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§0. Introduction.

Let C be a connected complete non-singular curve over an algebraically
closed field 2 of positive characteristic p. In this paper, we shall give an
upper bound for the number of finite étale Galois coverings of C whose Galois
groups are isomorphic to SL,(F,) (F,: a finite field with p elements) when the
genus of C is two.

To explain the situation, let us recall some known results. Let g be a
positive integer, and let 4, be the group generated by 2g-letters a,, -, a,,
by, -+, b, with one defining relation a;b,a;'bi* - azbgaz'bz*=1, and let 4, be
the pro-finite completion of 4,. Let C be a curve of genus g defined over k.
Then it was shown by Grothendieck [3], and also by Popp that there is
a surjective continuous homomorphism from 4, onto the algebraic fundamental
group z,(C) of C, and that its kernel is contained in an arbitrary open normal
subgroup of 4, of index prime to p. Now fix a finite group G. Let n(C, G)
be the number of finite étale Galois coverings of C whose Galois groups are
isomorphic to G, and for any compact Riemann surface R of genus g, let
N(R, G) be the number of finite unramified Galois coverings of R whose Galois
groups are isomorphic to G. Recall that N(R, G) is uniquely determined by g,
and that it is equal to the number N(g, G) of normal subgroups N of 4,
satisfying 4,/N=G. It follows from the above result that n(C, G)=N(g, G)
for any curve C of genus g, and that the equality holds if the order of G is
prime to p. So we naturally ask whether or not the equality holds for some
curve C if the order of G is divisible by p. The answer is negative for a
p-group or a meta-abelian group (for the former case, see Hasse and Witt [5],
Safarevi¢ [15], and for the latter case, see Katsurada [7], and Nakajima [11]).
However, when G is a non-solvable group of order divisible by p (for example
G=SL,(F,=) with p™=4), it seems very difficult to obtain a reasonable upper
bound for n(C, G) in the general case. As an attempt, in we treated the
special case where G=SL,(F,) and C is a certain hyperelliptic curve in charac-
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teristic 2. In this paper, developing the method of [8], we shall give an upper
bound for n(C, SL,(F,)) when the genus of C is two, and p+#2, 3. Moreover,
comparing this with the result of Ihara [6], we shall show that n(C, SLy(Fp))
is strictly smaller than N(2, SLy(F,)) for any curve of genus two.

To be more precise, let Irr(N, SLy(F,)) (resp. Surj(N, SLy(F,))) be the set of
GL,(k)-equivalence classes of irreducible representations of a group N into (resp.
onto) SL,(F,). Note that the GL,(k)-equivalence class of an irreducible repre-
sentation p belongs to Irr(my(C), SLy(Fp))\Surj(w,(C), SLy(Fp)) if and only if
the order of p(x,(C)) is prime to p. So the number #Irr(z,(C), SLy(Fy))
— #Surj(z,(C), SLy(Fp)) is equal to #Irr(d,, SLy(F,))—#Surj(d,, SL.(F,)). More-
over note that #Surj(z,(C), SLy(Fy)) (resp. #Surj(d,, SL,(F,))) is equal to
n(C, SLy(Fp)) (resp. N(g, SL,(Fp)). Thus to compare n(C, SL,(F,)) and
N(g, SLy(F5)), it is sufficient to compare #Irr(z,(C), SL,(F},)) and #Irr(d,, SLy(F,)).
Now our main result is

THEOREM A. Assume that the genus of C is two, and p+#2,3. Then

#1rr(m,(C), SLF,) = 5 p = 9+ p+18p+1.

On the other hand, Ihara showed in [6] among others that
#lIrr(d,, SLy(Fp)) = p*+16p*—5p2.
Thus we have

COROLLARY TO THEOREM A. Let the assumptions be as above. Then
n(C, SLy(Fy)) is strictly smaller than N(2, SL,(F,)) for any curve C of genus two.

Now we explain the outline of the proof of By the result of
Lange and Stuhler [10], our problem can be reduced to the estimate of the
number of stable vector bundles of rank 2 with trivial determinant which are
invariant under the p-th power map on C. Soin §2 and §3, we consider
certain sets M, gM of vector bundles which contain all such vector bundles
(see Theorems 2.1 and B.2). In §4 we construct certain subsets of the projective
spaces associated with some matrices which are related to $H. In §5 we
complete the proof mainly by Theorems [.4 and

The author would like to thank the referee for his valuable advice.

§1. Generalization of Bezout’s theorem.

In this section, we shall give a certain generalization of Bezout’s theorem.
Let R be a commutative ring, and M,.(R) be the ring of all (m, n) matrices
with entries in R. Hereafter we assume that m=n. For each element A of
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M.,..(R), let AG,, -+, 4.} J1, +-+, Js) denote the matrix obtained by deleting the
t3, -+, i-th rows and the j;, ---, j,-th columns from A (we write B=A(@,, -, ,; )
if B is obtained by deleting the 7,, ---, 7,-th rows). For a while, let R be a
polynomial ring k[ X,, ---, Xy] over an algebraically closed field k. For each
element A of Mn.(R), let J(A) be the ideal of R generated by all determinants
det A(sy, -, tmen; ) A0, < <in-=m). Let V4 be the algebraic set of the
N+1-dimensional affine space AY*' over % defined by J(A4). If J(4) is a
homogeneous ideal, it is regarded as a subset of the N-dimensional projective
space P¥ over k. Now assume that the codimension of V, is m—n+1. Then
we can define a cycle C, of P¥ by

Ca= %} length(Ro/JI(A)R)Q

where Q runs over all prime components of V, of codimension m-—-n-+1, and
R, denotes the local ring of P¥ at Q. Then we can determine the degree of

C. explicitly (see [Theorem 1.5). Note that when n=1, this is nothing but
Bezout’s theorem on intersections of divisors.
For the proof of let R be an arbitrary commutative ring,

and let A be an element of M,.(R). For each systems (iy, -, ip-o) and
(J1, *** 5 Jm-n+1) Of integers such that 1=7, <. <ip-,=m and 1=7,< - <Jm-nn
=m, put fi.i,_,=det Ay, =+, in-n; ), and A =det A(j1, =, Jm-n+1; 1)

Am-n Jrdm=-n+1

LEMMA 1.1. With the above notations, we have

(L.1) (=1 P figtyy . = jﬁn (—1)%5Rspty s mdom s

v

where e, e; are integers, and (n -+ j - m) means (n --- j—1, j+1 .- m). (Here, we
make the convention that hy..i,_,;=0 if j=t1, =, in-n-1 OV im-p.)

ProOF. Fix integers ¢, ', fm-n-1, and 7,-,, and define a matrix
D=(di;):15i1sm by di;=0i,:, where 0 is Kronecker’s delta. Write

1sjsme=n
Ay A\l n—1 D\} n—1
A= , D= s
Agl Agz }m'—'n+1 Dg }m_n+1
—— ——
n—11
and put
A, 0 0 D,
B =\ A, Ay Ay D,].
0 A A, O

Then by a simple calculation, we have

det B = (—1)*hp.mfipuiy, .
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with some integer ¢. On the other hand, by Laplace’s expansion theorem,

detB = > det B(ky, =+, kn;n, -, 20—1)Chyr,
15k < <kpsmtn-1
where C,,..,, denotes the cofactor of detB(k,, -, ky;n, -+, 2n—1) in B. We
have

det B(ky, -, kn;n, -, 20—1)Cp .,
{ (—1D)fhyipypifnfom if (ky, -, ko)=(, m+1, -, m+n—1),
0 otherwise.

(Here we make the convention that f,.;.,=0 if j>m or j<n.) This proves
the assertion.

Hereafter, for an ideal 3 of a ring R, we often use the same notation 3
to denote the ideal 3Ry of the local ring Ry of £. Then we have

COROLLARY TO LEMMA 1.1. Assume that R is a Noetherian ving. For an
element A of Mp.(R), put F=I(A), Fm)=IJ(Am; ), and 9=I(A(m :n)). Let
F(m)’ be the minimal pure ideal containing F(m). Assume that

height( fr..m-1, F0n)d, height{hp.m, Fom)> = height Fom)+1.
Then for any prime ideal 2 of R such that height Q=height§(m)+1, we have

(L.2) length Ro/{fa.m-1, §F(m)’>—length Ro /<F, F0m)'>
= length Ra/<{hn..m, T(m)>—length Ro/<9, Fm)').

PROOF. BY ’ we have <fn~--m—1‘b: %(m)/>:<hnm%r %(m),> Therefore,
is easily proved.

LEMMA 1.2. Let R be a Cohen Macaulay local ring of Krull dimension n,.
Let ¥ be an ideal of height n,—1, and T be an element of R such that
height<%¥, T>=n,. Then & is a pure ideal of R if and only if

(1.3) %} length R/ length R/<P, T) = length R/<F, T

where P runs over all prime divisors of §F of height n,—1.

PROOF. Assume that § is pure. Then T mod% is not a zero divisor in
R/%. Thus [1.3) is nothing but “the associative formula of multiplicities” (for
example, see the proof of Prop. 1 of Chap. IV § 1.3 in Safarevi¢ [16]). Conversely
assume that holds. Let § be the minimal pure ideal containing ¥ Then
¥ can be expressed as F=F MNq with an ideal q whose radical ~/'q is the
maximal ideal of R. Then by the assumption and the associative formula, we
have
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length R/<¥’, T> = length R/<{%, T>
and so we have <¥, T)O=<¥, T). This implies F=F. g.e.d.

Now fix positive integers /, n. A system {JI*?, g* P} (1=4, k<, 1<7<n)
of ideals and elements of R is called general if:
1) JEPHKglkdd, ITP={g"?), and J*V=(gikil,
(2) 3(1,1)33(1:-1,]), and 3(1311'-1)33(1'—1,1),
(3) for any 2=<i/=</, 2<j=<n such that J¢-1.9 &N JE-Dx R we have

height 3 = height(J*-7, g7}
= height{J“-*7, g4~} = height />
= height J¢-1P41 =,

For each ring S and its ideal J, put #(3, S)=Ilength S/3.

PROPOSITION 1.3. Let R be a Cohen Macaulay domain which is a finitely
generated k-algebra, and let {JV-3°, gt*'-i} 1=y, k'S, 1=7'<n) be a general
system. Assume that for any 2=i<l, 2<j7=n, we have

(1‘4) <g(i.j)3(i,1‘-1)’ 3<i-1.1>> — <g<1.j-1)3<i.j), 3(i"1’j)>-

Then the ideal J""P Ry of Ry is pure for any 2=i<l, 1<j=<n, and for any
prime ideal 2 of R of height i. Moreover

(1.5) i(J3%P; Ra) = %) 1(JE1P 5 Ry) i(KghP, B> Ro)
- % (I Ry) i(Kgh ™0, By Ro)+i(IHI0; Ry)
where P runs over all prime ideals of Rgo of height i—1.

ProOF. The assertion ((1.5) is a direct consequence of the purity of J¢-7,
and (1.3), (1.4) (cf. [Corollary| to Lemma 1.1I). So we prove the purity of 3Ry
for any prime ideal O of R of height 741 by induction on (¢, /). The assertion
holds for /=1 or j=1. Assume that the assertion holds for any (i’, j*) such
that ¢/<i, j'<j, i’+j'<i+j. For any prime ideal & of height /+1 which
contains J#, put S=Ra. Then we can take a prime element T of R such
that 7€ and {J-7, g*"-3"} (1=¢, k’<i+1, 1=j’=n) is a general system
in R/XT>. Here for a subset or an element § of R, 3 denotes the image of
% under the canonical surjection R—R/{T>. Put S=S/7S. Then by the
inductive hypothesis, 3”5 is a pure ideal of S. Thus an element T mod
(QU-1N g% s not a zero divisor in S/(I¢-1P, g%, Thus we have

K32, g9y §) = %) i((IEHP, g0 P55 Sg) ilKB, TH; S).
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Similarly we have

(1P, ghIhy; §) = % (I, ghI 05 Sg) ildB, T S).

Moreover, by the inductive hypothesis, J/-* is pure, so we have
i(I4i-0; 5) = %) (I Sg) iKB, TH; S).

By the assumption on the purity of J¢-1.9 J¢-1.9 and by
{4 ; 8) = T i(I4N; Sp) iKP, TO; S),
m

where P runs over all prime ideals of S of height 7. Thus by
J¢NS is pure. This completes the proof.

Put /[=m—n-+1. We say that an element A of M,,(R) IES/ a general
system if a system {J(A@+7j, -+, m; j+1, -, n), det A(y, -+, j+k—1, -+, m;
J+1, -, n)t A2k, i, 1=S7<n) of ideals and elements of R is general. We
make the convention that AG+J, -, m; j+1, -+, n)=AG+n, -, m; )if j=n,
and AG+jg, -+, m; j+1, .-, n)=A for j=n and =/ Hereafter, we use the
same symbol H to denote the divisor on a variety defined by the polynomial H.
Define a submatrix A; of A by A;=A(m—n+j+1, -+, m; j+1, -, n).\ﬁet
F;j, be the divisor of SpecR defined by the element F;;p=detAyJ, ---, j+i—1,
-,m—n+yj; ) of R. For any divisors D,, -, D,, let Dy-D,--- D, denote the
intersection product of them. We write #(3(A); Q)=i(J(A); Ra). Then by
we easily obtain

THEOREM 1.4. Let R be as in Proposition 1.3, and for each element A of
M pno(R), define a cycle C4 of SpecR by

Ca=221(3(A); AQ,

where Q runs over all prime components of V, of codimension m—n-+1.  Put
{=m—n-+1, and assume that A has a general system. Then C, is expressed as

n i il-2
CA =2 2 2 I(F(l,il)—F(l,il—l))'(F(l—l.iz)—F(l,iz—l))

i1=1 ig=1 ij-1=

o (Feo,ep—Fa,ip--0) Fa, i p

(Here, we put Fi;=0 for j=0.) If R is a graded ring, and if the Fj;’s are
all homogeneous, as a cycle of ProjR, C4 has a similar expression.

THEOREM 1.5. Let R=k[X,, -+, Xy]. Assume that an element A of Mp.(R)
has a general system, and that the determinant of any square submatrix of A is
homogeneous. Then
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n i]-
Di3A); QdegQ = 35 5 (deg Fuu,ip—deg Fo,-0)

t-1=

- (deg Fs,4,_,—deg Faip_y-v) deg Fey4y_p»
where Q runs over all prime components of V,CProj R of codimension .

REMARK. A result analogous to is proved by Chern in [1].

§2. Representation of vector bundles.

Let C be a connected complete non-singular curve of genus 2 over an
algebraically closed field .. Hereafter, we assume that the characteristic of %
is not 2. Then we shall represent some subset of isomorphism classes of vector
bundles which contains all isomorphism classes of stable vector bundles of rank
2 with trivial determinant in an algebra-geometric manner. An answer to this
problem has been obtained by Narasimhan and Ramanan in [12]. But for the
proof of our main theorem, we need another formulation (see [Theorem 2.1).

By a vector bundle on C, we mean a locally free sheaf on C, and by a line
bundle on C, we mean a locally free sheaf of rank one. As is well known, a
divisor D on C defines a line bundle in a standard way. This line bundle is
denoted by Lp. For any two line bundles L,, L,, we often abbreviate L,QL,
as L,L,, We write Lp-1i=L3. Let E, F be vector bundles on C. Let
(W, i, p) denote an extension 0—ESWAF—0 of F by E. We denote by
(W, 7, )y the equivalence class of (W, 7, p). The set of all equivalence classes
of extensions of F by E is denoted by Ext(F, E). For each extension (W, i, p)
of F by E, put

2.1) oW, 7, ply) = d(idp),

where 0 : H(C, Hom(F, F))—HC, Hom(F, E)) is the connecting homomorphism
and idp is the identity mapon F. As is well known, d defines a bijection from
Ext(F, E) to H¥(C, Hom(F, E)).

For each k-module M of dimension n, let P. M denote the set of all one-
dimensional submodules of M. Then P. M can be regarded as the set of k-valued
points of an (n—1)-dimensional projective space. We often use the same notation
P. M to denote this projective space. For each non-zero element w of M, let
{w) be the k-module generated by w. Then two non-trivial extensions (W, i, p)
and (W', i, p’) of F by E are called quasi-equivalent if <{o((W, 7, p)p)>=
oW, 1, p")v)>. We denote by (W, i, p)r the quasi-equivalence class of (W, 7, p).
The set of all quasi-equivalence classes of non-trivial extensions of F by E
is denoted by P.Ext(F, E) and the natural bijection from P.Ext(F, E) to
P. HY(C, Hom(F, E)) is denoted by e&. We often abbreviate (W, 7, p)y (resp.
(W, i, p)r) as W)y (resp. (W)r).
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For each vector bundle V, let [V] (resp. [[V]]) denote the corresponding
isomorphism class (resp. S-equivalence class). (For the word “ S-equivalence
class ”, see Seshadri [17].) We say that V (or [V]) is represented in a subset
S of Ext(F, E) if there is an element (V,,7,, p.)y of S such that [V]=[V,].
Then V (or [V]) is called represented by an element w of HYC, Hom(F, E))
if o((Vy, 74, py)=w. In particular if (Vi, 7, p;) is non-trivial and (Vy, 7, pi)r
belongs to a subset S’ of P.Ext(F, E), V (or [V]) is called represented in S’
by <w) or by (Vy, 1, po)r.

Now there are six Weierstrass points on C. The set of Weierstrass points
is denoted by 9. A line bundle L, is called a Weierstrass line bundle if Q=w.
We use the same symbol € to denote the divisor class of a divisor §. Let J be
the Jacobian variety of C and put J(n)={0<]; 6"=1}.

Let = :C—P! be the finite Galois morphism from C to a one dimensional
projective space P! of degree two with six ramification points Q=9, and let
¢ be the non-trivial element of the Galois group G=Gal(C/P?*). Fix a point P,
of C, and put K=LpQLp, with P;=a(P,). Then ¢ acts on HY(C, Hom(K, K-))
in a natural manner. Thus we have

HYC, Hom(X, K-Y) = HY(C, Hom(K, K-")).@H*C, Hom(X, K~%)-,

where HYC, Hom(K, K-Y)).={&c H¥C, Hom(K, K-V); 0(§)==+¢&} (cf. §2.3). Put
Ext(K, K~1);=8"'(HYC, Hom(K, K~Y),) for i=+, —.
Now put

S ={[[V1]; V is a semi-stable vector bundle of rank 2
with trivial determinant}.

Then we have the following

THEOREM 2.1. Assume that P, is a non-Weierstrass point. Put P*=
P.Ext(K, K)-1 Il gewP.Ext(Lq, Lg") (a disjoint union), and Wos={Wio)r; Q=W}
(for the definition of (Wig)r, see (2) of Lemma 2.4). Then every element of
P¥\W,, represents a semi-stable vector bundle, and the (set-theoritical) map

§:P\W,,,— S
U )
W, i, p)r — [[W1]]

is surjective. Moreover

2 if W is stable,
eH[WID) =1 infiite  if [[WIl=[[L,DL7']1] with 6<](2),
1 otherwise.

The proof of will be done after (see Propositions
2.7 and and [Corollary| to [Proposition 2.16).
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§2.1. Bilinear maps and homomorphisms of vector bundles. Let E, F,
and V be vector bundles on C. Then define a bilinear map 0 : H*(C, Hom(V, F))
X HY(C, Hom(F, E))—HC, Hom(V, E)) by

(2.2) Ov(f, w) = f*w)

for fe H(C, Hom(V, F)) and we H¥C, Hom(F, E)), where f*: H{C, Hom(F, E))
—HYC, Hom(V, E)) is the homomorphism induced by f. Now fix an extension
0—=E—-W—F—0, and put w=06(W)y). Then by the commutative diagram in
the proof of Lemma 3.1 in Narasimhan and Ramanan [127], for any
feHYC, Hom(V, F)),

(2.3) Ov(f, w) = 9(f)

where 0 : H°(C, Hom(V, F))-»HYC, Hom(V, E)) is the connecting homomorphism.
Thus we obtain the following isomorphism

(2.4) 4 : HYC, Hom(V, W))/H*(C, Hom(V, E)) = ker @y( , w).

Here we regard H°(C, Hom(V, E)) as a submodule of H°C, Hom(V, W)) in a
natural manner, and 6,(, w): HC, Hom(V, F))—HYC, Hom(V, E)) is the
homomorphism induced by ©,. Define a bilinear map, which we also denote
by @y, from HYC, Hom(F, E))x H*C, Hom(E, V)) to HC, Hom(F, V)) in the
same manner as above. Then similarly to [2.4),

(2.5) 4 : HYC, Hom(W, V))/H(C, Hom(F, V)) = ker @,(w, ).

Hereafter, we often abbreviate @, as @ if no confusion arises.
Now for the ¢ of G=Gal(C/P*), and a vector bundle U, there is a natural
isomorphism

(2.6) o* : H(C, U) = HYC, a*U).

In particular, if U is o¢-invariant, the isomorphism o¢*U=U induces an iso-
morphism H¥C, ¢*U)=H¥C, U). Then composing this with the ¢* in [(2.6
we obtain an isomorphism from H¥(C, U) to itself, which will be also denoted
by ¢. Since the characteristic of % is not 2, H¥C, U) is decomposed as

Hi(cy U) = Hi(cy U)+®HZ(C: U)— ’

where H¥C, U).={¢€HYC,U); c()==x¢&}. Now let E, E, E; be vector
bundles. Let p, ¢ be non-negative integers such that p+g¢g=1, and let
O :H?(C, Hom(E,, E,)) x H4(C, Hom(E,, E,))— H*(C, Hom(E,, E,;)) (resp. O’:
H?(C, ¢*Hom(E,, E,)) X H{C, ¢*Hom(E,, E;))— H*C, ¢*Hom(E,, Ey))) be the
bilinear map stated above. Then clearly

2.7 O'(c*w,, 6*w,) = a*¥(O(w,, w,)).
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From this we obtain the following

LEMMA 2.2. (1) Let E, E, and E; be g-invariant vector bundles, and let O
be as above. Then O is decomposed as O=06,,+6, +6O_.+6__ with

@ij : H?(C, Hom(E,, E.)); X HY(C, Hom(E,, E,));— H(C, Hom(E,, E)kap

where k(@i, j)=-+ or — according as i=j or not. In particular, for any element
w of HYC, Hom(E,, E;))-, the homomorphism O( , w) is decomposed as O( , w)
=0(, w)++0( , w)- with

O(, w); : H'C, Hom(E,, E,)); = HYC, Hom(E,, Ey))jc0»,

where j(i)=+4 or — according as i=— or +. The homomorphism O(w, ) is
decomposed in a similar manner.

(2) Let D be a divisor on C, and let W be a wvector bundle. Then
H(C, Hom(Lp, W))#0 if and only if H*C, Hom(L sxpy, a*W))#0.

Now let E, F be o-invariant vector bundles on C, and assume that (W, 7, p)y
belongs to Ext(F, E). Then we obtain an extension 0—-E—g¢*W—F—(, and by
(2.1), [2.3), [2.7) and by the definition of the action of ¢ on H*(C, Hom(F, E)),
we have

0(a*W)y) = a°d(W)y).

Thus we have 3((6*W)y)=-+d((W)y) or —o((W)y) according as (W, 7, p)y belongs
to Ext(F, E), or Ext(F, E).. Thus there is the following commutative diagram

0 — F a*W F—0

2.8) iidl h(,l idl

0 — FE w F 0.

Thus we can define an action ¢’ of ¢ on H{C, W) by
o'(u) = hFoa*(u)
for ue H¥{C, W). Then we have

PROPOSITION 2.3. Let E, F, and V be a-invariant vector bundles. Let (W)y
eExt(F, E)-. Then we can define an action of ¢’ on H°(C, Hom(V, W)) such that

H°(C, Hom(V, E));u, € HYC, Hom(V, W));
for i=+, —, and that the isomorphism 4 in (2.4) is decomposed as d=A4.+4_ with
4; : H(C, Hom(V, W));/H*(C, Hom(V, E));« = ker @( , w);.

We can also define an action of ¢ on H(C, Hom(W, V)) with the same properties.
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Proor. The action ¢’ of ¢ on H*C, W) induces an action of ¢ on
HC, Hom(V, W)), which will be also denoted by ¢’. Then by [2.8)] we obtain
the following commutative diagram :

0—H*C, Hom(V, E))—H*C, Hom(V, W))—H"(C, Hom(V, F))-HYC, Hom(V, E))
-0 o’ l c l —0C l
0—H*C, Hom(V, E))-H%C, Hom(V, W))—H*C, Hom(V, F))-»H*C, Hom(V, E)).

Thus the assertion is proved.

§2.2. Cech cohomology and cup product. Let H¥U, V) be the i-th
cohomology group of a vector bundle V with respect to an open covering U.
As is well known, if U is an affine open covering, there is an isomorphism ¢q
from H¥U, V) to HC, V). For each element u of the 1-cocycle group ZXU, V),
let [u] denote the corresponding cohomology class. Let n:C—P! be the
morphism stated before. For each point P of C, define an affine open subset
Up of C by Up=rn=(PNMzn(P)}). If n(Q)#r(Qs), U={Uq,, Ug,} forms an
affine open covering of C. Then for each element u of the group I'(Ug,NUqg,; V)
of the sections of V over Ug,NU,, define an element {u?#} of ZX(U, V) by
ull=—yl=y, u1=y2%=0. {u?#} is uniquely determined by u. Hence we often
simply write {u*#}={u}, and [{u?*#*}]=[u].

For two vector bundles E, F, we often identify Hom(F, E) with F*QE,
where F* is the dual of F. If E, F are line bundles, we can naturally identify
Hom(V, E) with Hom(V, F)QHom(F, E). Then the bilinear map @, defined by
(2.2) is nothing but the cup product

U : HYC, Hom(V, F))X H{C, Hom(F, E)) » H{C, Hom(V, F)®Hom(F, E)).
Thus if we take an affine open covering U={U;}, we have
(2.9) Ov(f, w) = ([ {fAQw*#}])

for f={f*}eH*C, Hom(V, F)) (=H%U, Hom(V, F))), and w=cy([{w**}])e
HYC, Hom(F, E)). In particular if we fix w,

* ° ; f* Ap—pi__
2.10) kerOy( , w) = {r }EH.(C, Hom(V, F.‘)),f Quit=p*—p# .
in U;NU, with b*el'(U,, Hom(V, E))

Similarly, the bilinear map 6,:H'(C, Hom(F, E)) X H*(C, Hom(E, V))—
HYC, Hom(F, V)) in §2.1 is nothing but the cup product

U : HY{C, Hom(F, E))x H%C, Hom(E, V)) - H¥C, Hom(F, E)YQHom(E, V)).

§2.3. Representation of unstable vector bundles. For vector bundles
E, F, and V, put



408 H. KATSURADA

S(F, E; V)= {(W)y€Ext(F, E) ; H(C, Hom(V, W))+0},
S/(F, E; V)= {(W)y<Ext(F, E) ; W has a sub-vector bundle V}.

Clearly we have S'(F, E; V)CS(F, E; V).

LEMMA 2.4. Let 0, be the unit element of the Jacobian J. Let K=Lp&QLp,
be the line bundle stated before.
(1) Let 6<], and 6+6,. Then P.S(K, K~*; Ly) forms a one-dimensional linear
subspace of P.Ext(K, K-Y).
(2) For any QeC, P.S'(K, K-*; KQLg") consists of one element. This element
will be denoted by (Wig)r. Wiy is non-semistable. Conversely if an element (W)r
of P.Ext(K, K-!) represents a non-semistable vector bundle, there exists a unique
Q<C such that (W)r=Wrer.

PrOOF. (1) By we have
O(S(K, K~'; Lg)) = {we H'C, Hom(K, K1) ; ker @.,( , w)#0}.

Since 8+6,, H°C, Hom(L4, K)) is generated by a single element 7. Fix this
7. Then an element w of HYC, Hom(X, K-!)) belongs to o(S(K, K~'; L)) if
and only if weker@,,(y, ). By Or,(r, ) is surjective. Thus by the
Riemann-Roch theorem, ker®.,(y, ) is a two-dimensional k-submodule of
HYC, Hom(K, K-1)). This completes the proof.

(2) In a way similar to (1), we can prove that P.S(K, K-'; KQLg") consists
of one element. Let (W)reP.S(K, K-'; KQLg"), and let h be a non-zero
element of H°(C, Hom(KQLjg', W)). Assume that (W)r&P. S/(K, K-1; KQLGY.
Then A(P)=0 for some P<=C, where h(P) denotes the image of 4 under
the natural homomorphism from H%C, Hom(KQLg', W)) to the fibre of
Hom(K®Lg!, W) at P. Then by in Narasimhan-Ramanan [12],
H(C, Hom(KQ Lg'@Lp, W))#0. Thus by [2.4), H*(C, Hom(KRLFQRLp, K))+0.
Thus we have KQLG'®Lp=K, and W=K-*PK, which is a contradiction.
Thus we have (W)reP. S/ (K, K'; KQL3"). Conversely assume that an element
(W)r of P.Ext(K, K-') represents a non-semistable vector bundle. Then
HC, Hom(L,, W))#0 for some line bundle L, of positive degree. Then by
2.4), H(C, Hom(L,, K))+#0. Since we have W+#K-'DK, the degree of L, is
1, and L,;=KQLjg"' for some Q=C. This proves the assertion.

Now let L=LpQRLp with P=C. Then L™ is a ¢-invariant line bundle.
Hence we can define submodules H¥C, L™), and HYC, L™)_ of H¥C, L™) as
in §2.1. From now on, let K=Lp&QLp, with P, a non-Weierstrass point. Fix
ReC, R+#P, P, and a non-zero element x, of H°C, Hom(KQLzQRLzH).
Then for any PeC, P+P, P;, there is a unique element xp of
H(C, Hom(KQLp*QLp')) such that xp—=xp belongs to the field 2. Moreover
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put xp=xp,=1,, the unit element of k, and take a rational function y on C
such that yz-—"-'-HQeq,VXQ.

LEMMA 2.5. (1) For the covering U={Ugq, Up} (m(Q)F#xn(P)), let ¢q

denote the isomorphism tq: HY (U, K¥*QK)—-H C, K*QK™') in §2.2. Then
{te[xg" Y DHeoy and {to[xgD} form bases for HYC, K*QK-)-, and
HYC, K*®K™Y),, respectively. Moreover for any PeC such that m(P)#zn(Py),
ep([xp'y ) =23=0beg([x5"'y]) with Ap=xq—xp, tp(lxp'y])=te([x3'y]), and
ep(Lxp* D=1q([x5' D)
(2) Let PeC, Qew. For the covering U={Up, Up,} (n(P)#n(Py)), let ¢q,p
be the isomorphism from HYU, LEQL3") to HYC, LEQLG") in §2.2. Then
{eQ.o([xg" *yDtioy forms a basis for HYC, L§QLG"). Moreover, we have
to. P([xexp'y ) =234 g, o([x0" ' y]) for any PeC such that n(P)+n(P,).

PROOF. The first part of (1) can be easily proved. Put U,=Up, U,=U,,
and U,=Up, and x=xo, 4A=4p. Then an element xp'y=x"'(1—x"'2)""y of
r'u,NU,;, K*QK-*) can be expressed as

xpty = x"( z_Zgz’,iix"'3)-|—Jc“‘,l4(l—zc‘12)‘ly> .

Here, x?24(1—x~A)"'yel'(U,NU;, K*QK"'). This proves the second part of
(1). Similarly the rest of the assertion can be proved.

By (1) of the above lemma, ¢p([x3'y]), and ¢p([x7']) do not depend on a
point P such that w(P)#xn(P,). Hence we write {p,=Cp=c¢p([x5'y]), and
n=cp([x5']). We also write Cp=¢p([x5'y]) and (g p=tq p([xex5'y]) for
P+P,, P;, and Q9. Moreover define a subset C; of P.Ext(K, K-!)_ by
Co=e¢'{&py; P=C}) or Cop=e""({<alp+bLgy>; a, bk, a+0 or b+0}) according
as =0, or 0=P,P,P'Q*+4,.

LEMMA 2.6. (1) <{n>eeP.S'(K, K™*; Lgy)+) and Co,CP.S(K, K='; Lg,)-.
In particular if PeW, <{py=e(Wip)r).
(2) Let Li=KQLp'QLgY, with 6=]J(2), 0+6, Then, CoCP.S(K, K~'; L,)-.
(3) For any P, QeW, (Lo pree(P.S(Lg, LG'; KQLFQLGH).
(In the above, for a line bundle L=K or L, we identify HY(C, Hom(L, L))
with HY(C, L*QL™*).) Hereafter we write (Wi er=¢"(q r).

ProoF. Let U={Ugq, Up,} be as above. Let §=60,. Then for any PC,
xp belongs to H (U, LfQK). Moreover for any P+P,, P;, we have xpxg'=
1,—Apxg' with 1,€l'Up,, LEQK™), Apxg'€l'(Uq, LFQK™), and xpxg'e
I'(Uq, L¥QK-Y). Thus by [2.10), O.,(xp, 7)=0 for any PeC. Thus by
7 belongs to o(S(K, K-'; Ly)+). A similar calculation shows that for any P<C,
the homomorphism O g1 ( , 1) : H(C, (KQLp)*QK))—H(C, (KQLp)*QK™)
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is injective. Hence by (2) of and [2.4), » represents a semistable
vector bundle. This proves the first part of (1). Similarly, for any P<C,
Ory(xp, Lp)=0. This proves the second part of (1. In particular, if P
belongs to 9, 1, belongs to HYC, (KQL)*RQK), and 1,x5'y belongs to
I'Up,, (KQLHY*QK™). By this implies that @xerz1 (s, {p)=0. Thus
the last part of (1) is proved by [2.4), and (2) of Similarly, (2)
and (3) can be proved.

COROLLARY. Let =0, Then for any xpsHC, LfQK), the kernel of
the homomorphism Op,(xp, ): H(C, K*QK-")—H'C, LfQK™") is generated by
Cp and n over k.

ProOF. It follows from the proof of (1) of the above lemma that {» and
7 belong to ker@p,(xp, ). On the other hand, similarly to (1) of
ker@.,(xp, ) is two dimensional. This completes the proof.

PROPOSITION 2.7. An element (W)r of P* represents a non-semistable vector
bundle if and only if W)r=Wg)r for some QEW.

Proor. The “if” part follows from (1) of Lemma 2.6, On the other hand,
as seen in §2.1, if (W);eP.Ext(K, K-Y)., o*W=W. Thus the “only if” part
follows from Lemma 5.1 in Narasimhan-Ramanan [12], (2) of and
(2) of

Now recall that a line bundle L of degree 0 can be expressed as
L=KQLz'QLg" with P, QC. Then,

PROPOSITION 2.8. (1) Let Ly=KQLp'QL3' with 0&J(2). Assume that
P, Q&wW. Then P.S'(K, K='; Ly)- consists exactly of one element. This element
represents a vector bundle LoD Lg*. Assume that exactly one of P and Q belongs
to W. Then P.S/(K, K~'; Ly)- is empty.
(2) Let Lo=KQLpQLg' with 0<]J(2), 0+60, Then P.SK, K™*; Ly)=
P.S(K, K-*; Lg)-.

PrROOF. By in Narasimhan-Ramanan [12], and (2) of
P.S(K, K-*; Ly) =P.S"(K, K=*; Lo)U{Wip)r, Wiz}«

By (1) of P.Ext(K, K-'). forms a linear subspace of P.Ext(K, K1)
of codimension one. By (2) of and the assumption, {(Wip)r, Wig)r}
¢P.Ext(K, K-%.. Thus by (1) of and by Bezout’s theorem,
P.S(K, K-'; Ly)-=P.Ext(K, K-Y)-NP.S(K, K-*; Ly) consists exactly of one
element. Thus the assertion (1) follows from (2) of Lemma 2.2, and [Proposition
2.7. Similarly, (2) can be proved.
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Similarly to Lemma 2.4, we obtain the following (see also Lemma 5.8 in
Narasimhan-Ramanan [12]).

PROPOSITION 2.9. (1) Fix a Weierstrass line bundle L. Let <], 6+0,.
Put Le=KQLp'QLg. Then P.S(L, L~*; Ly) is empty or consists exactly of
one element according as Lp#L, Lo#L or one of Lp, Ly coincides with L.
Moreover in the latter case, the element of P.S(L, L-'; Ly) represents a vector
bundle LoPDL3* if 0£]2).

(2) For any Weierstrass line bundle L, P.S(L, L~*; Lg,) consists exactly of one
element.

PRrOPOSITION 2.10. (1) For any 0], 0&]J(2), there exists exactly one
element W)r of P* which has a subline bundle Lgy. Moreover WL ,PLg".
(2) Let Li=KQLzQL3, with 0=]J(2), 0+60, Then P.S(K, K-*; Ls)-=C,,
and
P.S(K, K~'; Lg)- =P.S'(K, K~'; Lg)-\U{Wigdr, Wie)r}.

3) P.S(K, K-*; Ly)-=C,, and
P.S(K, K™*; Lg))- = P.S(K, K7*; Ly ))-\U{Wig)r; QEW}.

Proor. (1) follows from (1) of [Proposition 2.8 and (1) of [Proposition 2.9,
and (2) follows from (2) of and (2) of Proposition 2.8, Moreover
by (2) of to prove (3), it suffices to prove P.S(K, K-1; Ly,)-CCo,
Let weP.S(K, K-'; Ly,)-. Then there exists a non-zero element x of
H(C, L} ®K) such that §(x, w)=0. We have x=xq for some Q&C. Thus
the assertion follows from (Corollary| to Lemma 2.6.

§2.4. Representation of stable vector bundles. Finally we consider the
representation of stable vector bundles in P* (cf. Proposition 2.16 and its
corollary). Let V be a stable vector bundle of rank two with trivial deter-
minant. Put

S¥={W, 1, plwvsExt(K, K~) ; HC, Hom(W, V))#0},
Gy = {(W, i, p)r, {f))eP. S¥XP. HYC, Hom(K -, V)) ; there is a

non-zero homomorphism g:W—V such that gi=f}
and
Gy = {(Kw), <f>)eP. H¥C, Hom(K, K1)

XP. HC, Hom(K-%, V)); @(w, f)=0}.
Let
¥V : P.Ext(K, K-Y)xP. HC, Hom(K "}, V))

— P. H{(C, Hom(K, K-"))XP. H(C, Hom(K "%, V))
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be the natural bijection. Then by Lemma 3.2 in Narasimhan-Ramanan [12],
we have

(2.11) V(Gy) = G}.

Let {w:}i=1, {u;} 1, {64}F=1 be bases for H(C, Hom(K, K-1)), H*(C, Hom(K ", V)),

HYC, Hom(K, V)), respectively. Then for any 1=/<5, and 1=7=<m, we have
@((Ui, uj) = Elaijkgk

with a;;z=k. Then by G, forms an algebraic subset of P.Ext(K, K™%
XP. HC, Hom(K "%, V)), and is isomorphic to

5 mn
{n ) X0, 0y, YadePxPm s 3 BanXeY,=0 Asksn).

PROPOSITION 2.11. The projections
pr,: Gy—P.S¥ and vpr,:Gy— P.HC, Hom(K", V))
are biregular morphisms.
To prove this we need several lemmas.

LeMMmA 2.12. (1) Let 0—ELW—F—0 be an extension of a vector bundle F
by E. Let V be a vector bundle. Then gi#0 for any non-zero element g of
HC, Hom(W, V) if and only if H*C, Hom(F, V))=0.

(2) Let L be a line bundle. Let V be a vector bundle such that H*(C, Hom(L, V))
=0, and let 0—L-WSL-150 be an extension. Then the homomorphism
a:HC, Hom(L"Y, V))—»H%C, Hom(W, V)) defined by f— fg, is an isomorphism.

Proor. The two assertions follow directly from the long exact sequences
of vector bundles.

LEMMA 2.13. Let V be a stable vector bundle of rank two with trivial
determinant. Then we have dim H*(C, Hom(W, V))=<1 for any element (W)r of
P.Ext(K, K1)

PrROOF. Assume that dim H%C, Hom(W, V))>1. Then by Proposition 4.3
and its corollary in Narasimhan-Seshadri [13], W is non-semistable. Thus
by (2) of and (2) of dim H°(C, Hom(W, V))=
dim H°(C, Hom(K '@ Lg, V)) for some Q&C. Thus by Lemma 54 in
Narasimhan-Ramanan [12], V is not stable, which is a contradiction.

By this lemma, we easily obtain the following.

COROLLARY. Let V be as above. Assume that (Wi, iy, p)r=(W,, 15, bs)r in
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P.Ext(K, K-'). Then for any element h; of H°(C, Hom(W,, V)) (i=1, 2), we have

h]l’l - ahzl‘z
with some ac k.

Now for a while, we assume that V is a stable vector bundle of rank two
with trivial determinant.

LEMMA 2.14. For any non-zero element f of H°C, Hom(K-%,V)), there
is a non-trivial extension 0—>K‘11>W—>K—+O, and a non-zero element g of
H°(C, Hom(W, V)) such that gi=f.

PrOOF. We divide the proof into two cases.

Case 1. Assume that f(Q)+0 for any Q=C, where f(Q) denotes the image of
f under the natural homomorphism from H%C, Hom(KX-!, V)) to the fibre of
Hom(K-%, V) at Q. Then the homomorphism f:K-'—V is injective at any
fibre. Thus there is a non-trivial extension 0—K-'5V—K 0. Hence this
extension and the identity homomorphism id,; V—V satisfy the required con-
dition.

Case 2. Assume that f(Q)=0 for some QC. Let Wig, 7, p)r be the element
of P.Ext(K, K-) in (2) of and g,:Wi—K QL be the homo-
morphism in (2) of Then by (1) of the map c=g¢
is non-zero, and it is induced by the canonical section of L, Hence, by
in Narasimhan-Ramanan [12], f admits a factorization into e,
followed by a homomorphism 4 :K-'QL,—V. By (1) of the map
heg,:Wie—V is non-zero, and satisfies the required condition.

LEMMA 2.15. Let (Wj, 1, preP.Ext(K, K™*) for j=1,2, and let h; be
a mnon-zero element of HC,Hom(W; V). Then, if <hiy=<hes) in
P' HO(C: Hom(K—l, V))} (Wb il, pl)T:<W2; Z.Z; p2)T'

Proor. We also divide the proof into two cases.

Case 1. Assume that h,°7,(Q)#0 for any Q=C. Then W, is stable. In fact,
if not, by Proposition 4.3 in Narasimhan-Seshadri [13], and by (2) of
2.4, we have (W,)r=(Wy)r for some Q. Then by (2) of for the
homomorphism g,: Wig—=K'®Lg, there is a homomorphism i:K'QLy—V
such that h,=h-g,. Hence the map h,°7; admits a factorization into gge7,,
followed by h. This contradicts in Narasimhan-Ramanan [12]. In
the same manner, W, is stable. Hence h, and h, are isomorphisms. Thus we
have a commutative diagram

0 —>K'—>W, —> K —>0

ul skl

0 — K-! W,
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where u+0, and # is an isomorphism. From this, the assertion can be easily
proved in this case.

Case 2. Assume that h;°/,(Q)=0 for some Q&C. Then by in
Narasimhan-Ramanan [12], we have a commutative diagram

p
0 —> K1 —>W,— K —>0
Z'/hll p/

0 —K'Q@Lo—> V —>KQLg'—> 0.

Thus by (1) of Cemma 2.12, we have p’oh,=0, Thus it follows from the exact
sequence

0— HC, Hom(W,, K-*QLg)) — H(C, Hom(W,, V))
— H*(C, Hom(W,, KQLg")
that we have H%C, Hom(W,, K-'®Lg))#0. Since W, has a trivial determinant,
the dual W¥ of W, is isomorphic to W,. Hence we have H°(C, Hom(KQ Lz, W,))

#0. In the same manner, we have H°C, Hom(KQLg! W,)#0. Thus the
assertion follows from (2) of

PROOF OF PROPOSITION 2.11. The assertion follows from [2.11), [Corollary
to and Lemmas 2.14 and

Now the main result in this subsection is the following.

PROPOSITION 2.16. (1) For any stable vector bundle V of rank two with
trivial determinant, there are at most two Weierstrass line bundles L,, L, such
that V can be represented in P.Ext(L;, L7") (=1, 2). Moreover, if we fix L,
the representation of V in P.Ext(L;, L7") is unique.

(2) For any stable vector bundle V of rank two with trivial determinant,
there are exactly two elements (Vi)r, (Vor of P.Ext(K, K~). such that
H°(C, Hom(V;, V))#0 (i=1, 2).

By Propositions 2.7 and 2.16, and (1) of we have

COROLLARY. Any stable vector bundle of rank two with trivial determinant
can be represented in P* exactly in two ways.

To prove the proposition, we need the following lemma.

LEMMA 2.17. (1) Assume that an element (Wy)r of P* represents a stable
vector bundle. Then there are exactly two elements (V))r, (Vo)r of P.Ext(K, K-1).
such that H°C, Hom(V;, Wy)#0 for =1, 2.

(2) Let V be as above. For each line bundle L of degree one, put T¥ .=
{W)peP. Ext(L, LY ; HYC, Hom(W, V))#0}. Then we have #T} =1.
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PRrROOF. Similarly to [Proposition 2.11, we have a biregular morphism from
P. H(C, Hom(L"%, V)) to T# .. Thus (2) is proved. Now we prove (1). As
seen in §2.2, for any element (W,)r of P.Ext(K, K-!)., we have

P. S’!;E/of\P. EX.t(K, K_l)__ — P. S%T)UP. S?/FV_(;;
where
P. S¥, = {(W)reP. Ext(K, K-). ; H'(C, Hom(W, Wo); # 0}

for =+, —. Moreover, by Lemma 2.13, P. S§iNP. S¥,=@. Now fix i=+ or
—. Then by Propositions 2.3 and 2.11, we have

P. S} C priepry'(P. H(C, Hom(K™*, Wy)).).
Conversely, if an element (W)r of P.Ext(K, K~') belongs to
pryeprz(P. H(C, Hom(K !, Wo)),

by we have O@((W)y), /)=0 for some non-zero element f of
H*(C, Hom(K !, Wo)).. Thus by (1) of and (1) of
(W)reP.Ext(K, K-*)-.. Hence, by Proposition 2.3, (W)r<P. S#,.

Now by [Proposition 2.3, we have

H(C, Hom(K~*, Wy))i/ H*(C, Hom(K ™, K™%))jc> = ker Og-1(, 6(Woo)):-

Clearly,

dim H%(C, Hom(K -, K-%)) = dim H%C, Hom(K !, K-%), =1,
and

dimker O g-1( , d(Wy)y)) =dimker O g-1( , d(Wolp))+ =1

by the Riemann-Roch theorem. Hence, we have dim H°C, Hom(K !, W,))-=1,
and dim H%(C, Hom(K -, W,)).=1. On the other hand, since W, is stable,

(2.12) dim H%C, Hom(K !, W) =2
by the Riemann-Roch theorem and Serre’s duality. This completes the proof.

PROOF OF PROPOSITION 2.16. (1) Let {f,, f} be a basis for H°(C, Hom(K !, V))
(cf. [2.12)). Then the exterior product f;Af. belongs to H%C, K?). Hence it
vanishes at most at two Weierstrass points. Hence at most for two Weierstrass
points P, two elements f,(P), fo(P) of the fibre of Hom(K-! V) at P are
linearly dependent over k2. Thus (1) follows from in Narasimhan-
Ramanan [12], and
(2) Assume that V has a dual Weierstrass subline bundle Lg'. Then the
assertion follows from Assume that V has no dual Weierstrass
subline bundle. Then by [Proposition 2.11, and [2.12), P.S¥ is an algebraic
curve in P.Ext(X, K-*). Hence, P.S¥NP.Ext(X, K-!)_ is non-empty. Take an
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element (Wy)r of P.SFNP.Ext(K, K-Y).. Then by [Proposition 2.7, and (2) of
W, is isomorphic to V. Thus the assertion (2) follows from
Lemma 2.17

PrROOF OF THEOREM 2.1. The assertion follows from Propositions and
and [Corollary] to [Proposition 2.16,

§3. Classification of FM bundles.

Throughout §3 and §4, let p be a prime different from 2.

Now put M={[V]; V is represented in P*}. In this section we investigate
some subset of # which is related to the representation of the fundamental
group 7,(C) in GL,(k). A vector bundle V is called an FM bundle if there is
a non-zero homomorphism from F*V to V, where F*V is the pull back of V
by the p-th power absolute Frobenius map on C. The set of isomorphism
classes of FM bundles which belong to K is denoted by F.#. For each rep-
resentation p of #,(C) in GL,(k), let [p] denote the GL,(k) equivalence class
of p. The next proposition is our main tool

ProrosITION 3.1 (Lange and Stuhler [10], see also [8]). (1) Put

S¥ = {[V1]; V is a vector bundle of rank two with trivial

determinant, and F*V=V}
and

H(m,(C), SLy(Fp)) = {Lp]; o(my(C)TSLy(Fp)} .
Then all elements of SI are semistable, and there is a bijection

@ : ST — H(m,(C), SLy(Fp)).
(2) Put

[er(zy(C), SLo(Fp)) = {[ple H(m,(C), SLy(Fy)); p irreducible} ,
and

FM, = {[VI1eSET; V is stable}.
Then we have @(FMs,)=Irr(z,(C), SLy(F,)).
Now we shall classify FM bundles. Let & be the canonical bundle. Put

GMse = {{VIesM ; V is a stable vector bundle which is represented
in P.Ext(L, L-') for some line bundle L such that
LQL=k, and F*V is represented in Ext(L-*, L)},

FMss: = {[Le@DL5"] ; 0]J(p+DUJ(p—1), and & J(2)},
FMsse = {LVIEeM ; V is represented in Ext(Ly, L) for some §<J(2)},
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and
Then,
THEOREM 3.2. The set FM is decomposed as

FMas={[Wigil ; QEW}.

FM = FMe\JF Mo\ JF M 51\ F Mo\ S FMps .

PrROOF. Assume that V is stable, and belongs to $#. If F*V is semi-
stable, we have F*V=V. If F*V is not semistable, by Korollar 2.6 in [10],
F*V has a subline bundle L such that LQL=k. They by (2) of
V has a subline bundle L-. Conversely if [ V] belongs to F.Hs,, again by (2)
of [V]egHm. If we have V=L,PL;' with ], we have
F*V=L3BLs?. Therefore we have F*V=V if and only if L%=L, or L=L;"
Let 0—»Lsz'»V—Ly—0 be an extension with #<J(2). Then clearly we have
H°(C, Hom(F*V, L%))+0. Since we have L%= L', we have H%(C, Hom(F*V, Lz'))
#0. Thus by [V] belongs to 4. Similarly, we have S, CFH.
This proves the assertion.

Now for each og-invariant line bundle L, put
FM(L) = {(V)reP.Ext(L, L") ; [VIeFH}.
Then FM(L) is decomposed as FH(L)=FHU(L, +)\JFH(L, —) where
FH(L, 1) = {(V)re FH(L); H(C, Hom(F*V, V));#0}.

In the rest of this section, we shall consider the finiteness property of FH(L)
when L=K or Ly with Q9. For that purpose, let L=Lg and, g: H{(C, L%
—HYC, L-*?)_ be the p-linear homomorphism induced by the p-th power absolute
Frobenius map on C. Let ©’: HY(C, L=*?)_xX H*C, L*-*);—HYC, L~*?"%);. be the
cup product, and p: H¥C, L=**-%),;,—»HYC, L~?7%);4, be the surjective homo-
morphism induced by the exact sequence 0—L~??~'—L-?3(0;/I5 QL ?~*=0,
where 4 is the ideal sheaf of Q. We note that there is an isomorphism
t from HYC, L-%) to HY¥C, L-®).. Then we define a bilinear mapping
¥:HYC, L-»)X HYC, L?');—HYC, L-?"%);u, by T=p-0’+(gerxid). Then we
have

LEMMA 3.3. Let L be as above. Let ©:HYC, L-2?)_xHC, L?V);—
HYC, L-?"Y);iy be the cup product, f:HNC, L-*)—HYC, L~*?)_ be the p-linear
map induced by the p-th power absolute Frobenius map on C, and h: HY(C, L=""%),¢
—HYC, L=, be the homomorphism induced by the exact sequence 0—L~?-3—
L-?'5(0¢/39)QL-?"'=0. Then
(3.1) O-(fxid)=h-¥.

3.2) ¥(w, ):H"C, L?*);—> HY(C, L?"%);;» 1is injective for any non-zero
we HY(C, L?).
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ProOOF. Clearly ¥ satisfies (3.1). To prove (3.2), let {w?f} be an element
of Z¥U, L-%), and assume that for some non-zero u of H%C, L?-%);, {(w*f)?u}
belongs to the l-coboundary group B<U, L-?-%. Then there is an element
{a®} of the 0O-cochain group C%U, L-?-*) such that (w*#)?u=a*—a® in U,NU,.
Put v*=u?d(u-'a%), where d denotes the derivation. Then {v*} defines an
element of HY%C, kQL-%), where & denotes the canonical line bundle on C.
Since H°(C, kQL-%)=0, there is a function ¢* on U, such that u~!a*=(c*)?.
Estimating the orders of u~! and ¢* at any point of U, we see that ¢“
belongs to I'(U,, L-%). This implies that {w*#} belongs to BXU, L-?). This
proves the assertion.

The following lemma can be easily proved by and Bezout’s theorem.
Hence we omit the proof.

LEMMA 3.4. Let m=n. Let F be an (m, n) matrix. Assume that any non-
zero component of F is a homogeneous polynomial in Xy, -, X, of degree p, and
that the algebraic subset Vpcm;> of Proj k[ X,, -+, X,] associate with the matrix
F(m; ) is at least of dimension one. Then Vp is non-empty.

Now we have

PROPOSITION 3.5. %M, is a finite set.

ProoF. For any line bundle L such that LQL=«, and for /=+, —, put
L, )= {Kw>eP. HX(C, L) ; O(f(w), u)=0

for some non-zero element ue HY(C, L?Y),}.

Now for any two line bundles L,, L, such that L,QL,=k, L,QL,=k, there is
an element € of J(2) such that L,=L,®XL, Clearly, this isomorphism induces
a bijection from (L, ) to (L, ). Thus by Theorems 2.1 and B.2, and
Proposition 2.3, it suffices to show that for a Weierstrass line bundle L, the
set JI(L, [) is finite. To show this, let {w;}i-,, {u:}?, be bases for H C, L-3?),
H'(C, L?-%),, respectively. By a direct calculation we have dim HC, L~?7%),q,
—dim H¥C, L-?-%);4,=1. Hence we can take a basis {§;}7%, for H(C, L=?%);
such that {h(&,)} ;' forms a basis for HYC, L~?");y,, and h(§,)=0. Then we
have

U(w,, uz; = glawkfi

with a;;,€k  We identify the projective space P.Ext(L, L-') with

Proj k[ X;, X;, X;]. We also identify H'(C, L-%) with H¥C, Hom(L, L-*). Now

define a matrix A:(A,-j)is,;ssm with entries in 2[X;, X,, X;] by A;;=23-1a:;: X7
sjan

Then by construction, and by (3.1), we have
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e(Va) = {Kw)>eP. HXC, L% ; ¥(w, u)=0
for some non-zero element u of HYC, L?-Y),}

and, e(Vacm;»)=J(L, ). Assume that J(L,[) is not a finite set. Then, by
Lemma 34, V, is non-empty. This contradicts g.e.d.

Now by Theorems 2.1 and 3.2, and [Proposition 3.5, we have

THEOREM 3.6. (1) For any QeW, FM(Lg) is a finite set.
2) FHEK)DUpes:Co, and FME)NUpesCo 1s a finite set.

§4. Construction of FM matrices.

In this section, we shall construct certain matrices called FM matrices,
which are related to the representation of FM bundles. Let L,, L, be g-invariant
line bundles on C, and let (W)yeExt(L,, LY. and (V)ysExt(L,, L3Y)-. Put
w=0((W)y) and v=06((V)y). Now assume that degl,—3=degl,>0. Then we
have a commutative diagram of exact sequences

0 0

i) i
0— H°(C, Hom(W, L;"));u:; —> H%C, Hom(W, V)); —H%C, Hom(W, L))
Paw by T
0—H%C, Hom(L7?, Lz")jciy—> H*(C, Hom(L{?, V)); —>H*(C, Hom(Li?, Ls)); — 0
(4.1) Ge1w . Ds1v Jezve l Dszv 9230 l
0— HYC,Hom(L,, L3")); —>H*(C,Hom(L,, V))j(i)"_)Hl(C: Hom(L,, Lz))j(i)“"o
0310 l
HY(C, Homl(W, L))

0

where 510, @220 and ¢,s, are the connecting homomorphisms. For each
(ViveExt(L,, L3%)., let 6,:HYC, Hom(L,, L)X H°(C, Hom(L{* V))—
HY(C, Hom(L,, V)) be the bilinear map in §2.1. Moreover take bilinear maps
O’: HYC, Hom(L,, L7*))- X H*(C, Hom(Lt*, L;));— H*(C, Hom(L,, L,))jcs, and
6”: H(C, Hom(L,, L7*))- X H(C, Hom (L7, L3*))jcsy— H*C, Hom(L,, L3')); in
§2.1. We often write 0,=60, if v=06((V)y). Then by and the diagram
for any veHYC, Hom(L,, L;')., we can choose a homomorphism
7asy : HY(C, Hom(L1?, L,));—H*(C, Hom(L7?, V)); (resp. 7, : HC, Hom(L,, V)i
—HYC, Hom(L,, L;"));) such that p.,crs,=id (resp. #ss° psrn=id) and pss,°6,°
(IdX72,) =60’ (resp. 732,°0,°(1dX poy1,) = O”). Moreover fixing w=0d(W)y)e
HYC, Hom(L,, L7Y)- and v=0((V)y)e HXC, Hom(L,, Lz%))- and define a homo-
morphism @,, from H*C, Hom(W, L,)); to H¥C, Hom(W, L;"),u by the snake
lemma. Then we have
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4.2) H°(C, Hom(W, V));/H(C, Hom(W, L"), = ker @,,.

Moreover by the definition of the addition in Ext(L,, L;') and by a diagram
chase, for any u,, v,€ HY(C, Hom(L,, L7Y))- and a,, a.< %,

(4.3) Qw,aluﬁazc)g = alaw, ul+azd)w,z)2

(for the definition of the addition in Ext(L,, Lz'), see §1, Chapter VI in Mitchel
[18]). Now fix a basis {v;} for H¥C, Hom(L,, L;'))-. For each v, define
a bilinear map 6;, from HYC, Hom(L,, LT")-XHC, Hom(L7?, L,)): to
HYC, Hom(L,, L3%); by O),=rg,,°0,,°(idXrs,,). Moreover for each v=
Saw, € H(C, Hom(L,, L3Y)- with a,€k, put 6;=3,a,0,,. The map 6
depends on choices of 7y,,, and 7s,,. However, the map G310°00(®, )°qis, does
not depend on choices of 7y,, and 7y, and it coincides with @,,,. Thus by
(4.3), and by the definition, we have

(4.4) 7310° OUO, 4150(7)) = Duu(})

for any ve H'(C, Hom(L,, L;')-, w< H'(C, Hom(L,, L{'))-, and 7ye
H'(C, Hom(W, L,));.

Now let L be a o-invariant line bundle such that deg L?—3=deg L>0. Put
L,=L? and L,=L, and let {w.}:, {&:}id, and {7;}i-2 be bases for
HYC, Hom(L, L-Y)., HXC, Hom(L?, L));;, and H¥C, Hom(L?, L-Y)); respec-
tively. Moreover let {u;}}, and {v;};2, be bases for H%C, Hom(L-?, L));,
and H°(C, Hom(L-?, L-'));4; respectively. Let f:H'(C, Hom(L, L-'))—
HY(C, Hom(L?, L-?)) be the p-linear map in §3. With respect to the basis
{w}, fix a set {@,,} of bilinear maps satisfying Then for any
1=k, I=m, and 1=<7=<n,, we have

mi mg
@,(f(wk)’ u;) = i;laijkfi, @clul(f(wk): u;) = i=21bijkl77iy
and for any 1<k=<m, and 1=<;=<n,, we have
me
0" (f(ws), v;) = Eldiﬂﬂ]i,

where a;ji, bijri, and dyj, are elements of the field k.
Now let X, ---, Xn, be variables over k, and define an (m;+m,, n,+n,)-
oo (A 0 . ..
matrix F"((Bij) (DU)) with entries in k[ X, » Xmy] bY
mo mo
Aij = k;x Giijf ’ Bij = Sk’EISmobijleQXl ’ and D;;= ;21 diij;f-

1

This matrix F will be called an FM matrix of the type (L, 7).
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Via the isomorphism s from the symmetric algebra S(H*(C, Hom(L, L-1)).)
of HYC, Hom(L, L-Y))- to k[X,, ---, Xn,] such that s(w;)=X;, we identify
P.Ext(L, L-*)- with Projk[X,, ---, Xn,]. Then we have

THEOREM 4.1. V=9 M(L, Q).

PrROOF. Recall that

HC, Hom(F*W, L)); = ker @'(f(w), )
and
H(C, Hom(F*W, L)), = ker 0”(f(w), )

for w=0(W)y)e HY(C, Hom(L, L-Y)). by Thus the assertion follows
immediately from and

REMARK 4.2. For the proof of our main theorem, we express @, in terms
of Cech cocycles. Let {f?} (resp. {e?}) be the set of local equations defining
a line bundle L, (resp. L,). Then {f**}={f*(f#)"*} (resp. {e**}={e*(e")*})
is an element of Z¥U, ©*) defining L, (resp. L,. Let 0—-L;'-»V—L,—0 be
an extension of line bundles. Then V can be defined by a cocycle {®*#}e
ZX, GL{O)) of the form @4=('¢()" $}7) with s**<T (WU, 0). More-
over if we put v*#=e*#s2#(e*)?, {v*#} belongs to ZYU, Hom(L,, L7Y)) and it
represents v=0((V)y) (cf. to Theorem 10 and the proof of Theorem
13 in Gunning [4]).

Then an element y of H°(C, Hom(L{?, V)) can be regarded as an element

{(g: )} of CYU, O)XBCAV, 0O) satistying

(4.5) fRetrct =c%,  and dFfAr(ett) it firstr = (2

in U;NU, (cf. the proof of Lemma 16 in [4]). Put u?=c*(e?f*)~* and é*=
d*e*(f*)-*. Then by [4.5), {u*} belongs to H°(C, Hom(L7*, L,)), and

(4.6) ufpe4or = gt in U,NU,.

Thus there is an isomorphism hq from (U, Hom(L7%, V) to HYC, Hom(L7!, V))
where
52

ul

P, Hom(L7, V) = {{(0,)} =, Hom(Li, Ly@H'(C, Hom(L7", Ly) ;

2

{(i 1)} satisfies (4.6)}

and in particular, hq;({{(iﬂ)}ef’(cu, Hom(L7Y, V)); u‘=0}) is isomorphic to

H(C, Hom(L7*, L3)). Similarly a cocycle & of Z¥U, Hom(L, V)) can be
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A
regarded as an element «{(g ;;,)} of CYU, O)PCHU, O) satisfying

ey blv (f»,ueup)-l (fp,u)—lsyp bX/z _ 0
4.7) <a””>_(a'“)+( 0 (f”")'le”f‘)(a“‘) - (0)
in U;NU,NU, (cf. (9) of Appendix 1 in [4]). Put é**=a?#(e*)"1f# and p**=

2
bi#e e, Then {(g;:)} belongs to CXU, Hom(L,, Ly )DZXU, Hom(L,, Ly))

and satisfies the following condition :

w9 EECEN=() v,

Thus there is a surjective homomorphism iy from Z¥U, Hom(L, V)) to
HY(C, Hom(L,, V)), and the Kkernel of iy is EI(CU, Hom(L,, V)), where
ZYU, Hom(L,, V)) is a k-submodule of CY(U, Hom(L,, L7))PZXU, Hom(L,, L))
consisting of all elements satisfying [4.8), and

1 — nte . 77“[ _(B* . 1yt ﬁj
with some {84} eC%U, Hom(L,, L;%)
and {a?}€CV, Hom(L,, Lz))}.
Now let U={U;} be a ¢-invariant affine open covering of C. If v=cq;({v*#})
belongs to HYC, Hom(L,, L;")-, we can take uv?# such that o(p?#)=—pi~

Then
A

HYC, Hom(Li*, V)); = hq;<{{(i2>} e (v, Hom(L{%, V) ;

ind a(u*)=iu?, 0(5‘)-1—2'5‘}),

H¥C, Hom(Ly, V)); = z%({{(g:)} e Z¥, Hom(Ly, V)) ;
a(§im=ig's, 0((*“)=——2’C“})

for i=+, —.

2
Now analogously to for any r-——hqj({@;)})ef{"(c, Hom(L7%, V)) and
w=ty({w**})e HY(C, Hom(L,, L"), we have

4.9) 0., 1) = zzu({(“’“‘ﬁ” h)-

o*fut

Here, we regard w*# and others as rational functions on C. From this, for a
basis {v;} for H¥C, Hom(L,, L;))., we can construct a set of bilinear maps
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from HYC, Hom(L,, L{%))-X H*C, Hom(L{?, L,)); to HC, Hom(L,, L;%)); satis-
fying as follows. Let v,=eq([{v##}]). Let {u}, {ew[{£}#}]}, and
{ew[{n##}]} be bases for H°C, Hom(L7?, L,));, HXC, Hom(L,, L)), and
HYC, Hom(L,, L;'));, respectively. For each v;,, and u,, we can take an
element {67,} of CU, Hom(Lt?}, L;Y)) satisfying Similarly, for each vy,
and 7¢/({£4#}), we can take an element {{}##} of CXU, Hom(L,, L;%)) satisfying
Moreover we can take these elements such that o(vi*)=—vf*, o(u,)=1u,,
0(0fe)=—i0ly, o(&i=—it}*, and o(l})=il}%. Then if we put (V,)y=0(v0),

cume(EN) =) 570 ramha(C). wecom e i

as a basis for HYC, Hom(L, V\);u. Then for each w=(y({w?#}) of
HYC, Hom(L,, LY)-, 0,,(w, 71;) is expressed as

(4.10) @ul(w, le) = ; akjElk+ %: bkjﬂ]tk

where a,;, and b, are elements of the field 2, and a,; does not depend on v,
Then define a bilinear map 6, from H'(C, Hom(L,, LT")).XH*C, Hom(L{*, L,));
to HY(C, Hom(L,, L3%)); by

(4.11) 0,0, uy) = ty([{w**df—vi*al— ? ax i1
where {a?} is an element of C°(U, Hom(L,, L,)) such that

(4.12) W tul = ; apftt+at—al.

Then, by [4.9), and [4.10), the bilinear map @}, satisfies

REMARK 4.3. For a matrix g=(g:jis1.js» in k, and a polynomial
P(X, -, X,) over k, define a polynomial geP by (g<P)(X, -+, Xa)=
P(X,8:1;X;, ++, Xi8n;X;). For a matrix A=(P;;) in k[X,, ---, Xy], put geP=
(g°P;;). Two matrix A and A’ in k[ X, -+, X,] are called quasi-equivalent if
g°A and A’ are equivalent with some non-singular matrix g in k. Then by
construction, two FM matrices of the same type are quasi-equivalent to each
other. More precisely, let F be the FM matrix in [Theorem 4.1, and F’ be
another FM matrix of the same type as F. Then we have

w1 er= (G D))

where g, Uy, U,y Vi5;, and V,, are non-singular matrices in 2 of degrees m,,
m,, my, n,, and n,, respectively, and U, and V,, are matrices whose entries
are k-linear combinations of the monomials X, -+, Xp,.

REMARK 4.4. Let K=Lp®Lp, be the line bundle stated in §2. Let Lg
be a Weierstrass line bundle, and U={Ugq, Up,} be the affine open covering.
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Fix a non-zero element z of H(C, KQLg?%. Then the homomorphism // from
ZNU, K% to ZYU, Lg*) defined by II(w)=z*w induces a surjective homo-
morphism from HYC, Hom(X, K-')) to HYC, Hom(Lgq, Lg')), which will be
denoted also by /1. For each (V)y<Ext(K, K-, let (V), be the element of
Ext(Lg, Lg") such that d((V)y)=I1(6(V)y). Then the homomorphism 7~ from
CNU, K-> Z U, K?*) to CHU, Lg?)PCH U, Ly***%) defined by

T(g)z(gzzfj:) induces a surjective homomorphism from H*(C, Hom(K?, V)) to

HY(C, Hom(L%, V), which will be denoted also by ”. This induces a surjective
homomorphism 2/ (resp. 1”) from H*(C, Hom(K?, K)) (resp. H(C, Hom(K?, K-1)))
to HY(C, Hom(L3, L)) (resp. HY(C, Hom(L}, Lg"))). Moreover the homomorphism
A from CYU, LE@HYC, L&) to CU, K»*QLg?*)®HC, K**QLg?"Y)

-1
defined by A((Z))Z(Zz;;m) induces an injective homomorphism from

HC, Hom(Lg?, V)) to H(C, Hom(KX-?, V)), which will be denoted also by A.
This induces an injective homomorphism A’ (resp. 4”) from H*(C, Hom(Lg?, Ly))
(resp. H(C, Hom(Lg?, Lg")) to H(C, Hom(K-?, K)) (resp. H(C, Hom(K~-?, K-1))).
Moreover, we have

(4.14) O'(FIl(w), u) =7"0'(f(w), A'(w)),
(4.15) O"(fl(w)), v) =T"0"(f(w), A”(v))

for any we HY(C, Hom(K, K-%)., ues H°(C, Hom(Lg?, Ly)); and ve H°(C,
Hom(L3g?, Lg));uy, Where f:HYC, Hom(Ly, Lgh))—HXC, Hom(L%, Lg?)) is the
p-linear map in §3, and ©’ and @” are the bilinear maps in §2.1. Let
n;=dim H*(C, Hom(K-?, K));, and n{=dim H(C, Hom(Lg?, L¢));. Let {v;}}=,
and {u,};2, be bases for HYC, Hom(X, K-%))., and H%C, Hom(K-?, K));, re-
spectively. Let {@;}}-, be the set of bilinear maps from H*C, Hom(K?, K-?)).
X H%C, Hom(K-?, K)); to H¥(C, Hom(K?, K-%)); defined by Assume

that {II(v,)}}-; forms a basis for H(C, Hom(Ly, Lg"), and {hqj({(z{;)})}ni s

Jj=1
contained in A(HC, Hom(Lg? V.)).). Then {u;}}i, is contained in
A’(H(C, Hom(Lg?, Lg)):), and by [41I) and [4.12), there is a set {@f¢,}i-1 of
bilinear maps from HYC, Hom(Lj, Lg?)- X H(C, Hom(Lg?, Lg)): to HYC,
Hom(L3, Lg"); satisfying and

(4.16) Oy (FUL (), A" (uy) =T"0,,(f(®), u,)
for any 1=<j=n4{, and 1=/=3, and we H'(C, Hom(K, K-Y))..

REMARK 4.5. Let F be an FM matrix of the type (K, 7) or (Lg, 7) with
Qew, and let m,, m,, n,, n, be the integers stated before. Then there is an
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} *k) ((Ckok
(m;+m,, ny,+n,) matrix F**:(Egy*g E%,!{* )%Z‘ in a polynomial ring over %
i i 2

nl 71,2
satisfying the following conditions:

(4.17) The components A¥F, B¥F, C¥*, and D¥* of F** are homogeneous
polynomials of degrees p, p+1, p—1, and p, respectively.

(4.18) F** has a general system.

(For the existence of such a matrix, see the proof of Proposition 5.2.) Then,
the degree of the cycle Cr does not depend on a choice of F** and is
uniquely determined by F. Therefore, we put n(F)=deg Crus.

Hereafter, for two matrices A, B in a polynomial ring over k, we write
AT)BTB if there are non-singular diagonal matrices D,, D, in %, such that

B=D,AD,.

§5. Proof of Theorem A.

In this section, let » be a prime different from 2, 3. As above, fix a
non-Weierstrass point Py, and put K=Lp&Lp,. To prove Theorem A, first
we construct FM matrices as follows.

For each Weierstrass point @, let x, be the non-zero element of
H(C, KQL3, and let U={Ugq, Up,} be the affine open covering of C. For a
while, put U,=U,, U,=Up, and x=x¢ Let {w,}i-, be the basis for
HYC, Hom(K, K-)_ given by w,=tq([x"*'y]). First, let {u;}2%, {v;}2=} be
the bases for HYC, Hom(K-?, K));, and H%C, Hom(K-?, K-'))_. given by
u;=x7"1, and v;=x7"'y, respectively. For each 0=/=<3, and 1<;7<p+2, define
an element {6;} of C°(U, Hom(K-?, K-1)) by

0, —x7-t=2y) if 1=(=3, p+i-1=7=p+2,
(5.1) (81, 0% = or [=0, 2=;=p+2,
(x7-t-2y, 0) otherwise.

Then {6%;} satisfies Next let {&:;}2%, {n:}%, be the bases for
HYC, Hom(K?, K))., and HYC, Hom(K?, K-'), given by &;=c¢qy([x~*y]), and
Ni=ty([x~*]), respectively. For each 0=</<3, and 1=</<p-+1, define an element
12 of I'(U,NU,, Hom(K?, K-')) by

(5.2) {i3=—x"%1y2 or 0 according as /=0 or not.

2
Then an element () of IU,NU., Hom(K?, K-)@I(UNUs, Hom(K?, K))
defines a unique element 5,; of ZXU, Hom(K?,V,)) satisfying With
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respect to these quantities, let us define a bilinear map ©;, in Remark 4.2, and
construct an FM matrix Fo(+) of the type (K, +). Similarly, take the bases
{wi}ieo, {272y}, {6722y, {ew([x* D}, and {eq([x 'y DIEEE for HY(C, Hom
(K, K~Y)., H(C, Hom(K-?, K))., H%C, Hom(K-?, K-%),, HYC, Hom(K?, K))s,
and HYC, Hom(K?, K-))., respectively. Moreover, define an element {d;%} of
C%U, Hom(K-?, K1) by (33, 8;2)=(x7"'"2y% 0) or (0, —x/~'-2y*) according as
113, léj—_<—f>+l —b5, or not. Moreover define an element {’i2 of I'(U,;NU,,
Hom(K?, K-%) by {’i2=—x"%'y or 0 according as /=0 or not, and construct
FM matrix Fo(—) of the type (K, —). Now fix one of these matrices, and
denote it by F. The matrix F is an element of M,pyq,0p-1(R[ X, -+, X5]).
Unfortunately, we cannot apply to calculate the number of FM
vector bundles because V may be one dimensional by (2) of So
we use some trick. To do this, let ¢:P.Ext(K, K-*)-—Proj k[ X,, ---, X;, X,]
be the closed immersion defined by the natural surjection c#: 2[X,, -, X;, Xi]
—k[X,, -, Xsy, XJ/KXD. Put P*=Projk[X,, ---, X,J. Let By (resp. PF) be
the ideal defining the curve C; (resp. C¥=c(Cy)) for each §=J(2). Then we
have

G )

PROPOSITION 5.1. Divide th trix F as F=(;R% e 4.

RO 1wide the matrix as ((B”) (Du))} as in §

Then we can choose elements a;j, bij,, dij of the field k such that the matrix
nl No

—Pmm
((Ek-(obi;fggl)e X7) ( dijOXp)ﬁ satisfies the following conditions:
(5.3) Vs is of codimension three in P*, and V. ({q(F*), X>)=Projk[X,, -+, X.]
/Lq(F*), X,> is of dimension zero, where q(F*) denotes the intersection of

all primary components of the ideal J(F*) whose radicals are different from
Bx for any 0<](2).

(5.4) 1p=i(J(F*);CH=p for any 8 ](2).

The proof of this proposition will be done after From Prop-
osition 5.1, we have

PROPOSITION 5.2. 3 i({q(F*), X; P) = n(F)—— 2 z,, degC¥.

Pept

PrROOF. Define a matrix F** in the polynomial ring k[ X,, ---, X, Ty, -

2

Topi1,2p-1] bY F**:F*—i-(g%,}l) g )l)ﬁgl. Clearly F** has a general system.

2
71,1 nz

Thus by and by the deﬁnition of n(F), we have degCru=n(F)
(for the definition of Cps, See On the other hand, by the
construction of F** we have deg CF* deg CF** Thus we have



Etale SL, (Fp)-coverings 427

deg Cre = n(F).

Now define a cycle Cr« on P* by Ch=Cri—XocrntsCs. Then clearly the
support supp(Cs«) of Cps coincides with V. (q(F*)), and the support supp(Cz+-X,)
of the intersection product of Ch« and X, coincides with V., ((q(F*), XD).
Thus by (1) of [Proposition 5.1, we have

242'(<Q(F*), X P) = degCp« X,.

PeP

This proves the assertion.

REMARK. We do not know whether or not F* itself has a general system.

Now to complete the proof, we consider {({q(F*), X,>; P) for each PP
To do this, first we give the following lemma.

LEMMA 5.3. Let F=Fy(i) be the FM matrix of the type (K, 1) stated above,
and let Jq be the ideal of R[X,, -+, Xs] defining the point (Wigdr of
P.Ext(K, K-Y).=Proj k[ X,, -, X,]. Let us divide F as

(p+1)/2 ni—(p+1)/2 (p=1)/2 n,—(p—1)/2

Fu F12 0 0 } (;D—l)/z
F= Fy Fs, 0 0 pmy—(p—1)/2
Fy F;, Fyy Fs, b (p+1)/2
F, Fi Fis Fy ymy—(p+1)/2
and put
F, 0 F, 0
G = Fy Fys Fy Fyy
Foy 0 Fp O
Fy Fis Fyp Fy
Fy 0

Then F:(F42 F., is an FM matrix of the type (Lg, 7), and

(5.5) det Govi(p+7, p+Ek; )= aidet Fi(j, k; )XP* 4+ M,;;, XP* mod Jgiss-22+1

for any 1=i<p—1, and 1=j, k<i+2, where myj, denotes the degree of the
polynomial det Gpi(p+7, p+k; )in Xy, -+, Xs, Myji, is an element of Jgiie-P
NEk[X,, X,, Xs], and a; is a constant depending only on i. (For the definition of
Gp+i(p+7, p+k; ) and others, see §1.)

ProoOF. Let F=Fy(+). Put x=x4 and Ap=x—xp. Then for any 1=;=
p+2, 0SE=3,

. p+1 .
(5.6) (x~k-1y)Pxi-t = iglbkp—i—j+(p+3)/2x-ly+ij(x)y+x—p—2ij(x—l)y



428 H. KATSURADA

where b, is the coefficient of the /-th term of the polynomial Hggzu(x—lp)‘p‘””

in x, and Q,;(x) is a polynomial in x, and P,;x"!) is a polynomial in x~%
Put a}j=—x"P%P,(x )y, and a}=@Q;;(x)y. Then {af;} belongs to
C%U, Hom(K?, K)). Thus we have

6.7) O/(f@0), ) = "2 bag-i-srcproniks

for any 0=<k=<3, and 1=7<p+2. Similarly for any ;j=0, and 0=<k=3, we
have

) p
(5.8 {(x~F-1y)Pxi-ly} = iglckp-i—j+(p+l)/2{x-i} mod BY(U, Hom(K?, K1),

where ¢; is the coefficient of the /-th term of the polynomial nggu(x—-lp)”’“’/z
=

in x. Thus, in particular, we have
2
(5.9) @”(f(wk), Uj) = iglckp—i—ff(pﬁ-l)/z’}i

for any 1=<;=<p—3, and 0=<k=3. Now recall that w, is defined by the cocycle
{@w}*} such that ej?=x-*"'y, and w}'=—x"*"'y, and note that ai;=0 for any
1<j<p+2. Thus by [5.1), and (5.8), we have

{(w?)?0},—wi?al;} =0 mod BY(U, Hom(K?, K-Y)).
Thus, by and (5.2), for any 1=</<3, and 1=<7<p+2, we have
(5.10) 0.,(f(@,), u;) = 0.
Similarly, for any 0<k<3, and 2</7<p+2, we have
{(@)P0,—wtial,} =0 mod BNV, Hom(K?, K-1)).
We have {21=0 by (5.2), and Thus, we have
(5.11) 04, (f(@s), u;) = 0.
for any 0=<k=<3, and 2<;<p-+2. Similarly, by and (5.8), we have

»
(5.12) @lll)o(f(wk)’ u) = Elckp—ﬂ(pﬂ)/ﬂ]i

for any 0<k<3. By (1) of Lemma 2.5, I, is generated by X,, X,, X,. Thus
by (5.9), and (5.10)~(5.12), we have

(6.13) F;; =0 modJ} except for (7, ))=(1, 1), 2, 1), (3, 1), (3, 3),
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I
* . 0 0
F, 0 LxXe T S
(5.14) (F.n Fs,,) 5| TULRE| moddg,
o 0 xp 0
Xg)ﬂ 0
and,
X? 0.0 .
515 Pagr (0 079) moass.

On the other hand, let I and others be the maps defined in Remark 4.4.
Then {II(w:)}i-1, {r,('fi)}%’:(lpﬂ)/z, {Y"(9)} B=cp+1rs2, and {vj}f?;(sp+l)/2 form bases
for H¥C, Hom(Ly, L3'))-, HYC, Hom(L3, Lq))-, HYC, Hom(L3, Lg')+, and
A”(H(C, Hom(Lg?, Lgh)-), respectively. (Recall p=5.) Moreover, for any

1123, {ho({CO)})}7" | forms a basis for ACH'(C, Hom(Lg?, V,).). Thus

U; j=(p+8)/2
by Remark 4.4, F is an FM matrix of the type (Lg, +). Thus, by (5.13)~(5.15),
the assertion (5.5) holds for F=Fy(4). Similarly, for F=Fy(—), the assertion
holds.

COROLLARY TO LEMMA 5.3. Let F be as above. Then for any FM matrix
F’ of the type (Lg, 1), there is a matrix F’ such that (4.13) holds and the same
relation as (5.5) holds for G’ and F’', where G’ is a matrix obtained from F’ in
the same manner as above.

PROOF. The assertion can be proved by [4.13), and the above lemma.

REMARK 5.4. Let {w;} be the basis for H*(C, Hom(K, K-'))_. given by
w;=ty([x5*'y]). We identify P.Ext(K, K-'). with Projk[X,, -+, X;] via the
isomorphism s from S(HYC, Hom(K, K-1).)) to k[ X,, ---, X;] such that s(w;)=X,.
Then by (1) of we have (W)reCy, if and only if &(W)r)=
(i-Aipt'w;> with A, pk. Thus the curve Cy, on P.Ext(K, K-')_ can be
expressed as

(5.16) Co, = Proj RL X, ) Xs]/{ X Xo— X3, Xo Xs— X1 X, Xi Xs— X3).
Similarly for L,=KQLp'®Lg' with 6=J(2), §+60, C,; can be expressed as
(56.17) Co = Proj k[ Xy, -+, Xu1/{Xo—4p X1, X;— A3 X))

with Ap=x¢—xp. On the other hand, let {{;}}-; be the basis for
HYC, Hom(Lg, L") given by Ci=t¢y([x5"*'y]). We identify P.Ext(Lg, L3
with Projk[Y,, Y., Y] via the isomorphism ¢ from S(HY(C, Hom(Lg, Lg")) to
k[Y,, Y, Y, ] such that #{;)=Y;. Then by (2) of the unique
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element (W s9)r=¢""((&o,p>) of P.S(Lgq, Lg'; KQLp'®Lg") can be expressed as
(5.13) Wiq, 091 = Proj k[Y 1, Yo, Y J/KY a—ApY 1, Yi—23Y 1.

Now let P"=Proj k[ X,, ---, X,] #r=3). Let ¢,:P.Ext(K, K-')_—P" be the
closed immersion defined by the natural surjection c¢#:pk[X,, -, X,]—
R[X,, -+, X 1/< Xy, -+, Xo>. For 1<s=<r, put Ry=k[ Xy, -, Xy, Yy, -, YV -, ¥,]
/{X;=Y ;X j2s0, and let pT:ﬁT—>PT be the blowing up with centre ¢ (Wig)r)
defined by the natural homomorphism pf:k[X;, -, X,]—>R, Moreover, let
d,:P.Ext(Lg, Lal)—ﬂﬁf be the closed immersion defined by the natural surjection
d¥:R—R,/(X,, Y., -, Y,> (1=s<3), where X; (resp. Y;) is the image of X;
(resp. Y,) under the natural map from k[ X, -+, X,, Y, -+, )7'8, -, Y,] to R,

Then by (5.16), [5.17), and [5.18), for any C, containing (Wiey)r, we have
(5.19) 4 U{Wrg ir}) = & Conpr e Wegdn)})
where m denotes the proper transform of ¢, (Cy).

LEMMA 5.5. Let m,=dim HY(C, Hom(K?, K));«;;, and n,=dim H°(C, Hom
(K-?, K));. Let F be as above. Then for any 0<]J(2), there is a matrix Fy
satisfying (4.13), and the following condition.

(5.20) There are integers 1=k=m,, m;+1=!, m=2p+1, and 1=n=<n, snch that
det Fg(k, I, m; n)&ERy, and det Fo(k, [; ), det Fy(k, m; ) generate the ideal
SBOOCB-

ProoF. Let Ly=KQQLp'®Lg", and let xp, xo be as above. For the affine
open covering U={U,, U,} such that U,=Up, U,=Up, take the basis {w;}}x;
for HYC, Hom(Ly, Lg") given by w,=ty/([x¢xz*y]). Moreover take the bases
{v;}52r%7% and {7;} &2 for HY(C, Hom(Lg?, Lgh)- and HYC, Hom(L3, Lgh).
given by v;=x§?™2xf 'y and n;=cy([xFFP/2x5p"]), respectively. Moreover,
for each 1</<3, take the elements {u,;} 2#®/* of (U, Hom(Lg?, V,)) given by

0 —x§PIDRy Ly e
[ {<x~<p+1)/2xj—l)’ ( x—<p+1)/2xj~1 )} if ]—1—120
Q P Q P

{(Xé"’”"’zx.’;“y), (. 0 )i otherwise.

—(P+1)/2,. -1 —(P+1)/2, -1
xQ(p )/ xi} Q(p /)62'72

Moreover take the elements {{£3}}®#®/2 of ZYU, Hom(L3, V,)) such that
E}g:(xép_lgzx;iy). We identify P.Ext(L,, Lg') with Proj k[ X;, X,, X;] via the

isomorphism ¢ from S(HXC, Hom(Lgy, Lgh)) to k[ X,, X, Xs] such that tHw;)=X;,
and with respect to the above bases, let us construct an FM matrix F’ of the
type (Lo, +). Then by a calculation similar to that in the proof of
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* XPO
20 0
000 0
N D (6 (5> AN B mod <X, XP> with bek.
Dia. * X?X, i *
0 | RSt
0 o XP
0 xpt 0

By (2) of and Lemma 2.8, the maximal ideal mg, of the
local ring of P.Ext(Lq, L") at (Wi e)r is generated by X, X, Thus
det F’((;bj-?))/Z,(P+5)/2,(1>+7)/2; (p+3)/2)&mq, o, and det F'((p+3)/2, (p+5)/2; )
and det F’((p+3)/2, (p+7)/2; ) generate mg 4. Thus the assertion follows from
Corollary| to [Lemma 5.3, Remark 5.4, and Nakayama’s lemma for the case
where (K, )=(K, +). Similarly, the assertion holds for the case where
(K, 5)=(K, —).

PrROOF OF PROPOSITION 5.1. Let s=myn,+4myn,+m,n,. Then for each
P-:(an, trty, amlnl, bllO: Tty bm2"13’ dll) ey, dm2n2) Of k-Valued pOint Of the afﬁne
space A%, define a matrix F*(P) by

(a;X7) 0
F*(P)———F+( )

3
(2 busXaX?) (disXD)

k=0
Then the function g,(P)=i(J(F*(P)); C§) defines an upper semi-continuous
function on A°, which will be also denoted by g,. Moreover by and
the open set Vy={P= A*; g¢(P)<p} of A® is non-empty for any

0<J(2). Thus there is a matrix F* satisfying (5.4). Clearly this F* satisfies
(5.3). This proves the assertion.

PROPOSITION 5.6. Let F* be the matrix in Proposition 5.1. Then

(5.21) i(Kq(F*), Xy ; c(P)) =i(I(F); P)
if P&ECy for any 0<](2).
(5.22) i(Kq(F*), X5 c(Wigdr) = %) i(S(Fg); P)+n(Fo)— % lg

where Fy is an FM matrix of the type (Lq, 1), P runs over all points of
P.Ext(Lq, Lg") other than (Wyg ¢7)r, and 6 runs over all elements of J(2) such
that Cy contains (Wigpr.

PROOF. can be easily proved. To prove [5.22), let G, F be the
matrices in For the matrix G, we define a matrix G** in
k[ Xo, =+, X4y Tty +++, Topi1,2p-1] in the same manner as F** for F in the proof
of Proposition 5.2. Let r=@2p+1)2p—1)+4. Let q(G**) be the intersection of
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all the primary components of the ideal {(J(G**), Ty, -+, Top+1,2p-1» Whose

radicals are different from (c#)-*(By) (for the definition of ¢¥, see Remark 5.4).

Then, by the zero-dimensional cycle C’ on P7 defined by
=2 pi({q(G**), X,>; P)P can be expressed as

2

523 C =5

i=1 j

1

M@.

( G(l - 1))(6(2 N (1 j- 1))G(1 ])Tll T2p+1,2p-1X4

1

19c(Co) X, (cf. Proposition 5.2).

feg2)

~

On the other hand, let pr:f”—>P’ be the blowing up with centre ¢, (Wo)r).
For each closed subscheme H of P7, we denote by 4z the ideal sheaf of Op-
defining the proper transform H of H under o Let

(¥ = I Tt 2 Ity

1§i:j§§3217+1 det G**(7, 7; ) 1si5ip+1 1sj§p-1

and for each P of 15’, let §(G**)p be the intersection of all the primary com-
ponents of the stalk 3(G**)p, whose radicals are different from (Iercs))p for
any 6<J2). Then, by Lemma 1.1, and (5.16), [5.17), analogously to (5.23), the
zero-dimensional cycle C’ on Pr defined by

= 2 iKNG e, IrJr2; P) P

can be expressed as

2p-1

G.20)  C'= 3 B GEo— Gl Cr— 808 T Tops e X
J 2 isedCo) K.
EJ(2)

We note that for any divisor H on P7, we have p;"Hzﬁ—i—mE, where m denotes
the multiplicity of H at ¢,(Wigy)r), and E denotes the exceptional divisor. Thus,
analogously to Example 7.1.11 in Fulton [2],

5:25) KACH), X5 cAWedo) = &, 2 0= 4o, =1 o)

=, jomot B iCAGC), (S2)m; P),

fed (2

where m,;, and m, denote the multiplicities of the divisor G¥*;, and the curve
¢(Cp) at c{(Wiopr), respectively. By (5.5), the first term on the right hand
side of (5.25) is equal to n(F). By (5.16), and mg=1 or 0 according as
Cs contains (Wig)r or not. Moreover by [5.19), if P belongs to V7 and
P+W, 03)T for any fe ] d.(P) belongs to supp C’NsuppE. On the other
hand, if P¢U06J<z>cr(co), then we have (K§(G*)s, (Iz)5; P)~Z(<«S(G**)P
(928> ; P). Thus by (5.5), we have i(<G(G*)q,cpy, (I2)a,cm; d-(P)Zi(I(F); P)
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for any PeV;y such that P+#(Wyg e)r for any 8<J(2). This proves the
assertion.

PrOOF OF THEOREM A. By Theorems 2.1, B.2, and K1, and Propositions
B.1, 5.2, and B£.6, we have

(5.26) Irr(z,(C), SLy(F}))
= 1/2(n(FK(+))+n(Fx(—))—Q§V(n(FLQ(+))+n(FLQ(—)))
+ 2 p(ng—degCy))
e (2)
where Fp(/) is an FM matrix of the type (L, {), and ny=#{QcW; Wg)reCs}.
By [Proposition 2.9, ny=6 or 2 according as §=8, or not, and by (5.16), [5.17),
degCs=3 or 1 according as 8=8, or not. To calculate n(F.(])), let m,=

dim HY(C, Hom(L?, L));,, and n,=dim H°(C, Hom(L-?, L)),. Then by Definition
4.5, we have

mi+ny

5.27) nFx)="% 3 (e dp+en )pi+en)

=1

where ¢; ;=1 or 0 according as n,—2=<i=n,, e, ;=1 or 0 according as
n,—1=<7=<n,, and ¢, ;=1 or 0 according as j=n, or not. Thus we have

(5.28) n(Fx(D)) = 4/3 p*+5/3 p*+2p*n,— p*+2pn,— p+1.

Similarly, we have

5.29) MFog)="2 X+ b+ fo i

where f; ;=1 or 0 according as n,—1=<:=<n,; or not, and f, ;=1 or 0 according
as j=n, or not. Thus we have

(5.30) n(FroD) = p°/6—p*/6+ p*ni+pn,.

We have n,=p+2, p—1, (p+3)/2 or (p—3)/2 according as (L, )=(K, +),
(K, =), (Lg, +) or (Lg, —). Thus Theorem A is proved.

REMARK 5.7. The above estimate is weaker than the one which was
announced in [9] In a sequel paper, we shall give a complete proof for this
stronger estimate.
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