
J. Math. Soc. Japan
Vol. 44, No. 2, 1992

Twisting and knot types

By Masaharu KOUNO, Kimihiko MOTEGI*)

and Tetsuo SHIBUYA

(Received March 6, 1991)

Introduction.

Let $K$ be an unoriented smooth knot in the oriented 3-sphere $S^{3}$ , and $VaY$
solid torus endowed with a preferred framing which contains $K$ in its interior.
Let $f_{n}$ be a twisting homeomorphism, that is an orientation preserving homeo-
morphism of $V$ satisfying $f.(m)=m$ and $f.(l)=l+nm$ in $H_{1}(\partial V)$ , where $(m, l)$

is a meridian-longitude pair of V. (Throughout this paper a longitude means a
preferred longitude, and we shall not distinguish notationally between a homeo-
morphism and an isomorphism on a homology group induced by it and also
often identify a homology class with a curve representing it.) These define
the new knot $f_{n}(K)$ in $S^{3}$ , which is denoted by $K_{V,n}$ . We call this operation
twisting. For two knots $K_{1}$ and $K_{2}$ , we write $K_{1}\sim K_{2}$ if there exists a homeo-
morphism of $S^{3}$ carrying $K_{1}$ to $K_{2}$ . In particular if this homeomorphism pre-
serves the orientation of $S^{3}$ , then we write $K_{1}\cong K_{2}$ . Note that $K_{1}\cong K_{2}$ if and
only if $K_{1}$ and $K_{2}$ are ambient isotopic in $S^{3}$ . It is easy to see that for two
homeomorphisms $f_{n},$ $g_{n}$ satisfying the above condition, we have $f_{n}(K)\cong g_{n}(K)$

in $S^{3}$ . The wrapping number of $K$ in $V$ is defined to be the geometric inter-
section number of $K$ with a meridian disk in $V$ , and we denote it by $w_{V}(K)$ .
$w_{V}(K)=0$ is the same as saying that $K$ is contained in a 3-ball in $V$ . Clearly
$K_{V.n}\cong K$ when $w_{V}(K)\leqq 1$ . The origin of twisting of knots goes back to the
example given by Whitehead [20]. In his paper, he constructed knots de-
picted in Figure 1, and proved that $T_{m}$ and $T_{n}$ are distinct knots for $m\neq n$
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Figure 1
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by using their Alexander polynomials. (Compare the example in Remark 4.3.)

Twisting is a natural move and one of the important notions in knot theory,

which leads us to the following fundamental problem.

PROBLEM. A knot $K$ in $V$ is assumed to have $w_{V}(K)\geqq 2$ . Can “twisting”
change knot type of $K^{\rho}$

In Section 2, we treat this problem in the case when $V$ is knotted and
answer affirmatively by Theorems 2.1 (in the strong equivalence $\cong$ ) and 2.8 (in

the weak equivalence $\sim$ ). On the other hand, if $V$ is unknotted, then there
exist examples such that $K_{V.n}\cong K$ for some nonzero integer $n$ (Example 3.1).

Sections 3 and 4 are devoted to the case when $V$ is unknotted. Our purpose in
Section 3 is to prove Theorem 3.2 and give a precise information in the case
when the wrapping number of $K$ in $V$ equals the winding number of $K$ in $V$

( $i.e$ . the algebraic intersection number of $K$ with a meridian disk in $V$ ) by
Theorems 3.10 and 3.11. In Section 4 we shall particularly concern ourselves
with the case when the original knot is trivial and answer the above problem
by Theorem 4.2 as an implicit corollary of Litherland [9] and Gabai [2]. This
also answers Problem 1.18 (B) in [7] by Martin (solved by Bleiler-Scharle-
mann [1] $)$ and its generalization. Recently Mathieu has obtained inde-
pendently Theorem 4.2 in his thesis [10]. Throughout this paper $N(X),$ $\partial X$

and int $X$ denote the tubular neighborhood of $X$, the boundary of $X$ and the
interior of $X$ respectively.

1. Knots in a solid torus.

In this section we shall study knots in a solid torus $V$ . Any knot $K$ in $V$

is assumed to have $w_{V}(K)\geqq 2$ .
LEMMA 1.1. $V$ –int $N(K)$ is a boundary irreducible Haken manifold.
PROOF. The fact $w_{V}(K)\neq 0$ implies the required result. $\blacksquare$

We will use tbe torus decomposition of $V-intN(K)$ in the sense of Jaco-
Shalen [4], Johannson [5] and Thurston’s uniformization theorem [11]. They
assert that $V$ –int $N(K)$ is uniquely decomposed by tori into pieces each of
which is Seifert fibred or admits a complete hyperbolic structure of finite
volume in its interior. In particular, for Seifert pieces, we have the following.

LEMMA 1.2. Each Seifert piece is either a torus knot sPace, a cable space
or a comPosing sPace (see [4]).

PROOF. We may consider that $V$ is a knotted solid torus in $S^{3}$ . Then the
Seifert piece in $V-$ int $N(K)$ is a Seifert fibred manifold in the knot space
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$S^{3}$ –int $N(K)$ with incompressible boundary. Hence the result follows from
Lemma VI 3.4 [4]. $\blacksquare$

Let $f$ be an orientation preserving homeomorphism of $V,$ $f$ is said to be
faithful if $f|_{\partial V}$ induces identity or -identity of $H_{1}(\partial V)$ . The following two
lemmas are useful but their proofs are easy and omitted here.

LEMMA 1.3. Let $T$ be a torus and $\alpha_{1},$ $\alpha_{2}$ essential simple loops in $T$ which
satisfies $\alpha_{1}\neq\pm\alpha_{2}$ in $H_{1}(T)$ . Suppose that $f$ is a homeomorphism of $T$ satisfying
$f(\alpha_{1})=\alpha_{1},$ $f(\alpha_{2})=\alpha_{2}$ in $H_{1}(T)$ . Then $f$ is isotopic to the identity.

LEMMA 1.4. Let $f$ be an orientation preserving homeomorphism of V. If
$f^{N}$ is faithful for some integer $N>0$ , then $f$ is also faithful.

The next theorem is a fundamental result on knot theory in a solid torus.

THEOREM 1.5. Let $V$ be a solid torus and $K$ a knot in $V$ satisfying $w_{V}(K)$

$\geqq 2$ . Suppose that $f$ is an orientation preserving homeomorphism of $V$ with $f(K)$

$=K$. Then $f$ must be faithful.
PROOF. The proof of this theorem will be done by the induction on the

closed Haken number of the exterior $V$ –int $N(K),$ $h$ ($V-$ int $N(K)$) (see [3]).

Let $\{T_{1}, \cdots , T_{s}\}$ be a family of tori which defines the torus decomposition of
$V$ –int $N(K)$ in the sense of Jaco-Shalen, Johannson and $P_{0},$ $\cdots$ , $P_{u}$ are decom-
posing pieces each of which is Seifert fibred or hyperbolic. Moreover a Seifert
piece has a form as in Lemma 1.2. For convenience we assume $P_{0}$ contains
$\partial V$ . Since $T_{i}$ has a meridian disk in $V$ , there exists a meridian $m_{i}$ of $T_{i}$ . In
addition if $T_{i}$ does not separate $\partial N(K)$ and $\partial V$ , then $T_{i}$ has a longitude $I_{i}$

which bounds an orientable surface in $V$ –int $N(K)$ . We may assume that
$f(N(K))=N(K)$ , and by the uniqueness of the torus decomposition, we can
assume ( $T_{1},$ $\cdots$ , $T_{\epsilon}\}$ is invariant under $f$ . Hence for simplicity we may assume
that after an iteration of $f,$ $f^{N}$ satisfies $f^{N}(T_{i})=T_{i},$ $f^{N}(P_{j})=P_{j},$ $f^{N}(m)=m$ ,
$f^{N}(m_{i})=m_{i}$ . Moreover if $T_{i}$ does not separate $\partial N(K)$ and $\partial V$ , then we may
assume that $f^{N}(l_{i})=l_{t}$ .

We remark that in our situation $h$ ($V-$ int $N(K)$) $\geqq 3$ .
First step. $h$ ( $V$–int $N(K)$) $=3$ .
In this case $V$ –int $N(K)$ consists of only one piece $P_{0}$ . When $P_{0}$ is a cable

space, we have $f^{N}(t)=t$ for a regular fibre $t$ of $P_{0}$ because its Seifert fibration
is unique (Lemma VI. 18 [3]). Also $f^{N}(m)=m$ holds for a meridian $m$ of $V$ .
We easily see that $t\neq\pm m$ , so by Lemma 1.3, $f^{N}$ is the identity of $H_{1}(\partial V)$ and
$f$ is faithful by Lemma 1.4. If $P_{0}$ is a composing space, it is a one fold com-
posing space ( $i.e$ . homeomorphic to $S^{1}\cross S^{1}xI$) and $K$ is a core of $V$ . This
contradicts the fact $w_{V}(K)\geqq 2$ .
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NOW we consider the case when $P_{0}$ is hyperbolic. By Mostow’s rigidity
theorem, $f^{N}|_{intP_{0}}$ is homotopic to a unique isometry $\varphi$ of int $P_{0}$ . Since Isom$(intP_{0})$

is a compact Lie group, and which is discrete by Mostow’s rigidity theorem,
it is a finite group (see [11]). Hence $\varphi^{n}$ is the identity for some integer $n>0$ .
It follows that $f^{nN}|_{intP_{0}}$ is homotopic to the identity. Using Waldhausen’s
result in [19], by an isotopic deformation we may assume $f^{nN}|_{int\overline{P_{0}}}$ is the
identity, where $\overline{P_{0}}$ denotes a compact submanifold in $P_{0}$ obtained from $P_{0}$ by
truncating the open collar neighborhood of $P_{0}$ . Hence $f$ is faithful by Lemma
1.4.

Second step.
When $P_{0}$ is a cable space or hyperbolic, the result holds by the same argu-

ment in First step. Suppose $P_{0}$ is a composing space, that is, $P_{0}=\Delta\cross S^{1}$ where
$\Delta$ is a disk with $k$ -holes $(k\geqq 2)$ . We set $\partial\Delta=a_{0}\cup\cdots\cup a_{k},$ $T_{i}=a_{i}\cross S^{1}(i=1, \cdots, k)$ ,
$T_{0}=\partial V$ and assume $T_{1}$ separates $\partial V$ and $\partial N(K)$ . In this case, for a regular
fibre $t=1*$ } $xS^{1},$ $t=m_{i}$ and $T_{i}$ has a longitude $l_{i}$ for $i=2$ , $\cdot$ .. , $k$ . It follows
that $f^{N}|_{T_{i}}$ is isotopic to the identity for $i=2$ , $\cdot$ .. , $k$ by Lemma 1.3. Since the
fact $\partial N(K)=T_{1}$ implies $w_{V}(K)=1$ , we have $\partial N(K)\neq T_{1}$ . Let $W$ be a solid torus
in $V$ bounded by $T_{1}$ , then $f^{N}(W)=W$ . In addition, since the boundary of a
meridian disk of $W$ coincides with a regular fibre $t$ of $P_{0}$ , the union of the
meridian disk of $W$ and a saturated annulus $A$ in $P_{0}$ such that $\partial A\subset\partial V\cup T_{1}$ and
$\partial A\supset t$ becomes a meridian disk of $V$ . Thereby we see $w_{W}(K)\geqq 2$ , and we can
check $h$ ($W$–int $N(K)$ ) $<h$ ( $V$ –int $N(K)$). Hence we can use the induction hy-
pothesis and can conclude that $f^{N}|_{W}$ is faithful. In particular $f^{N}$ satisfies
$f^{N}(m_{1})=m_{1}$ , thus $f^{N}|_{T_{1}}$ is the identity of $H_{1}(T_{1})$ . Then we have:

$f^{N}(a_{0})-a_{0}=f^{N}(a_{0})+a_{1}+\cdots+a_{k}$

$=f^{N}(a_{0})+f^{N}(a_{1})+\cdots+f^{N}(a_{k})$

$=f^{N}(a_{0}+\cdots+a_{k})=f^{N}(0)=0$

In this way we get $f^{N}(t)=t,$ $f^{N}(a_{0})=a_{0}$ . Since $a_{0}\neq\pm t,$ $f^{N}|_{\partial V}$ is the identity
by Lemma 1.3 and this implies $f$ is faithful by Lemma 1.4. This completes
the proof. $\blacksquare$

2. Twisting along knotted solid tori.

We now state the main result in this section, which gives the complete
answer to Problem in the case when $V$ is knotted.

THEOREM 2.1. Let $K$ be a knot in $S^{3}$ and $V$ a knotted solid torus containing
$K$ with $w_{V}(K)\geqq 2$ . For any nonzero integer $n,$ $K_{V,n}1K$.
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Figure 2

REMARK 2.2. This theorem implies also that if $m\neq n$ , then $K_{V.m}\not\equiv K_{V.n}$ ,
because $K_{V.m}$ is obtained from $K_{V,n}$ by $(m-n)$-twist along $V$ .

PROOF OF THEOREM 2.1. In our situation, $K$ and $K_{V.n}(=f_{n}(K))$ are knots
in a knotted solid torus $V\subset S^{3}$ with $w_{V}(K)\geqq 2$ . Supposing $K\cong K_{V.n}$ then there
exists an orientation preserving homeomorphism $g$ of $S^{3}$ such that $g(K_{V.n})=K$.
Then $f=g|_{V^{\circ}}f_{n}$ is an orientation preserving homeomorphism from $V$ to $V’=$

$g(V)$ with $f(K)=K$.
From now on, we prove that $f$ sends longitude of $V$ to $\pm longitude$ of $V’$ .

Such an orientation preserving homeomorphism between two solid tori is said
to be faithful.

Our first step is to study the geometric situation of $V$ and $V’$ . The fol-
lowing lemma which is a consequence of Satz 1, \S 18 in [15] gives us complete
information which we need in this step.

LEMMA 2.3. By an ambient isotopy of $S^{3}$ which leaves $K$ fixed, we can de-
form $V’$ so that either

(1) $\partial V\cap\partial V’=\emptyset,$ or
(2) there exist meridian disks $D_{1}$ and $D_{2}$ of both $V$ and $V’$ such that the

closure of one component of $V’-U_{i=1}^{2}D_{i}$ is a knotted 3-ball in the closure of some
component of $V-U_{l=1}^{2}D_{i}$ (see Figure 3).

We continue to use the symbol $V’$ and $f$ to denote the results which are
deformed by this ambient isotopy, and we assume that $f(N(K))=N(K)$ for some
tubular neighborhood $N(K)$ . We remark that the resulting homeomorphism $f$

is faithful if and only if the original homeomorphism $f$ is faithful.
In case (1), we divide further into three cases.
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Figure 3

(a) $V’\subset intV$

(b) $V\subset intV’$

(c) $V\cup V’=S^{3}$ .
If (b) occurs, by exchanging $V$ and $f$ for $V’$ and $f^{-1}$ , we can regard (b)

as (a).

Case (1)$-(a)$ . When $T_{1}=\partial V$ and $T_{2}=\partial V’$ are parallel in $S^{s}$ , we can modify
$f$ so that $V=V’(=f(V))$ by an ambient isotopy which leaves $K$ fixed. In this
case, we can conclude that $f$ is faithful by Theorem 1.5.

Suppose $T_{1}$ and $T_{2}$ are not parallel in $S^{3}$ . Since $V’=f(V)\subset intV$ , we can
consider $f^{s}$ for any integer $s>0$ , and we put $T_{s}=f^{*-1}(T_{1})$ . Then we have:

SUBLEMMA 2.4. $\{T_{1}, \cdots , T_{s}\}$ is a collection of disjoint nonParallel incom-
pressible tori in $V$ –int $N(K)$ .

The proof of this is essentially the same as that of Sublemma 1 in [8],

and we omit it. Since the above sublemma holds for any integer $s>0$ , this
contradicts Haken’s finiteness theorem (see Theorem III.20 [3]).

Case (1)$-(c)$ . In this case $T_{1}=f(T_{1})(=\partial V’)$ is contained in int $V$ and it does
not separate $T_{1}(=\partial V)$ and $\partial N(K)$ . We suppose that for $i=1,$ $\cdots$ , $m-1,$ $T_{t+1}=$

$f(T_{i})$ can be defined and $T_{2}$ , $\cdot$ .. , $T_{m}$ are contained in int $V$ and each of which
does not separate $T_{1}(=\partial V)$ and $\partial N(K)$ (see Schematic 1).

Consider $T_{m+1}=f(T_{m})$ . Let $V_{2n+1}$ be the solid torus bounded by $T_{m+1}$ con-
taining $N(K)$ in $S^{3}$ . We note that $w_{r_{m+1}}(K)\geqq 1$ . For two solid tori $V$ and $V_{m+1}$ ,
as in Lemma 2.3, by an ambient isotopy of $S^{3}$ which leaves $K$ fixed, $V_{m+1}$ can
be arranged so that either

(1) $\partial V\cap\partial V_{m+1}=\emptyset$ , or
(2’) there exist meridian disks $D_{1}$ and $D_{2}$ of both $V$ and $V_{m+1}$ such that
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Schematic 1

the closure of one component $X’$ of $V_{m+1}- \bigcup_{i\Leftarrow 1}^{2}D_{i}$ is a knotted 3-ball in the
closure of some component $X$ of $V-U_{i=1}^{2}D_{i}$ .

Moreover we can assume that $N(K),$ $T_{2},$ $\cdots$ , $T_{m}$ are also fixed through the
above ambient isotopy.

If necessary we modify $f$ by this ambient isotopy and denote the resulting
homeomorphism from $V$ to $V’$ by the same symbol $f$ , and we continue to use
the symbol $T_{m+1}$ to denote the boundary of the isotoped $V_{m+1}$ . Clearly the
resulting homeomorphism $f$ is faithful if and only if the original one is faithful.
For this resulting $f$ , we can still assume that $f(N(K))=N(K)$ and $f(T_{i})=T_{i+1}$

$(i=1, , m)$ by the choice of an ambient isotopy.
First we treat the case (1)$-(c)-(1’)$ , that is, $T_{n+1}\cap T_{1}=\emptyset$ .

CLAIM. If $T_{m+1}$ is contained in int $V$ , then we can assume that it separates
$T_{1}$ and $\partial N(K)$ .

PROOF OF CLAIM. If $T_{m+1}$ separates $T_{1}$ and $\partial N(K)$ , then we have nothing
to do. Suppose that $T_{m+1}$ is contained in int $V$ and it does not separate $T_{1}$ and
$\partial N(K)$ either. Then $T_{l}(=\partial V’),$ $\cdots$ , $T_{m},$ $T_{m+1}$ are contained in int $V$ and each
of which does not separate $T_{1}$ and $\partial N(K)$ . We remark that taking $m$ as $m+1$ ,
our situation can be reduced essentially to the former situation.

After the inductive procedure above, we have $T_{2},$ $\cdots$ , $T_{m+\epsilon}=f(T_{m+s-1})$,

which are contained in int $V$ and each of which does not separate $T_{1}$ and
$\partial N(K)$ , and $T_{m+’+1}=f(T_{m+S})$ can not be deformed so that $T_{zn+*+1}$ is contained
in int $V$ and it does not separate $T_{1}$ and $\partial N(K)$ by such an isotopy as above
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for some integer $s>0$ . The existence of such an integer $s$ can be shown as
follows. If such an integer $s$ does not exist, then we get a collection of dis-
joint nonparallel incompressible tori $\{T_{1}, \cdots T_{m+S}\}$ in $S^{3}$ –int $N(K)$ for any $s>0$

(see Schematic 2). This contradicts Haken’s finiteness theorem.

Schematic 2

Taking $m$ as $m+s$ , the required result follows. $\blacksquare$

It follows from this claim that if (1)$-(c)-(1’)$ occurs $T_{m+1}$ is contained in
int $V$ and separates $T_{1}$ and $\partial N(K)$, or $T_{m+1}$ is contained in $S^{3}-V$ . Suppose
that $T_{m+1}$ and $T_{1}$ are parallel in $S^{3}$ , then we may assume $T_{m+1}=T_{1}$ by an iso-
topy (which leaves $N(K),$ $T_{2},$ $\cdots$ , $T_{m}$ fixed). This is the just situation in the
following lemma.

LEMMA 2.5. Let $V_{i}$ be a knotted solid torus such that $V_{1}\cup V_{2}=S^{3}$ and
$\partial V_{1}\cap\partial V_{2}=\emptyset$ . Let $K$ be a knot in $V_{i}$ with $w_{V_{i}}(K)\geqq 2$ and $f$ an orientation pre-
serving homeomorphism from $V_{1}$ to $V_{2}$ satisfying $f^{m}(\partial V_{1})=\partial V_{1}$ for some integer
$m>0$ and $f(K)=K$. Then $f$ is faithful.

PROOF. We induct on the closed Haken number of the exterior $V_{1}$ –int $N(K)$ ,
$h(V_{1}-intN(K))$ . Let $T_{1}=\partial V_{1},$ $T_{2}=\partial V_{2},$ $T_{i}=f^{i-1}(T_{1})$ and $V_{i}$ the solid torus in
$S^{3}$ bounded by $T_{i}$ containing $N(K)$ . For the meridian-logitude pair $(m_{i}, l_{i})$ of
$V_{t}$ $(i=1, \cdots , m),$ $f(m_{1})=\epsilon_{1}m_{2},$ $f(m_{2})=\epsilon_{2}m_{3},$ $\cdot\cdot$ , , $f(m_{m})=\epsilon_{m}m_{1}$ and $f(l_{2})=\epsilon_{2}l_{3},$ $\cdots$ ,
$f(l_{m})=\epsilon_{m}l_{1}(\epsilon_{f}=\pm 1)$ holds. Then $f(l_{1})$ is presented by $\epsilon_{1}(l_{2}+\alpha m_{2})$ for some
integer $\alpha$ . It suffices to show that $\alpha$ equals zero. We remark that $f|_{V_{1^{\cap\cdots\cap}}V_{m}}$

is a homeomorphism of $V_{1}\cap\cdots\cap V_{m}$ with $f(K)=K$ by the assumption of Lemma
2.5, and we may assume that $f(N(K))=N(K)$ for some tubular neighborhood
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$N(K)(\subset V_{1}\cap\cdots\cap V_{m})$ . For $V_{1}\cap$ $\cap V_{m}-intN(K)$ , we have the following
sublemma which is essentially the same as Lemma 1.1 and the proof is omitted.

SUBLEMMA 2.6. $V_{1}\cap\cdots\cap V_{m}$ –int $N(K)$ is a boundary irreducible Haken
manifold.

NOW consider the torus decomposition of $V_{1}\cap\cdots\cap V_{m}$ –int $N(K)$ in the
sense of Jaco-Shalen and Johannson. Let $\{J_{0}, \cdots , J_{s}\}$ be a family of tori which
defines a torus decomposition with decomposing pieces $P_{0},$ $\cdots$ , $P_{u}$ . Here we
assume $P_{0}$ contains $\partial V_{1}$ . Each Seifert piece is either a torus knot space, a
cable space or a composing space (see Lemma 1.2). For some (even) integer
$N>0$ , we can assume $f^{mN}$ satisfies $f^{mN}(J_{0})=J_{0}$ , $\cdot$ .. , $f^{mN}(J_{s})=]_{s},$ $f^{mN}(T_{i})=T_{i}$ ,
$f^{mN}(m_{i})=m_{i},$ $f^{mN}(l_{i})=l_{i}+N\alpha m_{i}(i=1, \cdots , m)$ if necessary.

In our situation $h$ ( $V_{1}$ –int $N(K)$) $\geqq 4$ .
First step. $h$ ( $V_{1}$ –int $N(K)$) $=4$ .
In this case $V_{1}\cap\cdots\cap V_{m}$–int $N(K)$ consists of only one piece $P_{0}$ , which is a

composing space or hyperbolic, because the number of components of $\partial P_{0}$ is
greater than or equal three. When $P_{0}$ is a composing space then we have
$w_{V}(K)=1$ , and this is a contradiction. If $P_{0}$ is hyperbolic, then by Mostow’s
rigidity theorem, the argument in Theorem 1.5 implies that $f^{mpN}|_{T_{1}}$ is isotoPic
to the identity for some integer $p>0$ . This implies $\alpha=0$ and $f(l_{1})=\epsilon_{1}l_{2}$ , hence
$f$ is faithful.

Second step.
When $P_{0}$ is hyperbolic, the required result follows from the argument above.

Suppose that $P_{0}$ is a cable space and $\partial P_{0}=T_{1}\cup J_{0}$ . First we note that a meri-
dian $m_{1}$ is not a regular fibre $t$ of $P_{0}$ . Since a Seifert fibration of $P_{0}$ is unique,
$f^{mN}(t)=t$ . Also we have $f^{mN}(m_{1})=m_{1}$ , thus by Lemma 1.3, $f^{mN}$ is the identity
of $H_{1}(T_{1})$ . Hence we get $\alpha=0$ and $f$ is faithful.

NOW we suppose that $P_{0}$ is a composing space. In this case a meridian $m_{1}$

of $V_{1}$ coincides with a regular fibre $t$ of $P_{0}$ . If $\partial P_{0}$ contains $\partial N(K)$, then the
union of a meridian disk of $N(K)$ (whose boundary coincides with a regular
fibre $t$ ) and a saturated annulus $A$ in $P_{0}$ such that $\partial A\subset T_{1}\cup\partial N(K)$ and $\partial A\supset r$

becomes a meridian disk of $V_{1}$ . This implies $w_{V_{1}}(K)=1$ and we have a con-
tradiction. Hence $\partial P_{0}$ does not contain $\partial N(K)$ . Let $J_{0}$ denote the component
of $\partial P_{0}$ separating $P_{0}$ and $\partial N(K)$ . We divide into two cases (see Schematic 3).

(I) $J_{0}$ separates $T_{i}(i=1, \cdot. , m)$ and $\partial N(K)$ , or
(II) otherwise.
In case (I), it turns out that $\partial P_{0}$ contains $T_{1}$ , , $T_{m}$ . Hence $f(P_{0})=P_{0}$ and

$f(J_{0})=J_{0}$ because $J_{0}$ is a unique component of $\partial P_{0}$ separating $P_{0}$ and $\partial N(K)$ .
Let $W$ be the solid torus in $V_{1}$ bounded by $J_{0}$ . Then $f(W)=W$ and we have
the following.
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Schematic 3

SUBLEMMA 2.7. Let $C_{W}$ be a core of $W$, then we have $w_{V_{1}}(C_{W})=1$ (see

Figure 4). In addition $w_{W}(K)\geqq 2$ holds.

PROOF OF SUBLEMMA 2.7. A meridian of $W$ coincides with a regular fibre
of $P_{0}$ . Take a saturated annulus $A$ in $P_{0}$ with $\partial A\subset T_{1}\cup J_{0}$ . The union of a
meridian disk in $W$ and the annulus $A$ becomes a meridian disk of $V_{1}$ . Thus
we get $w_{V_{1}}(C_{W})=1$ . If $w_{W}(K)\leqq 1$ , then we have $w_{V_{1}}(K)\leqq 1$ , and this is a con-
tradiction. Hence $w_{W}(K)\geqq 2$ . $\blacksquare$

Figure 4

Since $f$ is an orientation preserving homeomorphism of $W$ such thatlf$(K)$
$=K$ and $w_{W}(K)\geqq 2,$ $f|_{W}$ is faithful by Theorem 1.5. Namely for a longitude
$l_{W}$ of $W,$ $f(l_{W})=\epsilon l_{W}(\epsilon=\pm 1)$ holds. In $V_{1}$ –int $W$ , we have $l_{1}=\epsilon’l_{W}(\epsilon’=\pm 1)$ by
Sublemma 2.7, also we have $l_{g}=\epsilon’’l_{W}(\epsilon’=\pm 1)$ in $V_{2}$ –int $W=f$ ( $V_{1}$ -int $W$). It
follows that in $V_{2}$ –int $W=f(V_{1})$–int $f(W),$ $f(l_{1})=\epsilon’f(l_{W})=\epsilon\epsilon’l_{W}=\epsilon\epsilon’\epsilon’l_{2}$ . Hence
$f$ is faithful.

In case (II), let $W$ be a solid torus in $V_{1}$ bounded by $J_{0}$ . Then as in Sub-
lemma 2.7, $C_{W}$ (a core of $W$) satisfies $w_{V_{1}}(C_{W})=1$ and $w_{W}(K)\geqq 2$ . Also we can
check that $W$ and $f(W)$ satisfy the condition of $V_{1}$ and $V_{2}$ in Lemma 2.5. In
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addition $h$ ($W$–int $N(K)$) $<h$ ( $V_{1}$ –int $N(K)$) holds. Thus by the induction hypo-
thesis, $f|_{W}$ is faithful. Applying the same argument in case (I), we conclude
$that_{s}^{v}f$ is faithful and the proof of Lemma 2.5 is completed. $\blacksquare$

Regarding $V=V_{1}$ and $V’=V_{2}$ , we can conclude that $f$ is faithful.
Assume now $T_{m+1}$ separates $T_{1}$ and $\partial N(K)$ and is not parallel to $T_{1}$ , then

for any integer $s>0,$ $\{T_{1}, \cdots , T_{s}=f^{s-1}(T_{1})\}$ is a collection of disjoint nonParallel
incomPressible tori in $S^{3}$ –int $N(K)$ (see Schematic 4). This contradicts Haken’s
finiteness theorem.

Schematic 4

When $T^{m+1}$ is contained in $S^{3}-V$ and not parallel to $T_{1}$ , then considering
preimages $f^{-j}(T_{1})$ of $T_{1}$ , we get arbitrarily many disjoint nonparallel incom-
pressible tori in $S^{3}$ –int $N(K)$ . Thus we have again a contradiction by Haken’s
finiteness theorem.

NOW consider the case when (1)$--(c)-(2$ ‘
$)$ holds. Let $Y=V$–int $X,$ $W’=Y\cup X’$

and $W=W’$–int $N(\partial W’)$ . Then we have $w_{W}(K)\geqq 2$ and $h$ ($W$–int $N(K)$) $<$

$h$ ( $V$ –int $N(K)$). Applying the inductive argument, we can conclude that
$f|_{W}$ : $Warrow f(W)$ is faithful. Hence $f(l_{W})=\epsilon l_{f(W)}(\epsilon=\pm 1)$ holds, where $l_{W}$ and
$l_{f(W)}$ are longitudes of $W$ and $f(W)$ respectively. In $V$ –int $W$ , we have $l=\epsilon’l_{W}$

$(\epsilon’=\pm 1)$ for a longitude 1 of $V$ . Also we have $l’=\epsilon’l_{f(W)}(\epsilon’’=\pm 1)$ in $V’-$

int $f(W)=f$( $V$ –int $W$) for a longitude 1’ of $V’$ . It follows that in $f(V_{1})$–int$f(W)$,
$f(l)=\epsilon’f(l_{W})=\epsilon\epsilon’l_{f(W)}=\epsilon\epsilon’\epsilon’l’$ . Hence $f$ is faithful.

In case (2), by the argument in (1)$-(c)-(2’)$ , we can conclude that $f$ is
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faithful.
In this way we see that $f=g|_{V}\circ f_{n}$ is faithful. From this we can conclude

that $f_{n}$ is also faithful and $n=0$ . This completes the proof of Theorem 2.1. $\blacksquare$

AS for weak equivalence $\sim$ , we have:

THEOREM 2.8. Let $K$ be any knot in $S^{3}$ and $V$ a knotted solid torus with
$w_{V}(K)\geqq 2$ . Then there is at most one nonzero integer $n$ such that $K_{V.n}\sim K$.

PROOF. Suppose that we have $K_{V.m}\sim K$ and v. $n^{\sim K}(m, n\neq 0)$ . Since $m$ ,
$n\neq 0$ , Theorem 2.1 implies $K_{V.m}\neq K$ and $K_{V,n}\neq K$. From this, we get $K_{V,m}\cong$

$K_{V,n}$ , then by Remark 2.2 $m=n$ holds. $\blacksquare$

EXAMPLE 2.9. Let $K$ be a $(2, 1)$-cable of the figure eight knot $k$ , and $V$ a
knotted solid torus which is a tubular neighborhood of $k$ containing $K$. Then
by Theorem 2.1, $K_{V.-1}\neq K$, but we have $K_{V.-1}\sim K$.

$K$ $K_{V.-}$ ,
Figure 5

3. Twisting along unknotted solid tori.

When a solid torus $V$ is unknotted, Theorem 2.1 is not true. To start
with, we give the following example.

EXAMPLE 3.1. In Figure 6, $K_{V.1}\cong K$ does hold.

This example also demonstrates that for any knot $K$ there exists an un-
knotted solid torus $V$ with $w_{V}(K)=2$ such that $K_{V.1}\cong K$.

In this section first we prove:

THEOREM 3.2. Let $K$ be a knot in $S^{3}$ and $V$ an unknotted solid torus con-
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$K$

Figure 6

taining $K$ with $w_{V}(K)\geqq 2$ . Then there are at most finitely many integers $n_{i}$ such
that $K_{V.n_{i}}\sim K$.

This theorem is follows from Propositions 3.4, 3.10 and 3.13. In our set-
ting, $S^{3}$ –int $V$ is also an unknotted solid torus $V^{*}$ . We denote the core of $V^{*}$

by $J$ . When we perform $(-1/n)$-Dehn surgery on $J$ , the result is again $S^{3}$

because $J$ is trivial and $K$ can be considered as a knot in this resultant $S^{3}$ .
We denote this knot by $K_{n}^{*}$ . The next lemma is an interpretation of the twist-
ing and we omit the proof.

LEMMA 3.3. For two knots $K_{V.n}$ and $K_{n}^{*}$ , we have $K_{V,n}\cong K_{n}^{*}$ .
From this, the exterior of $K_{V.n}$ and $V_{J} \bigcup m_{J^{\Leftarrow lm^{-n}}}$( $V$ –int $N(K)$) are homeo-

morphic, where $m_{J}$ is a meridian of $V_{J}$ . Recall that $V$ –int $N(K)$ is a boundary
irreducible Haken manifold by Lemma 1.1. We consider the torus decomposi-
tion of $V$–int $N(K)$ in the sense of Jaco-Shalen, Johannson. Then by Lemma
1.2, each Seifert piece is either a torus knot space, a cable space or a compos-
ing space. As in the previous section, $P_{0}$ denotes the piece in $V$–int $N(K)$

containing $\partial V$ . First consider the case when $P_{0}$ is a cable space. In this case
the following holds.

PROPOSITION 3.4. Suppox that $P_{0}$ is a cable space. Then there is at most
one nonzero integer $n$ such that K. $n^{\sim K}$.

PROOF. The Seifert fibration of $P_{0}$ is unique and we assume a regular
fibre is presented by $l^{p}m^{q}(p\geqq 2)$ . Then $J$ is a fibre of index $|q|$ in $E(K)=$

$S^{3}$ –int $N(K)$ and $J_{n}^{*}$ the dual of $J$ ( $i.e$ . $J$ in $E(K_{V.n})$) is a fibre of index $|pn+q$ }
in $E(K_{V.n})$ . Now assume $K_{V.n}\sim K$, then $E(K_{V.n})$ is homeomorphic to $E(K)$ .
We divide into two cases whether $|q|$ equals 1 or not.

Case (1) $|q|\neq 1$ .
First supposing $|p_{n}+q|\neq 1$ , then $V_{J}U_{m_{J}=lm^{-n}}P_{0}$ and $V_{J}U_{m_{J}}{}_{=l}P_{0}$ are boun-

dary irreducible, irreducible Seifert fibred manifolds. In addition their Seifert
fibration is unique. Thus we get $|pn+q|=|q|$ . This implies $p=2,$ $n=-q$ .
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Next we suppose $|pn+q|=1$ . Set $T_{1}=\partial P_{0}-\partial V,$ $V_{1}$ a solid torus in $V$ bounded
by $T_{1}$ , which contains $K$. Then $V_{1}$ is knotted. On the other hand $f_{n}(V_{1})$ is
unknotted. Thus $K_{V.n}$ is a preimage knot of $K$, so $K_{V.n}\psi K$ by Theorem 1
in [17].

Case (2) $|q|=1$ .
If $|pn+q|=1$ , then we get $p=2,$ $q=\epsilon$ and $n=-\epsilon(\epsilon=\pm 1)$ . Now assume

$|pn+q|\neq 1$ . Then we see that $K$ is a preimage knot of $K_{V.n}$ , and again Theo-
rem 1 in [17] implies that $K_{V.n}\psi K$. This completes the proof. $\blacksquare$

REMARK 3.5. Except for the case when a regular fibre is presented by
$l^{2}m^{q},$ $K_{V.n}\sim K$ implies $n=0$ . In the exceptional case there is an example as in
Figure 6. In general, $l^{2}m^{q}$ presents a $(2, q)$-torus knot $T_{2.Q}$ , and $(-q)$-twist of
$T_{2,q}$ is $T_{2,-q}$ and $T_{2.q}\sim T_{2.-q}$ holds.

When $P_{0}$ is a composing space, we have:

PROPOSITION 3.6. Suppose that $P_{0}$ is a composing space. Then there is at
most one nonzero integer $n$ such that $K_{V.n}\sim K$. In particular $K_{V.n}\cong K$ implies
$n=0$ .

PROOF. Let $T$ be a component of $\partial P_{0}$ separating $\partial V$ and $\partial N(K)$ , and $V_{T}$ a
solid torus bounded by $T$ .

$SuBLEMMA3.7$ . A twisting along $V$ can be reduced to that along $V_{T}$ .
PROOF OF SUBLEMMA. A meridian of $V_{T}$ coincides with a regular fibre of

$P_{0}$ . Then a union of a meridian disk of $V_{T}$ and a saturated annulus joining $T$

and $\partial V$ is a meridian disk of $V$ . Thus the required result holds. $\blacksquare$

In addition it is easy to see that $V_{T}$ is knotted and $w_{V_{T}}(K)\geqq 2$ . Then we
can apply Theorems 2.1 and 2.8 and the result follows. $\blacksquare$

Let assume that $P_{0}$ admits a complete hyperbolic structure of finite volume
in its interior. In this case we shall use Thurston’s hyperbolic Dehn surgery
[18].

LEMMA 3.8 (Thurston [18]). Let $P_{0}$ be hyperbolic. There exists $N_{V.K}$ such
that $V_{J} \bigcup_{m_{J}=lm^{-n}}P_{0}$ is also hyperbolic for $|n|\geqq N_{V.K}$ . Moreover for any $\epsilon>0$ ,
there exists $N_{V.K}(\epsilon)$ such that $J_{n}^{*}$ is a closed geodesic of length $<$ $\epsilon$ in
$V_{J} \bigcup_{m_{j}=lm^{-n}}P_{0}$ for $|n|\geqq N_{V.K}(\epsilon)$ .

PROPOSITION 3.9. Suppose that $P_{0}$ is hyperbolic. Then there are at most
finitely many integers $n_{t}$ such that $K_{V.n_{i}}\sim K$.

PROOF. Assume that for some $N_{V.K}(\epsilon),$ $J_{n}^{*}$ is the unique shortest closed
geodesic in $V_{J} \bigcup_{m_{J}=lm^{-n}}P_{0}$ provided that $|n|\geqq$ v. $K(\epsilon)$ . Also we may assume
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that for some $n_{0}$ with no $|\geqq N_{V.K}(\epsilon),$ $K_{V.n_{0}}\sim K$. Otherwise, $K_{V.n}\sim K$ implies
$|n|<N_{V.K}(\epsilon)$ and the required result holds. Let Eo be the length of $]_{n_{0}}^{*}$ in
$V_{J}U_{m_{J}=lm^{-n}}{}_{0}P_{0}$ . If $K_{V.n}\sim K(\sim K_{V.n_{0}})$ for some $n$ with $|n|\geqq N_{V.K}(\epsilon_{0}/2)$ , then
$E(K_{V,n}),$ $E(K)$ and $E(K_{V.n_{0}})$ are homeomorphic. By the uniqueness of the torus
decomposition and Mostow’s rigidity theorem, the core of $V_{J}$ in $V_{J}U_{m_{J}=lm^{-n}}{}_{0}P_{0}$

and that of $V_{J}$ in $V_{J} \bigcup_{m_{J}=lm^{-n}}P_{0}$ have the same length. But this is a contra-
diction. Hence $|n|<N_{V.K}(\epsilon_{0}/2)$ , and the proof is completed. $\blacksquare$

Figure 7 ([6]) shows an example in this case.

$K$

Figure 7

NOW we consider the case when the wrapping number of $K$ in $V$ coincides
with the winding number of $K$ in $V$ . In this case the signature of knots comes
$in_{\wedge}usefu1$ . In [16] Shibuya has shown the following theorem.

THEOREM 3.10 ([16]). Let $K$ be a $kmt$ in $S^{3}$ and $V$ a solid torus containing
$K$ such that $w_{V}(K)$ equals the winding number of $K$ in V. Then $K_{V.m}\cong K_{V.n}$

implies $m=n$ if $w_{V}(K)\geqq 3$ , and $|m-n|\leqq 1$ if $w_{V}(K)=2$ .

In the case when $w_{V}(K)=2$ , more precisely we get the following.

THEOREM 3.11. Let $K$ be a $kmt$ in $S^{3}$ and $V$ a solid toms containing $K$ such
that $w_{V}(K)$ equals the winding number of $K$ in V. Then there is at most one
integer $n$ such that $K_{V,n}\cong K_{V,n+1}$ (see Example 3.1).

PROOF. Assume that there are integers $m,$ $n(m>n)$ such that $K_{V.m}\cong K_{V.m+1}$

and $K_{V.n}\cong K_{V.n+1}$ . Note that $K_{V.m}$ can be obtained by 2-times fusion of $K_{V.n}$

and a torus link $L$ of type $(2, 2(m-n))$ , see Fig. 2 in [16]. Let $\sigma(k)$ denote
the signature of $k$ . As $\sigma(L)=2(m-n)-1$ by Lemma in [16], we obtain that
$\sigma(K_{V.m})-\sigma(K_{V.n})=2(m-n)-2$ or $2(m-n)$ by Lemma 7.1 in [12]. By the same
way as above, $\sigma(K_{V.m+1})-\sigma(K_{V.n})=2(m-n)$ or $2(m-n)+2$ . Since $K_{V.rn}\cong K_{V.m+1}$ ,
$\sigma(K_{V.m})=\sigma(K_{V.m+1})$ . Hence we obtain that $\sigma(K_{V.m})-\sigma(K_{V.n})=2(m-n)$ . By the
same reason as above, we obtain that $\sigma(K_{V.m})-\sigma(K_{V,n+1})=2(m-n)-2$ or
$2(m-n-2)$ . AS $K_{V.n}\cong K_{V.n+1},$ $\sigma(K_{V.n})=\sigma(K_{V.n+1})$ . It follows that $\sigma(K_{V.m})-$
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$\sigma(K_{V,n})=2(m-n)-2$ or $2(m-n-2)$ , which is a contradiction. Thus we get
$m=n$ . $\blacksquare$

REMARK 3.12. In theorems 3.10 and 3.11, the condition $K_{V.m}\cong K_{V.n}$ can be
replaced by the condition that $K_{V.m}$ and $K_{V.n}$ are cobordant, and these answers
the conjecture proposed by Nakanishi.

4. Twisting of unknots.

In this section we shall concern ourselves with the case when an original
knot is trivial as in Whitehead’s example. To begin with, we remark the
following basic fact (see [14]).

PROPOSITION 4.1. Let $V$ be a solid torus in $S^{3}$ containing the unknot $0$ with
$w_{V}(O)\geqq 1$ . Then $V$ is unknotted.

Hence, if consider twisting of unknots, the solid torus which defines twist-
ing is necessarily unknotted. Our purpose is to prove the following theorem.

THEOREM 4.2. Let $V$ be an unknotted solid torus containing the unknot $0$

with $w_{V}(O)\geqq 2$ . Except for the cases as in Figure 8, $O_{V.n}$ is nontrivial for any
nonzero integer $n$ . Moreover in the exceptional case, $O_{V_{1},n}$ (resp. $O_{V_{2},n}$ ) is trivial
only when $n=0,1$ (resp. $n=0,$ $-1$ ).

Figure 8

PROOF. Let $J$ be the core of the complementary solid torus ( $i$ . $e$ . $S^{3}$ –int $V$),

and $O_{n}^{*}$ the knot which is the image of $O$ after performing $(-1/n)$-Dehn surgery
on $J$ . Then by Lemma 3.3 $O_{V.n}\cong O_{n}^{*}$ . Suppose that the winding number of $O$

in $V$ is greater than two. Then Litherland’s result [9] asserts $O_{V,n}\cong O$ implies
$n=0$ . Assume the winding number of $O$ in $V$ is not greater than two. Since
$O$ is trivial, $V’=S^{3}$–int $N(O)$ is also a solid torus, and $J$ is embedded in $V’$ .
Then $w_{V’}(J)\neq 0$ because $w_{V}(O)\neq 0$ . Suppose that $O_{V,n}$ becomes a trivial knot
for some integer $n\neq 0$ . This implies that the result of $(-1/n)$-Dehn surgery
of $V’$ on $J$ is also a solid torus for $n$ . Due to Gabai’s theorem [2], $J$ is either
a $0$ or 1-bridge braid in $V’$ . Then the wrapping number of $J$ in $V’$ coincides
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with the winding number of $J$ in $V’$ , which equals that of $0$ in $V$ because
these are equal to the absolute value of the linking number of $0$ and $J$ . Hence
$w_{V’}(J)\leqq 2$ , and using the fact that $J$ is a $0$ or 1-bridge braid, we see that $J$

and $V’$ are situated as in Figure 9.

or
Figure 9

From this we see that $O$ and $V$ as in Figure 8, and in this exceptional
case $O_{V_{1}.n}$ (resp. $O_{V_{2}.n}$ ) is a torus knot of type $(2, -1+2n)$ (resp. (2, $1+2n)$ ).

Thus we can conclude the desired result. $\blacksquare$

REMARK 4.3. In Whitehead’s example, Alexander polynomials are complete
invariants for $\{T_{n}\}$ . But in general there is an example (Figure 10) such that
Alexander polynomials are not changed under twisting [13]. As for Jones poly-
nomials, recently Yokota has studied the behavior of Jones polynomials under
twisting [21].

$arrow$

$O$

Figure 10
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