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Introduction.

In a recent paper [14], Yonemura has studied divergent formal power series
solutions of the Cauchy problem to non Kowalevskian equation, and characterized
its formal Gevrey index by a Newton polygon associated with the operator. It
is a version to partial differential equations of results in ordinary differential
equations studied by Ramis [12], where an index theory of ordinary differential
operators in a category of formal Gevrey functions was studied.

In this paper, we shall extend and give refinements of Yonemura’s result
to integrodifferential operators, which we call of Cauchy-Goursat-Fuchs type.
Precisely, we shall study a unique solvability of integrodifferential equations in
a category of convergent power series or formal power series with formal
Gevrey index. It should be mentioned that our main interest is in the divergent
formal solutions, but the results obtained in the category of holomorphic func-
tions are new.

It is well known that the Cauchy-Kowalevski theorem does not hold for
non Kowalevskian equations. Precisely, the formal power series solution of
the Cauchy problem to non Kowalevskian equation does not converge in general
even if the Cauchy data and the right hand side of the equation converge. This
was the main subject of the inverse problem of Cauchy-Kowalevski theorem
(c.f. Miyake and Mizohata [107).

Nevertheless, we shall study the divergent formal power series solutions. To
make clear the motivation of the study, we shall give two examples below.

ExAMPLE 0.1. Let us consider the Cauchy problem,

0.1 Dou=1t"D,™u, u(x, 0) = o(x) =

1—x’

where (x, HeC?, (D., D,)=(0/0x, d/0t) and ¢ (=0) and m (=2) are integers.
Then this Cauchy problem does not have a holomorphic solution in any mneigh-
bourhood of the origin. Indeed, has a unique formal solution,
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scon(0) ~ C(

;_%)kmk‘(m—l)ﬁ(0+l){k(o-_'rl)} !(a+m)/(0+1) s
for some positive constant C from Stirling’s formula. The exponent
(6+m)/(c+1) (>1) indicates the rate of divergence of the formal solution, and
we call it the formal Gevrey index of formal solution of the Cauchy problem
[0.1%
Such an observation to construct a Cauchy data for which the formal solu-
tion diverges was studied by Miyake and Kitagawa and Sadamatsu [7].
Next example is a special case of the characteristic Cauchy problems studied
by Hasegawa [3].

ExaMPLE 0.2. We consider the Cauchy problem,

{ta@)D*+tD,D,—D;+D,*}u =0,
0.2)

u(x, 0) = ¢(x).

Here, a(t) and ¢(x) are holomorphic at the origin. Hasegawa proved the fol-
lowing results:

(i) If a(0)#0 and la(0)=1 for any /=1, 2, ---, then (0.2) has a unique holo-
morphic solution in a neighbourhood of the origin.

(i) If a(0)=0, then there is a Cauchy data such that the formal solution
of (0.2) diverges in any neighbourhood of the origin. She actually constructed

such Cauchy data ¢(x) that the formal Gevrey index of formal solution is at
least 2.

The case (i) is a typical case of Fuchs type equation, and many and various
studies have been done after the work of Hasegawa [3, 4]. However, the case
(ii) has been analized no more, because such a problem has no holomorphic
solutions.

We shall make clear the meaning of formal power series solutions to inte-
grodifferential equations including the above examples.

We explain the reason of studying the unique solvability of integrodiffer-
ential equations instead of studying the unique solvability of the Cauchy-Goursat
problems for partial differential equations.

Let x=(x,, -+, x,)€C? and t=(t, -+, t,)=C? be complex variables, and
D:=Dz,, -+, Dxp) and D,=(D,,, ---, D)) denote the usual symbols of differ-
entiations. Let
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L(x,t; Dy, D) = 3 aafx, )D“D,? (a, )= NP X N9
a, ]

be a partial differential operator with holomorphic coefficients in a neighbour-
hood of the origin of C2'¢, where N={0, 1, 2, ---}. Then the Cauchy-Goursat
problem for the operator L is formulated as follows:

L()C, t; Dz) Dt)u(x, t) - f(x) t)y
(0.3)

u(x, H)—w(x, t) = O(x%th) at (gc, 1H)=(0, 0).

Here (B, )& N?X N? and w(x, t) is the Cauchy-Goursat data.
Now we change the unknown function » to U by

u(x, )= Dz?D;'U(x, )+ w(x, t).

Then the unique solvability of the problem (0.3) is equivalent to the unique
solvability of the following integrodifferential equation :

(0.4) 3 @ai(x, ODEPDIT U (x, t) = F(x, t).
&, J

Here D;fU=D3;%1 ... D;ﬁpU (B=(Bi, =, Bp)) is defined by

(0.5) D) = [P0k, -, 85, w085

It is the same for D;'U. Note that D,*D;?=D%# holds for any a, B<NP.

Such a change of problem enables us to make a systematic study of many
problems in partial differential equations such as the Cauchy problems, Goursat
problems and the Fuchs type equations.

In Section 1, we shall state our results after giving some definitions of
function spaces and integrodifferential operators considered in this paper. Sec-
tions 2 and 3 are devoted to investigate properties of function spaces of 3
formal power series with formal Gevrey index and integrodifferential operators
acting on such spaces. Fundamental ideas developed in these sections are those ;'
in Miyake [9], and they enable us to determine the existence domain of solu-
tions in a precise form. Our theorems are, then, proved in Sections 4 and 5
in much precise forms.

At the end of this section, the author would like to thank the referee for
his careful reading of the manuscript and useful comments.

1. Statement of Results.

1.1. List of notations. Let x=(x,, -+, x,)=C? and t=({,, -, tl)=C? be
complex variables. For x=C?, we set

|x|=x4+ - +xp and |lx|=]x.]4 - ‘i‘]xpl-
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We denote by C{x} the set of convergent power series in x. For a domain
QcC?, o(2) denotes the set of holomorphic functions in 2, and O(2):=(2)N
C(2), that is, holomorphic in £ and continuous up to the boundary of 2. For
X>0, o(Jlx||<X) denotes the set of holomorphic functions in a domain Q=
{(x=C?; |x|<X}, and O(|x|£X)=0(2). Similar notations will be used fre-
quently for functions defined in a domain of CZ'A.

For a ring A, A[[x]] denotes the set of formal power series in x with
coefficients in A.

We denote by N and Z the set of non negative integers and the set of
integeres, respectively.

For a multi-index a=(a,, -, a,)=Z?, an integrodifferential D,*U(x) of
U(x)=C[[x]] is defined as follows:

Set U(x)=gen?Upx?/B!. Then,

xh-a
(B—a)!”
Here the summation is taken over ,BENI’ such that f—acN?. It is the same
for DJ/U@) with j=(j;, -+, JQEZ

For a=(a,, =, a,)=Z?, we set |a|=32,a;=Z. For two multi-indices
a=(a,, -, ap) and B=(By, -+, Bp) in Z?, a=p (resp. a>f) means a;=f; for
any 7=1, 2, ---, p (resp. azﬁ and |a|>|[B]).

”‘U(x) — ’Uﬁ

1.2. Formal Gevrey class G*. For U(x, 1)eC[[x, t]] we set
xBt
gy
where Ug, €C, B=NP? and [N

Let s=1, X>0 and T>0. Then we define U(x, H)e=G*(X, T) (CC[[x, t]])
by

l(x>‘— EUpl

(LD Ulx, t) = ﬁleﬁl eC[[x]],

‘81

X lﬁiT&lI
(I1B1+s ST <
where (|8l +s|)!:="(|Bl+s|l|+1). It is obvious that G(X, T) becomes a
Banach space by the norm |- | 7.
It will be shown in Section 2 that

(1.2) U&7 = sup 1U

GY(X, T)C o(|x|<X)[t]], GUX, T)CO(”;” +'!§Jl <1).

Moreover, for any Y with 0<Y<X, there are positive constants R and C
satisfying

max U (x)] £ C—— LiEy

IzIsY R

This is the reason why we call G%(X, T) the formal Gevrey class.

for any [=N?.
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Now we define G*® for 1<s< by

G'= U GX, T), if 1£s<e0,

X, T>0

(1.3)
G== \Uollxl <X)[[AI].
X>0

By the definition, it holds that G'=C{x, t}. We shall study more precisely
the formal Gevrey class in Section 2.

1.3. Cauchy-Goursat-Fuchs type operator. Let ¢-D, = (t,D¢, t:D¢,, -,
teD; ), and set
(t- Do) = (t: D, Y1(t2De,Y? -+ (tqDy )

for ].:(].17 Ty J.q)ENq-
An integrodifferential operator Ln(x,t; D,, D,) written in the following
form is said to be of Cauchy-Goursat-Fuchs type with weight m (€N):

(1.4) L= Pnp(t-D)+Q(x,t; Dz, D)+ R(x,t; Dy, Do)
Here, P, is an operator of Euler type of order m, that is,

S a; (¢-DY  if m=1,
Pa(t-Dy) = { vizm
1 if m=0,

where j=N? and a;<=C.
Q= > b (x)t°D*Dy7

lgi=17l
lalsmin{m~-1j1,0}

where (g, a, )ENIXZ?X Z? and b¥)(x)=C[[x]].
R=3 3 ¢, 0°D.*D/  (cQ(x, 00 if ¢§£0),

a,j lai>1jl

where (o, a, ))EN'XZP?XZ? and ¢ (x, )eC[[x, t]].

Our restriction on @ that |a|<min{m—|s|, 0} is often made in the study
of Fuchs type equations (cf. Baouendi and Goulaouic [1]). Therefore, we ex-
clude an operator L,=tD,—D,., but treat an operator L,=I—tD,D3;', where
(x,t)eC? Note that these operators are equivalent, since L,=L,Dz'. The
difference of these operators will be made clear by Remark 1.4.

We define the Gevrey index s, of the operator L., by

lol+lal—m

(1.5) so:max{l, max{ ST e 0)3;0}}.

An equivalent definition by using a Newton polygon associated with the
operator L, will be given in §1.5.

In the case s,=1, the operator L, is often said to be Kowalevskian, and in
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the case s,>1, it is said to be non Kowalevskian.
Let s,<s<oo. Then the principal part of L, in the category G*® is defined
as follows:
G-principal part = {P,(t-D,), b&)(x)t°D,*D, with |a|=min{m—|j|, 0},
c)(x, tw’D,*D,’ with (o, a, j) satisfying [1.5)}.
If sy<s=< oo, then

G*-principal part = {P,(t-D,), b&)(x)t°D,*D,;/ with |a|=min{m—]j|, 0}}.

1.4. Statement of results. Let L, be an operator of Cauchy-Goursat-Fuchs
type with weight m. Then our main interest in this paper is to study the
mapping,

(1.6), Ly:G?/G— G*/G* (1£s< ).
Here, we always assume that the coefficients of L, are in the function space

compatible with the mapping.
We first give the following,

THEOREM 1.1 (Regularity). Let s, be the Gevrey index of L., and assume
there is a positive constant & such that:

(i)
1.7 min| 3} a; 771> 8 (t€R.%, R.:=[0, «)).

iti=1 \1jl=m
(ii) There are §=R.? and t=R.? (R,=(0, «)) satisfying
(1.8) > 16&7(0)| 77776 <40 .

lgl=1jl=m, |a|=0
Then the mapping (1.6); is bijective for every s,=s<co.

The following theorem is an immediate consequence of the proof of the
above theorem.

THEOREM 1.2 (Existence). Let L, and s, be as in Theorem 1.1. We assume
there is a positive constant & such that:

(i)
(1.9) [Pn(D)] > o(|I]|4+1)™ for any [N,

(ii) There are EcR.” and TR, satisfying

(1.10) > [6&7(0)[ 77~ 78%<5 .

lel=|jlsm, |a|=0

Then the mappings,
Ly: G —> G® (sy<s<) and L,:C[[x,t]]— C[[x,t]]

are all bijective.
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It will be proved that the “existence domain” of solutions depends only on
the G*-principal part of L,. Such a precise description of results will be given
in the proofs of theorems (see Theorems 4.1 and B.1)).

The condition (1.7) or (1.9) is sometimes said to be a condition on the indicial
polynomial when ¢=1, and the Poincaré type condition when ¢=2. The con-

dition [1.8) or [1.10) is a kind of spectral condition assumed in the study of
Goursat problems.

REMARK 1.3. In the conditions [1.8) and [(1.10) of the above theorems, we

may assume &£=(1, ---, 1) and ==, ---, 1), without loss of generality. Indeed,
it suffices to transform the variables (x, {)—(y, s) by y,=&;x; (=1, ---, p) and
s;=t;t; (=1, ---, q). Hence, we replace them as follows:
(1.8) = p@O)<a.

lgi=1jl=m,ja|=0
(1.10) P ,165(0)] <3

gi=ljlsm, lal=

REMARK 1.4. The equation, {/—iD,D3;'}U(x,t)=F(x,)eG*® is uniquely
solvable in G*® for every 1<s<co by[Theorem 1.2, By changing u=D3;'U, this
is equivalent to the unique solvability in G°® of the Cauchy problem,

{D,—tD;}u(x,t) = F(x, 1) € G°, u(0,8)=0.

This shows that we consider only an integrodifferential operator L, reduced
from the uniquely solvable Cauchy-Goursat problem.

REMARK 1.5. From the proof of [Theorem 1.1, we shall see that the fol-
lowing holds: Let p=0, and assume the conditions (1.7) and [1.8) Let G*[[¢]]:
=G*"\C[[t]]. Then the mapping, L,(t; D;): G*[[t]]—G*[[t]] has finite dimen-
sional kernel and cokernel for every s,<s=<oo and it holds that

dim¢ Ker(L . ; G*[[t]]) = dim¢ Coker{L . ; G*[[t]1]).

1.5. Newton polygon and the Gevrey index. The following definition of
the Newton polygon is an analogue to the one in Yonemura [14], where only
partial differential operators were studied (see, also, Ramis [12]).

Let

P(x,t; D, Do) = % aqfx, )D*Dy’

be an integrodifferential operator with coefficients a,;=C[[x, t]J]. We set

auix, )= X a0, af(x)e C[[x]].

ceN4

For a point (u, v)=R? we put
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Qlu, v) = {(r, s)eR?*;r<u, s=v}.
Then the Newton polygon N(P) of P is defined by
N(P) = ch{Q(lal+1J1, o]l —1j1); a$}+0},

where ch{-} denotes the convex hull of the elements in {-}.
Now, return to the operator L,, of Cauchy-Goursat-Fuchs type with weight .
Let 0=k <<k,< -+ <k;=-4oo be the slopes of sides of N(L,). Then the
Gevrey index s, of L,, defined by is equal to

(1.1D) ' sozl—l—l.
k,

Here, we define s,=1 if k,=+4co. We remark that G’°-principal part is noth-
ing but Pr(t-D.), b&G(x)°D.*D,;’ with |a|=min{m—|;|, 0} and the collection
of operators in R(x, ¢t; D., D,) lying on the side with slope k; of N(L,).

1.6. Some comments. Yonemura studied the solvability in G* of the
Cauchy problem to non Kowalevskian equations. His case is reduced to L,
with ¢=1, 7<0 and «a=N?. On the other hand, Ouchi studied the Cauchy
problem for non Kowalevskian equations, and he characterized asymptotic mean-
ing of the formal power series solutions.

The Fuchs type equations or characteristic Cauchy problems studied by
Baouendi and Goulaouic [1I], Tahara and others are reduced to L, of
Kowalevski type with ¢=1, j<0 and a=N?, and their main interest was Theo-
rem 1.2. We note that Hasegawa [3, 4] studied the Goursat problems not only
the Cauchy problems to Fuchs type equations, which is somewhat similar to our
formulation.

Recently, Igari [5, 6] studied the characteristic Cauchy problem which is
somewhat different from [1, 3, 4, 13]. Among others, he proved a unique solv-
ability of the characteristic Cauchy problem, which corresponds to
for L, of Kowalevski type.

At the end, we cite Bengel and Gérard [2] and Yoshino [15], where the
convergence of formal power series solutions of Fuchs type equations of multiple
variables was studied under the Poincaré or Siegel condition.

2. Banach space G3(X, T ; k; m).

We use the notations defined in §1.2.

Let s=1, X, T>0 and &k, meN. Then we define Ulx, )eGX(X, T ; k;m)
(CC[Lx, t]] by
(| 1 X BT
) . 3 .
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where {|8]+(s+m)|l[+k}H=I"(|Bl+(s+m)|l|+k+1).
It is obvious that G%X, T; k;m) becomes a Banach space by the norm
“'J’!f\"'g,>T;k;m and

G X, THh=GX, T;0;0CG(X, T; k;m) for any k2, meN.

Conversely, there is a positive constant ¢ independent of X and T such that
G{X,T; k;mG(eX, eT). Indeed, it is sufficient to see that by Stirling’s
formula there are positive constants C and R such that

{18 +(s+m)|l|+Fk}

!
"< CR'#1+ih for an and /.
HIEEED I v E
Therefore, it holds that
(2.2) Gi= U GX,T; k;m for any fixed k£ and m.

X, T>0

By the definition, the following properties are obvious:
(A) If X’<X and T'<T, then

2.3) GNX, T;k;mc. G(X',T";0;m) for any k=N,
B) If X'sX, T'ET and k’'=Fk, then
GX, T;k;mcC>GX', T ; k', m).

“ * ‘[?,)T;k;m—z—!! * ”‘(\}g'),T’;k';m

(2.4)

Let U(x, )eG¥X, T ; k; m). Then we easily obtain

xf 1l {(s+m)|l|+k}!
Ulx)= 4? Uﬁl"—B_! < T|1J| [7]1m (1___|x|/X)(s+m>|li+k+1’
where |-| stands for the norm and U(x)< & (x) means U(x) is majorized by Z(x).

Hence, we have

(2.5) G(X, T; k;m)Co(lx|<X)L[t]].

Moreover, for any Y with 0<Y <X, there are positive constants C and R such
that
[7]1e

(2.6) max |U,(x)| = C—45+ for any (=N°?.
lzlsY R

Conversely, we can prove the following,
PROPOSITION 2.1. Let Uy(x)=0O(|x|LY) (I&N9) satisfy the inequality;(2.6).

Then U(x,t):=U ) /1'=G(Y, R; ko; 0), where ko=min{keN;k=
(p+s—1)/2}. Hence, U(x, )G X, T) for any X<Y and T<R.

PROOF. Set Uy (x)=3sUgx?/B!. Then by Cauchy’s integral formula on
the polycircle IT,2,{|x;|1=§,;Y} (§;,>0, 2, §,=1), we obtain
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C | 1R!
]Uﬁl| _(E Y'ﬁlRll' 5‘3 ’

where £§=(§,, -+, £,)=R,? and gh=gh ... ‘f;”. Since &7 takes its maximum in
{£=R,?; |&|=1} at E=(B./|BI, ==+, Bp/IB]), by Stirling’s formula we have
(2m)PHs-D/2 | B|PIz|[|5/2

Ul = C g 1) g1 gy B 111!
(p+s-1)/2
< B Bl ko),
by the definition of %,. O
Let
2.7) GY{X):=G'X, Th)N\C[[x]1].

Then G'X) becomes a Banach space by the induced norm |-[|{ from GYX, T),
and GY{X)Co(|x||<X) by [2.5) The following lemma is a special case of
Proposition 2.1, but it is useful to write down.

LEMMA 2.2. Let >1. Then (| x| S X)CGY(X) and for a(x)cO(| x| =xX)
it holds that

(2.8) lall¥=c(p, ¥) max |a(x)],

lriseX

where c(p, k) is a positive constant depending only on p and k, and non increasing
mn K.

PrOOF. By the same way as [Proposition 2.1, we have

(zﬁl‘gl)(p-l)m}

k' A

lalg < sup { max |a(x)!. =

lxlsx X

To make clear the reason of introducing of the parameters % and m, we prove
the following,

PROPOSITION 2.3.

(i) GYX, T:k:m)C @(@ +(m+1)(@)”(m“’<1) .

(ii) For any & with k>1, we have

a(@ +(m+1)(@)”(mmgx) CGHX, T:0:m).

(iif) O(% +(m+1)(l—(;l)”(m+l)§1) c GI(X, T; [M—(?m] ;m).

PrOOF. (i) Let ¢(2)=1/(1—=2) and ¢‘*(z)=(d/dz)*¢(z), where z=C. Then
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for U(x, )eGNX, T ; k; m), it holds that

Ul(x)<\ T|lH[ ll'[‘ = (p((l+m)|l|+k)<l§(_‘> )

Hence we have

= carmyrenf 1 XY __1HT
Ulx, ) < I 9™+ s
(t}/T)
{X+myr}V’
for some positive constant C. Since 33,200 (| x|/X)z"/r1=¢®((| x|/ X)+2z)
is holomorphic in |z]<1—|x||/X, we obtain the assertion.
(i) Let U(x, heo(xll/X+(m+1)(|t]/T)'*™<k) and set

& CU| go¢((l+m)r+k)< [ x| )< L pymene

0 e=max{10Ce, 01 B ona ()" <)

Let 0<s<kX, &=(&, -, 5,,)6R+1’ with [§|=1 and 7=(7y, -+, T )= R.? with
lz|=1. Then by Cauchy’s integral formula on the polycircle

T =€) x {1 =e(e—5) "m0 0T),

we obtain

B1i1(mt1)m+bin
Sﬁflslﬂl(ﬁ:_s/X)(m+1)!llTlll'
Since &, 7! and s'fi(k-—-s/X)™+P!Y take their maximums at &=(B,/|B], -,

B,/ 1 B1), ==/ 1L, -, L/1l]) and s=&X|B|/(IB]+(m+1)[l]) respectively, we
have

WUp! = U]l

Ul < U< 1 BBl +(m+1) ||} Ar+emeniLy
[Ugil = X 1BIT 1 et Bre(m+ 1) ﬁﬁll (7|t

Hence, by Stirling’s formula we obtain the following inequality.

{2r(] Bl +1L])pePrarm-birz

|ﬁ]+(m+1)|l|

1UN18r;0m < Ul = Xmax

This proves (ii).
(iii) is an immediate consequence of the above proof. |

Note that the above proposition shows

t 1/(m+1>
o( MWLt n(Y ") = o cor, T 0sm.
<X <X
o<T' LT
This shows the parameter m plays the role to determine the shape of domain
of holomorphy of solutions. The parameter %2 does not play any role to deter-
mine the shape of domain of holomorphy, but will play an important role to
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make clear that the existence domain of solutions depends only on the “principal
part” of the operator.

The idea of introducing of the parameter 2=N was found in Wagschal
and Miyake [9] in the study of the Goursat problems, and the idea of intro-

ducing of the parameter m (=1) was found in Igari in the study of the charac-
teristic Cauchy problems.
We summarize some notations used in the proof below.

!
For a, B&N" with f=Za, (g)::ﬁTf—'—ﬁ)_"
For Z:(Zly Tty ZT)ERT and 0':(0'1, Tty UT>C——:NT;

[4,:= I A—D)  A—a+1),

where [4],:=1 if ¢=0. For 2=0, 2!:=I(A+1). The following relation will
be used frequently.

[At+ o], A'=A+a)! for A=0 and c=N.

LEMMA 2.4. Let p>1 and U(x, t)eG(X, T ; k; m).
(i) If a(x,t)eGpX, pT ;0;m), then aU=G*X, T ; k; m) and

2
(2.9) 1001 rnim = (557) 1218 rmml U £rnim

i) If a(x)eo(|xl|<X), then aU=GXY, T ; k;m) for any Y with Y<X,
and we have

(2.10) | 1aUre:m = {1 a0 +e(YIHU I, 0;m »
where limy,,e(Y)=0.

REMARK. If s=1 and m=0 in the lemma, then

2.9y laUll ;x50 < pf-l lallgZ, ozsoi0lU 11 207; 850

holds. It is the same in the case a=a(x)=G'(pX).

PROOF. (i) We put a(x, £)=3 asxt/BIY, Ulx, )=3U s xf/81I! and alU
=V xft'/Bl). Then

Vﬁz = Os;s)ﬂ osEnsl arnU,g_T,l_n(f)(i).

Here 0=(0, ---, 0) in N? or N% By the definition of the norm, we have
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|Vl XTI < flall U
% S {rl+Gs+m)al} HIBI— 71 +(s+m){ | —n[)+k}!

0s7sp osnsl p'”*“”

(DG )™

Here we omit the indices in the norms. Considering the inequality,

P lé(f)(i)('i‘ )= (B

< (l,@|+(m+1)|ll) _ LBl H+m+DI Jurcnriw

ut+(m-+1w {u+(m+1w}! ’
we obtain
Vel XTI I™ < e |U]l
Xu%; vlgl; {u+(s+mu}! {lﬁl-;it:@%-m)(lll—v)-i-k}!
X[Iﬂl+(m+1)ll[]u+(m+1>u
{u+(m+1w}!
Now our purpose is to prove the following inequality.
(2.11) {ut+(s+mpw} ! {| Bl —u+(s+m)(|l| —v)+k}!
[I,B[+(m+l)|l|]u+(m+1)v
X ut(mt1w} ! S {IBl+(s+m)|l|+k}!.

Since the case s=1 or v==0 is trivial, we consider the case s>1 and v>0. The
following inequality is easily obtained.

{18l —u+(s+m)|{|—v)+ R} LBl +m+D] Juscmsn

_ e 181+ 0n+ D1 Juscmsne
= B s m) (s =D b e T —(5— Do+ Edurcmen

S {IBI+H(s+m)l] —(s—Luv+k} 1.

Next, by the formula I'(x)I"(y)=I"(x+y)B(x, y),

{ut-(m+sw}! I'({(s—1w)
{u+(m+Lw}! " B((s—1w, u+(m+1p+1)

and
{181+ (s+m)|i|—(s=1Lw+k} " ((s—1)

= {|Bl+(s+m)|ll+k}! B((s—1w, | Bl+(s+m)|l{|—(s—1p+k-+1).
Since u+(m+1v+1<|Bl+(s+m)|l| —(s—1w+Ek+1, it holds that

B({(s—1w, u+(m+1pv+1)
= B((s—1w, | Bl+(s+m)|l| —(s—1v+k+1).
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Combining these inequalities, we obtain (2.11). Hence,

181 111
Ve XTI < alllUI Bl +(s+m)ll |k} 5 :

u=0 v=0 pu'H’

< lallUIH 181 +(s+mld+h) 1 (<22
o—1
This proves [2.9).

When a=a(x) the inequality holds, because of the absence of v in
the above summation. When s=1 and m=0, we obtain by putting |7|+|n]
=u instead of putting |7|=wu and |n|=v in the above proof.

(i) Let a(x)< o(|x|<X) and U(x,t)c G¥X, T;k;m). Then aU <
GY;T; k;m) for any Y with Y<X. Let p and ¥ be fixed constants with
o, £>1 and kpY<X. Then by (i),

1aU[¥ppm = {I a(0)] + Ha(x>— a(O)ll“)}IIUHP)T im -
On the other hand, by Lemma 2.2 we have
la(x)—a(0)l# < c(p, k) max |a(x)—a(0)] ]0O as Y ]O. O

lxiscoY

The next lemma is easy, but it is useful in the proof of the solvability in
G> of integrodifferential equations.

LEMMA 2.5. Let a=Z? satisfy |a|<0. Then the mapping
D2 G(X, T; k;m)— G(X, T ; k;m)
is bounded and the operator norm is estimated by
X)—lal

(2.12) 1D ram = (5

PROOF. Let D, *U=XVgxft'/B1il. Then we have V5 =Upsa,. This
implies the result immediately. O

3. Operator of the form t°D.*D/P;.

Let an operator P,(t-D.)=2]isma; (t- DY (j=NY, a;=C) satisfy the condi-
tion (1.7). Then there is N,=N such that

3.1) | Pn(l)] >0[l/|™  for any [=N? with |[[|=N,.
For NeN, we set

(3.2) ClLx, tJIIN]:={UcC[[x, t1]; Up=01if |I|<N}.

Then the mapping,
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Pn(t-Do):C[[x, t]IIN] — C[Lx, t]11LN]

is bijective for any N=N,, and its inverse P3' is given by

Pl = S Pl Uil (=N
n —E m({) I (Il[=N).
In what follows, we always assume N=N,. We set
3.3) GX, T; k;mN]=GYX,T; k;mNC[[x, t]]J[N].

Then GX, T; k;m)[N]is a Banach space by the norm |:|$r.z,m,~» induced
from G¥X, T ; k; m).
Let us study an operator

(3.4) t°D.*DJ P} (o, a, NENXZPXZ?, |olz=]|]))
acting on G*(X, T; k; m)[N]. For U=C[[x, t]]I[N], we set
1D DIPRAY = SV gk
r t m - ﬁzl ﬂlm .
Then by an easy calculation we obtain
_ [/1s
(35) Vﬁl - Pm(l+]-_g)Uﬁ+a,l+J-a ’

where f+asN?, [+j—c=N? (|{|+1]jl—le|=N) and (=0.
Hence for U= G X, T ; k; m)[N], it holds that

XIﬁITIlII”!m _ T1o1-15 [[]G
GO Walmgermii+e = WX Bat =)
% [y {18l +lal+(s+m)|ll+|jl—lal)+k}!
{Hl+jl—=lelpt™ {18l +(s+m)|l|+k}! )

From this inequality, we obtain the estimate below for the operator norm of
the mapping
t°D *DJIP7 G X, T; k;mIN]— G(X, T; k;m)[NT.

(A) The case |o|=1j|<m and |a|=0.

(3.7) 11D D PR e < 87N =1m(5) ™
» k
(B) The case |o|=|j|>m and |a|+|j|<m.
Let p=m—|a|—|a| (=0). Then we have
(3.8) [t°D "Dy PR < o7 X' %k=r .

Here and in what follows we omit the indices in the operator norm for the
simplicity.
Indeed, it suffices to notice the following inequality.
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[pre=m{ Bl +lal-+H(s+m)|l|-+k}!
<A{IBl+(s+m)ll|+]al+|a|—m+r}!.

(C) The case |a|>17] and s=(la|+|al—m)/(la|—|j]).
Let p=s(le|—1jD)—(le|+]a|—m) (=0). Then we have

3.9) 11D Dy PRl < CT'oI-iX-tatf=e

for some positive constant C independent of X and T.

ProoF. The following inequality holds for some positive constant C,.

(1, [ _ R
]Pm(l“l‘f—a)]{]l|+]ji—|0-}}!m=cxiu .

Since |o|>17]|, it holds that (Jo|—|j|)m+|o|—m=0. Put

{181 +(s+m)|l|+R}! =[1BI+(s+m)lI+E]usi-1jm+101-m
X{Bl+(s+m)|l|+k—(la|—]j)m—]a|+m}!.

The following inequality is obvious.

Ill(ldl—ljl)mﬂal-m

gczy

[‘,B|+(S+m>‘l|+k](ldl-Ijl)m.+lal-—m =
where C, is a positive constant. On the other hand, since

p = {(al=1j(s+m)—lal}—={(o]—|jm+|o|—m},

we have
{18l +al+(s+m)(|l|+|jl—]a])-+k}! < C.p-o
{1BI+(s+m)lll+k—(la|—|j)m—]|a|+m}1 = 7% 7
for some positive constant C,. Od

4. Proof of Theorem 1.1.
For X, T>0 and 1<s=Zco, we define

X, T;m= N N GX,T;0;m if 1<s<e<,
0<X'<X 0LT'<T
4.1)
G=(X, T; m) = G(X) = o(|xI|<X)[[t]].

As mentioned after the proof of [Proposition 2.3,

SYX, T;m) = @('l)%l +<m+1)(MTI—’ ).

We shall prove the following theorem, which is a precise form of
1.1.
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THEOREM 4.1. Let L, and s, be as in Theorem 1.1 and the conditions in
Theorem 1.1 are satisfied. We assume the coefficients of L. belong to
G (Xo, To; 0;m) (sy<s=00).

(i) Let us consider the case s=s,. Then there are positive constants X, and
T, such that the mapping,

(4.2)s, Ln: @7 (X)/@"X,, T1; m) —> G°(X,)/G(X,, T1; m)

is bijective. Here, X, and T, depend only on the G*o-principal part of L,.
(i) Let us consider the case sy<s<co. Then there is a positive constant X,
such that the mapping,

(4.2); L, :8(X,)/® (X, To; m) —> &°(X,)/®(X,, Ty; m)
is bijective. Here, X, depends only on the G*-principal part.
For N&N, we set
4.3) (X, T;m)IN]=GX, T; m)"C[[x, t]]IN] (1<s=c0),

Let the operator L, satisfy the conditions in [Theorem 4.1, and N,&N
satisfy the condition [3.1} Then P, P! is the identity operator in the space
®(X, T; m)[N] for any 1<s<co and N=N,. Hence, is proved
by showing the following proposition.

PrROPOSITION 4.2. Let L., and s, be as in Theorem 4.1 and the conditions
in Theorem 4.1 are satisfied.
(i) There are positive constants X, Ty and N,=N such that the mapping,

(4.4)s, LnP3l: @°(X,, Ty; m)[N] —> &(X,, T1; m)[N]
is bijective.

(ii) Let sy<s=oco. Then there are a positive constant X, and N,=N such
that the mapping,

(4.4)s L, Py & (X, To; m)[N,] — G(X,, To; m)[N]
is bijective.
We first consider the case s,<s<oo. We set

(4.5) LoPil=1—A, A=A, .

i=1
Here, A; (=1, 2, -+, 6) are defined as follows.
A= 3 b@(xn° D DIPR}.
lo|=1jlsm,a|=0

A, = > b ()" DD Prt .

lo1=1j1>m, lai+1ji=m
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Ay= 3 c¢Q(x, 0t°D,*DJ P,
161>171

where the summation is taken over (¢, a, /) ENTXZ? X Z? such that
(4.6) s(lel—=17)=lo|+|al—m.

Hence, A;=0 when s>s,. Note that A; (=1, 2, 3) consist of the G®-principal
part defined in §1.3.

A= 3 DDy

lol=1jlsm, a0

As = > b (xn’ DD Pt .

lol=1jI>m, lal+lji<m

‘46 - 2” Céaj)(x} t)tanaDLjP;nl ’

1a1>171

where the summation is taken over (o, a, /) EN?XZ?x Z? such that
4.7) s(lal—171) > le|+lal—m.

We define a non negative constant » by
. la| . .
(4.8) r = max{O, max{~————]a]_!].I ; (0, a, j) satisfies (4.6)}}.
Then we have the following,

LEMMA 4.3. Let L, and s, be as in Theorem 4.1 and the conditions in Theo-
rem 4.1 are satisfied.

(i) There are positive constants R, and e,, and N,= N such that the mapping,
(4.9)s, A:G R, eR™; k; m)[N,]—> G'YR, eR"; kb ; m)[N,]

becomes a contraction mapping for any O<RZR, and 0<e=Ze,, if we choose
sufficiently large k=N which depends on R, ¢ and N,.

(ii) Let sy<<s<<oo. Then there are a positive constant X, and N,=N such
that the mapping,

(4.9); A:G(X, T; k;m)[N]—> G(X, T; k; m)[N,]

becomes a contraction mapping for any 0< X=X, and 0<T<T,, if we choose
sufficienlly large ke N which depends on X, T and N,.

ProoF. By using results obtained in the previous sections, we can estimate
each operator norm || A;|$r.e.m;xy (=1, ---, 6) as follows. Here, N is taken so
that N=N,.

(A) By and the results in Section 2, we obtain the following estimate
for any X with 0<X<X,.
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lAE s wmiw <074 32 {165(0)] +(X))

lo1=1j1=m
- X gl-m
KA SN A F

1011 m
where limy,,e(X)=0. In view of the assumption[1.8) and |¢|<<m in the sum-
mation we can choose 0<e,<<1, X,>0 and N,=N so that

(4.10) IAUN e mn, <1—ee

holds for any 0<<X=X, T>0 and k= N.

(B) By and the results in Section 2, we have for any 0<X<X,, T>0
and 2= N,

XO @Y ~la|
XO_X |o\=‘4|—:’j|>m”baj “XoX .
lal+i7i=m

| A r;pmin, =077

Since |a|<0 in this case, for any e, with 0<e;<e, there is X;>>0 (X, £X,)
such that

(411) HAZI,%:g,)T;k;m;Nl < €3,
holds for any 0<X=X,, T>0 and k= N.

(C) Let 0<X<X, (<X,), 0<T<T, and put p=min{X,/X, To/T}. Then
by and we have the following inequality for any k< N.

1A 7 kimiz, = C(L)2 SV e R oriom T 11X "1
A p-l 1eiShy e et et

oy o
< S ’ @1 1g1=1 Lai
- C(P—1> |a§|j|”ca’ 155, 70:0:mT nx ,

where C is a positive constant.
By the definition of the constant 7,

1=
”443H§)T'k'm~N = 2/ Caaszr(ldl-—\jD—lal( T >|d .
PR S X7

Since r(|e|—]|Jj|)—|a| =0, there are positive constants K, (=X,) and ¢, such
that
(4.12) | Ai+ Ao+ As|| Bcrripymin, <1,

holds for any O0<RZR,, 0<exe, and k= N.

Note that A,=0 when s>s,.

(D) By [3.7), 3.8}, [3.9) and the results in Section 2, for any fixed X and
T, there is a positive constant 7 such that

(4.13) IANEr;05mn, = OR™T)  (1=4,5,6).

Hence, we can choose sufficiently large k<N which depends on R, ¢
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and N, (O<KR=R,, 0<e<e,) so that A becomes a contraction mapping in
G'R, eR™; k; m)[N:].
It is the same in the case s,<<s<{co. [

Next, we consider the case s=o. We write L, Pz as follows.

(4.14) L.Pii=I-B, B= 3B
Here B; (=1, 2, ---, 5) are defined as follows.
B, = > bR (XN’ D*DJ P! .
lgl=1jl=m, |a|=0
B, = = bG(xn°D,*DJS P .
lgl=1j1<m, |a|=0
B, = by b (xn°D,*DJI P .
lgi=1jlsm, |la|<0
B, = N b (x)t°D "D PRl .

Io'|=ljl>m—,-1a|+lj|§m
BS = R()C, t; D:r) Dt)P;LI .
Let U(x, )= Ui(x)tt/lteo( x| <X)[[t]1[N,] and put

- tt
L,PRU= 112 Fl(x)l_"

(ZNg

Then,

—RD(x, D,*Un(x); |n|<|l], finite number of a),

D U 4j-o(x)

where the summation X3® is taken over (g, a, /) ESNIXZ?xXZ* with |¢|=]!|
and [+j—o<= N7 corresponding to the expression of B; (i=1, -, 4).
Let W(x) be a column vector defined by

(4.16) UM (x) ="Uux); |1]=N),

of length (¢g+N—1D/(g—1)IN! (=£{I=N; |[|=N}).
Then the relation implies a sequence of systems of integrodifferential
equations for U¥>(x) of the form,

417 {I=8(x, DN UN(x) = RN (x, DAU(x); [H<N)—F M (x),
for N=N, Here $%(x) is a vector defined from Fi(x) (]{|=N). Let
GN(X ;5 k)= {UM(x); Ulx)eGYX; k), |l|=N},

where GY X ; B):=G¥X, T; k; mNC[[x]]. Then ¢¥(X; k)is a Banach space
with norm



Cauchy-Goursat-Fuchs type equations 325
(4.18) UM = max [|U, 1§ -
itl=N
Under these preparations, we can prove the following,

LEMMA 4.4. Let the coefficients of L. belong to GN(X,)[[t]]. Then there
are a positive constant X,, Ny N and k(X,, NYEN (N=N,) such that the map-

ping,
(4.19) BN gN(X ;5 k(X,y, N))—> GM(X; k(X,, N))
becomes a contraction mapping for any X<X, and N=N,. Here, X, and N,
depend only on B, and B,.
PrOOF. Note that by the conditions (1.7) and

(4.20) !0%]1:;11)&;?<0>1 Polit—ay <1

holds for any /=N? with |/|=N,.
(A) Let |I|=N=N, and 0<X<X,. Then by we have

[/,
(2, @ _—
Ll oy )

’ (6D

D.raUHj—a(x)

| Xk

11 __[_1.1‘1._._ 0) a oo
= o D Pai g j—oy) | OO+ EONID ol

= IUI|§]11(]=WZ P+ —0)] {16822(0) | + (XD UN 1 £ -

In view of and limy,,s(X)=0, there are positive constants X, (<X,)
and ¢, (0<e;<1) such that

[1]6 | (1>

(4.21) 3 0p(x) Do Uyyol®)| |

|a'xl=al‘j__|_0=m Pm(l+]—0')

< —e)| UM%,

holds for any X<X,, k=N and [ with |I/|=N.
(B) For any X<X,, |[|=N and k=N, we have
AP
(.2) ()
|a|l%1'=lo<mbaj<x)Pm(l+j~—0')
Xo

SO UM BV BGIEN
l0‘[|=aI|]=10<m

XO—X

| H W
|

DraUl+j—a(x> |
Xk

Since |¢|<m in this case, for any e, with 0<e.<e,, we can choose N,&N
(N.=N,) so that
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4.22)

[[]U w '
(1,2) (o) a . (N)HY (D
lalZuKmb ( ) (l+]——0'>D$ UL+J_U(X)HX;I:< EZHqJ ilX;k

holds for any X<X,, [ with |[[|=N=N, and k=N
(C) For any X<X, and ! with |I|=N=N,, we have

E(l 3)b(a)< ) [l]"

o1 =17 sm Pol+7— 0’)
< 5__1 Xo ”‘Z](N)”(l.) (l 3) Hb(o)”(l) Nlo‘l m( )
- XO*X o 0'|:a|<0 X

Since |a| <0 and |o|<m in this case, for any e; with 0<e;<e,—e;, there is
=N such that

(4.23)

I ¢ )
WZ\;;’Zb(")(x)—‘z%:;)Dz“UHj_g(x)U Yk < 53[[CU(N)H§;),€
Jai<o Pr -

holds for any X<X,, =k, and N=N,.
(D) For any X<X,, k=k, and | with |/|=N=N,, we have,

1 2(1,4)b(a)(x) [l]" D.2U,.. <x>‘i(l)
! Igrlli!ijjlém Pn(l+j—o0) ¥ e ' Xk
X, b \lai
SO UM SO b N :
Xo—X T ’ (X)

Since |a|<0 in this case, for any fixed N (=N,) we can take 2(X,, N)eN
so that

(4.24) 1B (x; D) Zhex, mr <1
holds for and X< X,. O

PROOF OF PROPOSITION 4.2. (i) Let the coefficients of L, belong to
G*(X,, Ty;0; m), and take positive constants R,, &, and N,=N as in Lemma
4.3, (i). Then by taking X,=R, and T,=¢;R,", the mapping (4.4);, is bijective.
To prove this, we consider the case r>0. In this case, it holds that

&(X,, Ty;m[Ni]= N GR, &,R™;0; m[N,],
0<R<R;

because GXX, T;0;mCGYX’', T';0;m) for any X'<X and T'<T. Let us
consider the equation,

LaPRU(x, ) = F(x, he®*(X,, T1; m)[N.].

Note F(x,t)eG(R, &,R"; 0; m)[N;]JCG’ (R, ¢, R"; k; m)[N,] for any R<R,
and k=N. Then by Lemma 4.3, (i), the above equation has a unique solution
U in G*(R, ¢,R"; k; m)[N,], if we choose sufficiently large k2=N. Hence it
belongs to G°(S, &,S7; 0; m)[N,] for any 0<S<R. This proves that the uni-
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que solution U exists in & °(X,, T,; m)[N.].

It is the same in the case »=0, so we omit the proof.

(ii) Since the case s,<s< oo is the same as above, we consider the case s=oo.
Let the coefficients of L, belong to GY(X,)[[t]] and take X, and N, as in
Lemma 4.4. Since G~(X,, To; m)=0(|x[|<<X)[[t]], we have to prove the bijec-
tivity of the mapping,

L P3Ol x| <XOLEIIIN ] — ol x| <X)LLEILN]

Note that O(|x | <X)=Nx,cx,G(X:) and G(X:)CTGHX,; £)CTGH(X,) for any
k=N and X,>X,>0.
Let us consider the equation,

LnPRU(x, t) = F(x, t) € Ol x| <XDL[ZIILN] -

Since F(x, H)eGYX)[[t1I[N,.] for any X,<<X,, the coefficients {U,(x); [{|=N}
(N=N;) of formal expansion of U(x,t) are uniquely determined in
GY(Xy; k(X,; N)) by Lemma 4.4. Hence U(x, )eGYX)H[[t]][N,] for any X,
with X,<X,. This proves our assertion. 0

5. Proof of Theorem 1.2.

We shall prove the following theorem, which is a precise form of Theorem
1.2,

THEOREM 5.1. Let L, and s, be as in Theorem 1.2 and the conditions in
Theorem 1.2 are satisfied. We assume the coefficients of L. belong to
G'(Xo, To; 0;m) (s9<s=00).

(i) Let us consider the case s=s,. Then there are positive constants X, and
T. such that the mapping,

(5.1, Ln:@&X,, Ty;m)—> &°(X,, T,; m)

is bijective.
(ii) Let us consider the case s,<<s<co. Then there is a positive constant X,
such that the mapping,

(6.1)s Ln:®(X,, To;m)—> & Xy, To; m)

is bijective.
(iii) Let the coefficients of L., belong to C[[x,t]]. Then the mapping,

(5.2) L,:C[[x,t]]—> C[[x,t]]
is bijective.

The proofs of (i) and (ii) are obvious, because Proposition 4.2 holds by put-
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ting N;=0. Indeed, it is sufficient to notice the following inequality obtained
from the conditions (1.9) and [1.10).

L1,
(o) ==Y
(5.3) |a|=w‘|g2m,1a\=0 ]ba](())] | Pp(l+7—0)] <l

for any /= N4

PROOF OF THEOREM b5.1. (iii) By the condition (1.9), the mapping,
P, :C[[x,t]]—C[[x, t]] is bijective. Hence, it is sufficient to prove the uni-
que solvability of the equation,

(5.4) LnP7U(x, t)=F(x,t)e C[[x, t]1],

in C[[x, t]]. For that purpose, we set

(5.5) L.P3t=1-C, C=3%C,.
Here C,; (1<£i<4) are defined as follows.
C,= > 0bf;’,-)(x)z‘C’DJf“DJP;n1 .
logi=ljism,lal=
Co= 2 b (x)t°D,*DJI P .
tai=1jlsm, a1<0
Cy= > b&(x)t°D.*DJ P37 .

loi=1j1>m, la|+1jlsm
C4 = R(x) t; D.Z" Dt)P;nl .

We set U(x, )=2Ugxft'/BU and F(x, )=X Fgxft'/B1!. Then by the ex-
pression of L,P3, we have the following relations.

— _ (‘B’l) (o) __i]a___ i
(5.6) P = Ui 2 b O p g gy Usrenone
—RED(U; 171<181, [nl=111)
—8EDU 5 n] <)),
where the summations are taken over (o, a, j) such that f+a=N? and I+j—0¢
eN? ([=0).

By this relation and we can see that the coefficients of the formal
power series of U(x, t).

t(Uﬂl; |Bl=M, |l|=N) < Ceann

(d(M, N)=%{(B8, )eN?*; |B|=M, |[|=N}) are uniquely determined by the
principle of contraction map in C¢“¥_  In fact, we use double induction on
M and N as follows. For a fixed NN, we solve {Ug; |BI=M, [{|=N} by
induction on M= N, and proceed next N. We omit the detail, since it will be
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done easily. O

REMARK 5.2. Under the assumptions in [Theorem 1.1, we can prove the
existence of N,= N for which the mapping,

Lyn:CLLx, t1IIN,] —> C[[x, tJ][N,]

is bijective. The proof is the same as above by using the expression of
L. P
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