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Introduction.

Let G be a connected Lie group, dg a left Haar measure on G and = be an
irreducible unitary representation of G on a Hilbert space 4. Then for an
integrable function ¢ on G the Fourier transform with respect to z is defined

as the integrated operator n(gp):SGﬂ(g)(p(g)dg. As is well known, if G is semi-

simple or nilpotent, then x(¢) is a compact operator on 4 for any irreducible
representation z and any integrable function ¢. But otherwise, z(¢) is not
always compact, thus characterization of ¢<=LY(G) such that w(¢) is compact
is an important problem in representation theory for solvable Lie groups.

In [7], Khalil determined such functions for the ax-+b group by the “mean
value over the subgroup of translations” (Example 3.1). In this paper we
generalize this result to transitive groups of affine automorphisms on Siegel
domains. More precisely, we treat connected and simply connected Lie groups
G whose Lie algebras g are normal j-algebras (Definition 1.1l) and their square
integrable representations.

Our characterization is, roughly speaking, based on conditions of zero-sets
of partial Euclidean Fourier transform on the abelian normal subgroup G,=expg;
(under the notations of 1.5). Identifying G with g, xX(G,\G), we take the
Euclidean Fourier transform ,p of ¢<=L'(G) on g,-part, which is a function
on g¥x(G,\G). On the other hand, the unitary dual G of G being parametrized
by coadjoint orbits of G on g*, square integrable representations correspond to
open orbits, whose union is dense in g*. For such a representation = of G,
let 2 be the corresponding open orbit, d2 be its boundary in g*. Considering
the natural projection p: g*—g¥ defined by p(/)=I|,, (restriction of / to g,), we
show that n(p) is compact if and only if .o vanishes on p(082)x(G,\G)
(Theorem 2.2).

In section 1, we summarize preliminary results on structures of normal
j-algebras and unitary representations of their corresponding groups. Our
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criterion for compactness is proved in section 2, and at the same time we verify
that n(¢p) is compact if and only if x,(p)=0 for all /=082, where x; is the
representation of G corresponding to the orbit G-/. Finally we give examples
in section 3.

1. Preliminaries.

DerFINITION 1.1. A triple (g, 7, fo) is a normal j-algebra if
(a) g is a real completely solvable Lie algebra (i.e., g admits a decreasing
series of ideals g; such that dimg;/g:+,=1),
(b) j:g—g is a complex structure (i.e., j*=—1),
(¢) ¢ ={Y-++/—1;Y ;Y &g} is a Lie subalgebra of g€,
(d) fo.=g* has the properties
1) f«(Y, s ;YH>0 for all Yeg—{0},
2) folg™, 671 = {0}.

ExaMPLE 1.2 (ax+b algebra). Let g be the Lie algebra of the ax+b group

G:{((a) ’i) a, bER, a>o}, that is, g=RX+RY, where X:(é 8) Y:(g (1))

Define a linear map 7 on g by jX=-Y, jY=X, and a linear form f, by
fo(X)=0, fo(Y)=—1. Then the triple (g, j, fo) is a normal j-algebra.

ExampPLE 1.3. Let g=R-span{X,, X,, W, Z, Y,, Y,}, where non-trivial
bracket relations are;

(X, Wi=—g IV, [X, Z]=52Z, [X, V.=V,

1 1
[X27 V‘/]:EW: I:XZ) Z]:-Q—Zy [:X2) YQ]:Y2’

[VV’ Z]:YQ; ]:VV, Y1]:Z.

Define a linear map ; by jX,=-Y,, jXo=—Y,, ;W=—-Z, jZ=W, ;Y ,=X,,
7Y.=X,, and a linear form f, by fo¥ 1 )=FfoY)=—1, fo(Z)=fo(X)=fo(X:)=
fo(W)=0. Then (g, s, fo) is a normal j-algebra. g can be realized as a sub-
algebra of 4x4 real matrix algebra (with ordinary bracket operation) by

X w 0 v,
21X+ 2. X0 FwW+2Z+9,Y 1+ 9,Y o= 8 (Xl—I—OXz)/Z?;CU ;
1 1

0 0 00
for x,, xe, w, 2, v1, ¥2.=R.

REMARK 1.4. Regarding a normal j-algebra (g, 7, fo), it is known that the
group G=expg can be realized as an affine automorphism group acting simply
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and transitively on a Siegel domain of type II, and vice versa. (In Example 1.3,
the corresponding Siegel domain is the Siegel upper-half plane of degree 2.)
For details concerning homogeneous Siegel domains, we refer the reader to

[6], [10], for example.

1.5. Here we summarize the fundamental structure of a normal j-algebra
(see [10, Theorem 2, Chapter 2] or [11, Theorem 5.137). Let (g, 7, fo) be a
normal j-algebra. Let A be the symmetric positive definite bilinear form A(X,Y)=
fo[X, jY]) on g, and let a be the orthogonal complement of H=[g, g] with
respect to 4. Then a is an abelian subalgebra of g, g=a-0, and the adjoint
representation of a on §) is real diagonalizable. Thus we have a decomposition
of §) into root spaces,

h= 2 g%,

aeax

where g*={X&h; [A, X]=a(A)X for all A=a}, and only finitely many g¢%’s
can be non-zero.

Let {g**#}, 1< E2<r be those root spaces for which j(g*#*)Ca. Then dimg*+=1
and r=dima (r is called the rank of g), and we can order a,, ---, @, in an
appropriate way so that all the other roots are of the form

(am+ak>/2: (am"ak)/z 1§k<m§7’,
a,/2 165y
(not all the possibilities need occur). Let

go=a+ 3 gUmTIR,
lskLmsr

Gz = 2 g%#/?,
isksr

Then
[gw g;l] C gy+,u

(with the convention that if y+u+0, 1/2, nor 1, then g¢,.,={0}), and ;(8,.) =
12, J(80) = g;. More specifically,

j(glam+ar) /2y = glam=ag? 1<k<m<r,
Jger®) =g*x*  1sk=r.
Let U, be a non-zero element of g*# such that [jU,, U,]=U,, then
a;(jU,) = 8, (Kronecker’s delta) 1<k, IZr.
1.6. We next consider unitary representations of G=exp g. Since G is

exponential (i.e., the exponential map from g to G is a diffeomorphism), the
unitary dual G of G is parametrized by orbits of the coadjoint action of G on
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the dual space g* of g. Here we give an outline of the parametrization of G
for an exponential group G. To a coadjoint orbit 2, a class @(2)=G corre-

sponds in the following way: Let f<=£2, then there exists a subalgebra b=5;
satisfying the following conditions.

(1) (o, 81)=1{0}.

(2) b has the maximal dimension among all subalgebras satisfying (1).
(Such b is called a real polarization at f.)

(3) (The Pukanszky condition) The affine space b++f, where b*={/=g*;

[1,=0}, is contained in £.
Let ===n(f, ) be the representation induced by the character X (expX)=
e¥=1/X of B=expb. Then r is irreducible and its equivalence class is inde-
pendent of f=Q and b. Thus, f—=(f, b) gives a map @ from coadjoint orbits
g*/G to G. O is bijective and called the Kirillov-Bernat map [2].

We now return to a normal j-algebra (g, j, fo) of rank » and G=expg.
Then G has open coadjoint orbits, whose union is dense in g*. They corre-
spond to the classes of square integrable representations of G [4]. The follow-
ing proposition describes these open orbits. Retaining the notations in 1.5, we

note that the subgroup G,=expg, acts on g¥ by the coadjoint action since g,
is an ideal in g.

ProrPOSITION 1.7 [8, Proposition 1.4], [12, Proposition 3.3.1].
(1) Gy has open orbits in g¥, and the union of open orbits is dense. More
precisely, noting the direct sum decomposition ¢,= >3 RU D > gom+*wi?
1=si=r

tsk<msr

define U¥cg¥ by U¥U)=0:1 and U¥|Gcap+apn=0, for each i 1<i<r). Then
fa;—_ P EiUf, ecI={(ey, -, &)} g;=+1}

1sigr

form a system of representatives of open orbits of G, in g¥.
(2) According to the direct sum decomposition 8§=8,D8:,:D8,, let us regard
g*=g¥Pg¥.Dg¥. Then the open coadjoint orbits in g* are

G'fe":g?'lL'gik/?Jl'Go'fs, =V

1.8. Lastly we introduce the construction of real polarization due to M.
Vergne [2], to be used later. Let g be a completely solvable Lie algebra, and
(8:)osisn=dimg @ flag of ideals (i.e., (8;) is an increasing sequence of ideals in g
such that dimg,=7). Then we get a real polarization b at f<g* in the follow-
ing way: Denote by 4, the alternative bilinear form A,(X, Y)=/f([X, Y]) on g,
and by 4; the restriction of Ay to g;Xg;. Let gld,)={Xeg,; 2,(X, Y)=0 for all
Y &g}, the radical of 4;. Then, b=37,9(2,) is a real polarization at f satisfy-
ing the Pukanszky condition.
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2. A characterization of functions transformed into compact operators.

Let g be a normal j-algebra of rank r, G=expg, dg a left Haar measure on
G, and m be an irreducible unitary representation of G corresponding to an
open orbit £. We retain the notations of Theorem 1.5. In this section, we
will characterize L!-functions whose Fourier transforms with respect to = are
compact operators.

DEFINITION 2.1. Let ¢&L'(G) and dX be a Lebesgue measure on g,. We
define the partial Euclidean Fourier transform %, on G,=exp g, by

glga(l)(g):gglem“' Dp((exp X)g)d X,

for /[=g¥ and (almost everywhere) g=G.

Since F,¢(I)X(g:g)=e™V1PF,0(I)(g) for all g,=expY €G,, | F.10()g)ds(g)| =
LNG\\G, d.g) for a fixed [, where d,g is a right Haar measure on G,\G and
4¢ is the modular function of G.

We will prove the following theorem.

THEOREM 2.2. Let g be a normal j-algebra of rank r, G=exp ¢, dg a left
Haar measure on G, (z, %) an irreducible representation of G corresponding to
an open orbit Q in g* with usual topology. Denoting the closure of £ by cl(),
let 0Q2=cl(Q)\Q. And we write m, for the irreducible representation of G corre-
sponding to an orbit G-I, where l=g*. Then for ¢=LXG, dg), the following
claims are equivalent.

1. =#(p) is a compact operator on 4.

2. F.0()g)=0 for all l,=l|y, such that [€08.

3. mle)=0 for all [=08.

REMARK 2.3. From Arsac’s result [1], n(¢) is compact if and only if
a(0)=0 for all c=({x}\{x}), where {z} denotes the closure of {x} in G rela-
tive to the Fell topology (i.e., o< {x} if and only if ¢ is weakly contained in
{z}). On the other side if G is an exponential group, the Kirillov-Bernat map
O :g*/G—G is known to be bijective and continuous with quotient topology on
g*/G and the Fell topology on G (see [9]). Thus claim 1 implies claim 3.

But it has not been known whether @' is continuous or not in general.

PROOF OF THE THEOREM. We will prove in Step 1 that claim 2 and claim
3 are equivalent, and in Step 2 that claim 2 implies claim 1.

Step 1. We first suppose claim 2. Take a flag of ideals by refining the
series 0Cg,Cg, and construct a polarization b, at /c0& as in 1.8. Let x; be
regarded as induced from the character X,(exp X)=evV-1"%> of B,=expb,. m,is
modeled in a space of functions £ on G such that {(bg)=X,(b)(d5,(b)/4c(b))'*L(g)
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for all b= B, and g&G, with right translation; (z,(g){)(x)={(xg). Since g; is
an abelian ideal, we have g,C¥,;, so that for g,=G,, x&G,

(m(g)Q)(x) = Xu(xg1x ™ HNL(x) = Xz-1.(g1)E(x).

Let us identify G with G,X(G,\G) by taking a global section s of G,\G, and
choose the right Haar measure dg on G,\G so that 43 (g)dg=dXdg for
g=(exp X)s(g) with Xeg,, g=(G,\G). Then

(=) = | (m@OWp(e)e

— SQISGI\GXI—l.z(eXD XX (s(@NO(x)p((exp X)s(gNde(s(gNd Xd g

= SGI\GSHQD()C‘I A)(SE@ i (s(@NE(x)de(s(g))d g

(I;=I]4). The integrand is 0 from the assumption, which implies claim 3.

We next prove that claim 3 implies claim 2. For [,=[|,, [=0f2, consider
the induced representation of G from the character X,(exp X)=ev=-©-%> of G,;
r=ind&X. It is known that = decomposes into the direct integral of irreduci-
ble representations of G corresponding to coadjoint orbits which intersect the
affine space gi+/ (e.g., [3]). Now, recall that £ has the following description ;

.Q = Gf - Go-f1+9’1"/2+93k;

where f,=f|,, (Proposition 1.7). Thus 2+4g¢i=£2, and 0Q2-+gt=02, which
implies that the representations appearing in the decomposition of z correspond
to orbits included in 02. Thus claim 3 implies z(p)=0, that is, realizing 7z in
L¥G,\G) with right translation,

((@)(%)
= SQISGI\GXL(J&(GXD X)) (z(s(@v)(x)p(exp X )s(g))de(s(g)d Xdg

—_:S Gl\Ggl(P(x-l.[,)(S(g))(z'(s(g))y)(x)AG(s(g))dg

=0
for all ve L¥G,\G) and almost all £=G,\G. And then for veC3(G,\G), we
get (z(p)(é)=0 (¢ is the unit element of G,\G) since z(p)v is a continuous
function. Thus

cloXe) = | Fpl)s(@N(s(@)Aals(8)dg =0

for all v=CP(GN\G). It follows that F,p(/;)(s(¢))=0 for almost all g and claim
2 is verified. O
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Step 2. Let n=g,+g,, and N=expn, which is a normal subgroup of G,
and we have G=NG,. As in Step 1, construct a real polarization b, at f@
taking a flag of ideals which refines the series 0Cg,Cg (see 1.8). Then
8:Cb,Cn. In fact, the map F:g,—a¥; F(X)=f([-, X]), where f,=f],, is a
linear isomorphism since G,-f, is open in g¥ (Proposition 1.7) and F is the
differential of the map F: G,—g¥; F(go)=go- f1, at e (the unit element). Noting
that g, is central in n, we can thus easily see that for any ideal g’ of g includ-
ing g;, the radical of the restriction of the bilinear form A,=f([-, -]) to g’ xg’
is included in n, so that b,Cn.

Thus we regard 7=ind§ X, as induced from the irreducible representation
a:ind};’fxf of N, where B;=expb,. Noting that dimb,=1/2dim g (because the
bilinear form A; is non-singular), let {X,, ---, X, Yy, ---, Y, } be a basis for
n such that g,=R-span{X,, ---, Xn}, b,=R-span{g,, Y, ---, Y.}, and each
n,=R-span{g,, Y, ---, Y;} is a subalgebra with n; an ideal in un;,,. (Such basis
is called a weak Malcev basis.) Through the diffeomorphism @:g,+R*—N
defined by (X, vy, -+, Var)—exXp Xexp y,Y; - eXp ¥:, Y 2 €N, we transfer Euclid-
ean measures dX, dXdy, --- dy, and dXdy, --- dy,, to Haar measures dg, on G,,
db on By and dnon N respectively, and dy,+; *:- dy,, to an N-invariant measure
din on B,NN. In the sequel, we realize ¢ in 4,= L¥R*, dys4, - dys:) and
using the right Haar measure dg, on G, such that 43'(g)dg=dndg, realize =
in the space L*Ge, H4, dgo) Of K ,-valued L:-function on G,:

(m(ngo)s)(xe) = 0(xonx5")E(X0g0) = d*(n)E(x0g0)

for €= LY G, H4), n8e=G=NG,. (o denotes the representation of N in 4,
given by n—a(xenx5').) Since the normal subgroup G, is central in N, we have

(m(g1)E)Xx0) = Xs(x081%5")5(%0) = ngl-f(gl)f(xo)

for g,=G,, xo&G,. Writing y=(y,, -, ) ERY, U(y)=20(0, p), dy=dy, - dys,
for convenience’ sake, we get

(wpxx) =], |, (ngoeXxopngndotngindg,
= Sglgmks o Lavt-s(exp X)a(W W)goXxo)e((exp X)W ()g)4a(g0)d Xdydg,

= [ oo st £ )T W) T W)ECxrg0 el g dydgo.
Here we need a lemma.

LEMMA 2.4. Let B be a function on G such that B=PBxy-B., where
ByECAN), BosC(Gy) (compactly supported -continuous functions), and let
kECA(G,). Then k-n(B) is a compact operator on L*Go, K ,).
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PrROOF. Noting that #,=L*B,\N), we write £=£8(g,)=8&(go)n, for
¢€ L¥G,, 4,) with variables g,=G,, #"=B,\N. For a fixed x,=G,, define an
operator R(xo): L¥G,, H,)—4, by

R(x0)§ = SGOS(xogo>,80(go)AG(go)dgo .

R(x,) is well-defined as a bounded operator because

IR, = |

[, ErogocisBlgdelgndzs | dn

Bf\N

é SBf\NSG ls(xogo)o'z) I ngOH‘Bo 'AGHiQ(GO)de

0

:AGO(%)HEH%MO.J{UJHﬁo'AGHichU)- (*)
And we get

P = | | o n)e(rognBu(mbulgnda(endndg,

= gNgxam)R(xU)smm)dn:azowzv)le(xo)s.'

Now let {&,; ¢=1} be a sequence which converges weakly to 0 in L*G,, 4 ,).
We will prove that {£-#x(B8)§,;¢=I} converges strongly to 0, that is,

- 2(BIENEocop. o> = Saolx(xo)l2flﬂ(ﬁ)§:(xo)ll?af,,dxo

converges to 0.

From the assumption, {R(x,)%.}.c; converges weakly to 0 in 4, for each
fixed x,=G,. Since ¢*° is an irreducible unitary representation of the nilpotent
group N, which is liminal (CCR), ¢*(8y) is a compact operator on 4,. There-
fore, {g7°(Bn)R(x0)§.}er converges strongly to 0 in 4,, thatis, [(#(B)5.)(x0)lx,
converges to 0 for each x,=G,. To apply Lebesgue’s dominated convergence
theorem we now show that the integrand [&(xo)|?[(w(B)5.)(x0)l|%, is uniformly
bounded by an integrable function. Since {§,}.c; converges weakly, we have
1€.1l22ccy 5,,=Co for some positive constant C,. Then using the inequalities
lo*o(BmI=Bwnlzicwr and (x), we get

(7B Nx) o, = lle*(By)R(x0)E |,
< oo (BaIIR(x0)E ||,
SN z1emy dEExo)l oAl L2cayyCo,
ie., (@B Nx)la,=CAFXx,), where C is a constant independent of ¢. Thus

Le(xo) P [(m(BENx 0l , = C?1a(x0) | *dey(x0),

where the right hand side is a continuous function with compact support. This
verifies that [lk-w(8)§.[%2cc, «4,> converges to 0, which proves the lemma. O
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We now return to the proof of the theorem. Let ¢ be an L'-function
satisfying the condition of claim 2. In order to prove that m(¢) is a compact
operator, we show that it can be approximated (with the operator norm) by
compact operators.

Let {Kn}lmey be a family of compact sets in G, such that K,Cint(K,41)
(the interior of K, .,)and mgN K.=G,, and g, =C(G,) which satifies the following :

1, x=K,
Kn(X) = FERR e (=1 for all x=G,.
0, x&EKnn

Choose a sequence {B,},en Of continuous functions on G such that ¢ —8,l.1—0
as y-~co and ‘Bp:}]ﬁ'{:ﬂﬁxﬁg, By=C(N), Bi<C(G,), for all v. For each m
and (3, define a bounded operator zrm(,By):xm-n(ﬂy):Zf’:ﬂxm-n(‘Bw-ﬁa), which is
compact by We will show that |z(¢)—m.(B,)]—0 as m, y—oo.
Since
[7(@) =T (B = [I7(@)—a (B +117(B.) — 7w (B
= llo—Bullzie Hl(l—kn) (B,

it is sufficient to show that |[(1—kn)-7(8.)|—0. For arbitrary elements &, n of
LZ(GO) ﬂd)y

(1 =kn)-7(BLIE, NL2cay 5|

— } Sgg%((l—/cm)(xo)(n'(g)f)(xo), 77(Xo)>ﬂgdx018»(g)dg‘

o o Lo 1 raxoeg . stexp X Do =@ @)e(xog), (x>,

My
-dx, Py By((exp XDT))Bi(go)de(go)d Xdydg,

= l SR“SGOSGO(I '_Iim)(xo)<0'IO(W(y))E(xogo), 77(/\?0)>ﬂ{a
My l
- 2 FaBlagt FOT @) Bi(go)dxede(go)dydg, ;

M,
< 1. sup 1a—ra)ro) 5 7840 LT @DBHY)
R2k G ¢=1

GO oGy

o <o @ WD), o), | drdolgdydg,

MV
= SWS sup |(1—rn)(x0) 2, Fofi(ast f T W) Bl go)]

Gy xoEGy

dc(go)dyd gol&llinl . | _
(For By=C(N), F,B% is defined similarly to Definition 2.1: F,845()(n) =

S V-1t OB ((exp X )n)d X, l=g¥, n=N.) Here we have
81
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sup
29EG

(L—kn)(x0) 3 F: (x5 £ T @)Bi(80)

M

iA

”l T, 85T (y))Bi(g0)

=

sup
lEGo FNEZLSD

S} G 8T @)B g0 — F o T @)go)

=1

A

sup
IEGy FNEZLSD

-+ sup | gl@(l)(w(y)go)! .

IEGy FNEZL D
Writing
2T (Y)go) = sup | F10(D T (Y)go)! ,

IEGo FNEZL T

for brevity, we have

[A—rm)m (B

> F BT @B~ FroOT W)g0)

=1

< S S { sup
R2E )G -1
0 leGo fINK - f1)

+7 (¥ y)ga)t do(go)dyd go
< 1B—pliot|,,, | 7@ Weduedydg,.

To show that the second term converges to 0, we assert that for almost

all ¥(y)g.,
2@ @)g)) —> 0 as m—co.

In fact, for each fixed ¥(y)g,, the sequence {7 (y)go)}ney converges as
m—oo since it is nonnegative and monotonically decreasing. Suppose it con-
verges to ¢>0. Then we can choose a sequence {/,=!.(¥(¥)go)} nenx in g¥ such
that (n&(Go fINKZ - f1) and | FioUln) ¥ (y)g.)|=e for all meN. Since the
function [—F, ()T (y)g,) on gf tends to 0 as [—co for almost all ¥'(y)g,,
{{n}nen is bounded, and choosing a subsequence, if necessary, we may assume
that {l.}mey converges to a point /,=gF¥ as m—o. Then [,€d(G,-f)). In
fact, if [,=G,- f,, there exists a number m, such that (= K3!- f, for all m>m,,
which contradicts our definition of /,. Noting that (=% ,p()¥(y)g,) is continu-
ous, we have

| F 10U )T @)g0)] —> | F10(l) T (Y)go) | =€ as m—oo

for almost all ¥(y)g,. This contradicts the condition of claim 2, and our
assertion is verified.
From the  inequality Suplfr’xso(lxl’f(y)go)légg lo(exp X)W (y)go)|d X,
1

T (@)gode(ge) is uniformly Ibounded by the integrable function
[, 1¢(exp X W @)g0IdXde(ge) on R*xGa Thus | | 7a@@gde(godydg,
1
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—0 as m—oo. Hence [|(1—kn) 7(B.)I—0 as m, v—co. This gives claim 1, and
the proof of finishes. O

COROLLARY 2.5. Let G=expg, © and Q be as in [Theorem 2.2. Then the
kernel of the Fourier transform with respect to m is

{o= LNG); F.9U:)(g)=0 for all 1,=l|,, such that l=Q}.

ProOF. The assertion is easily verified in a similar way to Step 1 of the
proof of 0

3. Examples.
We first refer to Khalil’s result for the ax+b group.

ExampPLE 3.1 [5], [7]. Let G be the ax+b group (Example 1.2). We denote
an element gz(g 11)) of G by (b, a), then dg=a"%dbda is a left Haar measure

of G. The coadjoint orbits are (1) a single point A.X*, A=R, (2) an open half
plane Q,={BX*+rY*;7r>0, B, r=R}, Q_={pX*+rY*;7r<0, B, r=R}. Let
7+, T- be representations corresponding to £2., £_ respectively. They are all
the infinite dimensional irreducible representations of G (since orbits of (1)
correspond to characters). Then for ¢< LY(G) the following conditions are
equivalent.

(a) Both z.(¢) and =_(¢) are compact operators.
(b) SRgp(b, a)db=0 for almost all ¢< R¥.

Remark that 092,=02_=RX* in this case, from which the above statements
follow.

ExaMpLE 3.2. Let g=R-span{X,, X,, W, Z, Y, YV,} be the Lie algebra of
Example 1.3 and G=expg. Then g=g,+4¢; (semi-direct), where g,=R-
span{X,, X,, W}, g.=R-span{Z, Y,, Y.} (see 1.5). In this case, there are four
open orbits 2; /=1, 2, 3, 4) described as follows: Defining the polynomials
P,, P, on g* by

P(f) = fV DF(V )~ (27,
P(f) = f(Y2),

we have

2,
2,
2,

Il

{I=g*; P()>0, A()>0},
{leg*; P(1)<0, P()>0},
{l=g*; P(D>0, P(1)<0},

Il



258 J. INOUE

2, ={leg*; P(D<0, P()<0}.

Let p:g*—g¥ denote the natural projection defined by restriction, and
{Y$, Y¥, Z*} be the dual basis of {Y,, Y., Z} (regarded as a basis of g,). Then

p(02)={l=g¥; P\()=0, P()=0}, i.e., the cone obtained by
rSA)=r(Y*¥+Y¥H+cos§(Y¥—Y ¥+~ 2 sin0Z*); r=0, 06 <2r.

p(02,)=p(02,)UY 5, where Yi3={l=g¥; [(Y,)=0}.

p(0R2,)={l=g¥; P,(1)=0, P,([)<0}, i.e., the cone obtained by
rS_(@)=r(—Y¥+Y$)+cos Y ¥—Y )+~ 2 sinZ%); r=0, 0<0<2x.

pO2)=p(02,) Yz .

According to the realization of g in Example 1.3, we regard G as follows:

G = G,Gy=GexpRWexp(RX,+RX,)

1
/rerz we(rl"'xz)ﬂ E_wze«'cl Y

={g =1 y2, 2, W, Xy, Xp)=| 0 eF1FT2 etz |;
0 0 etr
0 0 0 1

X1, Xo, W, Z, Y1, Y2ER}.

Then the modular function of G is de(g)=e~*1"%*2, and we use the left Haar
measure dg=e *17%%2dy,dy,dzdwdx,d x,, where dwdx,dx. is a right Haar measure
on G,.

Let =; denote the representation corresponding to 2;, 1</<4, and JI(x;)=
{o= LY(G); mi(¢p) is a compact operator}, then we have

I(m)={p= LYG); F1p(rS+(0))w, x,, x:)=0 for all »=0, 0=<0<2rx
and dwdx,dx,-almost all (w, x;, x2)},
I(ma)={o= LNG); F1oY F+uZ* w, x1, x2)=0, F10(rS(0))w, x1, x2)=0
for all ¢, ue R, r=0, 0£6<2x and almost all (w, x;, x:)},
I(m)={p= LYG); F1o(rS_(0))w,, x,, x:)=0 for all »=0, 0<0<2x
and almost all (w, x;, x2)},
I(z)={o= LY(G); F.1otY¥+uZ*Nw, x., x:)=0, F.0(rS_(0))w, x,, x5)=0

for all t, ueR, »=0, 0<0<2x and almost all (w, x,, x2)},
and

cg<771):35(752), I(m3)DI(7y).
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