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Rings of automorphic forms which
are not Cohen-Macaulay, II
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In [2], [3], Eichler posed the question whether or not a ring of automorphic
forms (particularly, Hilbert and Siegel modular forms) is Cohen-Macaulay (C.-M.

for short). Freitag [4] first gave the negative answer to the question in the
case of a ring of Hilbert modular forms of dimension $\geqq 3$ . In our previous
papers [18], [19] we have surveyed the question, and as for Siegel modular
forms we have got the following results. Let $\Gamma_{n}$ $:=Sp_{2n}(Z)$ , and let $\Gamma_{n}(l)$ be
its congruence subgrouP of level $l;$ { $M\in\Gamma_{n}|M\equiv 1_{2n}$ mod $l$ }. For a congruence
subgroup $\Gamma$ of $Sp_{2n}(Z)$ let $A(\Gamma)=\oplus_{k\geq 0}A(\Gamma)_{k}$ denote the graded ring of Siegel
modular forms for $\Gamma,$ $A(\Gamma)_{k}$ being the vector space of modular forms of weight
$k$ . Let $A(\Gamma)^{(r)}$ denote the ring $\oplus_{k\equiv 0(r)}A(\Gamma)_{k}$ for an integer $r$ . Then

(i) $A(\Gamma_{2}(l))^{(r)}$ is not C.-M. for any $r$ if $1\geqq 6$ .
(ii) Let $\Gamma$ be a neat congruence subgroup of $Sp_{2n}(R)$ with $n\geqq 3$ . Then

$A(\Gamma)^{(r)}$ is not C.-M. for any $r$ .
(iii) $A(\Gamma_{n})^{(r)}$ is not C.-M. for any $r$ if $n\geqq 4$ .
Concerning $A(\Gamma_{n})(n\geqq 1)$ , it is only a remaining problem if $A(\Gamma_{3})^{(r)}$ is C.-M.,

since $A(\Gamma_{1})^{(r)},$ $A(\Gamma_{2})^{(r)}$ are known to be C.-M. for any $r$ , or at least it is an
easy consequence of the structure theorems of $A(\Gamma_{1}),$ $A(\Gamma_{2})$ (cf. Igusa [12], [13]).

In the present paper we show that $A(\Gamma_{3})^{(r)}$ is not C.-M. for any $r$ .
$A(\Gamma_{n})$ $(n\geqq 3)$ has been shown to be U.F.D. by Freitag [5], [6] (cf.

Tsuyumine [20]), and so they furnish negative examples of the question whether
U.F.D. is C.-M. which is posed by Samuel [16]. In the case of characteristic
$0$ , Freitag and Kiehl [7] first gave the negative example to this question (see

also S. Mori [15]).

Our method to prove that $A(\Gamma_{3})^{(r)}$ is not C.-M. is as follows. If $A(\Gamma_{3})^{(r)}$ is
C.-M., then the Satake compactification $X_{3}^{*}$ of the quotient space $H_{3}/\Gamma_{a}$ would
be a C.-M. variety, and so the Serre duality would hold on it. Then
dim $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})$ must be equal to one since $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})$ is dual to the group of
global sections of the coherent sheaf on $X_{3}^{*}$ corresponding to modular forms of
weight four, and since there is the unique modular form of weight four up to

constant multiples. Thus to prove our assertion it is enough to show the
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vanishing of $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})$ , which is done by making use of Igusa’s desingulari-
zation [14].
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1. Let $Z,$ $R,$ $C$ denote as usual, the ring of integers, the real number field,
the complex number field respectively. We denote by $M_{k.l}(*)$ , the set of $k\cross l$

matrices with entries in $*$ , and by $M_{k}(*),$ $SM_{k}(*)$ , the set of square matrices of
size $k$ , the set of symmetric matrices of size $k$ respectively. $1_{k}$ denotes the
identity matrix of size $k$ .

Let $H_{n}$ be the Siegel space of degree $n;\{Z\in M_{n}(C)|{}^{t}Z=Z, {\rm Im} Z>0\}$ , and
let $\Gamma$ be a congruence subgrouP of $Sp_{2n}(R)$ . $\Gamma$ acts on $H_{n}$ by the usuaI modular
transformation

$Zarrow MZ=(AZ+B)(CZ+D)^{-1}$ , $M=(\begin{array}{l}ABCD\end{array})\in\Gamma$.

Let $f$ be a holomorphic function on $H_{n}$ . $f$ is called a (Siegel) modular form
of weight $k$ for $\Gamma$ if it satisfies

$f(MZ)=|CZ+D|^{k}f(Z)$ for $M\in\Gamma$

\langle when $n=1$ , we need an additional condition that $f$ is holomorphic also at
cusps). We denote by $A(\Gamma)=\oplus_{k\geqq 0}A(\Gamma)_{k}$ (resp. $S(\Gamma)=\oplus_{k>0}S(\Gamma)_{k}$ ), the graded
ring of modular forms (resp. the graded ideal of cusp forms).

Let $X$ be the quotient space $H_{n}/\Gamma$, and $x*$ be its Satake compactification,
which is a normal projective variety isomorphic to Proj $(A(\Gamma))$ . Set-theoretically
$X^{*}$ is the union of $X$ and of the similar pieces $H_{n_{1}}/\Gamma’(n_{1}<n)$ as X. $H_{n_{1}}/\Gamma’$

as a cusp of $x*$ , is called an $n_{1^{-}}cusP$ . Up to conjugacy, we may assume that
this cusp is corresponding to the limit of

$(\begin{array}{ll}Z_{1} 00 \lambda 1_{n_{2}}\end{array})$ , $Z_{1}\in H_{n_{1}}$ , $n_{1}+n_{2}=n$ ,

as $\lambdaarrow\sqrt{-1}\infty$ . Let us decompose $Z\in H_{n}$ as

\langle 1) $(\begin{array}{ll}Z_{1} \tau{}^{t}\tau Z_{2}\end{array})\in H_{n}$ , $Z_{i}\in H_{n_{i}}$ , $\tau\in M_{n_{1},n_{2}}(C)$ .

Let us fix a point $x$ of an $n_{1}$ -cusp corresponding to $Z_{1}\in H_{n_{1}}$ . Here we assume
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that $\Gamma$ is a normal subgroup of $\Gamma_{n}$ . Then $\Gamma_{n}$ acts on $x*$ . The stabilizer
subgroup $P_{n_{1}}$ at $x$ of $\Gamma_{n}$ is generated by $\Gamma$ and matrices of the form

(2) $(_{0}^{A}A_{21}^{1}C_{1}A_{2}000$ $D_{1}DB_{21}^{1}B_{2)}BB_{12}0D_{2}^{12}\in\Gamma_{n}$ with $M_{1}=(\begin{array}{ll}A_{1} B_{1}C_{1} D_{1}\end{array})\in\Gamma_{n_{1}}$ , $M_{1}Z_{1}=Z_{1}$ .

Let $W_{n_{1}}$ (resp. $U_{n_{1}}$) be the group generated by $\Gamma$ and by matrices of the form

( $v_{0}1_{n_{2}}$ $1_{n_{1}}b-1_{n_{2}}B_{2}{}^{t}b’\iota_{v})\in\Gamma_{n}$ $(resp$ . $(\begin{array}{lll} 0 01_{n} 0 B_{2}0 1_{n}\end{array}))$ .

Then we have inclusions of normal subgroups;

$U_{n_{1}}\subset W_{n_{1}}\subset P_{n_{1}}$ .
If $\Gamma=\Gamma_{n}(l)$ , then $U_{n_{1}}/\Gamma_{n}(l)$ (resp. $W_{n_{1}}/U_{n_{1}}$ , resp. $P_{n_{1}}/W_{n_{1}}$) is canonically iso-
morphic to $SM_{n_{2}}(Z/lZ)\cong(Z/lZ)^{n_{2}(n_{2}+1)/2}$ (resp. $(Z/lZ)^{2n_{1}n_{2}}$ , resp. {the stabilizer
subgroup of $\Gamma_{n_{1}}/\Gamma_{n_{1}}(l)$ at the image point of $Z_{1}$ in $H_{n_{1}}/\Gamma_{n_{1}}(l)$ } $\cross GL_{n_{2}}(Z/lZ))$ .

2. We discuss the space of differential forms on the fiber space over $x*$ ,
which is of use to estimate the dimensions of cohomology groups later. Let $n$

(resP. m) be a Positive (resp. nonnegative) integer. Let $\Gamma$ be a congruence
subgroup of $Sp_{2n}(R)$ . On $H_{n}\cross M_{n.m}(C)$ , there is a group of automorphisms
$(M, u),$ $M\in\Gamma,$ $u\in M_{2n,m}(Z)$ such that

$(Z, \zeta)arrow(M, u)(Z, \zeta)=(MZ,{}^{t}(CZ+D)^{-1}(\zeta+(Z, 1_{n})u))$ , $M=(\begin{array}{l}ABCD\end{array})$ .

The action is properly discontinuous and the quotient space $W’$ is a normal
algebraic variety. $W’$ is a fiber space over $X=H_{n}/\Gamma$, whose generic fiber is a
Kummer variety or an abelian variety according as $\Gamma$ contains $-1_{n}$ or not. In
tbe latter case the fiber of a point in $X$ corresponding to a generic $Z\in H_{n}$ , is
an abelian variety which is a Product of $m$ copies of an abelian variety
$C^{n}/(Z, 1_{n})Z^{2n}$ .

Let $Z=(z_{ij})\in H_{n}$ . Let us put $\zeta=(\zeta^{1}, \cdots , \zeta^{m})\in M_{n.m}(C)$ and ${}^{t}\zeta^{i}=(\zeta_{1}^{i}, \cdots , \zeta_{n}^{i})$ ,
and let $\omega$ be the differential form

$\omega=(dz_{11}\wedge dz_{12}\wedge\cdots\Lambda dz_{nn})\wedge\bigwedge_{i=1}^{m}$ ( $d\zeta_{1}^{i}\wedge\cdots$ A $d\zeta_{n}^{i}$).

Then the formula $(M, u)\omega=|CZ+D|^{-m-n-1}\omega$ holds for $M=(\begin{array}{l}ABCD\end{array})$. Let $W_{0}’$ be

the smooth locus of $W’$ , and $W_{00}’$ , the complement of the set of images of fixed
points. Then $W_{00}’\subset W_{0}’$ ( $W_{00}’\subsetneqq W_{0}’$ occurs possibly only when $n\leqq 2$). If $\overline{\mathcal{L}}(m+n+1)$
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denotes the coherent sheaf on $W’$ which is the inverse image attached to the
canonical projection of $W’$ to $X$, of the coherent sheaf $X(m+n+1)$ on $X$ cor-
responding to modular forms of weight $m+n+1$ , then $\mathcal{L}\tilde{(}m+n+1$) $|_{W_{00}’}$ is
isomorphic to the canonical invertible sheaf on $W_{00}’$ by $farrow f\omega,$ $f$ being a section
of $\mathcal{L}(m+n+1)$ . Further we have the canonical inclusion

$K_{W_{0}^{\prime=\tilde{\mathcal{L}}(m+n+1)|_{W_{0}’}}}$ ,

$K_{W_{0}’}$ denoting the canonical invertible sheaf.

LEMMA 1. Let $\phi:Warrow X^{*}$ be a morphism of projective vaneties which is an
extension of $W’arrow X$. SuPpose that $W$ is $a$ C.-M. vanety and that $W-W_{0}$ is of
codimenszm at least two, $W_{0}$ being the smooth locus of W. Moreover suppOse that
the fiber of each $(n-1)$-cusP is of codimenszon one in W. Then

dim $H^{n(n+1)/2+mn}(W, O_{W})\leqq\dim S(\Gamma)_{m+n+1}$ .

PROOF. Since $W$ is a C.-M. variety, we have an isomorphism
$H^{n(n+1)/2+mn}(W, O_{W})^{\vee}\cong H^{0}(W, \omega_{W})$ by the Serre duality theorem where $\omega_{W}$ denotes
the dualizing sheaf. If $K_{W_{0}}$ denotes the canonical invertible sheaf on $W_{0}$ , then
the homomorphism $H^{0}(W, \omega_{W})$ to $H^{0}(W_{0}, K_{W_{0}})$ induced by the restriction is an
isomorphism by Grauert-Riemenschneider [8], Satz 3.1. So it sufficies to show
dim $H^{0}(W_{0}, K_{W_{0}})\leqq\dim S(\Gamma)_{m+n+1}$ . Let $\eta\in H^{0}(W_{0}, K_{W_{0}})$ . On $W_{0}\cap W’$ we can
write as $\eta=f\omega$ with $f\in A(\Gamma)_{m+n+1}$ since $K_{W_{0}}|_{W_{0}\cap W’}\cong \mathcal{L}\tilde{(}m+n+1$ ) $|_{W_{0}\cap W’}$ . By our
assumption, for each $(n-1)$-cusp, there is a nonsingular point $w$ of $W$ which is
mapped into the $(n-1)$-cusp by $\phi$ . We may assume that $\phi(w)$ is a limit point
as $Z_{2}arrow\sqrt{-1}\infty$ using the notation (1) with $n_{2}=1$ . $f$ has the Fourier-Jacobi
expansion $f(Z)=\Sigma_{k\geq 0}\theta_{k}(Z_{1}, \tau)\mu^{k}$ where $\mu=\exp$($2\pi\sqrt{-1}$ a $z_{nn}$ ) for a suitable
rational number $a$ . Then

$f\omega=(2\pi\sqrt{-1}a)^{-1}(\mu^{-1}f)$ ($dz_{11}\wedge\cdots\Lambda dz_{n}$ $n- l^{\wedge d\mu)\wedge\bigwedge_{=1}^{(d\zeta_{1}^{i}\wedge}}m\ldots$ A $d\zeta_{n}^{i}$).

So $f\omega$ is not extendable to a neighborhood at $w$ unless $\theta_{0}(Z_{1}, \tau)=0$ , in other
words, $f$ vanishes at the $(n-1)- cusp$ . Thus $f$ is a cusp form. Our assertion
follows immediately from this. $q$ . $e$ . $d$ .

REMARK. Let $\Gamma’$ be a congruence subgroup of $sp_{2n}(R)$ having $\Gamma$ as a
normal subgroup such that $\Gamma’/\Gamma$ acts on $W$ . Let $V$ be the quotient of $W$ by
$\Gamma’/\Gamma$. Then we have

$H^{n(n+1)/2+mn}(W, O_{W})^{\Gamma/\Gamma}’\cong H^{n(n+1)/2+mn}(V, O_{V})=S(\Gamma’)_{m+n+1}=S(\Gamma)_{m+n+1}^{\Gamma’/\Gamma}$

(see Grothendieck [9], Cor. to Prop. 5.2.3. and Th\’eor\‘eme 5.3.1. for the isomor-
phism between cohomology groups). In particular, if $S(\Gamma’)_{m+n+1}$ is $\{0\}$ , then no
nontrivial sections of $H^{n(n+1)/2+mn}(W, \mathcal{O}_{W})$ are $\Gamma’/\Gamma$-invariant.
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3. We put $X_{3}=H_{3}/\Gamma_{3},$ $X_{3}(l)=H_{3}/\Gamma_{3}(l)(1>1)$ . $X_{3}^{*}$ (resp. $X_{3}^{*}(l)$) denotes the
Satake compactification of $X_{3}$ (resp. $X_{3}(l)$), and $X_{3}$ (resp. $\overline{X}_{3}(l)$) denotes Igusa’s
compactification [14] of $X_{3}$ (resp. $X_{3}(l)$). If $l\geqq 3$ , then $\overline{X}_{3}(l)$ is the monoidal
transform of $X_{3}^{*}(l)$ along $D^{*}(l)=X_{3}^{*}(l)-X_{3}(l)$ and it is nonsingular. By con-
struction, obviously $\Gamma_{n}$ acts on $\overline{X}_{3}(l)$ as well as $X_{3}^{*}(1).\overline{X}_{3}$ is given as a quotient
space of $\overline{X}_{a}(l)$ by $\Gamma_{3}/\Gamma_{3}(l)$ , which is independent of $l\geqq 3$ . We put $D^{*}=X_{3}^{*}-X_{s}$ ,
$D(l)=\overline{X}_{3}(l)-X_{3}(l)$ . $D^{*}$ equals $H_{2}/\Gamma_{2}\cup H_{1}/\Gamma_{1}\cup$ {a point $\infty$ } set-theoretically. $D(l)$

is a divisor with only normal crossings. Let us fix an irreducible component
$D_{0}(l)$ of $D(l)$ , and let $\tilde{D}$ be the quotient of the normalization of $\tilde{D}_{0}(l)$ of $D_{0}(l)$

by the stabilizer subgroup at $D_{0}(l)$ of $\Gamma_{n}$ where it should be noted that the
stabilizer subgroup is regarded as a group of automorphisms of the normalization
$\tilde{D}_{0}(l)$ of $D_{0}(l)$, and that it is a stabilizer subgroup of $\Gamma_{n}$ at the cusp $D_{0}^{*}(l)$ of
$X_{3}^{*}(l)$ associated with $D_{0}(l)$ . Then we have a morphism $\psi$ of $\tilde{D}$ to $D$ which is
canonically determined by construction of D. $\psi$ is a morphism of normalization,
and if $\pi$ denotes the morphism of $\overline{X}_{3}$ to $X_{3}^{*}$ , then $\psi$ is an isomorphism on the
open subset $\pi^{-1}(X_{2})$ of $D$ where $X_{2}=H_{2}/\Gamma_{2}$ is considered to be the 2-cusp of $X_{3}^{*}$ .
Let $\tilde{\pi}$ be the composite of $\psi$ and of $\pi|_{D}$ : $Darrow D^{*}$ .

LEMMA 2. dim $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})\leqq\dim H^{3}(D^{*}, R^{2}\tilde{\pi}_{*}O_{\tilde{D}})$ .
PROOF. Let $\mathcal{F}$ be the cokernel of the canonical injective homomorphism

$o_{D}arrow\psi_{*}0_{\dot{D}}$ ;
$0arrow O_{D}arrow\psi_{*}0_{\dot{D}}arrow \mathcal{F}arrow 0$ (exact).

Then $ff|_{\pi^{-1}(X_{2})}=0$. From this we derive a long exact sequence

$arrow R^{1}\pi_{*}\mathcal{F}arrow^{p}R^{2}\pi_{*}\mathcal{O}_{D}arrow^{q}R^{2}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}}arrow R^{2}\pi_{*}\mathcal{F}arrow$

and hence we have

$0arrow Ker(P)arrow R^{2}\pi_{*}O_{D}arrow Ker(q)arrow 0$ ,

$0arrow Ker(q)arrow R^{2}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}}arrow Coker(q)arrow 0$ .
From these we derive two long exact sequences

$arrow H^{3}(D^{*}, Ker(P))arrow H^{3}(D^{*}, R^{2}\pi_{*}\mathcal{O}_{D})arrow H^{3}(D^{*}, Ker(q))arrow H^{4}(D^{*}, Ker(p))arrow$ ,

$arrow H^{2}(D^{*}, Coker(q))arrow H^{3}(D^{*}, Ker(q))arrow H^{3}(D^{*}, R^{2}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}})arrow H^{3}(D^{*}, Coker(q))arrow$ .
Since $R^{1}\pi_{*}\mathcal{F},$ $R^{2}\pi_{*}\mathcal{F}$ are supported at the closure of the l-cusp, $Ker(P),$ $Coker(q)$

are also. Then it follows from the above long exact sequence that

$H^{3}(D^{*}, R^{2}\pi_{*}O_{D})\cong H^{3}(D^{*}, Ker(q))\cong H^{3}(D^{*}, R^{2}\tilde{\pi}_{*}O_{\dot{D}})$ .
So to show our assertion it is enough to prove dim $H^{6}(X_{3}^{*}, \mathcal{O}_{X_{3}^{*}})\leqq\dim H^{3}(D^{*}, R^{2}\pi_{*}O_{D})$ .
$R^{\nu}\pi_{*}O_{\overline{X}_{3}}$ and $R^{\nu}\pi_{*}O_{D}$ (extended by zero) are isomorphic for $\nu>0$ at least except
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on the closure of l-cusp (Tsuyumine [19], Prop. 2). So by the similar argument
as above, $H^{3}(D^{*}, R^{2}\pi_{*}\mathcal{O}_{D})$ is shown to be isomorphic to $H^{3}(X_{3}^{*}, R^{2}\pi_{*}\mathcal{O}_{\overline{X}_{3}})$ . So
our problem is reduced to show dim $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})\leqq\dim H^{3}(X_{3}^{*}, R^{2}\pi_{*}O_{\overline{X}_{3}})$ .

Let $K_{\overline{x}_{3}}$ be the canonical coherent sheaf (in the sense of Grauert-
Riemenschneider [8]), which gives the dualizing sheaf on $\overline{X}_{3}$ since $\overline{X}_{3}$ has only
quotient singularities. So we have

$H^{0}(\tilde{X}_{3}, K_{\tilde{X}_{3}})\cong H^{0}(\overline{X}_{3}, K_{\overline{x}_{3}})\cong H^{6}(\overline{X}_{3}, O_{\overline{X}_{3}})^{\vee}$

where $\tilde{X}_{3}$ is a nonsingular model of $\overline{X}_{3}$ . Since $\tilde{X}_{3}$ is unirational (see for
instance, Tsuyumine [22]), the above cohomology groups vanish. So to
prove our assertion, we show that $H^{6}(\overline{X}_{v}\circ, 0_{\overline{x}_{3}})(=\{0\})$ is isomorphic to
$H^{6}(X_{3}^{*}, O_{X_{3}^{*}})/d(H^{3}(X_{3}^{*}, R^{2}\pi_{*}\mathcal{O}_{\overline{X}_{3}}))$ where $d$ is some homomorphism of
$H^{3}(X_{3}^{*}, R^{2}\pi_{*}\mathcal{O}_{\overline{X}_{3}})$ to $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})$ . Let $E_{2}^{p.q}=H^{p}(X_{3}^{*}, R^{q}\pi_{*}O_{\overline{X}_{3}})\Rightarrow H^{p+q}(\overline{X}_{3}, O_{\overline{X}_{8}})$

be the Leray spectral sequence. Since $\pi$ is a proper morphism and since
dim $\pi^{-1}(x)=2$ if $x$ is a point of the 2-cusp, dim $\pi^{-1}(x)=3$ if $x$ is a point of the
1- or O-cusp, $H^{p}(X_{3}^{*}, R^{q}\pi_{*}\mathcal{O}_{\overline{X}_{3}})$ vanishes for $(p, q)$ with $P+q=5$ except for
$(p, q)=(3,2)$ or $(0,5)$ . By an elementary consideration on the Leray spectral
sequence, we get the desired homomorphism $d$ . $q.e$ . $d$ .

LEMMA 3. dim $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})\leqq\dim H^{1}(D^{*}, R^{3}\tilde{\pi}_{*}\mathcal{O}_{\dot{D}})$ .

PROOF. Let us consider the Leray spectral sequence $E_{2}^{p,q}=H^{p}(D^{*}, R^{q}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}})$

$\ni H^{p+q}(\tilde{D}, O_{\tilde{D}})$ . Since dim $\tilde{\pi}^{-1}(x)=3$ if $x$ is in the 0- or l-cusp of $D^{*}$ , and
dim $\tilde{\pi}^{-1}(x)=2$ if otherwise, we have an inequality

dim $H^{3}(D^{*}, R^{2}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}})\leqq\dim H^{5}(\tilde{D}, O_{\dot{D}})+\dim H^{1}(D^{*}, R^{3}\tilde{\pi}_{*}O_{\tilde{D}})$

by the similar argument as in the proof of Lemma 2. $\tilde{D}$ is normal and C.-M.
because it is a quotient of a smooth variety $\tilde{D}_{0}(l)$ by a finite group. Then
Lemma 1 is applicable, and we get dim $H^{6}(\tilde{D}, O_{\tilde{D}})=0$ because dim $S(\Gamma_{2})_{4}=0$ .
$q.e$ . $d$ .

Let us denote by $E^{*}$ , the closure of $H_{1}/\Gamma_{1}$ in $D^{*}$ which is isomorphic to
$X_{1}^{*}=(H_{1}/\Gamma_{1})^{*}$ , and by $\overline{\tilde{\pi}}$ ; $Earrow E^{*}$ , some fiber space which is isomorphic to
$\tilde{\pi}^{-1}(E^{*})arrow E^{*}$ except at the O-cusp. We want to reduce the computation of
$H^{1}(D^{*}, R^{3}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}})$ to that of $H^{1}(E^{*}, R^{3}\pi_{*}\approx \mathcal{O}_{E})$ by the similar method as in [19],
Prop. 2. We do it in Sect. 5. Before it we make some preliminaries.

4. Let $D_{0}^{*}(l)$ be the cusp of $X_{3}^{*}(l)$ associated with $D_{0}(l)\subset\overline{X}_{3}(l)$ . By taking
normalization, we get a morphism $\pi(l):\tilde{D}_{0}(l)arrow\tilde{D}_{0}^{*}(l)$ from $D_{0}(l)arrow D_{0}^{*}(l)$ where
$\tilde{D}_{0}^{*}(l)$ denotes the normalization of $D_{0}^{*}(l)$ . We observe the fibers of $\pi(l)$ . In
Igusa [14], the fiber at each point, of the morphism of $\overline{X}_{3}(l)$ to $X_{3}^{*}(l)$ was
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completely described, and the following is a direct consequence of it. In this
section we always suppose $1\geqq 3$ .

$\tilde{D}_{0}^{*}(l)$ is isomorphic to the Satake compactification of $H_{2}/\Gamma_{2}(l)$ , and its l-cusps
are the unions of copies of $H_{1}/\Gamma_{1}(l)$ . $\pi(l)^{-1}(H_{2}/\Gamma_{2}(l))arrow H_{2}/\Gamma_{2}(l)$ is the universal
family of 2-dimensional principally polarized abelian varieties with level l-struc-
ture, and $\pi^{-1}(l)(x)$ is an abelian variety

$C^{2}/(Z_{1},1_{2})(lZ)^{4}$

where $Z_{1}$ is a point of $H_{2}$ corresponding to $x\in H_{2}/\Gamma_{2}(l)$ . $lfx\in X_{1}(l)=H_{1}/\Gamma_{1}(l)$

$\subset\tilde{D}_{0}^{*}(l)$ , then $\pi(l)^{-1}(x)$ is a $\delta$-bundle over an abelian variety $A(l)^{2}$ where $\delta$ is an
l-gon composed of $P^{1}$ and $A(l)$ is an elliptic curve

$A(l):=C/(z_{1},1)(lZ)^{2}$ ,

$z_{1}$ being a point of $H_{1}$ corresponding to $x$ . We Put $A:=A(1)$ . If $x$ is a point
of O-cusps, then $\pi(l)^{-1}(x)$ is a reducible rational variety whose irreducible com-
ponent is smooth of dimension three.

Let $G$ be the stabilizer subgroup at $D_{0}^{*}(l)\subset X_{3}^{*}(l)$ of $\Gamma_{3}/\Gamma_{3}(l)$ . Then $G$ acts
on $\tilde{D}_{0}^{*}(l)$ , also on $D_{0}(l)$ and on $\tilde{D}_{0}(l)$ . $G$ contains a subgroup $\Gamma_{2}/\Gamma_{2}(1)$ whose

element corresponds to $(\begin{array}{ll}A_{1} B_{1}C_{1} D_{1}\end{array})$ if we use the notation (2). For $x\in\tilde{D}_{0}^{*}(l),$ $G_{x}$

denotes the stabilizer subgroup at $x$ which acts on the fiber $\pi(l)^{-1}(x)$ . We can
see how $G_{x}$ acts on $\pi(l)^{-1}(x)$ by virtue of [14]. Let $x$ be a point of l-cusp
which, we may assume, is given by $Z_{2}arrow\sqrt{-1}\infty 1_{2}$ in (1). Then $G_{x}$ is a
subgrouP of $P_{1}$ (see Sect. 1 for definition) of index $(1/2)l^{2}\Pi_{p1l}(1-p^{2})$ since the
same number of analytic components meets at each of l-cusps (Cartan seminar
[1], 13). $G_{x}$ contains $U_{1}/\Gamma_{3}(l),$ $W_{1}/\Gamma_{3}(l)$ . The group $U_{1}/\Gamma_{3}(l)$ , which is iso-
morphic to $SM_{2}(Z/lZ)\cong(Z/lZ)^{3}$ , acts only on $\delta$ as follows. Let $t$ be a coordinate
on $P^{1}$ which takes $0,$ $\infty$ at points of intersections with other components. Then
there is a character of the additive group $U_{1}/\Gamma_{3}(l)$ such that $M^{*}t=x(M)t$ for
$M\in U_{1}$ . So the quotient of $P^{1}$ by $U_{1}/\Gamma_{3}(l)$ is again $P^{1}$ and the quotient of $\delta$ is
also isomorphic to $\delta$ itself. The group $W_{1}/U_{1}$ , which is isomorphic to $(Z/lZ)^{4}$ ,
acts only on $A(l)^{2}$ as

$(\begin{array}{l}\tau_{1}\tau_{2}\end{array})arrow(\begin{array}{l}\tau_{1}+v_{1}z_{1}+b_{1}\tau_{2}+v_{2}z_{1}+b_{2}\end{array})$ , $b_{i},$ $v_{i}\in Z(mod 1)$ .

Thus the quotient of $A(l)^{2}$ by $W_{1}/U_{1}$ is $A^{2}$ with $A=A(1)$ , which is isomorphic
to $A(l)^{2}$ . Hence the quotient of $\pi(l)^{-1}(x)$ by $W_{1}$ is isomorphic to itself. The group
$G_{x}/W_{1}$ is isomorphic to the direct product of the stabilizer subgroup at
$z_{1}\in H_{1}/\Gamma_{1}(l)$ of $\Gamma_{1}/\Gamma_{1}(l),$

$z_{1}$ being a point corresponding to $x$ , and of the dihedral
group $\Delta_{l}$ of an l-gon. $G_{x}/W_{1}$ acts simultaneously on $A(l)^{2}$ and on $\delta$ . $\Delta_{l}$ , whose
element corresponds to the part $A_{2}$

’ or $D_{2}$
’ in (2), acts on $A(l)^{2}$ as



376 S. TSUYUMINE

$(\begin{array}{l}\tau_{1}\tau_{2}\end{array})arrow U(\begin{array}{l}\tau_{1}\tau_{2}\end{array})$ , $U\in GL_{2}(Z)$ mod $l$ ,

and acts on an l-gon $\delta$ in the usual manner. We denote by $\Delta_{l}’$ the cyclic sub-
group of $\Delta_{l}$ of order $l$ which acts on $\delta$ as rotations.

Let $\infty$ be a O-cusp of $D_{0}^{*}(l)(\cong(H_{2}/\Gamma_{2}(l))^{*})$ . Then $\pi(l)^{-1}(\infty)$ is covered by an
open affine varieties which are product of open affine subvarieties of $\delta$ , and of
those of a limit variety of $A(l)^{2}$ where an elliptic curve $A(l)$ degenerates also to
an l-gon of $P^{1}$ in the natural way as in Shioda [16]. This can be easily seen,
indeed we can take coordinates at $\pi(l)^{-1}(\infty)$ explicitly by the observation of
Igusa [14].

5. Let $E^{*}(l)$ denote a closure of the set of l-cusps of $\tilde{D}_{0}^{*}(l)$ , and let
$E(l)=\pi(l)^{-1}(E^{*}(l))$ . Further let $E_{0}(l)$ be an irreducible component of $E(l)$ , and
$E_{0}^{*}(l)$ , the corresponding irreducible component of $E^{*}(l)$ . The normalization
$\tilde{E}_{0}^{*}(1)$ of $E_{0}^{*}(l)$ is isomorphic to compactified modular curve $X_{1}^{*}(l)=(H_{1}f\Gamma_{1}(l))^{*}$ .

$E_{0}(l)=E(l)=\tilde{D}_{0}(l)$

$H_{1}/\Gamma_{1}(1)=E_{0}^{*}(1)\downarrow=E^{*}(l)\downarrow=B_{0}(l)\downarrow_{*}\cong(H_{2}/\Gamma_{2}(l))^{*}$

.
As we saw in the preceding section, $E_{0}(l)arrow E_{0}^{*}(l)$ is a fiber space of relative
dimension three whose generic fiber is a $\delta$-bundle over an abelian variety $A(l)^{2}$ .
$E(l)$ is a Cartier divisor of $\tilde{D}_{0}(l)$ . ( $D_{0}(l)$ and other irreducible components of
$D(l)$ , or $D_{0}(l)$ and itself are crossing normally at the image of $E_{0}(l)$ by
$\tilde{D}_{0}(l)arrow D_{0}(l)$ . Hence the image of $E_{0}(l)$ is a Cartier divisor of $D_{0}(l)$ . For detail
we refer the reader to Igusa [14]. Our statement follows from this.) Let $\mathcal{G}$

be the sheaf of ideals in $O_{\tilde{D}_{0}(l)}$ defining $E(l)$ , which is invertible. Let $\mathcal{M};=\mathcal{G}/\mathcal{G}^{2}$ ,
which is supported on $E(l)$ . From an exact sequence on $\tilde{D}_{0}(l)$

$0arrow \mathcal{G}^{j+1}arrow \mathcal{G}^{j}arrow \mathcal{M}^{j}arrow 0$ ,

we get an exact sequence

(3) $arrow R^{3}\pi(l)_{*}\mathcal{G}^{j+1}arrow R^{3}\pi(l)_{*}\mathcal{G}^{j}arrow R^{3}\pi(l)_{*}\mathcal{M}^{j}arrow 0$ .
$R^{3}\pi(l)$ (coherent sheaf) is supported at $E(l)$ since the dimension of the fiber
$\pi(l)^{-1}(x)$ is two for $x\in\tilde{D}_{0}^{*}(l)-E^{*}(l)$ , and so it is an $0_{\tilde{D}_{0}^{*}Cl)}/J\zeta^{M}$-module for a
sufficiently large $M$ where X $:=\pi(1)_{*}\mathcal{G}$ is a sheaf of ideals concentrated at $E^{*}(l)$ .
By Grothendieck [10], (3.3.1), (3.3.2), we have

$R^{3}\pi(l)_{*}\mathcal{G}^{t+i_{0}}=_{c}x^{i}R^{3}\pi(l)_{*}\mathcal{G}^{i_{0}}\subset R^{3}\pi(l)_{*}\mathcal{G}^{i_{0}}$

for some $i_{0}\geqq 0$ . Hence $R^{3}\pi(l)_{*}\mathcal{G}^{j}$ vanishes if $j$ is large enough, and so $R^{3}\pi(l)_{*}\mathcal{M}^{j}$
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does. We note that $E^{*}(l)$ is a reducible curve with singularities only at O-cusps,
and that $E(l)arrow E^{*}(l)$ is flat outside of O-cusps. Taking a point $x$ from there, we
have an isomorphism

$(R^{3}\pi(l)_{*}\mathcal{M}^{j})_{x}\cong H^{3}(\pi(l)(x), \mathcal{M}^{j}|_{\pi Cl)}-1_{(x)})$ .

Here we need to prove that the $\delta$-bundle $\pi(l)^{-1}(x)$ over $A(l)^{2}$ has the struc-
ture sheaf as its dualizing sheaf. Let us put $Z:=\pi(l)^{-1}(x)$ , and denote by

7: $Zarrow A(l)^{2}$ , the projection. Since $Z$ is locally of complete intersection, the
dualizing sheaf $\omega_{Z}$ is invertlble and is glven by $\omega_{Z}=\omega_{Z/A(l)^{2}}\otimes\gamma^{*}\omega_{A(l)}2\cong\omega_{Z/A(l)^{2}}$

(Hartshorne [11], Chap. $m$ , Sect. 1) because $\omega_{A(l)^{2}}\cong \mathcal{O}_{A(l)^{2}}$ , where $\omega_{Z/A(l)^{2}}$ denotes
the relative dualizing sheaf. The dualizing sheaf of $\delta$ is trivial, and hence the
restriction of $\omega_{Z/A(l)^{2}}$ to each fiber is trivial. So there is the invertible sheaf $\mathfrak{N}$

on $A(l)^{2}$ such that $\gamma^{*}\mathfrak{N}\cong\omega_{Z/A(l)^{2}}\cong\omega_{Z}$ . Noticing that $Z$ is locally a direct product
of $\delta$ and an affine open subset of $A(l)^{2}$ , we have $R^{1}\gamma_{*}O_{Z}=H^{1}(\delta, O_{\delta})\otimes_{C}O_{Z}=O_{Z}$ .
Then for $\mathcal{F}$ any locally free sheaf on $A(l)^{2}$ , there are isomorphisms $H^{0}(A(l)^{2}, \mathcal{F}^{-1})$

$\cong H^{0}(Z, \gamma^{*}\mathcal{F}^{-1})\cong H^{3}(Z, \gamma^{*}\mathcal{F}\otimes\gamma^{*}\mathfrak{N})^{\vee}\cong H^{2}(A(l)^{2}, R^{1}\gamma_{*}(\gamma^{*}\mathcal{F}\otimes\gamma^{*}\mathfrak{N}))^{\vee}\cong H^{2}(A(l)^{2}, \mathcal{F}\otimes \mathfrak{N})$ ,
where we have applied to the argument, the Leray spectral sequence $E_{2}^{p.q}=$

$H^{p}(A(l)^{2}, R^{q}\gamma_{*}(\gamma^{*}\mathcal{F}\otimes\gamma^{*}\mathfrak{N}))\ni H^{p+q}(Z, \gamma^{*}\mathcal{F}\otimes\gamma^{*}\mathfrak{N})$ . In particular, we have $H^{0}(A(l)^{2}, \mathfrak{N})$

$\cong H^{2}(A(l)^{2}, \mathcal{O}_{A(l)^{2}})\cong C\cong H^{2}(A(l)^{2}, \mathfrak{N}\otimes \mathfrak{N}^{-1})^{\vee}\cong H^{0}(A^{2}(l), \mathfrak{N}^{-1})$ . So $\mathfrak{N}\cong O_{A(l)^{2}}$ and
$\omega_{Z}\cong O_{Z}$.

Now we return to our argument. $(R^{3}\pi(l)_{*}\mathcal{M}^{j})_{x}$ and the dual of
$H^{0}(\pi(l)^{-1}(x), \mathcal{M}^{-j}|_{\pi(l)}-1_{(x)})$ are isomorphic, and they vanish for $j\gg O$ by the
above argument. It is easily deduced from this that $H^{0}(\pi(l)^{-1}(x), \mathcal{M}^{-j}|_{\pi(l)^{-1}(x)})$

vanishes for any $j>0$ . Then it follows that the homomorphism $R^{3}\pi(l)_{*}\mathcal{G}^{J+1}$

$arrow R^{3}\pi(l)_{*}\mathcal{G}^{j}$ is surjective for any $j>0$ outside of O-cusps, and hence $R^{3}\pi(l)_{*}\mathcal{G}^{j}$

vanishes there by descending induction. Using (3) for $j=0$ , we have

(4) $R^{3}\pi(l)_{*}\mathcal{O}_{\tilde{D}_{0}(l)}\cong R^{3}\pi(l)_{*}O_{E(l)}$

at least except at $0$-cusps, since $O_{E(l)}\cong 0_{\tilde{D}_{0}(l)}/\mathcal{G}$ .
We have got (4) for $1\geqq 3$ . But it can be proved also for $l=1’$ . Let $E^{*}$ be

the closure of the l-cusp $X_{1}=H_{1}/\Gamma_{1}$ in $D^{*}=(H_{2}/\Gamma_{2})^{*}$ , and let $E’=\tilde{\pi}^{-1}(E^{*})$ . Let
us take any point $x\in X_{1}(l)=E^{*}(l)-$ { $0$-cusps}, and the stabilizer subgroup $G_{x}$ at
$x$ of $G$ (cf. Sect. 4), and a sufficiently small neighborhood $U$ at $x$ stable under
$G_{x}$ . Then if $V$ is a sufficiently small neighborhood at the image point of
$x$ by the map $X_{1}(l)arrow X_{1}\subset D^{*}$ , then $(R^{3}\pi(l)_{*}\mathcal{O}_{\tilde{D}(l)}|_{U})^{G_{x}}|_{V}\cong(R^{3}\tilde{\pi}_{*}O_{\tilde{D}})|_{V}$ and
$(R^{3}\pi(l)_{*}O_{E(l)}|_{U})^{G_{x}}|_{V}\cong(R^{3}\tilde{\pi}_{*}O_{E^{l}})|_{V}$ (Grothendieck [9], Cor. to Prop. 5.2.3, Th\’eo-
r\‘eme 5.3.1 and its Cor.). Hence by (4),

$R^{3}\tilde{\pi}_{*}\mathcal{O}_{B}\cong R^{3}\tilde{\pi}_{*}O_{E’}$

at least except at the O-cusps. Since we have the canonical surjection
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$\alpha:R^{3}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}}arrow R^{3}\tilde{\pi}_{*}O_{E’}$ (because the fibers of $\tilde{\pi}$ are of dimension $\leqq 3$), there is an
exact sequence

$0arrow Ker(\alpha)arrow R^{3}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}}arrow R^{3}\tilde{\pi}_{*}O_{E’}arrow 0$ ,

where $Ker(\alpha)$ is supported possibly at the O-cusp. So

$H^{1}(D^{*}, R^{3}\tilde{\pi}_{*}\mathcal{O}_{\tilde{D}})\cong H^{1}(D^{*}, R^{3}\tilde{\pi}_{*}\mathcal{O}_{E’})=H^{1}(E^{*}, R^{3}\tilde{\pi}_{*}O_{E’})$ .

Combining this with Lemma 3, we get

(5) dim $H^{6}(X_{3}^{*}, 0_{x_{1}^{*}})\leqq\dim H^{1}(E^{*}, R^{3}\tilde{\pi}_{*}\mathcal{O}_{E’})$ .

Let $G_{0}$ be the stabilizer subgroup at $E_{0}^{*}(l)$ of $G$ where $G_{0}$ is considered to
be also a group of automorphisms of $E_{0}^{*}(l)$ , or of its normalization $\tilde{E}_{0}^{*}(l)$ , or of
$E_{0}(l)$ . $G_{0}$ contains a subgroup $\Gamma_{1}/\Gamma_{1}(l)$ whose elements correspond to matrices
$(\begin{array}{ll}A_{1} B_{1}C_{1} D_{1}\end{array})$ if we use the notation (2) with $n_{1}=1$ . Let $\tilde{E}_{0}(l):=E_{0}(l)\cross*\tilde{E}_{0}^{*}(l)$ .

$E_{0}(l)$ $\tilde{E}_{0}(l)$

$arrow-$
$\tilde{E}_{0}^{*}(l)$

$\tilde{E}_{0}(l)$ possesses naturally an action of $G_{0}$ . Let $E$ be the quotient of $\tilde{E}_{0}(l)$ by $G_{0}$ .
Then $E$ is a fiber space over $E^{*}$ , and we denote it by $\pi\approx:Earrow E^{*}$ . By con-
struction there is a finite morphism of $E$ to $E’$ as fiber spaces over $E^{*}$ , which
is an isomorphism except at the fiber of the O-cusp. Then the similar argument

as above shows that $H^{1}(E^{*}, R^{3}\pi_{*}\approx \mathcal{O}_{E})\cong H^{1}(E^{*}, R^{3}\tilde{\pi}_{*}O_{E’})$ . By (5) we get

dim $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})\leqq\dim H^{1}(E^{*}, R^{3}\pi_{*}\simeq O_{E})$ .

Let $E_{2}^{p,q}=H^{p}(E^{*}, R^{q}\pi_{*}\approx \mathcal{O}_{E})\Rightarrow H^{p+q}(E, O_{E})$ be the Leray spectral sequence. It is
easy to see that $H^{1}(E^{*}, R^{3}\pi_{*}\approx \mathcal{O}_{E})$ is isomorphic to $H^{4}(E, O_{E})$ since $E$ is a fiber
space over $E^{*}$ of relative dimension three. We have proved the following:

LEMMA 4. dim $H^{6}(X_{3}^{*}, 0_{x_{3}^{*}})\leqq\dim H^{4}(E, O_{E})$ .

6. $\tilde{E}_{0}(l)$ is a fiber space over $\tilde{E}_{0}^{*}(l)\cong X_{1}^{*}(l)$ . $E_{0}(l)$ is a C.-M. variety since
it is a complete intersection of two nonsingular varieties. So $\tilde{E}_{0}(l)$ is also C.-M.
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(see the figure above). We see the action of $G_{0}$ on $\tilde{E}_{0}(l)$ . Let $x\in E_{0}^{*}(l)-$ { $0$-cusps}
and let $U_{1},$ $W_{1}$ be the subgroups of the stabilizer group as in Sect. 1, which
acts on the fibers, and trivially on the base space $\tilde{E}_{0}^{*}(l)$ . The quotient of $\tilde{E}_{0}(l)$

by $W_{1}$ is isomorphic to itself. We saw it for each fiber over $\tilde{E}_{0}^{*}(l)-$ { $0$-cusps},
and hence it is true for the fibers at O-cusps because they are limit varieties.
$G_{0}/W_{1}$ has a cyclic subgroup $\Delta_{l}’$ of order 1 as its normal subgroup which acts
effectively on the fibers, especially on $\delta$ as rotations, trivially on the base space
$\tilde{E}_{0}^{*}(l)$ . Let $H$ be the composite of $\Delta_{l}’$ and $W_{1}$ , and let $B=\tilde{E}_{0}(l)/H$. $B$ is a fiber
space

$\rho$ : $Barrow\tilde{E}_{0}^{*}(l)=X_{1}^{*}(l)$ .
The fiber $\rho^{-1}(x),$ $x\in X_{1}(l)$ , is an extension of an abelian variety $A^{2}$ (cf. Sect. 4)

by $\gamma$ where 7 denotes a projective line with one node. For a point $\infty$ of $0$-cusps,
$\rho^{-1}(\infty)$ is its limit variety where $A$ degenerates to an l-gon $\delta$ of $P^{1}$ at $\infty$ . Let
us consider the closed subfiber space $B’$ of $B$ given by {a point of a $node$ } $\cross A^{2}$

or its limit variety. $B’$ is a C.-M. variety because it is locally defined by a
single element in the C.-M. variety B. $\rho$ is a projective morphism, $i.e.,$ $\rho$ is
factored as $Barrow P_{B_{0}^{*}c\iota)}^{M}arrow\tilde{E}_{0}^{*}(l)$ , where $P_{\tilde{E}_{0}^{*}(\downarrow)}^{M}$ is a projective M-space over $\tilde{E}_{0}^{*}(l)$ .
Let us take a blowing up along $B’$ , of $P_{B_{0^{(l)}}^{*}}^{M}$ , and moreover take the strict
transform $\tilde{B}$ of $B$ . If $\sigma$ : $\tilde{B}arrow B$ denotes the projection, then we have an exact
sequence

$0arrow O_{B}arrow\sigma_{*}\mathcal{O}_{B}arrow 0_{B’}arrow 0$ ,

and hence a long exact sequence derived from this;

$arrow R^{2}\rho_{*}\mathcal{O}_{B’}arrow R^{3}\rho_{*}0_{B}arrow R^{3}\rho_{*}\sigma_{*}O_{B}arrow 0$ .
Each of $(\rho\cdot\sigma)^{-1}(x),$ $x\in\tilde{E}_{0}^{*}(l)$ , is a $P^{1}$-bundle over two dimensional variety. Then
by using the Leray spectral sequence, it is shown that $(R^{3}\rho_{*}\sigma_{*}O_{\tilde{B}})_{x}$ vanishes at
each point $x\in\tilde{E}_{0}^{*}(l)$ , hence $R^{3}\rho_{*}\sigma_{*}\mathcal{O}_{B}$ vanishes. Then

$H^{1}(\tilde{E}_{0}^{*}(l), R^{2}\rho_{*}0_{B’})arrow H^{1}(\tilde{E}_{0}^{*}(l), R^{3}\rho_{*}\mathcal{O}_{B})arrow 0$

is exact. Here $H^{1}(\tilde{E}_{0}^{*}(l), R^{2}\rho_{*}0_{B’})$ is isomorphic to $H^{3}(B’, O_{B’})$ by using the
Leray spectral sequence. Since $B’arrow\tilde{E}_{0}^{*}(l)=X_{1}^{*}(l)$ satisfies the condition in
Lemma 1, $\dim H^{3}(B’, O_{B’})$ is at most equal to $\dim S(\Gamma_{1}(l)_{4})$ and further

dim $H^{3}(B’, \mathcal{O}_{B’})^{\Gamma_{1}/\Gamma_{1}(l)}\leqq\dim S(\Gamma_{1})_{4}=0$ .
Thus

dim $H^{1}(\tilde{E}_{0}^{*}(l), R^{3}\rho_{*}O_{B})^{\Gamma_{1}/\Gamma_{1}(l)}=0$ .
Since $H^{1}(\tilde{E}_{0}^{*}(l), R^{3}\rho_{*}O_{B}),$ $H^{4}(B, O_{B})$ and $H^{4}(\tilde{E}_{0}(l), O_{\tilde{E}_{0}(l)})^{H}$ are all isomorphic as
$G_{0}/H$-modules, $H^{4}(\tilde{E}_{0}(l), O_{\tilde{E}_{0}(l)})$ has no nontrivial invariant sections under $G_{0}$

since $G_{0}$ contains $\Gamma_{1}/\Gamma_{1}(l)$ . So $H^{4}(E, O_{E})$ vanishes. By Lemma 4 we have
proved the following:
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PROPOSITION 1. dim $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})=0$ .

7. We show that the graded ring $A(\Gamma_{3})^{(r)}$ is not C.-M. for any integer $r$ .
Let $X(4)$ be the coherent sheaf on $X_{3}^{*}$ corresponding to modular forms of

weight four. Let $X_{3}^{o}$ be the smooth locus of $X_{3}^{*}$ . Then $co\dim(X_{3}^{*}-X_{3}^{o})=2$ .
$\mathcal{L}(4)|_{X_{3}^{\circ}}$ is isomorphic to the canonical invertible sheaf $K_{X_{3}^{\circ}}$ on $X_{3}^{o}$. By Grauert-
Riemenschneider [8], the dualizing sheaf $\omega_{X_{3}^{*}}$ is given by $i_{*}K_{X_{3}^{\circ}}=i_{*}\mathcal{L}(4)|_{X_{S}^{\circ}},$

$i$

being the inclusion of $X_{3}^{o}$ into $X_{3}^{*}$ . By the extendability of holomorphic functions
across a subvariety of codimension two, and by Koecher’s principle $i_{*}I(4)|_{X_{3}^{\circ}}$ is
equal to $\mathcal{L}(4)$ , hence

$\omega_{X\S}\cong X(4)$ .
THEOREM. $X_{3}^{*}$ is not a Cohen-Macaulay variety, and the ring $A(\Gamma_{3})^{(r)}$ is not

Cohen-Macaulay for any integer $r$ .
PROOF. If $A(\Gamma_{3})^{(r)}$ is C.-M., then $X_{3}^{*}=Proj(A(\Gamma_{3})^{(r)})$ is a C.-M. variety. So

it is enough to prove the first assertion. Suppose that $X_{3}^{*}$ is a C.-M. variety.
Then $H^{6}(X_{3}^{*}, O_{X_{3}^{*}})$ is just dual to $H^{0}(X_{3}^{*}, \mathcal{L}(4))$ , however the former is of
dimension $0$ by Proposition 1, and the latter is of dimension one since there is
the unique modular form of weight four up to constant multiples, a contradic-
tion. So $X_{3}^{*}$ is not a C.-M. variety. $q.e.d$ .

By the dimension formula for the space of modular forms of degree three
(Tsuyumine [21]), the arithmetic genus of $X_{3}^{*}$ is known to be two. So some
cohomology group $H^{k}(X_{3}^{*}, O_{X_{3}^{*}})$ with even $k>0$ does not vanish. Also by the
result of [21], it is shown that the depth of $A(\Gamma_{3})$ is at least five. From these
we get the following (cf. Watanabe [23], Cor. (2.3));

dim $H^{4}(X_{3}^{*}, O_{X_{3}^{*}})\neq 0$ , depth $A(\Gamma_{3})=5$ ,

and
dim $H^{k}(X_{3}^{*}, O_{X_{3}^{*}})=0$ $(1\leqq k\leqq 3)$ ,

dim $H^{4}(X_{3}^{*}, O_{X_{3}^{*}})$ -dim $H^{5}(X_{3}^{*}, O_{X_{3}^{*}})=1$ .
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