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Introduction.

Let $S$ be a complex minimal algebraic surface of general type. Let $K_{S}$ be
the canonical bundle of $S$ and $p_{g}(S)$ be the geometric genus of $S$ . Then in
general, we have a classical inequality: $K_{s}^{2}\geqq 2p_{g}(S)-4$ , which is Noether’s
inequality.

In this paper, we will study a three-dimensional analogue. Since we have
Noether’s inequality for minimal surfaces (and also canonical models of surfaces)

we expect some inequalities between the geometric genus and the cube of the
first Chern class for three dimensional canonical models, which may be singular
and not factorial. Very optimistically, we might expect that: for any canonical
model $X$ of a threefold of general type, we should have $K_{X}^{3}\geqq 2p_{g}(X)-6$ . But
that is not the case in general.

MAIN THEOREM (Theorems 2.4, 3.1, 4.1). Let $X$ be a three-dimensional alge-
braic vanety defined over C. Assume that $X$ has at most canonical singulanties
and that a canonical divisor $K_{X}$ is $nef$ and big. Let $d=\dim\Phi_{K_{X}}(X)$ .

(1) If $d=3$ , then $K_{X}^{3}\geqq 2p_{g}-6$ .
(2) If $d=2$ and $K_{X}$ is Cartier, then either

$2a)$ $K_{X}^{3}\geqq 2p_{g}(X)-4$ or
$2b)$ $\Phi_{K_{X}}$ is birationally equivalent to a fibration of curves of genus two

with a rational section over a birationally ruled surface.
(3) If $d=1,$ $K_{X}$ is ample and $X$ is factorial, then either

$3a)$ $K_{X}^{3}\geqq 2p_{g}(X)-2$ ,
$3b)$ $X$ is singular, the image is a rational curve, all the fibers are con-

nected, $K_{X}^{3}=1$ and $p_{g}(X)=2$ or
$3c)$ the rational map $\Phi_{K_{X}}$ is a morphism and the general fibers of $\Phi_{K_{X}}$

are normal algebraic irreducible surfaces with only canonical sing-
ularities which have ample canonical divisors, $c_{1}^{2}=1,$ $q=0$ and $1\leqq p_{g}$

$\leqq 2$ .
Moreover, the case $2b$) really occurs. In (3.2), we will construct a smooth

projective variety $X$ with an ample canonical divisor $K_{X}$ such that $\dim\Phi_{K_{X}}(X)$
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$=2$ and $K_{X}^{3}=(4p_{g}(X)-10)/3(p_{g}(X)=7,10, 13, )$ . We do not know yet whether
the case $3b$ ) or $3c$ ) should occur or not.

In Section 1, we shall recall some classical results. We shall prove the
theorem in the case $d=3,2$ and 1 in Sections 2, 3 and 4, respectively. In
Section 2, results are valid for arbitrary dimension 12. In the case where the
equality holds, a detailed classification of $X$ is systematically done by Fujita
$([F2])$ .

The author was very inspired by Horikawa’s results [H2], [H3], where
Horikawa studied threefolds with trivial canonical bundle.

The author wishes to thank Professor Y. Kawamata and Professor N. Na-
kayama for their useful advices and warm encouragement. He also thanks for
the referee who simplified the original proof of theorem 4.1.

Notation

Throughout the paper, everything will be assumed to be defined over $C$ .
We refer to [KMM] as for the definition of $Q$ -divisor, canonical singularity,
terminal singularity, nef, big and so forth.

Let $X$ be an $n$-dimensional normal complete variety. For a divisor $D$ on
$X,$ $\Phi_{D}$ denotes the rational map associated to the complete linear system $|D|$ .
When $D$ is a canonical divisor $K_{X}$ , rational map $\Phi_{K_{X}}$ is called the canonical
map of $X$. Let $Y$ be a smooth model of $X$.

$Bs|D|$ : the base locus of $|D|$ , namely the set-theoretical intersection of
all the members of $|D|$ .

$|D|_{re(}f$ : the reduced part of $|D|$ , namely $|D|-$ (the fixed component of $|D|$ ).
$H^{i}(X, O(D))$ (or simply $H^{i}(X,$ $D)$ or $H^{t}(D)$): the i-th cohomology group of

the sheaf of module associated to $D$ .
$h^{i}(D)=\dim_{C}H^{t}(D)$ .
$\chi(X, D)=\Sigma_{i}(-1)^{i}h^{i}(D)$ : the Euler characteristic of $\mathcal{O}(D)$ .
$\Delta(X, D)=n+D^{n}-h^{0}(D)$ : the $\Delta$-genus of a prepolarized variety (X, $D$ ) $([F1])$ .
$p_{g}(X)=h^{0}(K_{y})=H^{2}(X, O_{X})$ : the geometric genus of $X$.
$q(X)=H^{1}(X, \mathcal{O}_{X})$ : the irregularity of $X$.
$c_{t}(X)$ : the i-th Chern class of $X$.
$\sim$ : algebraic equivalence.
$\equiv$ : numerical equivalence.
$=_{Q}$ : $Q$-linear equivalence.

\S 1. Preliminaries.

We will recall here classical results concerned with linear systems without
proof.
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(1.1) DEFINITION. Let $C$ be a curve and $D$ be a divisor on $C$ . We say
$D$ is a special divisor if and only if $h^{0}(D)>0$ and $h^{1}(D)>0$ .

(1.2) CLIFFORD’S THEOREM $([Ha, 1V, 5.4])$ . Let $C$ be a curve and $D$ be a
special dimsor on C. Then $degD\geqq 2h^{0}(D)-2$ . Moreover, the equality holds if and
only if either $D=0,$ $K_{C}$ or a multiple of $g_{2}^{1}$ (in the last case $C$ is hyperelliptic).

We frequently use the following lemma.

(1.3) LEMMA. Let $Z\subset P^{N}$ be a variety which is not contained in any hyper-
plane. Then $\deg Z\geqq N-\dim Z+1$ .

In the following, a minimal surface means a smooth surface which has no
(–1)-curves.

(1.4) NOETHER’S INEQUALITY ( $[BPV$ , VII, (3.1)]). Let $S$ be a minimal alge-
braic surface of general type. Then $K_{S}^{2}\geqq 2p_{g}(S)-4$ .

We remark that even if $S$ is a normal surface with canonical singularities
with a nef and big canonical divisor, we have the same inequality.

(1.5) CASTELNUOVO’S INEQUALITY ( $[C],$ $[E$ , p. 297], [Be, Theorem 5.5]).

Let $S$ be a minimal surface of general tyPe. SuPPose that $K_{S}^{2}<3P_{g}(S)-7$ holds.
Then $\Phi_{K_{S}}$ is a rational maP of degree 2 onto a ruled surface.

(1.6) In particular, if $\Phi_{K_{S}}$ is birational or composed with a pencil, we have
$K_{S}^{2}\geqq 3p_{g}(S)-7$ .

\S 2. Case $\dim\Phi_{K_{X}}(X)=\dim X$.
In this section, we will treat an $n$-dimensional algebralc variety $(n\geqq 2)$ .

(2.1) PROPOSITION $([F1])$ . Let $X$ be an $n$-dimensional complete normal alge-
braic vanety and let $H$ be a $nef$ and big Cartier divisor such that $\dim\Phi_{H}(X)=n$ .
Assume $p_{g}(X)>0$ . Then $H^{n}\geqq 2h^{0}(X, H)-2n$ .

PROOF. By taking a resolution of singularities, we may assume that $X$ is
nonsingular.

STEP 1. First of all, we treat the case $Bs|H|=\emptyset$ . By Bertini’s theorem,
we can take general divisors $H_{1},$ $H_{2},$ $\cdots$ , $H_{n-1}\in|H|$ such that the intersections
$X_{k}$ $:=H_{1}\cap H_{2}\cap\cdots\cap H_{k}$ are smooth irreducible varieties for $k\leqq n-1$ . We denote
$X_{n-1}$ by $C$ . We shall show that $H_{1C}$ is a special divisor. From the exact
sequence:

$0arrow 0_{x_{k}}arrow \mathcal{O}_{X_{k}}(H)arrow \mathcal{O}_{X_{k+1}}(H)arrow 0$ ,

we have $h^{0}(X_{k}, H_{1x_{k}})-1\leqq h^{0}(X_{k+1}, H_{1X_{k+1}})$ for $k\leqq n-2$ . Thus we have $h^{0}(H_{1c})$
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$\geqq h^{0}(H)-(n-1)\geqq 2$ . On the other hand, we have:

$0arrow H^{0}(K_{x_{n-2}}-H_{1x_{n-2}})arrow H^{0}(K_{x_{n-z}})arrow H^{0}(K_{C}-H_{1C})$ .

Since $K_{x_{n-2}}=(K_{X}+(n-2)H)_{1x_{n-2}}$ and $p_{g}(X)>0$, we have $p_{g}(X_{n- 2})>0$ .
Since $h^{0}(H_{1x_{n-2}})\geqq 3>2,$ $H_{1x_{n-2}}$ is not contained in $Bs|K_{x_{n-z}}|$ .

Thus we have $h^{1}(H_{1c})=h^{0}(K_{C}-H_{1c})>0$ . We can apply Clifford’s theorem
for $H_{1C}$ and we have $H^{n}\geqq 2h^{0}(H_{1C})-2\geqq 2h^{0}(H)-2n$ .

STEP 2. Next we shall treat general cases. Let $\mu:Yarrow X$ be a modification
such that $\Phi_{\mu*H}$ is a morphism. Let $Z$ be the image of $\Phi_{\mu*H}$ . We write $\mu^{*}H=$

$M+F$ where $F$ and $M$ are the fixed part and the movable part of $\mu^{*}H$, res-
pectively. By the definition of $\mu,$ $|M|$ is free from base points, and in par-
ticular, $M$ is nef. And we have $(\mu^{*}H)^{n-1}\cdot F\geqq 0$ since $H$ is nef. Thus we have:

$H^{n}=(\mu^{*}H)^{n}=(\mu^{*}H)^{n- 1}\cdot(M+F)\geqq(\mu^{*}H)^{n-1}\cdot M$

$=(\mu^{*}H)^{n-2}\cdot(M+F)\cdot M\geqq(\mu^{*}H)^{n- 2}\cdot M^{2}\geqq\ldots\}$-; $M^{n}$ .
By Step 1, $M^{n}\geqq 2h^{0}(M)-2n$ . $\blacksquare$

Next we shall study the case where the equality holds (cf. [F2]).

(2.2) PROPOSITION. Let $X$ be an $n$-dimensional normal complete algebraic
vanety, $H$ a $nef$ Cartier divisor on $X$ with $\dim\Phi_{H}(X)=n$ . SuPPose that $H^{n}=$

$2h^{0}(H)-2n$ holds. Then $Bs|H|=\emptyset$ and one of the following conditions is satisfied:
a) $\Phi_{H}$ is birational,
b) $\Phi_{H}$ is a genencally finite double cover onto a normal vanety $Z\subset P^{h^{0}(H)-1}$ ,

where $\Delta$-genus $\Delta(Z, 0_{Z}(1))=0$ .

PROOF. By Step 2 of the proof of (2.1), we see that $(\mu^{*}H)^{k}M^{n-k-1}F=0$

for OS $k\leqq n-1$ . These yield $M^{n-l}F^{l}=0$ for $1S1\leqq n$ . In particular, when $l=1$

we see that the codimension of $\Phi_{M}(F)$ in $\Phi_{M}(Y)$ is greater than one. Note
that $F=\mu^{*}H-M$ is $\Phi_{M}$-nef.

LEMMA. Let $f$ : $Xarrow Y$ be a $pro_{J}$ ective $sur_{j}$ ective morphism between normal
projective $n$-dimensional vaneties. SuPPose a divisor $E$ in $X$ is contracted to a
subscheme $Z$ whose codimension in $Y$ is greater than one. Then $E$ is not f-nef.

PROOF. Take a hyperplane section $H$ of $Y$. Choose general sections
$L_{1},$ $\cdots$ , $L_{n-2}$ from $|f^{*}H|$ such that the intersection $S=L_{1}\cap\cdots\cap L_{n-2}$ is a smooth
irreducible surface. Then $E_{1S}$ is collapsed to points, so we have $(E\cdot E_{|S})=$

$(E_{1S})^{2}<0$ .
PROOF OF 2.2 CONTINUED. Using this lemma, we come to a contradic-

tion. Thus, we get $F=0$ . $\Phi_{H}$ is in fact a morphism, and we have $Bs|H|=\emptyset$ .
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Hence we have $\deg Z\cdot\deg\Phi_{H}=H^{n}=2h^{0}(H)-2n$ . On the other hand, we have
$\deg Z\geqq h^{0}(H)-n$ by (1.3). Thus we have $\deg\Phi_{H}=1$ or 2. In the case $\deg\Phi_{H}$

$=2$ , we have $\Delta(Z, O_{Z}(1))=\deg Z+n-h^{0}(H)=0$ . $\blacksquare$

Fujita gave a classification of polarized varieties with $\Delta$-genus $0$ in his
paper $([F1])$ .

(2.3) EXAMPLE $([F2])$ :
a-l) Let $C$ be a canonical curve of genus $\geqq 2$ . Then $X=C,$ $H=K_{C}$ satisfies

the condition of (2.2).
$a-2)$ Let $S$ be a K3-surface embedded in some projective space. Then $X=$

$S,$ $H=O_{S}(1)$ satisfies the condition.
b-l) Let $X$ be a double covering of $P^{n}$ branched along a smooth hyper-

surface of degree $(2n+4)$ . Then $X,$ $H=K_{X}$ satisfies the condition.
$b-2)$ Let $X$ be a double covering of a smooth quadric $Q^{n}\subset P^{n+1}$ branched

along a smooth member of $|O_{Q}n(2n+2)|$ . Then $X,$ $H=K_{X}$ satisfies
the condition.

Next we will study canonical models.

(2.4) THEOREM. Let $X$ be a normal complete vanety of general type of
dimension $n$ with at most canonical singularities. SuPPose that $K_{X}$ is $nef$ and
$ihat_{A}^{7}\dim\Phi_{K_{X}}(X)=n$ . Then $K_{X}^{n}\geqq 2p_{g}(X)-2n$ .

PROOF. Note that $K_{X}$ is a $Q$-divisor. Let $\mu:Yarrow X$ is a modification such
that $Y$ is a smooth projective variety and $|K_{Y}|_{red}$ is free from base points.
We write:

$K_{Y}=Q\mu^{*}K_{x}+\Sigma a_{j}E_{j}(a_{j}\in Q, a_{j}\geqq 0)=_{Q}M+F$ ,

where $F$ and $M$ are the fixed part and the movable part of $K_{Y}$ , respectively,
and $E_{j}$ are exceptional divisors. Then we have:

$K_{X}^{n}=(\mu^{*}K_{X})^{n}=(\mu^{*}K_{X})^{n-1}(M+F-\Sigma a_{j}E_{j})\geqq(\mu^{*}K_{X})^{n-1}M$

$=(\mu^{*}K_{X})^{n-2}(M+F-\Sigma a_{j}E_{j})M\geqq(\mu^{*}K_{X})^{n-2}M^{2}\geqq\ldots\geqq M^{n}$

as in the proof of (2.1). Since $|M|$ is base-point-free and $\dim\Phi_{M}(Y)=n$ , the
inequality follows. $\blacksquare$

(2.5) PROPOSITION. Let $X$ be the same as in the assumption of (2.4). Assume
moreover that the equality holds and $n\geqq 2$ . Then $K_{X}$ is a Cartier divisor and
$\Phi_{K_{X}}$ is a double covering onto a normal variety $Z\subset P^{p_{g^{(X)-1}}}$ , where $\Delta$-genus
$\Delta(Z, O_{Z}(1))=0$ .

PROOF. Similarly as the proof of (2.2), one can show that $K_{X}=\mu_{*}M$ is
Cartier and that $|K_{X}|$ is free from base points. Take general members $H_{1},$ $\cdots$ ,
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$H_{n-1}\in|K_{X}|$ such that $C=H_{1}\cap\cdots\cap H_{n- 1}$ is a smooth curve. We put $D=K_{X1C}$ .
Then we have $\deg D=2h^{0}(D)-2$ from the proof of (2.1), and by adjunction
formula, $K_{C}=nK_{X1C}=nD\neq D\neq 0$ . Thus by Clifford’s theorem, $D$ is a multiple
of $g_{2}^{1}$ and $\Phi_{K_{X1C}}$ is a double covering of $P^{1}$ . This completes the proof. $\blacksquare$

\S 3. Case $\dim\Phi_{K_{X}}(X)=2$ .
We shall prove here the following:

(3.1) THEOREM. Let $X$ be a comPlete canonical Gorenstein algebraic threefold
of general type. Suppose that a canonical divisor $K_{X}$ is $nef$ and that $\dim\Phi_{K_{X}}(X)$

$=2$ . Then $K_{X}^{3}\geqq 2p_{g}(X)-4$ , unless $\Phi_{K_{X}}$ is birationally equivalent to a fibration
of curves of genus two with a rational section over a birationally ruled surface.

PROOF. First we may assume that $X$ is $Q$-factorial terminal Gorenstein by
[R], [K]. It follows that $X$ is factorial. We note that a terminal Gorenstein
singularity is an isolated hypersurface singularity of multiplicity at most two
$([R])$ . Let

$\mu_{j}$

$\mu:Y=X_{m}arrow\cdotsarrow X_{j}arrow X_{f- 1}arrow$ $arrow X_{0}=X$

$\cup$ $\cup$ $\cup$

$D_{j}$ $E_{f}$ $Z_{j}$

be a successive blowings-up such that: $([Hi])$

a) the center $Z_{j}$ of the blowing-up $\mu_{j}$ is a smooth subvariety,
b) $\oplus_{m=0}^{\infty}\mathscr{I}_{z_{j}}^{m}/\mathscr{I}_{z_{j}}^{m+1}$ is $\mathcal{O}_{x_{j-1}}/\mathscr{I}_{z_{j}}- flat$ ,
c) every point in $Z_{j}$ is a point of indeterminancy,
d) $\Phi_{\mu^{*}K_{X}}$ is a morphism.

We note that in every $X_{j}$ , the multiplicity of each singular locus is at most
two, and that the singularities are hypersurface singularities. Let $F_{0}$ and $M_{0}$

be the fixed and movable part of $|K_{X}|$ , respectively. Since $X$ is factorial, $M_{0}$

is a Cartier divisor. Thus we have Cartier divisors $\mu_{j}^{*}\cdots\mu_{1}^{*}\Lambda l_{0}$ . Let $E_{j}$ be
the exceptional Cartier divisor of $\mu_{j}$ and $D_{j}$ the total transform of $E_{j}$ in $Y$.
We write:

$\mu^{*}M_{0}=M+\sum_{j=\perp}^{m}r_{J}D_{j}(r_{J}\in Z)$ ,

$K_{Y}= \mu^{*}K_{X}+\sum_{j=1}^{m}a_{j}D_{j}(a_{j}\in Z)$ ,

where $M$ is the movable part of $\mu^{*}K_{X}$ . We note that each $r_{j}$ is a positive
integer by the condition c). The discrepancies $a_{j}$ are as follows:

$i$ $)$ $a_{j}=2$ if $Z_{j}$ is a point of multiplicity one on $X_{j-1}$ ,
ii) $a_{j}=1$ if $Z_{j}$ is a point of multiplicity two or if $Z_{f}$ is a curve of mul-



On Noether’s inequality for threefolds $15I$

tiplicity one,
iii) $a_{j}=0$ if $Z_{j}$ is a curve of multiplicity two,
iv) $a_{j}=-1$ if $Z_{j}$ is a surface of multiplicity two.
Let $S$ be the image of $\Phi_{H}$ . We have the Stein factorization of $\Phi_{M}=\psi\circ\varphi$ ,

where $\varphi:Yarrow Z$ has connected fibers and $\psi:Zarrow S$ is finite. We denote the
general fiber of $\varphi$ by $f$. We have $M^{2}\sim(\deg\psi)(\deg S)f$. We have $K_{X}^{3}=(\mu^{*}K_{X})^{3}$

$=(\mu^{*}K_{X})^{2}\cdot(M+\mu^{*}F_{0}+\Sigma_{j=1}^{m}r_{j}D_{j})\geqq(\mu^{*}K_{X})^{2}\cdot M$, since $K_{X}$ is nef and $D_{j}$ is excep-
tional. We have moreover $(\mu^{*}K_{X})^{2}\cdot M=(\mu^{*}K_{X})\cdot(M+\mu^{*}F_{0}+\Sigma_{j=1}^{m}r_{j}D_{j})\cdot M\geqq(\mu^{*}K_{X})$

. $M^{2}$ , since $\mu^{*}K_{X}$ and $M$ are nef. Also we have $degS\geqq p_{g}(X)-2$ by (1.3).

Consequently we have $K_{X}^{3}\geqq(\deg\psi)(p_{g}(X)-2)(\mu^{*}K_{X})\cdot f$. Thus if either $\deg\psi\geqq 2$

or $\mu^{*}K_{X}\cdot f\geqq 2$ then we are done.
In what follows, we assume that $\deg\psi=\mu^{*}K_{X}\cdot f=1$ . We define a set $\mathscr{I}$ to

be $\{J|D_{j}\cdot f\neq 0\}$ . And we have

(A) $1= \mu^{*}K_{X}\cdot f=(M+\mu^{*}F_{0}+\sum_{j=1}^{m}r_{f}D_{j})\cdot f=(\mu^{*}F_{0})\cdot f+\sum_{j\Rightarrow 1}^{m}r_{f}(D_{j}\cdot f)$ ,

where $\mu^{*}F_{0}\cdot f_{-}O$ and $D_{j}\cdot f_{-}$ O. On the other hand, by adjunction, we have:

(B) $2p_{a}(f)-2=K_{y} \cdot f=\mu^{*}K_{X}\cdot f+\sum_{j=1}^{m}$ a $j(D_{j} \cdot f)=1+\sum_{j=1}^{m}$ a $j(D_{f}\cdot f)$ .

Since the left-hand side of (B) is an even integer, the set $\mathscr{I}$ is not empty. From
(A), we have exactly one $i$ such that $\mathscr{I}=\{i\},$ $D_{i}\cdot f=r_{i}=1$ and $D_{j}\cdot f=0$ for $j^{\underline{\wedge}}i$ .
If the center $Z_{i}$ is contained in some exceptional divisor $E_{i’}(i’<i)$ , then we
have $D_{i’}\cdot f>0$ since $f$ is nef and $D_{i}\leqq D_{i’}$ , which is a contradiction. Thus the
morphism $\mu_{i}$ is a blowing-up of a curve or a point. It follows that OS $a_{i}$ S2
and in fact $a_{i}=1$ by (B). We have moreover $\mu^{*}F_{0}\cdot f=0$ and $p_{a}(f)=2$ . Taking
a resolution of $1^{\nearrow}$ , we have a fibration of curves with genus $p_{g}(f)$ . Since $X$ is
of general type, $p_{g}(f)=2$ . Since $a_{i}=1$ and $Z_{i}$ is not contained in any excep-
tional locus, $Z_{i}$ is a terminal point or a smooth curve. Hence the component(s)

of $E_{i}$ is a birationally ruled surface and its strict transform $E_{i}’$ in $Y$ is a bira-
tionally ruled surface. We have also that $E_{?}’\cdot f=1$ , which means $E_{i}’$ is a
rational section. $\blacksquare$

There really exist varieties $X$ which do not satisfy the inequality $K_{X}^{3}\geqq$

$2p_{g}(X)-4$ , even if we restrict ourselves to projective complex manifolds. We
will show a construction of examples of such varieties.

(3.2) PROPOSITION. There is a smooth projective threefold $X$ of generaJ
type such that $K_{X}$ is ample, $\dim\Phi_{K_{X}}(X)=2$ and $K_{X}^{3}=(4p_{g}(X)-10)/3(P_{g}(X)=7,10_{r}$

13, ).

PROOF. We construct such $X$ as the image of a rational morphism from
the double covering of $P^{1}$-bundle over a Hirzebruch surface.
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Let $S$ be a Hirzebruch surface $\Sigma_{e}=$ $P1(O\oplus O(-e)),$ $s$ the negative section
which corresponds to the tautological line bundle $\mathcal{O}(1),$ $1$ the fiber. We take a
divisor $L=s+el$ and a line bundle $\mathcal{L}=O(L)$ . We put $P=P_{S}(O\oplus X^{-2})$ , and let
$\pi:Parrow S$ be its structure morphism, $\Sigma$ the section corresponding to $O_{P}(1)$ . We
take a divisor $M=5(\Sigma+2\pi^{*}L)$ , which is free from base points. Let $T\in|M|$

be a general smooth member. Since $\Sigma_{I\Sigma}\cong-2L$ , we see that $M_{1\Sigma}$ is trivial.
Thus we may assume that $\Sigma$ and $T$ are disjoint. Since $\Sigma+T\in|2(3\Sigma+5\pi^{*}L)|$ ,
we can take the double covering $\tau:Yarrow P$ branched along $\Sigma+T$ . We can write
$\tau^{*}\Sigma=2\Sigma_{0}$ and $\tau^{*}T=2T_{0}$ . Then we have $\Sigma_{0}+T_{0}=\tau^{*}(3\Sigma+5\pi^{*}L)$ . Since $\Sigma_{0}\cap T_{0}$

$=\emptyset$ , we have $\Sigma_{01\Sigma_{0}}=(3\Sigma+5\pi^{*}L)_{1\Sigma}\cong-L$ . We also have $K_{Y}=\tau^{*}(K_{P}+3\Sigma+5\pi^{*}L)$

$=\tau^{*}(\pi^{*}(K_{S}-2L)-2\Sigma+3\Sigma+5\pi^{*}L)=\tau^{*}(\pi^{*}(s+(2e-2)1)+\Sigma)$ . We put $N=s+(2e-$
$2)l$ and take a divisor $H=K_{Y}-\Sigma_{0}=\Sigma_{0}+\tau^{*}\pi^{*}(N)$ .

In what follows, we assume that $e\geqq 3$ .

(3.3) LEMMA.
a) $H$ is $nef$ and big.
b) $3H-K_{Y}$ is $nef$ and big.
c) for an irreducible curve $\Gamma$ in $Y,$ $H\cdot\Gamma=0$ holds if and only if $\Gamma$ is a

fiber of the ruling of $\Sigma_{0}\cong S$ .

PROOF. a) We first note that $H_{1\Sigma_{0}}\cong\Sigma_{01\Sigma_{0}}-N\cong(e-2)l$ , which is nef. Sup-
pose that there exists a curve $\Gamma$ such that $H\cdot\Gamma<0$ . Since $\tau^{*}\pi^{*}N$ is nef, we
have $\Sigma_{0}\cdot\Gamma<0$ , which means $\Gamma\subset\Sigma_{0}$ . But $H_{1\Sigma_{0}}\cong\Sigma_{01\Sigma_{0}}-N\cong(e-2)1$ , which is nef.
Contradiction.

On the other hand, we have $H^{3}=H^{2}\cdot\Sigma_{0}+H^{2}\cdot\tau^{*}\pi^{*}N=0+H\cdot\tau^{*}\pi^{*}N\cdot\Sigma_{0}+H$ .
$(\tau^{*}\pi^{*}N)^{2}=(e-2)l\cdot N+(\Sigma_{0}+\tau^{*}\pi^{*}N)\cdot(\tau^{*}\pi^{*}N)=e-2+N^{2}=4e-6>0$ , which shows
that $H$ is big.

b) Obvious from $3H-K_{y}=H+\tau^{*}\pi^{*}N$.
c) We suppose $H\cdot\Gamma=0$ . If $\pi(\tau(\Gamma))$ is a point, then $H\cdot\Gamma=\Sigma_{0}\cdot\Gamma=(1/2)\tau^{*}\Sigma$ .

$\Gamma>0$ , which is a contradiction. Thus $\pi(\tau(\Gamma))$ is a curve. Since $N=s+(2e-2)1$

is ample, we have $\Sigma_{0}\cdot\Gamma<0$ and $\Gamma\subset\Sigma_{0}$ . Since $H_{1\Sigma_{0}}=(e-2)l,$ $\Gamma$ is a fiber. $\blacksquare$

(3.4) We will go back to the proof of (3.2). By the Base Point Free
Theorem ( $[KMM$ , Theorem 3-1-1]), we have $Bs|mH|=\emptyset$ for $m\gg O$ . Thus we
have a morphism $\varphi:=\Phi_{mH}$ : $Yarrow X\subset P(H^{0}(mH))$ . By the lemma above, $\varphi$ is
the blowing-down along the ruling of $\Sigma_{0}$ . Since $\Sigma_{01\Sigma_{0}}=-L=-s-2l,$ $X$ is
smooth. We have $\varphi^{*}K_{X}\cong H$ by the Base Point Free Theorem. The rest of
the proposition follows from the following lemma.

(3.5) LEMMA. $p_{g}(X)=3e-2$ .
PROOF. We have $p_{g}(X)=h^{0}(H)=h^{0}(\Sigma_{0}+\tau^{*}\pi^{*}N)$ . Here we consider the

following exact sequence on $Y$ :
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$0arrow \mathcal{O}_{Y}(\Sigma_{0})arrow \mathcal{O}_{Y}(\Sigma_{0}+T_{0})arrow \mathcal{O}_{T_{0}}(\Sigma_{0}+T_{0})arrow 0$ .
By taking the direct image by $\tau$ , we have :

$0arrow\tau_{*}O_{Y}(\Sigma_{0})arrow\tau_{*}O_{Y}(\Sigma_{0}+T_{0})-\tau_{*}O_{Y}(\Sigma_{0}+T_{0})_{1T}$

$||$

restr.
$||$

$O_{P}\oplus O(3\Sigma+5\pi^{*}L)-O_{P}\oplus O(3\Sigma+5\pi^{*}L)_{1T}$ ,

since $T$ is contained in the branch locus of $\tau$ . Thus we have $\tau_{*}O(\Sigma_{0})\cong O\oplus$

$O(3\Sigma+5\pi^{*}L-T)\cong 0\oplus O(-2\Sigma-5\pi^{*}L)$ . We have:

$h^{0}(\Sigma_{0}+\tau^{\star}\pi^{*}N)=h^{0}(\tau_{*}\Sigma_{0}+\pi^{*}N)$

$=h^{0}((\mathcal{O}\oplus \mathcal{O}(-2\Sigma-5\pi^{*}(s+el)))\otimes\pi^{*}(s+(2e-2)1))$

$=h^{0}(S, s+(2e-2)l)$

$=h^{0}(P ‘, (O\oplus \mathcal{O}(-e))\otimes \mathcal{O}(2e-2))$

$=3e-2$ . $\blacksquare$

We also see that in the case $\dim\Phi_{K_{X}}(X)=2$ we can not expect a generaliza-
tion of Beauville’s result (1.6 pencil case), namely, a general inequality of the
form $K_{X}^{3}\geqq 3$ (or 4 etc.) $p_{g}(X)+const$ .

\S 4. Case $\dim\Phi_{K_{X}}(X)=1$ .
(4.1) THEOREM. Let $X$ be a three dimensional canonical model which is

factonal. Assume that $\dim\Phi_{K_{X}}(X)=1$ . Then
a) $K_{X}^{3}\geqq 2p_{g}(X)-2$ ,
b) $X$ is singular, the image is a rational curve, all the fibers are connected,

$K_{X}^{3}=1$ and $p_{g}(X)=2$ or
c) the canonical map $\Phi_{K_{X}}$ is a morphism onto a rational curve and the general

fibers of $\Phi_{K_{X}}$ are surfaces with only canonical singularities, ample canonical
divisors, $c_{1}^{2}-1,$ $q=0$ and $p_{g}=1$ or 2.

PROOF. Let $\mu_{0}$ : $X_{0}arrow X$ be a crepant blowing-up such that $X_{0}$ is Q-factorial
Gorenstein terminal. $X_{0}$ is automatically factorial. We use the similar notation
$\mu j,$ $\mu,$

$X_{j}$ , E, $D_{j},$ $Z_{j}$ , and so on as in (3.1) except that $X_{0}$ is possibly different
from $X$. Let $C$ be the image of $\Phi_{K_{Y}}$ and $Yarrow Zarrow C\varphi\psi$ be the Stein factorization
of $\Phi_{K_{Y}}$ . We write:

$n=\deg\psi\cdot\deg C$ ,

$\mu^{*}K_{X}=M+F\sim nS+F$ ,

$K_{X}=M_{0}+F_{0}\sim nS_{0}+F_{0}$ ,
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$F= \mu^{*}F_{0}+\sum_{j=0}^{m}r_{J}D_{j}(r_{j}\in Z)$ ,

$K_{Y}= \mu^{*}K_{X}+\sum_{j=0}^{m}a_{j}D_{J}(a_{j}\in Z, a_{j}\leqq 2)$ ,

where $F$ (resp. $F_{0}$ ) is the fixed part of $\mu^{*}K_{X}$ (resp. $K_{X}$ ) and $S$ is the general
fiber of $\varphi$ . We take $r_{0}$ to be 1. We note that $r_{j}>0$ for all $j$ and that $a_{0}=0$ .
We have $K_{X}^{S}=(\mu^{*}K_{X})^{3}=(\mu^{*}K_{X})^{2}\cdot(nS+\mu^{*}F_{0}+\Sigma r_{j}D_{j})=n(\mu^{*}K_{X})^{2}\cdot S+(\mu^{*}K_{X})^{2}$ .
$(\mu^{*}F_{0})\geqq n(\mu^{*}K_{X})^{2}\cdot S>0$ since $K_{X}$ is nef and big. By (1.3), we have $n\geqq(p_{g}(X)$

$-1)\deg\psi$ . Thus if $(\mu^{*}K_{X})^{2}\cdot S\geqq 2$ or $\deg\psi\geqq 2$ then the inequality holds.
In what follows, we assume that $(\mu^{*}K_{X})^{2}\cdot S=\deg\psi=1$ . Then we have $1=$

$( \mu^{*}K_{X})^{2}\cdot S=\mu^{*}K_{X}\cdot(\mu^{*}F_{0}+\sum r_{j}D_{j})\cdot S$ .
CASE 1. $|K_{X}|_{re(}f$ has base points.
In this case, since the exceptional divisors arising from the resolution of

base points dominates the curve $C,$ $C$ is rational. Since $\mu^{*}K_{X}$ and $S$ are nef,
one of the following conditions is satisfied:

1) $( \mu^{*}K_{X})\cdot(\sum r_{j}D_{j})\cdot S=1$ and $(\mu^{*}K_{X})\cdot(\mu^{*}F_{0})\cdot S=0$ ,
2) $( \mu^{*}K_{X})\cdot(\sum r_{j}D_{j})\cdot S=0$ and $(\mu^{*}K_{X})\cdot(\mu^{*}F_{0})\cdot S=1$ .
Case 1-1). By the first equality, it holds that $r_{i}=(\mu^{*}K_{X})\cdot D_{i}\cdot S=1$ and

$(\mu^{*}K_{X})\cdot D_{j}\cdot S=0(\forall]\neq i)$ for some $i$ . Moreover, together with $\sum r_{j}D_{j}=n(\mu^{*}S_{0}-S)$ ,
we get $n(\mu^{*}K_{X})\cdot(\mu^{*}S_{0}-S)\cdot S=1$ , from which $n=1$ follows. Thus $p_{g}(X)\leqq 2$

holds. And $K_{X}\geqq 2p_{g}(X)-2$ holds except that $K_{X}^{3}=1$ and $p_{g}(X)=2$ . As in the
proof of (3.1), we can show that $Z_{i}$ is not contained in the exceptional locus
in $X_{i-1}$ (or possibly $i=0$ ). Suppose $X$ is smooth. Then we have $K_{S}\cdot(\mu^{*}K_{X})_{\rceil S}=$

$( \mu^{*}K_{X}+\sum a_{j}D_{j})\cdot\mu^{*}K_{X}\cdot S=1+(\sum a_{j}D_{j})\cdot\mu^{*}K_{X}\cdot S$ . This value is odd, because by
Riemann-Roch formula we see that $\chi(\mu^{*}K_{X1S})-\chi(O_{S})=1/2\{(\mu^{*}K_{X1S})(\mu^{*}K_{X1S^{-}}$

$K_{S})\}=1/2\{1-\mu^{*}K_{XIS}\cdot K_{S}\}$ is an integer. Thus $( \sum a_{j}D_{j})\cdot\mu^{*}K_{X}\cdot S=a_{i}$ (note that
$\mu_{0}$ is the identity map) is even, so we have $a_{i}=2$ . Hence $D_{i}$ comes from a
blowing-up of a point, which contradicts to $(\mu^{*}K_{X})\cdot D_{i}\cdot S>0$ .

Case 1-2). We take a sufficiently large positive integer $m$ and a general
smooth member $H\in|m\mu^{*}K_{X}|$ . Then we have $0=m \mu^{*}K_{X}\cdot(\sum r_{j}D_{j})\cdot nS=m\mu^{*}K_{X}$ .
$( \sum r_{j}D_{j})\cdot\{\mu^{*}(nS_{0})-\sum r_{j}D_{j}\}=-(\sum r_{J}D_{j{}_{I}H})^{2}$ . This means that for each $j,$ $\mu(D_{j})$ is
a point on $X$. Thus we have $0= \mu^{*}K_{X}\cdot(\sum r_{j}D_{j})\cdot S=(nS+F)\cdot(\sum r_{j}D_{j})\cdot S=F$ .
$( \sum r_{j}D_{j})\cdot S=(\mu^{*}F_{0}+\sum r_{j}D_{j})\cdot(\sum r_{j}D_{j})\cdot S=(\sum r_{j}D_{j1S})^{2}$ . This means for each $j,$ $D_{j1S}$

a $0$ and $D_{j}$ is mapped to a point on $Z$. Thus applying Zariski’s Main Theorem
between a normalization $Y’$ of $Y$ which is projective over $Y$ and the normaliza-
tion of $Z$, we have $Bs|K_{X}|_{red}=\phi$ and we have come to a contradiction.

Case 2. $|K_{X}|_{rea}$ is base-point-free.
We note that if $C$ is irrational, $|K_{X}|_{rea}$ is always base-point-free.
The general fiber $S_{0}$ is a surface with at most canonical singularities without
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$(-1)-$ or $(-2)$-curves. $K_{S_{0}}$ is ample. Since $K_{X}\sim nS_{0}+F_{0}$ , we have $K_{S_{0}}=K_{X1S_{0}}=$

$=F_{0IS_{0}}$ , and $K_{S_{0}}^{2}=K_{X}^{2}\cdot S_{0}=1$ . By Noether’s inequality, we have $p_{g}(S_{0})S(1/2)KS_{0}$

$+2$ . That means $p_{g}(S_{0})\leqq 2$ . On the other hand, consider a standard exact
sequence:

$0arrow H^{0}(K_{X}-S_{0})arrow H^{0}(K_{X})arrow H^{0}(K_{S_{0}})$ .
Since the second arrow is not an isomorphism, it follows that $H^{0}(K_{S_{0}})\neq 0$ .
Thus we have $1\leqq p_{g}(S_{0})\leqq 2$ . The equality $q(S_{0})=0$ automatically follows from
$K_{S_{0}}^{2}=1$ (Kodaira, see [Bo, Theorem 11]). $\blacksquare$

We note that the surfaces with small $K^{2}$ are studied in detail (cf. [H1]).

(4.2) PROBLEM. We assume that $\dim\Phi_{K_{X}}(X)=1$ . Our assumption that $X$

is factorial is a quite strong condition, which we cannot get rid of. We have
not yet found an example which does not satisfy the inequality $K_{X}^{3}\geqq 2p_{g}(X)-2$ .
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