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1. Introduction.

Let $(A, G, a)$ be a $c*$-dynamical system, namely, a triple consisting of a
$c*$-algebra $A$ , a locally compact group $G$ and a group homomorphism $\alpha$ from
$G$ into the automorphism group of $A$ such that $G\ni tarrow\alpha_{t}(x)$ is continuous for
each $x$ in $A$ . Assume that $A$ is unital for a while (it will be irrelevant in Sec-
tion 2 whether or not a $c*$ -algebra possesses the identity). Then the state
space of $A$ is weakly* compact. In decomposition theory of states (cf. [1, 4.1-
4.4]), we are interested in decomposing a given state as a convex combination
of states which are extremal points of some closed convex subset of the state
space endowed with the weak* topology. The closed convex subset might be
given directly by some physical requirement. In the covariant situation, usually

the set of $\alpha$-invariant states is considered as such a closed convex subset.
Extremal points in the set of a-invariant states are called ergodic states (or $\alpha-$

ergodic states), and some of their characterizations are given in [1, Theorems
4.3.17 and 4.3.20].

NOW assume that $G$ is a locally compact abelian group. Recall that a
state $\varphi$ of $A$ is called an almost Periodic state if, for each $x$ in $A$ , the function
$G\ni tarrow\varphi(\alpha_{t}(x))$ is the uniform limit of a family of finite linear combinations of
characters of $G$ . Then we turn our attention to considering the decomposition
of a given state into the weak* closure of almost periodic states (cf. [1], [2]).

Here note that every $\alpha$-invariant state is automatically almost periodic. At the
first stage in this paper, we shall examine conditions under which an a-ergodic
state becomes an extremal point in the weak* closure of almost periodic states.
When an $\alpha$-ergodic state becomes an extremal point in the weak* closure of
almost periodic states, such a state shall be named an ergodic state of almost
periodic tyPe, together with the explicit definition, in Section 2. We shall con-
sider also the class of states corresponding to centrally ergodic states (see [1,

\S 4.3.2] for the definition of a centrally ergodic state), and every state belong-
ing to such a class shall be called a centrally ergodic state of almost periodic
tyPe, whose explicit definition shall be given later. In the latter half of this
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paper, it is shown that centrally ergodic states of almost periodic type $\varphi$ and $\psi$

are quasi-equivalent if and only if $(\varphi+\psi)/2$ is a centrally ergodic state of almost
periodic type.

2. Ergodic states of almost periodic type.

Let $(A, G, a)$ be a $c*$ -dynamical system where $G$ is a locally compact
abelian group. Let $\varphi$ be an $\alpha$-invariant state of $A$ and $(\pi_{\varphi}, u^{\varphi}, H_{\varphi}, \xi_{\varphi})$ be the
GNS covariant representation associated with $\varphi$ , that is, $\pi_{\varphi}$ is a representation
of $A$ on the Hilbert space $H_{\varphi}$ with the canonical cyclic vector $\xi_{\varphi}$ and $u^{\varphi}$ is a
strongly continuous unitary representation of $G$ on $H_{\varphi}$ defined by

$u?(\pi_{\varphi}(x))\xi_{\varphi}=\pi_{\varphi}(\alpha_{t}(x))\xi_{\varphi}$

for $x\in A$ and $t\in G$ . Note that

$\pi_{\varphi}(a_{t}(x))=u_{t}^{\varphi}(\pi_{\varphi}(x))u_{t}^{\varphi*}$ .

Then the spectral decomposition of $u^{\varphi}$ is given by

$u?= \int_{\hat{G}}\overline{\langle t,\gamma\rangle}dP_{\varphi}(\gamma)$ ,

where $dP_{\varphi}$ denotes the projection-valued measure on the $dual_{igro\mathfrak{U}P}^{v}\hat{G}$ of $G$ .
For simplicity, we use the notation

$p_{\varphi}(\gamma)=P_{\varphi}(\{\gamma\})$ .

Then the point spectrum $\sigma(u^{\varphi})$ of $u^{\varphi}$ is defined by

$\sigma(u^{\varphi})=\{\gamma\in\hat{G}|p_{\varphi}(\gamma)\neq 0\}$ ,

and this definition implies that $\gamma\in\sigma(u^{\varphi})$ if and only if there exists a non-zero
eigenvector $\eta_{\gamma}$ in $H_{\varphi}$ such that

$u?\eta_{\gamma}=\overline{\langle t,\gamma\rangle}\eta_{\gamma}$

for all $t$ in $G$ . Define the projection $p_{\varphi}$ on $H_{\varphi}$ by

$p_{\varphi}= \sum_{\gamma\in\hat{G}}p_{\varphi}(\gamma)$
,

and we refer to $p{}_{\varphi}H_{\varphi}$ as the subspace of $u^{\varphi}$-almost Periodic vectors.
For $\gamma\in\sigma(u^{\varphi}),$ $p_{\varphi}(\gamma)$ is the projection from $H_{\varphi}$ onto the subspace formed by

the vectors invariant under the unitary rpresentation $\gamma u^{\varphi}$ of $G$ defined by $G\ni$

$tarrow\langle t, \gamma\rangle u_{t}^{\varphi}$ . It then follows from the Alaoglu-Birkhoff mean ergodic theorem
([1, Proposition 4.3.4] or [3, 7.12.3]) that $p_{\varphi}(\gamma)$ is strongly approximated by
convex combinations of $\gamma u^{\varphi}$ . We therefore see that $p_{\varphi}(\gamma)\in u_{G}^{\varphi\prime\prime}$ , and hence $p_{\varphi}\in$

$u_{G}^{\varphi\prime\prime}$ , equivalently $u_{G}^{\varphi\prime}\subset\{p_{\varphi}\}’$ . We shall often use this fact without comment.



Almost periodic states 459

DEFINITION 2.1. An $a$-invariant state $\varphi$ of $A$ is called an ergodic state of
almost periodic type if

$\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ .

Note that in the case when $A$ is unital, every ergodic state of almost
periodic type is an extremal point in the weak* closure of all almost periodic
states. In fact, if $\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ , the maximal orthogonal measure $\mu$ cor-
responding to $\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’$ is pseudosupported by the extremal points in the
weak* closure of all almost periodic states ([1, Proposition 4.3.41]). Since the
dimension of $\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’$ is one, $\mu$ is the one point measure at $\varphi$ (cf. [1,

Theorem 4.1.25]), from which it easily follows that $\varphi$ is extremal in the weak*
closure of all almost periodic states.

Recall here that an $a$-invariant state $\varphi$ of $A$ is said to be a $G$-central state
of almost periodic type if for each $x,$ $y\in A,$ $z\in\pi_{\varphi}(A)’,$

$\gamma\in\hat{G}$ and $\xi,$ $\eta\in p{}_{\varphi}H_{c}.$ ,

the following is satisfied:

inf $|(\pi_{\varphi}([x’, y])z\xi|\eta)|=0$ ,

where the infimum is taken over all $x’$ in the convex hull of $\{\langle t, \gamma\rangle a_{t}(x)|t\in G\}$

(see [2, 2.2]). The notion of a $G$-central state of almost periodic type was
introduced in [2] in order to consider the subcentral decomposition of an a-
invariant state into almost periodic states. An $\alpha$-invariant state $\varphi$ is said to be
$G_{\Gamma}$-abelian when $z$ is chosen as 1 in the above definition (see [1, Definition
4.3.29]).

THEOREM 2.2. Let $(A, G, a)$ be a $C^{*}$-dynamical system where $G$ is a locally
compact abelian group. Let $\varphi$ be an $\alpha$-invariant state on A. Consider the follow-
ing conditions:

(1) $p_{\varphi}$ has rank one.
(2) $\varphi$ is an ergodic state of almost periodic type.
(3) $\pi_{\varphi}(A)^{h’}\cap\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ .
Then it follows that (1) $\Rightarrow(2)\Rightarrow(3)$ . If $\varphi$ is a $G_{\Gamma}$ -abelian state, then (2) $\Rightarrow(1)$ .

If $\varphi$ is a $G$-central state of almost periodic type, then (3) $=\ni(1)$ .

PROOF. (1) $\Rightarrow(2)$ . Since $p_{\varphi}=p_{\varphi}(0)$ and $p_{\varphi}(O)\xi_{\varphi}=\xi_{\varphi}$ , it follows from cyclicity
of $\xi_{\varphi}$ for $\pi_{\varphi}(A)’$ that $\pi_{\varphi}(A)\cup\{p_{\varphi}\}$ is irreducible.

(2) $\Rightarrow(3)$ . This is obvious.
We first assume that $\varphi$ is $G_{\Gamma}$ -abelian. We now show that the implication

(2) $\Rightarrow(1)$ . Since $\pi_{\varphi}(A)’\cap u_{G}^{\varphi\prime}\subset\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1,$
$\varphi$ is $\alpha$-ergodic. Thus it fol-

lows from [1, Theorem 4.3.31] tbat for $\gamma\in\sigma(u^{\varphi})$ , there exists a unitary element
$v_{\gamma}\in\pi_{\varphi}(A)’$ such that

$u?v_{\gamma}u?^{*}=\overline{\langle t,\gamma}\rangle v_{\gamma}$
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for all $t\in G$ and that

$\{v_{\gamma}\in\pi_{\varphi}(A)’|\gamma\in\sigma(u^{\varphi})\}’=\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ .
Hence we have

$v_{\gamma}=u?v_{\gamma}uf^{*}=\overline{\langle t,\gamma\rangle}v_{\gamma}$

for all $t$ in $G$ , which means that $\gamma=0$ . We thus conclude that $P_{\varphi}=P_{\varphi}(0)$ . Since
every $G_{\Gamma}$ -abelian state is automatically $G$-abelian (see [1, Definition 4.3.6] for
the definition of a $G$-abelian state), it follows from [1, Theorem 4.3.17] that
ergodicity of $\varphi$ implies that $p_{\varphi}(0)$ has rank one.

Next we assume that $\varphi$ is a $G$-central state of almost periodic type and
show the implication (3) $\Rightarrow(1)$ . Since every $G$-central state of almost periodic
type is $G_{\Gamma}$ -abelian, we have only to prove the implication (3) $\Rightarrow(2)$ . Since
$\pi_{\varphi}(A)"\cap\pi_{\varphi}(A)’\cap u_{G}^{\varphi\prime}\subset\pi_{\varphi}(A)’’\cap\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1,$

$\varphi$ is centrally ergodic. Since
$\varphi$ is automatically a $G$-central state (see [1, Definition 4.3.6] for the definition
of a $G$-central state), central ergodicity of $\varphi$ implies that $\varphi$ is $a$-ergodic (see [1,

Theorem 4.3.14 (3) $])$ . It therefore follows from [2, Theorem 2.4] that

$\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=\pi_{\varphi}(A)_{(}’’\gamma\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ .

Thus we complete the proof. Q. E. D.

Let $m$ be an invariant mean on $G$ . For an $\alpha$-invariant state $\varphi$ on $A$ and
each $\gamma\in\hat{G}$ , we define a linear map $Q_{\gamma}^{\varphi}$ from $\pi_{\varphi}(A)’’$ onto the closed subspace

{ $x\in\pi_{\varphi}(A)’|\overline{\alpha}_{t}(x)su?xu?^{*}=\overline{\langle t,\gamma\rangle}x$ for all $t\in G$ }
by

$\langle Q_{\gamma}^{\varphi}(x), \psi\rangle=m(\langle(\gamma\overline{\alpha})(x), \psi\rangle)$

for $x\in\pi_{\varphi}(A)’’$ and $\psi\in\pi_{\varphi}(A)_{*}’’$ , where $\gamma\overline{\alpha}$ is defined by

$(\gamma\overline{\alpha})_{t}(x)=\langle t, \gamma\rangle\overline{\alpha}_{t}(x)$

for all $x\in\pi_{\varphi}(A)’’$ . Here it is significant to note that $Q_{\gamma}^{\varphi}$ maps the center of
$\pi_{\varphi}(A)’’$ into itself. This fact immediately follows from the definition of $Q_{\gamma}^{\varphi}$ and
will be used in the proof of Lemma 2.4.

THEOREM 2.3. Let $(A, G, \alpha)$ be a $c*$-dynamical system where $G$ is a locally
compact abelian grouP. Let $\varphi$ be an a-invariant state on A. Consider the follow-
ing conditions:

(1) $\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ .
(2) $p_{\varphi}$ has rank one.
(3) $\varphi$ is an ergodic state of almost periodic type.
Then it follows that (1) $\Rightarrow(2)\Rightarrow(3)$ . Moreover, (1) implies that $\xi_{\varphi}$ is separating

for $\pi_{\varphi}(A)’$ . Conversely, if $\xi_{\varphi}$ is separating for $\pi_{\varphi}(A)’$ , then conditions (1)$-(3)$
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are equivalent.

PROOF. Since $\pi_{\varphi}(A)’’\cap u_{G}^{\varphi\prime}\subset\pi_{\varphi}(A)’’\cap\{p_{\varphi}\}’$ , it follows from [1, Theorem
4.3.20] that condition (1) implies that $\xi_{\varphi}$ is separating for $\pi_{\varphi}(A)’’$ and that $p_{\varphi}(O)$

has rank one.
(1) $\Rightarrow(2)$ . We have only to show that $p_{\varphi}=p_{\varphi}(O)$ . Note that $Q_{\gamma}^{\varphi}(\pi_{\varphi}(A)’’)\subset$

$\pi_{\varphi}(A)’’\cap\{p_{\varphi}\}’=C\cdot 1$ (see [2, Lemma 3.1]). This means that $Q_{\gamma}^{\varphi}(\pi_{\varphi}(A)’’)=\{0\}$

for any $\gamma\neq 0$ . Since $\xi_{\varphi}$ is separating for $\pi_{\varphi}(A)’’$ , the point spectrum of the
automorphism group $\overline{\alpha}$ of $\pi_{\varphi}(A)’’$ coincides with $\sigma(u^{\varphi})$ (see [1, Theorem 4.3.27]).

Hence we see that $\sigma(u^{\varphi})=\{0\}$ . This means that $p_{\varphi}=p_{\varphi}(0)$ .
(2) $\Rightarrow(3)$ . This follows from Theorem 2.2.
We assume that $\xi_{\varphi}$ is separating for $\pi_{\varphi}(A)’$ and show the implication (3) $\Rightarrow$

(1). Let $S$ be the closed antilinear operator on $H_{\varphi}$ defined by

$Sx\xi_{\varphi}=x^{*}\xi_{\varphi}$

for $x\in\pi_{\varphi}(A)’’$ . We then have

$Su_{t}^{\varphi}x\xi_{\varphi}=Su_{t}^{\varphi}xu_{t}^{\varphi*}\xi_{\varphi}=u_{t}^{\varphi}x^{*}u_{t}^{\varphi*}\xi_{\varphi}=u_{t}^{\varphi}Sx\xi_{\varphi}$ .

Since $\pi_{\varphi}(A)’’\xi_{\varphi}$ is a core for $S$ , we obtain that $Su_{t}^{\varphi}=u_{t}^{\varphi}$ S. Hence the uniqueness
of the polar decomposition of $S$ shows that $JuY=uYJ$ , which means that $Jp_{\varphi}(\gamma)$

$=p_{\varphi}(\gamma)J$ for all $\gamma\in\hat{G},$ $i.e.,$ $Jp_{\varphi}=P_{\varphi}J$ , where $J$ denotes the modular conjugation
associated with $\xi_{\varphi}$ (cf. [1, \S 2.5.2] or [3, 8.13]). Since $J\pi_{\varphi}(A)’J=\pi_{\varphi}(A)’$ , we
have

$\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=J\{\pi_{\varphi}(A)’()\{p_{\varphi}\}’\}J$ .
Since $\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ , we obtain condition (1). Q. E. D.

LEMMA 2.4. Let $(A, G, \alpha)$ be a $C^{*}$-dynamical system where $G$ is a locally

comPact abelian group. Let $\varphi$ and $\omega$ be $\alpha$-invariant states on A. Assume that
$\pi_{\varphi}$ and $\pi_{\omega}$ are quast-equivalent. Then $\pi_{\varphi}(A)’\cap\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’$ is isomorphic to
$\pi_{\omega}(A)’\cap\pi_{\omega}(A)’\cap\{p_{\omega}\}’$ .

PROOF. Let $\tau$ be an isomorphism from $\pi_{\varphi}(A)’’$ onto $\pi_{\omega}(A)’’$ such that
$\tau(\pi_{\varphi}(x))=\pi_{\omega}(x)$ for all $x\in A$ . Since

$\tau(u?\pi_{\varphi}(x)u_{t}^{\varphi*})=\tau(\pi_{\varphi}(a_{t}(x)))=\pi_{\omega}(\alpha_{t}(x))=u_{t}^{\omega}\pi_{\omega}(x)u_{t}^{\omega*}=u_{t}^{\omega}\tau(\pi_{\varphi}(x))u_{t}^{\omega*}$

for all $x\in A$ and since $\tau$ is $\sigma$ -weakly continuous, we see that

$\tau(u_{t}^{\varphi}xu_{t}^{\varphi*})=u_{t}^{\omega}\tau(x)u_{t}^{\omega*}$

for all $x\in\pi_{\varphi}(A)’$ , i.e., $\tau$ is $G$-covariant. Take any element $x$ from $\pi_{\varphi}(A)’’\cap$

$\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’$ . We then have

$(p_{\varphi}(\gamma)x\xi_{\varphi}|\eta)=m((\gamma u^{\varphi}x\xi_{\varphi}|\eta))=m((\gamma u^{\varphi}xu^{\varphi*}\xi_{\varphi}|\eta))=(Q_{\gamma}^{\varphi}(x)\xi_{\varphi}|\eta)$
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for all $\eta\in H_{\varphi}$ and some invariant mean $m$ on $G$ . We therefore have

$p_{\varphi}(\gamma)x\xi_{\varphi}=QY(x)\xi,$ .
We then assert that

$x= \sum_{\gamma}Qf(x)$ .

For $y\in\pi_{\varphi}(A)’’$ , in fact, we have

$xy\xi_{\varphi}=yx\xi_{\varphi}=yxp_{\varphi}\xi_{\varphi}=yp_{\varphi}x\xi_{\varphi}$

$=y \sum_{\gamma}p_{\varphi}(\gamma)x\xi_{\varphi}=y\sum_{\gamma}Qf(x)\xi_{\varphi}=\sum_{\gamma}Qf(x)y\xi_{\varphi}$ .

Since
$u_{t}^{\omega}\tau(Q_{\gamma}^{\varphi}(x))u_{t}^{\omega*}=\tau(u_{t}^{\varphi}Q_{\gamma}^{\varphi}(x)u_{t}^{\varphi*})=\tau(\overline{\langle t,\gamma\rangle}Q_{\gamma}^{\varphi}(x))=\overline{\langle t,\gamma\rangle}\tau(Q_{\gamma}^{\varphi}(x))$ ,

$weseethat\tau(Q_{\gamma}^{\varphi}(x))\in Q_{\gamma}^{\varphi}(\pi_{\omega}(A)^{t’})\subset\{p_{\omega}\}’andthus\tau(\chi)=\tau(\Sigma_{\gamma}Q_{\gamma}^{\varphi}(x))\in\{p_{\omega}\}’$ . Since
it is clear that $\tau(x)\in\pi_{\omega}(A)’\cap\pi_{\omega}(A)’$ , we conclude that $\tau(x)\in\pi_{\omega}(A)^{\rho}\cap\pi_{\omega}(A)’$

A $\{p_{\omega}\}’$ , from which it follows that $\tau(\pi_{\varphi}(A)^{r_{(}}\eta\pi_{\varphi}(A)’\cap\{P_{\varphi}\}’)\subset\pi_{\omega}(A)’’\gamma\pi_{\omega}(A)’$

A $\{p_{\omega}\}’$ . Since the above discussions are valid also for $\tau^{-1}$ , we obtain the
reverse inclusion. Q. E. D.

DEFINITION 2.5. An $a$-invariant state $\varphi$ of $A$ is called a centrally ergodic
state of almost periodic type if

$\pi_{\varphi}(A)’’\cap\pi_{\varphi}(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ .
Note that every centrally ergodic state of almost periodic type is always a

centrally ergodic state. It is well known that centrally ergodic states $\varphi$ and
$\psi$ are quasi-equivalent if and only if $(\varphi+\psi)/2$ is a centrally ergodic state [1,

Theorem 4.3.19].

THEOREM 2.6. Let $(A, G, \alpha)$ be a $c*$-dynamical system where $G$ is a locally
compact abelian group. Let $\varphi$ and $\psi$ be centrally ergodic states of almost periodic
type. Then $\varphi$ and $\psi$ are quasi-equivalent if and only if $(\varphi+\psi)/2$ is a centrally
ergodic state of almost periodic type.

PROOF. If $(\varphi+\psi)/2$ is a centrally ergodic state of almost periodic type, it
is a centrally ergodic state. Hence $\varphi$ and $\psi$ are quasi-equivalent. Thus we
have only to show the necessary condition.

Assume that $\varphi$ and $\psi$ are quasi-equivalent. Let $\rho$ be an isomorphism from
$\pi_{\varphi}(A)’’$ onto $\pi_{\psi}(A)’’$ such that $\rho(\pi_{\varphi}(x))=z.(x)$ for all $x\in A$ . Then $\rho$ is G-
covariant from the proof of Lemma 2.4. Define

$H=H_{\varphi}\oplus H_{\phi}$ , $\pi=\pi_{\varphi}\oplus\pi_{\psi}$ , $u=u\oplus u^{\phi}$ .

Then we denote by $E$ the projection from $H$ onto the closed subspace
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$[\pi(A)(\xi_{\varphi}\oplus\xi_{\psi})]$ .
Put

$\omega=(\varphi+\psi)/2$ .

Then the GNS representation $(\pi_{\omega}, u^{\omega}, H_{\omega})$ associated with $\omega$ is identified with
the subrepresentation of $(\pi, u, H)$ determined by the projection $E$ in $\pi(A)’$ .
Any element in $\pi(A)’’$ is a $\sigma$ -weak limit of elements of $\pi_{\varphi}(A)\oplus\pi_{\psi}(A)$ . Since $\rho$

is $\sigma$ -weakly continuous, the map from $\pi_{\varphi}(A)’’$ onto $\pi(A)’’$ defined by

$\pi_{\varphi}(A)’\ni xarrow x\oplus\rho(x)\in\pi(A)’$

is an isomorphism. Define an homomorphism $\tau$ from $\pi_{\varphi}(A)’’$ onto $\pi_{\omega}(A)’$

$(=\pi(A)’’E)$ by

$\pi_{\varphi}(A)’\ni xarrow(x\oplus\rho(x))E\in\pi_{\omega}(A)’$

We now assert that $\tau$ is an isomorpbism. Since $E\in u_{G}’$ and $\rho$ is G-covariant,
we have

$\tau(u?xu?^{*})=((u?xu\zeta^{*})\oplus\rho(u?xu\zeta^{*}))E=(u(?xu?^{*}\oplus up\rho(x)u\oint^{*})E$

$=(u_{t}(x\oplus\rho(x))u_{c^{*}})E=u_{t}((x\oplus\rho(x))E)u_{c^{*}}$

$=u_{t}\tau(x)u_{c^{*}}$ .

Thus $\tau$ is $G$-covariant. Hence the central projection in $\pi_{\varphi}(A)’’$ corresponding to
the kernel of $\tau$ is $G$-invariant, $i.e.$ , the projection belongs to $\pi_{\varphi}(A)’’\cap\pi_{\varphi}(A)’\cap u_{G}^{\varphi r}$ .
Since $\pi_{\varphi}(A)’’\cap\pi_{\varphi}(A)’\cap u_{G}^{\varphi\prime}\subset\pi_{\varphi}(A)’’\cap\pi(A)’\cap\{p_{\varphi}\}’=C\cdot 1$ , such a projection is
exactly zero. Thus $\tau$ is injective.

Since

$\tau(\pi_{\varphi}(x))=(\pi_{\varphi}(x)\oplus\rho(\pi_{\varphi}(x)))E=(\pi(x)\oplus\pi_{\psi}(x))E=\pi(x)E=\pi_{\omega}(x)$

for all $x\in A,$ $\pi$ and $\pi_{\omega}$ are quasi-equivalent. It therefore follows from Lemma
2.4 tbat

$C\cdot 1=\pi_{\varphi}(A)_{l}’’\gamma\pi_{\varphi}(A)’$ A $\{p_{\varphi}\}’\cong\pi_{\omega}(A)’’()\pi_{\omega}(A)’$ A $\{p_{\omega}\}’$

Therefore $\omega$ is a centrally ergodic state of almost periodic type. Q. E. D.
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