is faithful. An
offending subgroup of G with respect to V is an elementary abelian 2-subgroup
B of G with |V: Cy(B)|=<|B|. We denote by O(G, V) the set of offending
subgroups of G with respect to V. Let H be another group, and let W be a
GF(2)H-module. Suppose that there exists a homomorphism ¢: G—H. We
say that V is induced by W through ¢ if there exists a linear isomorphism
f: V=W such that (vg)’=v/g? for all vV and all g=G.

Section 2. Linear groups and symmetric groups.

In this section, we review GF(2)-representations of SL,(2™) (m=1) and
Dom(m=2'=1).

First, we define the natural modules for SL,(2") and ¥ ,.

Let n=1. Let N, be the 2-dimensional vector space of row vectors with
coefficients in GF(2"). Then SL,(2") acts on N, by right multiplication, and
so N, becomes a GF(2)SL,(2")-module. In the following, we will call N, the
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natural module for SL,(2%).

Let n=3. Let 2, be a set of n letters, and denote by P(£2,) the power
set of £2,. Then X, acts on @(R,). We can regard @(2,) as a GF2)X,-
module in the following addition:

X+Y = (XUY) — (XNY) for all X,Y € #(R2,).

The GF(2)Y,-module #@(2,) has two nontrivial submodules ¢, and @,: @, is
the submodule generated by £,; %, is the submodule generated by the subsets
of £, of even order. Put M,=(@,+2,)/P,. In the following, we will call
M, the natural module for Y,. Note that ®(2,)=2,PP, if n is odd. There-
fore we have M,=®, if n is odd.

Now, we record the necessary facts on the natural module N, of SL,2™)
(m=1), and on the natural module M., of Yyn(m=2'=1).

(2.1) LEMMA. Let G=SL,2™) (m=1) or Xopny (m=2'=1), and S<Syly(G).
Let V be the natural module for G, and put O=0(S, V). Then the following
holds.

@) |V: Culz)] =2™ for all z = Z(S)—{1}.

2) my(S)y=m.

(3) Let B€O. Then |V: Cy(B)|=|B]|, and the following holds.

(i) If G=SL,2™), then B=S or 1.
(ii) If G=23n11, then B is generated by a subset of T, where Ig is

the set of transpositions contained in S.

(4) Let B, Ce0.

(1) If [V, B]=21LV, Z(S)], then |B| =2™.
(i) If |B|=2™, then [V, B]=[V, Z(S)] and B2C.
(iii) If |C|=2™ and [Cy(B), CI12[V, Z(S)], then B=1.

ProoOF. First, let G=SL,2™). Then S=Z(S)=E,n. Let 1#z<S, and
1#B=0©. Then |V: Cy(z)|=|V: Cy(B)|=2™ because Cyp(x)=Cy(S) for all
x=S—{1}. This proves (1), (2), and (3). Part (4) is a consequence of (3).

Next, let G=X,,4,. Let 2={0,1,2, -, 2m—1, 2m}, and regard P(2) as
a GF(2)G-module. We may assume that V is the submodule of ¢(2) generated
by the subsets of 2 of even order.

Let E=<(12),(34),---, 2m—1,2m)) and t=(1,3,5, --,2m—1) (2,4,6,---,2m). Then
E is a 2-subgroup of G, and so we may assume that E{)S S, renumbering
if necessary. Then gs={(12), (34), ---, @m—1, 2m)}. Thus S acts on 9, and
so Cs(E)=FE. Since S is transitive on s, we have Z(S)=Cg(S)=<(12)(34) ---
(2m—1, 2m)>. Therefore C,(Z(S)=[V, Z(S)]=<{1, 2}, {3, 4}, ---, {2m—1, 2m}>,
so (1) holds. Parts (2) and (3) follow from 3.1 of [2] and 3.1 of [3], respec-
tively. For the proof of (4), let B, C€0®. Put B=<{(2{,—1, 2i,), (2i,—1, 23,), ---,
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(2i,—1, 24,)>, where |B|=2", and 1<4,<i,<--<i,<m. Then we have [V, B]
={{2¢,—1, 2¢1}, {26,—1, 24,}, ---, {2{,—1, 2¢,}>. This shows that if [V, B]=2
[V, Z(S)] then r=m, and that if »r=m then [V, B]=[V, Z(S)] and B=<(Tg>2
C. Hence (i) and (ii) hold. Let {ji, Js, ---, 7s}={1, 2, «--, m}—{iy, 5, ==+, 2, },
where s=m—r. Then [Cy(B), {Tsy]=<{2/,~—1, 2/}, {2/.—1, 27.}, -, {2/s—1,
27s}>. This shows that if |C|=2™ and [Cy,(B), C12[V, Z(S)] then s=m.
Hence (iii) holds.

We need some more definitions.

Let n=1. We denote by @, the semidirect product of N, by SL,(2"), and
by 4, the semidirect product of M, by X,.

Let V, be the 3-dimensional vector space of row vectors with coefficients
in GF(2"). We define the action of SL,22") on V, as follows:

a b

(x, y, z)( d) = (ax+cy, bx+dy, Vab++cd +2).

c
Let SL,(2") be a representation group of SL,@2"). Then V, becomes a
GF(2)SLy(2")-module, which is induced through the natural homomorphism
SL,2"—SL,2"). We denote by R, the semidirect product of V, by SL,(2").

Let 3 . be a representation group of X,. Then M, becomes a GF (Z)ZA' n=
module, which is induced through the natural homomorphism ZA',LHZ,,. We
denote by I', the semidirect product of M, by 3,.

The necessary facts concerning those groups are listed in the following
lemma.

(2.2) LEMMA. The following holds.

(1) The groups R,(m=2) and I'yn,,(m=2'=1) are central extensions of the
groups Qn and dymyy, respectively.

(2) Let K=R,(m=2) or [y (m=2'=1). Then Ox(K) is elementary abelian,
and O(K)=[0K), K1Z(K), which is a direct product if K=1I"yn4..

Proor. This follows immediately from the definition, noting that
| Z(SLy2™)| £2, | Z(3om+1)| £2 because the Schur multipliers of SL,(2™) and
Ysm+1 have order at most 2. ’

Section 3. Proof of Theorem B.

We will prove Theorem B for J(-groups by way of contradiction. Suppose
that Theorem B is false. Then no nonidentity characteristic subgroup of S is
normal in G. Hence, by the main result of [2], G is described as follows:

G=SJ(G);

J(G)=TH, - H,, the central product of a 2-subgroup 7" and the S-con-
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jugates H,, ---, H, of a subgroup H, where H is a central factor group of
Rna(m=2) or I'ypi(m=2t=1).

Define N=J(G), Q@Q=0,N), R=SNN, N,=H,Q, V,=HNQ, R,=SNN;,,
(1£iLk), L=H,--- H,, V=V, .- V,.

Then we have V,;=0,(H,) 1Zi<k), V=0,L), and Q=TV.

(1) Z(LHCSV,V is elementary abelian, and Cy(V)=Cy(V/Z(L)=Q.

PROOF. Since Z(H,)SV, and V, is elementary abelian (1<i<k) by
(2.2) (2), we have Z(LY=Z(H,)--- Z(H,)SV,---V,=V, and V is elementary
abelian. Moreover, we have Q=TV S Cxy(V)E Cxy(V/Z(L)=TC(V/Z(L))=
TCx,(Vi/Z(H,))-Cq (Vi/Z(H,). Since Hy/Z(H)=Qn Or dyni(1=i<k), we
have Cg,(Vi/Z(H)=V (1=i<k), so QSCxy(V/Z(L)=TV--V,=Q.

Let # and - denote the natural homomorphisms of V onto V/Z(L) and of
N onto N/Q, respectively. Then V#=V#x.-xXV# and N=N,X---xXN,. We
will regard V# as a faithful GF(2)N-module. Let 1</<k. Then N,=H,;/V,,
VixV,/Z(H) as GF@)H;/V modules, and H,/Z(H)=Q, or ds;ns;. Thus,
regarded as a GF(2)N;-module, V# is induced either by the natural module for
SL,2™) through an isomorphism N;— SL,2™), or by the natural module for
Yam+1 through an isomorphism N;—3sn41.

(2) Let BSR, and suppose B=OR, V¥#). Then |V¥#: Cy:(B)|=|B|, and
there exist subgroups B;SBNR,; (1<i<k) such that B=B,x---XB, and B;=
O(R;, V¥ (I<i<k).

PrOOF. Put B®=R, -+ R,.,BR,., - RyN\R;(1<i<k). Then BSB®X ---
XB®, and Cy#(B)=Cp#(BV)X -+ X Cy#(B®) because [V¥, N;]=1 if 1<i#;<
k. Let 1<:<k. Since B® is elementary abelian, we have |V#: CVf(B<”)|g
|B®| by (2.1) (3). Therefore

1Bl < HIBOISITIVE: Ca(BO) = 1V*: Cru(B)| < 1Bl

Wmh‘

Thus |V*: Cy#(B)|=|B|, B=BVX -+ XB®, and |V§: Cy#(BP)|=|BV|(1<
i<k). Put B,=BNB®(1<i<k). Then those subgroups have the desired pro-
perties.

(3) Let B&A(S). Then BeO(R, V#), (BNQ)W < A(S), and if BSQ, then
VEB.

PROOF. Let B A(S). Then BES J(S)&SNN=R. Since (BNQ)V is ele-
mentary abelian, the maximality of |B| yields that |(BNQ)V|<|B|. Thus
we have VEB if BSQ, and

|[V#: Cys(B)|Z|V: BNV |=[(BNQ)V: BNQI<|B: BNQ|=|B
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This shows that Beo(R, V#), and so |V#: Cype(B)|=|B| by (2). Therefore
[(BNQ)V |=|B| by the above inequalities, and then (BNQ)V < _A(S).

Now, define Vz=[V, Z(R)], and (V)r,=[V,, Z(R)] (1<i<k).

Since [V;, N;1=1 (1<i#j<k), we have

Ve=[Vi Vs, Z([—él) Z(Ek)]Z(VORI (Vk)Rk-
(4) There exists an element a= A such that [V, Ve]=Vz=[V, V¢ '].

Proor. By (3), we have (VA< J(S)SR. Suppose <V4S(@Q. Since
[Q,0G)IES[TV, LISV, we have <V4><1S0* G)=G, contrary to our hypothesis.
Thus there exists an element a=A such that V*E£Q. Hence [V“_l, V=
[V, Vel 1 by (1), and then Ve '€ Q also by (1).

Now, replacing a by a~! if necessary, we may assume that

IV:VNQZ|V: VNAQe = |Ve: VenQ].

Then we have Vee@(R, V¥) by (1). Hence, by (2), there exist subgroups B,S
VeNR; such that V*=B,X - XB, and B,=0(R,; V% (1<i<k). Therefore
we have

[V, Vel=[V, Ve1=[Vy Bl [V, B.l.

We can choose zeV2—Q so that 2= Z(S) because V*<1S. Hence z2&Cza(S).
Let 2=%,---Z;, where z,= Z(R,) (1=i<k). Since S transitively permutes
Z(R,), -, Z(R,), S transitively permutes Z,, ---, 3, as well. Thus z;#1 (1<
i<k) as z+1. Hence |V#%: cvi(zm:zm (1Zi<k) by (2.1) (1), and so

2% = T V7 Cya(z)l = V?: Cre(@)|

=|V: VN L |Ve: Veng| = |Ve.

This shows that |V *|=2™* and that |B,|=2™ (1<i<k) because my(R,)=m (1<
i<k) by (2.1)(2). Hence |V:VNQ* =|V®: VeNnQ|=|V:VNQ*"| by the
above inequalities. Therefore it suffices to prove that [V, V*]=Vj3; by the
symmetry between ¢ and a~'.

Let 1</<k. If H is a central factor group of R,, then B;=Z(R)), so
v, B_i]:(Vi)Ri. If His a central factor group of I5,.,, then [V#%, E,-]:
(V)3 by (2.1) (3-ii), and hence [V, B}]—-—(V,-)Ri because V,;=[V,, HIXZ(H,)=
v, N’i]XCVi(Ni) by (2.2) (2). This shows that [V, V*]=(V)g, " Vi), =Vr.

Let * denote the natural homomorphism of N onto N/TZ(L). Then Q*=
V*=VixX .- XV¥, and N*/V*=N*¥/V*X ... X N¥/V*. We will regard V* as
a faithful GF(2)N*/V*-module. Let 1<i/<k. Then N*/V*=N,, and V¥xV#
as GF(2)N,-modules. Thus, regarded as a GFQ)N*/V*-module, V* is induced
either by the natural module for SL,(2™) through an isomorphism N¥/V*—
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SL,(2™), or by the natural module for 2,,., through an isomorphism N*/V*—
2om+1. We should remark, moreover, that B*V*/V*co(R¥/V*, V¥ if (and
only if) B,=0(R;, V*) for all subgroups B;SR,. Finally, let M* be a sub-
group of N* so that N*=M*V* and M*N\V*=1,

(6) Let B€A(S). Then B*S Cyu(B*)(B*V*N\M*)S Cyu(B*)B*.

PrROOF. By (2), (3), and the above remark, there exist subgroups B;S
BNR;(1=:/<k) such that B*V*/V*=BXV*/V*X ... X BfV*/V* and B¥V*/V*
SO(RY/V*, V) (1ZiLk).

Let B*={(B*N\V*, xv,, -+, x,v,», Where |B*: B¥"\V*|=|B*V*/V*|=2",
and if 1<s<r then v;eV* and V*%x,= B¥, V*\M* for some i(s) (1=Zi(s)S k).
Then

( i ) [xs, Us] = (xsvs)2 =1 I=<s<vr
and
(ii) [xs, vellxe, vs]7' = [x50s, xv, ] =1 1 Zs#t<7)

because (B*)?=1=[B*V*"\M*, B*V*"\M*] and [B* V*] =S V*. Note that
[V* xS [V¥s, xs] (1<s<#) by the definition of i(s).

Let 1<s#t<r. If i(s)=#:i(t), then [V*, x, IN[V* x,1SVF,NVF,=1, so
[xs, ve]=1 by (ii). Let 7=i(s)=i(¢t). Then «x;, x,cR¥—V* [If H is a central
factor group of R,, then v,&Cy«(x,)=Cp(R¥) by (i), so [xs, v;]=1. Let H
be a central factor group of [,».:. Then both x; and x, correspond to trans-
positions under an isomorphism N*N\M*—2%,,.., by (2.1) (3-ii). As in the proof
of (2.1), let 2={0,1, 2, -, 2m—1, 2m}, and regard V* as the submodule of
(). Then [V¥*, (pg)]1=<{{p, q}> for all transpositions (pq). This shows that
[V* x IN[V*, 2, 1=[V¥ x: N[V x,]J=1. Thus, together with (i), v,
Cy(B¥V*/V*) = Cpe(B*) 1 £t <7). Hence B*S CypB*) (B*V*N\M*) because
B*N\V*ZS Cy(B*), and so B*V*N\M* S Cp«(B*)B*.

6) Let B, C, D=A(S) with Ve<[B, C1, VxS[C, D1. If VSB, then V SD.

PROOF. As in the proof of (5), there exist subgroups C;SCNR; and D,;S
DNR;(1<:<k) such that C*V*/V*= C¥V*/V*X ... X C¥V*/V*, D¥V*/V*=
D¥V*/V*X .- X D¥V*/V*, and C¥V*/V*, D¥V*/V*cO(R¥V*/V* V¥ (1<i<Ek).
Note that VE=VE, X - XV )5,

Suppose that VS B. Then BZQ by (1), so B*=V*. Thus VES[B*, C*]
=[V*, C¥I=[V¥, CYIx---X[V¥, C¥l, and so (V)E,S[VF, CTI=[V¥, CTV*/V*]
(1<i<k). Therefore |C¥V*/V*|=2"(1<i<k) by (2.1) (4-i)). Hence C¥V*/V*
2D¥V*/V*1Zi<k) by (2.1) (4-ii), and s0 Cp(CHECype(D*) and C*V*NM*2
D*V*N\M#*. Thus, together with (5), we have D*ZCp.(D*) (D*V*N\M*) S
Cr(D*) (C*V*N\M*) S Cyp(D*)C*, and so VES[D*, C*] = [Cp(D*)C*, C*¥]=
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[Cvs(D¥), CEIX--X[Cyy(D¥), C¥]. This shows that (V)k,S[Cvi(DY), CTl=
[Cys(D¥V*/V*), C¥V*/V*] (1<i<k), and then D¥V*/V*=1 (1=:<k) by (2.1)
(4-iii). Hence D*<SV*=Q*, and so DSQ. This implies that VED by (3).

(7) A contradiction.

Proor. By (3), we can take B=(S) so that VS B. Since Vi=Vzby (),
we have [B*", B*"*']=[B, B*]*"2[V, V*]¢"=V§ =Ven=Z). Therefore (5)
shows that VS B*"(n=Z) because VS B. But then VZSB* ' as a has odd
order, and so [V, V*]<S[B, B]=1, contrary to (4). This contradiction completes
the proof of Theorem B.
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