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Introduction.

Let $I$ be an interval, containing more than one point, of real numbers. A
quasi-arithmetic mean with weight of two numbers $a,$

$b$ in $I$ is defined as

(1) $\phi^{-1}\{t\phi(a)+(1-t)\phi(b)\}$ ,

where $\phi$ is fixed as a strictly increasing or decreasing, real valued continuous
function defined on $I$ and the weight $t$ is also fixed as a real number with
$0<t<1$ . This mean will be denoted by $N_{\phi.t}(a, b)$ throughout the paper.

This definition of a mean can be extended naturally to a mean of a con-
tinuous function, instead of two numbers, as follows. Let $X$ be a compact
Hausdorff space and let $C(X;I)$ be the space of all I-valued continuous functions
on $X$. For a fixed strictly monotoneous continuous function $\phi$ on $I$ as above and
a fixed probability measure $\mu$ on $X$, a mean of a function $f$ in $C(X;I)$ is de-
fined to be

(2) $\phi^{-1}\{\int_{X}\phi(f)d\mu\}$ .

In this paper this mean will be called a quasi-arithmetic mean with weight,
simply a QA-mean and denoted by $M_{\phi,\mu}(f)$ for $f$ in $C(X;I)$ .

It is clear that a QA-mean $M=M_{\phi,\mu}$ is a continuous functional defined on
$C(X;I)$ and has the following properties I), II) and $(*)$ , here we regard $C(X;I)$

as the space with the topology of uniform convergence and the usual order
structure.

I) $M(a1_{X})=a$ for all $a$ in $I$ ,

where $1_{X}$ is the constant 1 function on $X$.

II) $M(f)\leqq M(g)$ if $f\leqq g$ in $C(X;I)$ .

By Fubini’s theorem we have the following equation $(*)$ , which will be
called the bisymmetry equation, this terminology is taken from [2],
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(No. 59740088), Ministry of Education, Science and Culture.
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$(*)$ $M_{y}[M_{x}[h(x, y)]]=M_{x}[M_{y}[h(x, y)]]$ for $h$ in $C(X\chi X;I)$ ,

where suffixes $x$ and $y$ of $M_{x}$ and $M_{y}$ are understood to apply $M$ to a function
of variables $x$ and $y$ respectively.

If the suPport of $\mu$ is identical to $X$ , then $M=M_{\phi,\mu}$ is strictly increasing on
$C(X;I)$ ;

III) $M(f)<1\iota_{}I(g)$ for $f\leqq g$ in $C(X;I)$ .

Now we define a mean on $C(X;I)$ in general to be a continuous non-linear
functional $M$ on $C(X;I)$ satisfying I) and II) above. A mean is called bisym-
mefric if the bisymmetry equation $(*)$ above is satisfied. Note that the both
sides of the bisymmetry equation $(*)$ are well defined for any mean in general.
The bisymmetry equation is a necessary condition for a mean to be a QA-mean.
The first result we will prove is that under the assumption of being strictly
increasing the bisymmetry equation $(*)$ is a sufficient condition for a mean to
be a QA-mean.

THEOREM 1. Let $X$ be a compact Hausdorff space and let $M$ be a mean on
$C(X;I)$ . If $M$ is strictly increasing and satisfies the bisymmetry equation $(*)$ ,
then there are a strictly increasing or decreasing, real valued continuous function
$\phi$ on I and a probabjljty measure $\mu$ on $X$ with the supp0rt identical to $X$ such that

$M(f)= \phi^{-1}\{\int_{X}\phi(f)d\mu\}$ for $f$ in $C(X;I)$ ,

where the probabjljty measure $\mu$ is determined uniquely and the function $\phi$ is also
unique up to an affine equivalence.

Typical QA-means on $C(X)^{+}$ are the $P$-th power root means, where $C(X)^{+}$

stands for $C(X;I)$ with $I=(O, +\infty)$ . For $-\infty<p<+\infty$ , the $P$-th power root
mean is defined to be

(3) $M_{p,\mu}(f)= \{\int_{X}f^{p}d\mu\}^{1/p}$ for $f$ in $C(X)^{+},$

for $p=0,$ $M_{0.\mu}$ is understood as

(4) $M_{0,\mu}(f)= \exp\{\int_{X}$ log $fd\mu\}$ for $f$ in $C(X)^{+}$ .

It is obvious that the $P$-th power root means are positively homogeneous on
$C(X)^{+}:$

IV) $M(rf)=rM(f)$ for all $r>0$ and $f$ in $C(X)^{+}$ .
Besides these $P$-th power root means, one can define the following positively

homogeneous means on $C(X)^{+}$ . For a given upper semi-continuous function $\delta$
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on $X$ with $0\leqq\delta(x)\leqq 1$ and $\sup_{x\in X}\delta(x)=1$ , define

(5)
${\rm Max}_{\delta}(f)= \max_{x\in X}\{\delta(x)f(x)\}$ for $f$ in $C(X)^{+}$ .

This mean will be called a maximum mean with weight and $\delta$ is its weight.
Similarly for a given lower semi-continuous function $\gamma$ on $X$ with $1\leqq\gamma(x)\leqq+\infty$

and $\inf_{x\in X}\gamma(x)=1$ , define

(6) ${\rm Min}_{\gamma}(f)= \min_{x\in X}\{\gamma(x)f(x)\}$ for $f$ in $C(X)^{+}$ .

This mean is called a minimum mean with weight and $\gamma$ is its weight. It is
easily checked that maximum and minimum means with weight are bisymmetric
means.

The second result we will prove is that any positively homogeneous bisym-
metric mean on $C(X)^{+}$ must be one of the means as mentioned above.

THEOREM 2. Let $X$ be a compact Hausdorff space and let $M$ be a mean on
$C(X)^{+}$ . If $M$ is $po\alpha tively$ homogeneous and satisfies the bisymmetry equation $(*)$ ,

then $M$ is a p-th pOwer root mean, $M=M_{p,\mu}$ for some $-\infty<p<+\infty$ and some
Probalnlity measure $\mu mX$ or $M$ is a maximum or mimmum mean with weight,
$M={\rm Max}_{\delta}$ or $M={\rm Min}_{\gamma}$ , where the power $p$ , the probability measure $\mu$ and the
weights $\delta,$

$\gamma$ are determined uniquely except for the case of $M$ being a Point
evaluation.

Since the notion of means has its long history, there could be many pre-
viously known results which have some connection with our results, particularly
with Theorem 1. However we mention only a few closely related results.

In 1930, A. N. Kolmogorov [8] and M. Nagumo [9] independently characterized
sequences of quasi-arithmetic means $\phi^{-1}(\{\phi(x_{1})+\cdots+\phi(x_{n})\}/n)(n=1, 2, )$ . In
1946 and 1948, J. Acz\’el [1] and [2] discovered significance of the bisymmetry
equation by using it to characterize finite dimensional quasi-arithmetic, as well
as weighted, means. Hence, Theorem 1 can be regarded as an infinite dimen-
sional generalization of the theorem of [2] (see Proposition 1 of this paper). In
this paper his theorem will be used fundamentally.

Following after Kolmogorov and Nagumo’s work, a few results attempting gen-
eralizations from a finite dimensional case to an infinite dimensional case had
appeared, for instance, B. Jessen [7] and B. de Finetti [5]. The results in those
papers are formulated in an entirely different setting from ours, because the
notion of the bisymmetry did not appear in their time yet.

After the authors finished their first draft of this paper, they were informed
of the work [3] of J. Acz\’el, I. Fenyo and J. Horvath and other related works,
see the references of [3]. In [3], they work on means defined a priori on all
measurable functions instead of continuous functions, and they give several
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conditions characterizing their mean to be a QA-mean with respect to the absolute
continuous Lebesgue-Stieltjes measures on the unit interval $[0,1]$ . Although
their results do not cover ours, one of their conditions (see condition e) in [3])

is actually close to our bisymmetry equation $(*)$ .
Finally we add a few sentences about the organization of our paper. Our

general procedures of proving Theorem 1 and Theorem 2 are quite similar.
However, in Theorem 1 we depend heavily on the property of $M$ being strictly
increasing, on the other hand, the property of $M$ being positively homogeneous
will play a crucial role in Theorem 2. In the first section we discuss the pre-
liminaries including the extension of the bisymmetry equation to semi-continuous
functions. Theorem 1 and Theorem 2 are proved in the second and the third
sections respectively. In the last section we state some generalizations of Theo-
rem 1 and Theorem 2.

\S 1. Preliminaries.

Whenever a mean is given, speaking of technicality, it is more convenient,
as it will be evident later, that the domain of the mean is regarded as extended
a priori to the broader class of semi-continuous functions rather than the class
of continuous functions. We discuss first this extension. Let $I^{u}$ and $I^{l}$ be $I$

plus the supremum of $I$ and $I$ plus the infimum of $I$ respectively, where the
supremum and the infimum of $I$ are taken in the space of extended real num-
bers $[-\infty, +\infty]$ . Suppose a mean $M$ on $C(X;I)$ is given. Let $v(u)$ be an $I^{u}$

valued ( $I^{l}$-valued) lower (uPper) semi-continuous function on $X$. Our extension
of $M$ to $v$ or $u$ is defined as

$M(v)= \sup$ { $M(f)|v\geqq f,$ $f$ in $C(X;I)$ }, or
(7)

$M(u)= \inf$ { $M(f)|u\leqq f,$ $f$ in $C(X;I)$ }.

It should be remarked that the family { $f|v\geqq f,$ $f$ in $C(X;I)$ } $(\{f|u\leqq f$,
$f$ in $C(X;I)$ }) is upward (downward) directed and converges pointwise to $v(u)$

on $X$, and the value of the extended $M$ could be $\pm\infty$ .
First of all, we would like to point out here two facts which will cause

somewhat delicate argument later. One is that it is not a straightforward
matter whether the extended mean is continuous with respect to the uniform
convergence. The other one is that the extended mean may not be strictly
increasing on the class of semi-continuous functions even if the original one is
so on the class of continuous functions.

This extended mean has the order-continuity as follows:
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LEMMA 1. Let $\{v_{a}\}(\{u_{a}\})$ be an upward (downward) &rected system of $I^{u}$

$(I^{l})$-valued lower (upper) semi-continuous functions on $X$ and let $v(u)$ be the
$p\alpha ntwise$ limit of $\{v_{\alpha}\}(\{u_{a}\})$ , that is, $v_{\alpha}\uparrow_{\alpha}v(u_{a}\downarrow_{\alpha}u)$ . Then we have

$\sup_{a}M(v_{\alpha})=M(v)$ $( \inf_{\alpha}M(u_{\alpha})=M(u))$ .

Since the proof is quite standard, we omit the details.

We note that if $M$ is a QA-mean, maximum or minimum mean with weight,
this extended mean allows the same representation as the given one. Let $M$

be a QA-mean with $M=M_{\phi,\mu}$ on $C(X;I)$ . Then it is evident that for any
lower (upper) semi-continuous function $v:Xarrow I^{u}(u:Xarrow I^{\iota})$ we have

(8) $M(v)= \phi^{-1}\{\int_{X}\phi(v(x))d\mu(x)\}$ (the same for $u$ ).

Let $M$ be a maximum mean as $M={\rm Max}_{\delta}$ on $C(X)^{+}$ . Then, for any lower
(upper) semi-continuous function $v:Xarrow(O, +\infty$] $(u:Xarrow[0, +\infty))$ we have

(9) $M(v)= \sup_{x\in X}\{\delta(x)v(x)\}$ (the same for u) ,

where product $0(+\infty)$ is regarded as $0$ if $\delta(x)=0$ and $v(x)=+\infty$ on the right
side. We omit the proof (the case for $v$ is straightforward but the case for $u$

would require a little bit careful argument). We have a complete analog for a
minimum mean with weight. Let $M$ be a minimum mean with $M={\rm Min}_{\gamma}$ on
$C(X)^{+}$ . Then for any upper (lower) semi-continuous function $u:Xarrow[0, +\infty$ )
$(v;Xarrow(O, +\infty])$ we have

(10) $M(u)= \inf_{x\in X}\{\gamma(x)u(x)\}$ (the same for v) ,

where the product $(+\infty)0$ is regarded as $+\infty$ if $\gamma(x)=+\infty$ and $u(x)=0$ on the
right side.

Here we introduce the notion of commutativity between means, which plays
a fundamental role in our paper.

DEFINITION. Let $X$ and $Y$ be compact Hausdorff spaces and let $M$ and $L$

be means on $C(X;I)$ and $C(Y;I)$ respectively. We say that $M$ and $L$ are
commuting if the following equation holds,

$(**)$ $L_{y}[M_{x}[h(x, y)]]=M_{x}[L_{y}[h(x, y)]]$ for all $h$ in $C(X\cross Y;I)$ .
According to this definition, one can say that $M$ is a bisymmetric mean if

and only if $M$ commutes with $M$ itself.

First it should be remarked that for a commuting pair of means $M$ and $L$

the equation $(**)$ can be extended to semi-continuous functions.
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LEMMA 2. Let $M$ and $L$ be means on $C(X;I)$ and $C(Y;I)$ respectjvely. If
$M$ and $L$ commute with each other, then for any lower (upper) semi-continuous
function $v:X\cross Yarrow I^{u}(u:X\cross Yarrow I^{l})$ we have

$(**)$ $L_{y}[M_{x}[v(x, y)]]=M_{x}[L_{y}[v(x, y)]]$ (the same for $u$).

PROOF. For a given lower semi-continuous function $v:X\cross Yarrow I^{u}$ , choose
an upward directed system $\{h_{a}\}$ in $C(X\cross Y;I)$ such that $h_{\alpha}\uparrow_{\alpha}v$ on $X\cross Y$ . By
Lemma 1, for each fixed $y$ in $Y$ we have $\Lambda f_{x}[h_{\alpha}(x, y)]\uparrow_{\alpha}M_{x}[v(x, y)]$ . Since
$M_{x}[h_{\alpha}(x, y)]$ is an I-valued continuous function on $Y$ , by using Lemma 1 again
$L_{y}[M_{x}[h_{\alpha}(x, y)]]\uparrow_{\alpha}L_{y}[M_{x}[v(x, y)]]$ . Similarly we have $M_{x}[L_{y}[h_{\alpha}(x, y)]]$

$\uparrow_{\alpha}M_{x}[L_{y}[v(x, y)]]$ . This and the commutativIty of $M$ and $L,$ $L_{y}[M_{x}[h_{\alpha}(x, y)]]$

$=M_{x}[L_{y}[h_{a}(x, y)]]$ for each $\alpha$ , yield $L_{y}[M_{x}[v(x, y)]]=M_{x}[L_{y}[v(x, y)]]$ . The
argument is completely the same for $u$ . $q$ . $e$ . $d$ .

In our process of proving Theorems 1 and 2 we have to derive new means
from a given mean by keeping commutativity, by which we mean more pre-
cisely that any mean commuting with the original one commutes with the derived
new ones. Here we summarize three such methods.

a) Transition by a continuous map. Let $M$ be a mean on $C(X;I)$ and let $\tau$

be a continuous map from $X$ to a compact Hausdorff space Y. One can define
a functional $M^{\tau}$ on $C(Y;I)$ as

(11) $M^{\tau}(f)=M(f\circ\tau)$ for $f$ in $C(Y;I)$ .

It is easy to check that the following holds.

LEMMA 3. $M^{\tau}$ is a mean on $C(Y;I)$ and we have
1) $M^{\tau}$ commutes with $L$ if a mean $L$ commutes with $M$,

2) if $M$ is a bisymmetric mean, then so is $M^{\tau}$ ,
3) $M^{\tau}(v)=M(vQ\tau)(M^{\tau}(u)=M(uo\tau))$ for any lower (upper) semi-continuous function
$v:Yarrow I^{u}(u;Yarrow I^{l})$ .

b) Derivation of a two dimensional mean. If a compact Hausdorff space $X$

consists of two points, $C(X;I)$ can be identified with $I\cross I=I^{2}$ . We call a mean
on $I^{2}$ a two dimensional mean. Since two dimensional means play a special role
in our paper, here we repeat the definition of the bisymmetry equation of a
mean for the two dimensional case. A two dimensional mean $N$ is an I-valued
continuous function on $I\cross I=I^{2}$ having

I) $N(a, a)=a$ for $a$ in $I$ ,
II) $N(a, b)\leqq N(a’, b’)$ if $(a, b)\leqq(a’, b’)$ in $I^{2}$ .

Furthermore, $N$ is called bisymmetric if the following equation is satisfied, for
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all $a,$ $b,$ $c,$
$d$ in $I$

$(*)$ $N[N(a, b), N(c, d)]=N[N(a, c), N(b, d)]$ ( $b$ and $c$ are exchangeable).

Throughout the paper, we keep using $N$, instead of $M$, for denoting two dimen-
sional means.

Later in our proof, the most typical situation where two dimensional means
are derived is that a mean defined on $C([0,1];I)$ is given and we want to
derive a two dimensional mean from that. To explain this situation further,

first we introduce the notations $\check{\chi}_{a.b,\xi}$ and $\hat{\chi}_{a,b,\xi}$ for the following semi-continuous
functions on the unit interval $[0,1]$ ,

(12)$\check{\chi}_{a,b,\xi}(x)=\{\begin{array}{l}a if0\leqq x<\xi, b if \xi<x\leqq 1, \min \{a, b\} if x=\xi,\end{array}$ $\hat{\chi}_{a.b.\xi}(x)=\{\begin{array}{l}a if0\leqq x<\xi,b if \xi<x\leqq 1,\max \{a, b\} if x=\xi.\end{array}$

The notations $\check{\chi}_{a,b.\xi}$ and $\hat{\chi}_{a,b.\xi}$ will be kept used in the latter sections.
Let $M$ be a mean on $C([0,1];I)$ . Suppose there is a $\xi$ in $[0,1]$ such that

(13) $M(\check{\chi}_{a.b.\xi})=M(\hat{\chi}_{a,b,\xi})$ for all $a,$ $b$ in $I$ ,

then one can define a function $N^{(M.\xi)}$ on $I^{2}$ by setting

(14) $N^{(M,\xi)}(a, b)=M(\check{\chi}_{a,b,\xi})=M(\hat{\chi}_{a,b.\xi})$ for $(a, b)$ in $I^{2}$ .

This function $N^{(M.\xi)}$ has the following property.

LEMMA 4. Assuming the existence of $\xi$ satisfying (13) above, $N^{(M\xi)}$ is a
two dimensional mean on $I^{2}$ and we have
1) $N^{(M,\xi)}$ commutes with $L$ if a mean $L$ commutes with $M$,

2) if $M$ is a bisymmetric mean, then so is $N^{(M.\xi)}$ ,

3) $N^{(M.\xi)}(a, b)=M(\check{\chi}_{a.b,\xi})$ for all $a,$
$b$ in $I^{u}$ ,

$N^{(M.\xi)}(c, d)=M(\hat{\chi}_{c.I.\xi}()$ for all $c,$
$d$ in $I^{l}.|$

PROOF. We denote $N^{(M.\xi)}$ by $N$ simply. It is obvious that this function $N$

is monotoneously increasing on $I^{2}$ and $N(a, a)=a$ for all $a$ in $I$ . To see the con-
tinuity of $N$ on $I^{2}$ , it suffices to see the continuity from above and below. By
using Lemma 1,

$\lim_{x\dagger a,y\not\in b}N(x, y)=\lim_{x\dagger a,y\uparrow b}M(\check{\chi}_{x,y,\xi})=M(\check{\chi}_{a,b.\xi})=N(a, b)$ ,

similarly
$\lim_{xJa,y\downarrow b}N(x, y)_{l}=\lim_{x\downarrow a,y\downarrow b}M(\hat{\chi}_{x,y,\xi})=M(\hat{\chi}_{a,b,\xi})=N(a, b)$ .

Thus $N$ becomes a two dimensional mean on $I^{2}$ .
To see 1), let $L$ be a mean on $C(X;I)$ commuting with $M$. Note that the
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commutativity between $N$ and $L$ means

(15) $L_{x}[N[f(x), g(x)]]=N[L(f), L(g)]$

for all $f,$ $g$ in $C(X;I)$ . To show this equality, for given $f,$ $g$ in $C(X;I)$ , con-
sider an I-valued lower semi-continuous function $\check{h}$ on $X\cross[0,1]$ and an I-valued
upper semi-continuous function $\hat{h}$ on $X\cross[0,1]$ such that $\check{h}(x, y)=\check{x}_{f(x).g(x),\xi}(y)$

and $\hat{h}(x, y)=\hat{\chi}_{f(x),g(x\rangle.\xi}(y)$ for $x$ in $X$ and $y$ in $[0,1]$ .
From our assumption (13) on $\xi$ , we have

$M_{y}[\check{h}(x, y)]=N[f(x), g(x)]=M_{y}[h_{(X}, y)]$ .

By applying $L$ to this equation, we have

$L_{x}[M_{y}[\check{h}(x, y)]]=L_{x}[N[f(x), g(x)]]=L_{x}[M_{y}[\hat{h}(x, y)]]$ .

Since we have commutativity between $M$ and $L$ , namely

$L_{x}[M_{y}[\check{h}(x, y)]]=M_{y}[L_{x}[\check{h}(x, y)]]$ and

$L_{x}[M_{y}[\hat{h}(x, y)]]=M_{y}[L_{x}[\hat{h}(x, y)]]$ ,

we have

(16) $L_{x}[N[f(x), g(x)]]=M_{y}[L_{x}[\check{h}(x, y)]]=M_{y}[L_{x}[\hat{h}(x, y)]]$ .

On the other hand, we have

$L_{x}[\check{h}(x, y)]\leqq\check{\chi}_{L(f),L(g),\xi}(y)\leqq L_{x}[\hat{h}(x, y)]$ .

Thus, by applying $M$ on the both sides of this inequality, we have

(17) $M_{y}[L_{x}[\check{h}(x, y)]]\leqq N[L(f), L(g)]\leqq M_{y}[L_{x}[h_{(X}, y)]]$ .
Now the equality (15) follows from (16) and (17).

2) follows from 1) (use 1) twice), and 3) is obvious. $q$ . $e$ . $d$ .
c) Restriction onto a comPact subset. Let $M$ be a positively homogeneous

mean on $C(X)^{+}$ and let $K$ be a compact subset of $X$ with $M(\chi_{K})=1$ , where $\chi_{K}$

is the characteristic function of $K$. One can define a functional $M^{K}$ on $C(K)^{+}$ as

(18) $M^{K}(f)=M(f^{K})$ for $f$ in $C(K)^{+}$ ,

where $f^{K}$ denotes an upper semi-continuous function on $X$ which is identical to
$f$ on $K$ and equal to zero on $X\backslash K$. We have the following.

LEMMA 5. $M^{K}$ is a positively homogeneous mean on $C(K)^{+}$ and we have
1) $M^{K}$ commutes with $L$ if a mean $L$ commutes with $M$,
2) if $M$ is a bisymmeiric mean, then so is $M^{K}$ ,
3) $M^{K}(u)=M(u^{K})$ for any upper semi-continuous function $u:Karrow[0, +\infty$).
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PROOF. It is obvious that the functional $M^{K}$ satisfies the following prop-
erties; $M^{K}(a1_{K})=a$ for all $a>0,$ $M^{K}$ is increasing and positively homogeneous
on $C(K)^{+}$ . It should be noticed that being positively homogeneous together with
being mohotoneously increasing implies the continuity of the functional. Thus $M^{K}$

becomes a positively homogeneous mean on $C(K)^{+}$ . To see 1), let $L$ be a mean
on $C(Y)^{+}$ which commutes with $M$. For each $h$ in $C(K\cross Y;I)$ , by taking the
upper semi-continuous function $h^{K}$ on $X\cross Y$ , which is equal to $h$ on $K\cross Y$ and
to zero on $(X\backslash K)\cross Y$, we have $L_{y}[M_{x}^{K}[h(x, y)]]=L_{y}[M_{x}[h^{K}(x, y)]]=$

$M_{x}[L_{y}[h^{K}(x, y)]]=M_{x}^{K}[L_{y}[h(x, y)]]$ , where we used the commutativity of $M$

and $L$ and Lemma 2 in the second equality.
2) follows from 1) (use 1) twice), and 3) is obvious. $q$ . $e$ . $d$ .

\S 2. Strictly increasing means.

Our proof of Theorem 1 is divided roughly into three steps. The first step
is supposed to prove the two dimensional version of Theorem 1, namely where
$X$ consists of two points. As mentioned in our introduction, the finite dimen-
sional version of Theorem 1 is J. Aczel’s theorem [2], so we state the two
dimensional version of his theorem as Proposition 1 without proof. The second
step is to prove that every mean commuting with a QA-mean, which is not a
point evaluation, is also a QA-mean. This step corresponds to Proposition 2.
The last step is to prove that any strictly increasing and bisymmetric mean
has a commuting two dimensional QA-mean which is not a point evaluation.

PROPOSITION 1. Let $N$ be a two dimensional mean on I. If $N$ is strictly
increasing and bisymmetric, then there are a strictly increasing or decreasing,
continuous function $\phi$ on I and $0<t<1$ such that

$N(a, b)=\phi^{-1}\{t\phi(a)+(1-t)\phi(b)\}$ for all $a,$
$b$ in $I$ ,

where $t$ is determined uniquely and $\phi$ is also unique up to the affine equivalence.

PROOF. See [2] or [4] pp. 278-287.

A kind of observation in our proof of the following proposition can be seen
partially in [2] and [3] although in different situation.

PROPOSITION 2. Let $X$ and $Y$ be compact Hausdorff spaces and let $M$ and $L$

be means on $C(X;I)$ and $C(Y;I)$ respectjvely. If $M$ commufes with $L$ and if $L$

is a QA-mean with $L=M_{\phi,\mu}$ but not a point evaluation, then $M$ is also a QA-
mean with $M=M_{\phi}$ , . for some prObabiljfy measure $\nu$ on $X$, where $v$ is determined
uniquely.



706 T. ITO and C. NARA

PROOF. The commutativity between $M$ and $L,$ $(**)$ of Lemma 2 and (8)

together yield

(19) $\int_{Y}\phi(M_{x}[v(x, y)])d\mu(y)=\phi[M_{x}\phi^{-1}[(\int_{Y}\phi[v(x, y)]d\mu(y))]]$ ,

where $v$ is any $I^{u}$-valued lower semi-continuous function on $X\cross Y$ .
Setting a functional $F$ on $C(X;\phi(I))$ as

$F(f)=\phi[M_{x}[\phi^{-1}(f(x))]]$ for $f$ in $C(X;\phi(I))$ ,

we will first show that there is $t$ with $0<t<1$ such that for all $f,$ $g$ in
$C(X;\phi(I))$

(20) $F(tf+(1-t)g)=tF(f)+(1-t)F(g)$ .

To see this, since the support of $\mu$ contains more than one point, one can choose
a continuous map $\tau$ from $Y$ to the interval $[0,1]$ such that $\tau^{-1}(\{1\})$ and $\tau^{-1}(\{0\})$

both intersect the support of $\mu$ . Then one can choose $\xi_{0}$ such that $0<\xi_{0}<1$ and
$\mu(\tau^{-1}(\{\xi_{0}\}))=0$ . Thus we have a decomposition of $Y$ as $Y=Y_{1}\cup Y_{2}\cup Y_{3}=$

$\tau^{-1}([0, \xi_{0}))\cup\tau^{-1}((\xi_{0},1])\cup\tau^{-1}(\{\xi_{0}\})$ . For given $f,$ $g$ in $C(X;\phi(I))$ , define an I-valued
lower semi-continuous function $v$ on $X\cross Y$ as follows,

$v(x, y)=\{\begin{array}{ll}\phi^{-1}(f(x)) if y in Y_{1},\phi^{-1}(g(x)) if y in Y_{2},\min \{\phi^{-1}(f(x)), \phi^{-1}(g(x))\} if y in Y_{3}.\end{array}$

By setting $t=\mu(Y_{1})$ , we have $\mu(Y_{2})=1-t,$ $0<t<1$ , and furthermore we have

$\int_{Y}\phi[M_{x}[v(x, y)]]d\mu(y)=tF(f)+(1-t)F(g)$ ,

$\int_{Y}\phi[v(x, y)]d\mu(y)=tf(x)+(1-t)g(x)$ .

Thus (19) yields (20).

Since $M_{\phi,\mu}=M_{\alpha\phi+\beta,\mu}$ for any $a\neq 0$ and any $\beta$ , one can assume that $\phi(a)=0$

and $\phi(b)=1$ at two interior points $a,$ $b$ of $I$ . Then $C(X;\phi(I))$ becomes a convex
zero-neighborhood containing $1_{X}$ in the space $C(X)$ of all continuous functions
on $X$. By (20), we will see that $F$ can be extended uniquely to a continuous
linear functional on $C(X)$ .

We write $V$ instead of $C(X;\phi(I))$ . By setting $f=0$ or $g=0$ in (20) and
using $F(O)=0$ , we have

(21) $F(tf)=tF(f)$ , $F((1-t)f)=(1-t)F(f)$ for all $f$ in $V$ .

Let $W=tV\cap(1-t)V\subset V$. Note that $W+W\subset V$ and (20) together with (21) yield



Quasi-ari thme tic means 707

(22) $F(h+k)=F(h)+F(k)$ for all $h,$ $k$ in $W$ .
Using this additivity on $W$ n-times and again m-times, we have

$F( \frac{n}{m}h)=\frac{n}{m}F(h)$

for all $h$ in $W$ and all integers $0\leqq n<m$ . Thus the continuity of $F$ on $V$ yields

(23) $F(\lambda h)=\lambda F(h)$ for all $h$ in $W$ and all $0\leqq\lambda\leqq 1$ .

By (23), for any $f$ in $C(X)$ and any $0\leqq\lambda_{1},$ $\lambda_{2}\leqq 1$ such that $\lambda_{1}f$ and $\lambda_{2}f$ belong
to $W$ we have

(24) $\lambda_{1}F(\lambda_{2}f)=\lambda_{2}F(\lambda_{1}f)$ .
Now, define a functional $F$ on $C(X)$ as

$\hat{F}(f)=\frac{1}{\lambda}F(\lambda f)$ ,

where $f$ in $C(X)$ and $\lambda$ with $0<\lambda\leqq 1$ such that $\lambda f$ belongs to $W$ . Because of
(24), $\hat{F}$ is well defined. $F$ is additive on $C(X)$ , because for any $f$ and $g$ in
$C(X)$ , choose $0<\lambda\leqq 1$ such that $\lambda f,$ $\lambda g$ and $\lambda(f+g)$ belong to $W$ and use (22),

it follows $\hat{F}(f+g)=F(\lambda(f+g))/\lambda=[F(\lambda f)+F(\lambda g)]/\lambda=F(f)+F(g)$ . $\hat{F}$ is an ex-
tension of $F$ from $V$ to $C(X)$ , because note that $t(1-t)f$ belongs to $W$ for any
$f$ in $V$ , thus $F(f)=F(t(1-t)f)/t(1-t)$ for all $f$ in $V$. Use (21) twice, we have
$F(t(1-t)f)=t(1-t)F(f)$ , thus $F(f)=F(f)$ for all $f$ in $V$. Consequently, $F$ is
additive on $C(X)$ and continuous on the zero-neighborhood $V$, so $\hat{F}$ is a con-
tinuous linear functional on $C(X)$ . APplying Riesz’ theorem, there is a finite
measure $\nu$ on $X$ such that

$F(f)= \int_{X}fd\nu$ for all $f$ in $C(X;\phi(I))$ .

Furtbermore, by observing that $\hat{F}$ is monotoneously increasing and $F(1_{X})=1,$ $\nu$ is a
probability measure on $X$. Finally we have a representation of $M$ with $M(f)=$

$\phi^{-1}(\int_{X}\phi(f)d\nu)$ for all $f$ in $C(X;I)$ , that is, $M$ is a QA-mean. The uniqueness

of $\nu$ follows from the argument above. $q$ . $e$ . $d$ .
PROOF OF THEOREM 1. By using Propositions 1 and 2, in order to complete

a proof of Theorem 1, it suffices to show that for the mean $M$ on $C(X;I)$

given in Theorem 1 there is a two dimensional, strictly increasing mean on $I^{2}$

which commutes with $M$. We split this proof into two cases depending upon
whether $X$ is connected or disconnected.

Suppose $X$ is disconnected. Then there is a continuous map $\tau$ from $X$ onto
a set consisting of two points. By Lemma 3 it is clear that $M$‘ is a two dimen-
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sional mean which is strictly increasing, bisymmetric and commuting with $M$.
Suppose $X$ is connected but not a singleton. (There is nothing to prove if

$X$ is a singleton.) Choose a continuous map $\tau$ from $X$ onto the interval $[0,1]$ ,

then $M^{\tau}$ is a strictly increasing mean on $C([0,1];I)$ . By Lemma 3 $M^{\tau}$ is
bisymmetric and commutes with $M$. Thus our task is to construct a two
dimensional mean $N$ on $I^{2}$ which is strictly increasing, bisymmetric and com-
muting with any mean which commutes with $M^{\tau}$ . This will be done in the
following order of steps. The first is to show that there exists $0<\xi_{0}<1$ such
that

$M^{\tau}(\check{\chi}_{a,b,\xi_{0}})=M^{\tau}(\hat{\chi}_{a,b,\xi_{0}})$ for all $a,$
$b$ in $I$ .

Once this is shown, the claimed two dimensional mean $N$ will be given by
$N^{(M^{\tau},\xi_{0})}$ of Lemma 4 of the previous section. The last little step is to show
that this $N$ is actually strictly increasing on $I^{2}$ . The first long step will be
completed by Lemmas 6 and 7. The last step will be shown in Lemma 8.

In the following, for the sake of simplicity of notations $M^{\tau}$ is replaced by
$L$ . Thus we are working on a strictly increaing bisymmetric mean $L$ defined
on $C([0,1];I)$ . For any fixed $\xi$ with $0<\xi<1$ , first introduce a lower semi-
continuous function $\check{F}=\check{F}_{\xi}$ and an upper semi-continuous function $\hat{F}=F_{\xi}$ on $I^{2}$

as follows

(25) $\check{F}(a, b)=L(\check{\chi}_{a,b,\xi})$ , $fi(a, b)=L(\hat{\chi}_{a,b.\xi})$ for $a,$ $b$ in $I$ .

The following lemma shows that actually $\check{F}$ and $F$ are continuous for any choice
of $\xi$ with $0<\xi<1$ .

LEMMA 6. $F_{\xi}$ and $F_{\xi}$ are continuous on $I^{2}$ for any $0<\xi<1$ .

PROOF. We start with preliminary observations. First, since $L$ is strictly
increasing

(26) min $\{a, b\}<\check{F}(a, b)<\max\{a, b\}$ if $a\neq b$ in $I$ (the same for $F$ )

and

(27) $\lim_{y\downarrow d}F(c, y)<d$ if $c<d$ in $I$
$( \lim_{y\uparrow d}F(c, y)>d$ if $c>d$ ).

It is obvious to see (26). To see (27), choose a continuous function $f$ on $[0,1]$

such that $f\leqq d$ and $\check{\chi}_{c.d,\xi}\leqq f$. Then we have $L(f)<d$ because $L$ is strictly
increasing. Using the continuity of $L$ , we can choose $\epsilon>0$ such that $L(f+\epsilon)$

$<d$ . Hence, for all $d<y\leqq d+\epsilon$ , we have $\check{\chi}_{c,y,\xi}\leqq f+\epsilon$ , thus $\check{F}_{\xi}(c, y)=L(\check{\chi}_{c.y,\xi})$

$\leqq L(f+\epsilon)<d$ . Similarly we have

(27) $\lim_{x\downarrow c}\check{F}(x, d)<c$ if $c>d$ $( \lim_{x\uparrow c}F(x, d)>c$ if $d>c$ ).
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Next, we see that $\check{F}_{\xi}$ and $F_{\xi}$ satisfy the following equation which is weaker
than the bisymmetric equation.

(28) $F[\check{F}(a, b),\check{F}(a, c)]=\check{F}[a,\check{F}(b, c)]$ if $a \leqq\min\{b, c\}$ or $a \geqq\max\{b, c\}$

(the same for $F$).

To observe this, supposing $a \leqq\min\{b, c\}$ (the case for $a \geqq\max\{b, c\}$ can be done
similarly), set a lower semi-continuous function $v$ on $[0,1]\cross[0,1]$ as

$v(x, y)=\{\begin{array}{ll}a if x\leqq\xi,b if x>\xi and y<\xi,c \end{array}$

if $x>\xi$ and $y>\xi$ ,

min $\{b, c\}$ if $x>\xi$ and $y=\xi$ ,

and substitute $v$ into the bisymmetry equation of $L$ , then we have (28). Sim-
ilarly we have

(28) $F[\check{F}(b, a),\check{F}(c, a)]=\check{F}[\check{F}(b, c), a]$ if $a \leqq\min\{b, c\}$ or $a \geqq\max\{b, c\}$

(the same for $F$).

Now we are ready to show the continuity of $\check{F}_{\xi}$ and $F_{\xi}$ . We argue only
the continuity of $F=\check{F}_{\xi}$ . Since $F$ is increasing on $I^{2}$ , it is sufficient to show that
$\check{F}$ is separately continuous with respect to each variable. Fix a point $(a, b)$ in
$I^{2}$ , if $a=b$ , the continuity of $\check{F}$ at $(a, a)$ is easy to see. Assume $a>b$ (the

proof for $a<b$ will be similar), by using (26), (27) and (28) we will show the
continuity of $F$ at $(a, b)$ with respect to variable $y$ only. (The continuity with
respect to the other variable $x$ can be shown similarly by using (26), (27) and
(28).) To see this, since $F$ is lower semi-continuous on $I^{2}$ , it suffices to show
$\lim_{y}\downarrow b\check{F}(a, y)=\check{F}(a, b)$ . Setting $\alpha=\lim_{y}\downarrow b\check{F}(a, y)$ , since $\lim_{y}\downarrow b\check{F}(b, y)=b$ , we have

(29) $\lim_{y\downarrow b}\check{F}[a,\check{F}(b, y)]=\alpha$ .

If there is $y_{0}>b$ such that $\check{F}(a, y_{0})=\alpha$ , then (28) implies $\check{F}[\check{F}(a, b), \alpha]$

$=\check{F}[\check{F}(a, b),\check{F}(a, y)]=F[a,\check{F}(b, y)]$ for all $y$ with $b<y\leqq y_{0}$ . By letting $y\downarrow b$

and using (29) we have $\check{F}[\check{F}(a, b), \alpha]=a$ , and from (26) we have $\check{F}(a, b)=\alpha=$

$\lim y\downarrow b\check{F}(a, y)$ . If $\check{F}(a, y)>\alpha$ for $ally>b$ in $I$ , then from (28) we have

$\lim_{x\downarrow\alpha}F[\check{F}(a, b), x]=\lim_{y\downarrow b}\check{F}[\check{F}(a, b),\check{F}(a, y)]=\lim_{y\downarrow b}\check{F}[a,\check{F}(b, y)]=\alpha$ .

Thus, (27) implies $\check{F}(a, b)=\alpha=\lim_{y\downarrow b}\check{F}(a, y)$ . $q$ . $e$ . $d$ .

LEMMA 7. The following holds except for at most countably many $\xi’s$ in $[0,1]$ ,

$L(\check{\chi}_{a.b,\xi})=L(\hat{\chi}_{a.b,\xi})$ for all $a,$
$b$ in $I$ .
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PROOF. For fixed $a$ and $b$ in $I$ , the function $F_{\xi}(a, b)=L(\check{\chi}_{a.b,\xi})$ of variable
$\xi$ is monotoneously increasing or decreasing on $[0,1]$ . Hence, except for at most
countably many $\xi’ s$ in $[0,1],$ $\xi$ is a continuous point of this function. Note
that if this function is continuous at $\xi=\xi_{0}$ , then we have $\check{F}_{\xi_{0}}(a, b)=F_{\xi_{0}}(a, b)$ ,

that is, $L(\check{\chi}_{a,b,\xi_{0}})=L(\hat{\chi}_{a,b,\xi_{0}})$ . Now one can choose $\xi$ in $[0,1]$ , with at most
countably many exceptions, such that the following holds

$F_{\xi}(a, b)=F_{\xi}(a, b)$ for all rational numbers $a,$ $b$ in $I$ .

For such choice of $\xi$ , by using Lemma 6 we have actually $\check{F}_{\xi}(a, b)=\hat{F}_{\xi}(a, b)$

for all $a,$
$b$ in $I$ , namely $L(\check{\chi}_{a.b,\xi})=L(\hat{\chi}_{a.b.\xi})$ for all $a,$

$b$ in I. $q$ . $e$ . $d$ .

Suppose that $\xi_{0}$ with $0<\xi_{0}<1$ satisfies the conditions of Lemma 7, then by
Lemma 4, $N=N^{(L.\xi_{0})}$ becomes a two dimensional bisymmetric mean on $I^{2}$ .
Furthermore, we have

LEMMA 8. $N=N^{(L,\xi_{0})}$ is strictly increasing on $I^{2}$ .

PROOF. Suppose $N(a, b)=N(a’, b)$ for some $a<a’$ and $b$ (the argument will
be the same for supposing $N(b, a)=N(b, a’))$ . We will show

$N(x, b)=N(a, b)$ for all $x$ in $I$ .

This would imply $N(a, b)=N(a’, b)=N(b, b)=b$ , which contradicts (26). Set
$c= \inf\{x|N(x, b)=N(a, b)\}$ and $d= \sup\{x|N(x, b)=N(a, b)\}$ , then we have
$-\infty\leqq c\leqq a<a’\leqq d\leqq+\infty$ .

Suppose $d< \sup I$ . We have $a<N(a, d)=L(\hat{\chi}_{a.d.\xi_{0}})<d$ . Thus one can choose
$f$ in $C([0,1];I)$ such that $f(\xi_{0})>d,$ $f(x)\geqq a$ for all $x$ in $[0,1]$ and $a<L(f)<d$ .
By using the commutativity between $N$ and $L$ , it follows $L_{x}[N[f(x), b]]=$

$N[L(f), b]=N(a, b)$ . This yields $N[f(x), b]=N(a, b)$ for all $x$ in $[0,1]$ , be-
cause $N[f(x), b]\geqq N(a, b)$ for all $x$ in $[0,1]$ and $L$ is strictly increasing. In
particular we have $N[f(\xi_{0}), b]=N(a, b)$ , which contradicts our choice of $f$ with
$f(\xi_{0})>d$ . Thus we proved $d=supI$ . Similarly one can show $c=infI$ . By com-
bining these two, we have $N(x, b)=N(a, b)$ for all $x$ in I. $q$ . $e$ . $d$ .

Finally, $N=N^{(L,\xi_{0})}$ becomes a two dimensional, strictly increasing and
bisymmetric mean, furthermore it commutes with any mean which commutes
with $L$ . By aPplying Propositions 1 and 2 this completes to prove that $M$ given
in Theorem 1 is a QA-mean, $M=M_{\phi.\mu}$ . The uniqueness of $\phi$ and $\mu$ follows
from the uniqueness in Propositions1 and 2. $q$ . $e$ . $d$ .
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\S 3. Positively homogeneous means.

Our general procedure of proving Theorem 2 is the same as the one shown
in the proof of Theorem 1. It has also three steps which are the same as those
mentioned at the beginning of \S 2. Let us start with two dimensional posi-
tively homogeneous means. Recall that concrete examples of two dimensional
positively homogeneous means are $P$-th power root means $N_{p.t}$ for $-\infty<p<+\infty$ ,
$0\leqq t\leqq 1$ and maximum or minimum means with weight as follows,

(30) $N_{p,t}(a, b)=$ $\{ta^{p}+(1-t)b^{p}\}^{1/p}$ for $a,$ $b>0$ ,

if $P=0$ ,

(31) $N_{0.t}(a, b)=a{}^{t}b^{1- t}$ for $a,$ $b>0$ ,

(32) ${\rm Max}_{\delta}(a, b)= \max\{\delta_{1}a, \delta_{2}b\}$ for $a,$ $b>0$ ,

where $\delta=(\delta_{1}, \delta_{2})$ with $0\leqq\delta_{1},$ $\delta_{2}\leqq 1$ and max $\{\delta_{1}, \delta_{2}\}=1$ , and

(33) ${\rm Min}_{\gamma}(a, b)=$ min $\{\gamma_{1}a, \gamma_{2}b\}$ for $a,$ $b>0$ ,

where $\gamma=(\gamma_{1}, \gamma_{2})$ with $1\leqq\gamma_{1},$ $\gamma_{2}\leqq+\infty$ and min $\{\gamma_{1}, \gamma_{2}\}=1$ .
These types of two dimensional positively homogeneous means are mutually

exclusive except for point evaluations. We call $N$ a right point evaluation if
$N(a, b)=b$ for all $a,$ $b>0$ and a left point evaluation if $N(a, b)=a$ for all $a,$ $b>0$ .

The following proposition is the two dimensional version of Theorem 2,
namely where $X$ consists of two points.

PROPOSITION 3. If a two dimensional pOsjtjvely homogeneous mean $N$ satisfies
the bisymmetry equation, then we have $N=N_{p,t}$ for some $-\infty<p<+\infty$ and some
$0\leqq t\leqq 1,$ $N={\rm Max}_{\delta}$ or $N={\rm Min}_{\gamma}$ for some weight $\delta$ or $\gamma$ .

We start with some preliminaries. The proof of this proposition will be
completed after Lemma 12.

Let $c,$
$d,\overline{c}$ and $\overline{d}$ be as follows,

$c= \inf\{y>0|N(1, y)=1\}$ , $d= \sup\{y>0|N(1, y)=1\}$ ,

$\overline{c}=\inf\{x>0|N(x, 1)=1\}$ , $\overline{d}=\sup\{x>0|N(x, 1)=1\}$ .

Clearly we see
$0\leqq c,\overline{c}\leqq 1$ and

About these four numbers we have

$1\leqq d,\overline{d}\leqq+\infty$ .

LEMMA 9. One of the following cases occurs for $c$ and $d$ .
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i) $c=0$ , ii) $d=+\infty$ or iii) $c=1=d$ .

The same occurs for $\overline{c}$ and $\overline{d}$ .
PROOF. We give a proof for only $c$ and $d$ . The case for $\overline{c}$ and $\overline{d}$ can be

done similarly.
Assuming $0<c\leqq 1\leqq d<+\infty$ , we want to conclude that $c=1$ and $d=1$ . First

we show $c=1$ . Suppose $0<c<1$ . Since $N(c, cd)=c$ and $d= \sup\{y|N(1, y)=1\}$ ,

by the continuity of $N$ one can choose $y’$ sufficiently close to $cd$ and $y’>cd$

such that
$c<N(c, y’)<1$ .

Then, one can choose $c’$ sufficiently close to $c$ and $c’<c$ such that

$c<N(c’, y’)<1$ .

Now, the bisymmetry equation yields a contradiction;

$1=N[1, N(c’, y’)]=N[N(1, c), N(c’, y’)]=N[N(1, c’), N(c, y’)]$

$\leqq\max\{N(1, c’), N(c, y’)\}<1$ .

To show $d=1$ , consider the following positively homogeneous bisymmetric mean
$N^{-1}$ derived from $N$,

$N^{-1}(a, b)=N(a^{-1}, b^{-1})^{-1}$ for all $a,$ $b>0$ .

The above argument applied to $N^{-1}$ implies $d=1$ . $q$ . $e$ . $d$ .

LEMMA 10. 1) If $c=0$ and $d=1$ , then we have $N(a, b)= \max\{a, b\}$ for all
$a,$ $b>0$ .

2) If $c=1$ and $d=+\infty$ , then we have $N(a, b)= \min\{a, b\}$ for all $a,$ $b>0$ .

PROOF. Assuming $c=0$ and $d=1$ , we will show

(34) $N(x, 1)=1$ for all $0<x\leqq 1$ .

Suppose there is $x_{0}$ with $0<x_{0}<1$ such that $N(x_{0},1)<1$ . Take $y_{0}>1$ , then
$N(1, y_{0})>1$ because $d=1$ . By the continuity of $N$ one can choose a point $(x’, y’)$

on the segment joining two points $(x_{0},1)$ and $(1, y_{0})$ such that $x_{0}<x’<1$ ,
$1<y’<y_{0}$ and

$N(x’, y’)=1$ .

Thus, the bisymmetry equation yields again a contradiction;

$1=N[1, N(x’, y’)]=N[N(1, x’), N(1, y’)]=N[1, N(1, y’)]>1$ .

On the other hand, since $c=0$ , we have

(35) $N(1, y)=1$ for all $0<y\leqq 1$ .
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Combining (34) and (35), for all $a,$ $b>0$

$N(a, b)= \{\begin{array}{lllll}aN(1, b/a)= a if a>bbN(a/b,1)= b if a<b\end{array}\}=\max\{a, b\}$ .

2) To see this, consider $N^{-1}$ and apply the previous case 1) to $N^{-1}$ . $q.e.d$ .

LEMMA 11. One can classify $N$, dependjng upOn the four numbers $c,$ $d,\overline{c}$

and $\overline{d}$ ,

The values of $c,\overline{c},$
$d,\overline{d}$

$|$

$N(a, b)$ for all $a,$ $b>0$

$c=0$ , $1\leqq d<+\infty$

$c=0$ , $d=+\infty$ $|$

$0<c\leqq 1$ , $d=+\infty$

$\overline{c}=0$ , $1\leqq\overline{d}<+\infty$

$\overline{c}=0$ , $\overline{d}=+\infty$

$0<\overline{c}\leqq 1$ , $\overline{d}=+\infty$

$N(a, b)= \max\{a, b/d\}$

$N(a, b)=a$

$N(a, b)=$ min $\{a, b/c\}$

$N(a, b)= \max\{a/\overline{d}, b\}$

$N(a, b)=b$

$N(a, b)=$ min $\{a/\overline{c}, b\}$

PROOF. First, if $c=0$ and $1\leqq d<+\infty$ , setting

$\hat{N}(a, b)=N(a, db)$ for $a,$ $b>0$

$\hat{N}$ becomes a positively homogeneous and bisymmetric mean and it has

$inf\{y>0|\hat{N}(1, y)=1\}=0$ , $sup\{y>0|\hat{N}(1, y)=1\}=1$ .
Thus, by Lemma 10, $\hat{N}(a, b)=\max\{a, b\}$ , so

$N(a, b)= \hat{N}(a, b/d)=\max\{a, b/d\}$ .

Secondly, if $c=0$ and $d=+\infty$ , then $N(a, b)=aN(1, b/a)=a$ for all $a,$ $b>0$ .
Thirdly, if $0<c\leqq 1$ and $d=+\infty$ , the proof is completely similar to the first
case; $c=0$ and $1\leqq d<+\infty$ . Thus we have $N(a, b)= \min\{a, b/c\}$ for all $a,$ $b>0$ .

The classification of $N$ depending upon $\overline{c}$ and $\overline{d}$ can be given by consider-
ing a mean $\tilde{N}$ derived from $N$ as

$\tilde{N}(a, b)=N(b, a)$ for all $a,$ $b>0$ . $q$ . $e$ . $d$ .

LEMMA 12. If $c=1=d$ and $\overline{c}=1=\overline{d}$ , then $N$ is strictly increasing and con-
sequently $N$ is a p-th power mean $N=N_{p,t}$ for some $-\infty<p<+\infty$ and some
$0<t<1$ .

PROOF. Suppose $N$ were not strictly increasing, namely there were $a,$
$b$

with $0<a<b$ such that
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$N(1, a)=N(1, b)$ or $N(a, 1)=N(b, 1)$ .

Assume $N(1, a)=N(1, b)$ (the argument for $N(a,$ $1)=N(b,$ $1)$ goes similarly). Let
$\alpha$ and $\beta$ be as follows

$a= \inf\{x>0|N(1, x)=N(1, b)\}$ and $\beta=\sup\{x>0|N(1, x)=N(1, b)\}$ .

Clearly we see $0\leqq\alpha\leqq a<b\leqq\beta\leqq+\infty$ . Since $c=1=d$ , we have $1<\alpha<\beta\leqq+\infty$ or
$0\leqq a<\beta<1$ . Assume $1<\alpha<\beta\leqq+\infty$ (the other case goes similarly). Take
$1<x_{0}<\alpha$ and $\alpha<y_{0}<\beta$ , then we have $N(x_{0}, a)<\alpha$ because $\overline{c}=1$ and $N(\alpha, y_{0})>\alpha$

because $d=1$ . By using the continuity of $N$, one can choose a point $(x’, y’)$

on the segment joining two points $(x_{0}, a)$ and $(a, y_{0})$ such that $1<x_{0}<x’<\alpha$ ,
$a<y’<y_{0}<\beta$ and $N(x’, y’)=\alpha$ . Note that $N(1, y’)=N(1, a)=N(1, b)$ because
$\alpha<y’<\beta$ and $N(1, x’)<N(1, a)=N(1, b)$ because $x^{f}<\alpha$ . Apply the bisymmetry
equation as

$N(1, a)=N[1, N(x’, y’)]=N[N(1, x’), N(1, y’)]$

$=N[N(1, x’), N(1, \alpha)]$ ,

hence $1=N[N(1, x’)/N(1, \alpha), 1]$ and $N(1, x’)/N(1, \alpha)<1$ , which contradicts $\overline{c}=1$ .
Thus we have proved that $N$ is strictly increasing. Now one can apply

Proposition 1 to $N$, therefore $N$ is a QA-mean with $N=N_{\phi.t}$ for some $\phi$ and
some $0<t<1$ . By the result of de Finetti-Jessen-Nagumo (see pp. 68-69 of [6]),

the property of $N$ being positively homogeneous yields that this function $\phi$ is a
$P$ -th power function; $\phi(x)=x^{p}(x>0)$ for some $-\infty<p\neq 0<+\infty$ or $\phi(x)=\log x$

$(x>0)$ . Thus we conclude $N=N_{p.t}$ . $q$ . $e$. $d$ .

PROOF OF PROPOSITION 3. By combining Lemmas 11 and 12 we have a
complete proof of Proposition 3.

PROPOSITION 4. Let $X$ and $Y$ be compaci Hausdorff spaces and let $M$ and $L$

be positively homogeneous means on $C(X;I)$ and $C(Y;D$ respectively. If $M$ com-
mutes with $L$ and if $L$ is a maximum (minimum) mean with weight, but not a
$p\alpha nt$ evaluation, then $M$ is also a maxemum (minimum) mean with weight, $M=$

${\rm Max}_{\delta}(M={\rm Min}_{\gamma})$ , where the weight $\delta(\gamma)$ is determined uniquely.

PROOF. Suppose $L$ is a maximum mean with weight $\rho$ on $C(Y)^{+}$ . The
commutativity between $M$ and $L$ says

(36) $M_{x}[ \max_{y\in Y}\{\rho(y)h(x, y)\}]=\max_{y\in Y}\{\rho(y)M_{x}[h(x, y)]\}$ for all $h$ in $C(X\cross Y)^{+}$ .

It should be noticed that (36) holds for any lower (upper) semi-continuous func-
tion $v:X\cross Yarrow(O, +\infty$] $(u:X\cross Yarrow[0, +\infty))$ replacing $h$ (see Lemma 2 and (9)).

First, we observe that
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(37) $M_{x}[ \max\{f(x), g(x)\}]=\max\{M(f), M(g)\}$ for all $f,$ $g$ in $C(X)^{+}$ .
Since $L$ is not a point evaluation, one can choose two point $y_{1}\neq y_{2}$ in $Y$ such
that $\rho(y_{1})>0$ and $\rho(y_{2})>0$ . Choose open neighborhoods $U_{1}$ and $U_{2}$ , with the
disjoint closures, of $y_{1}$ and $y_{2}$ respectively. Consider a lower semi-continuous
function $v:X\cross Yarrow(O, +\infty$] such that

$v(x, y)= \int_{g(x)}^{\underline{\frac{1}{\rho(y)1}}f(x)}$

$forforyyininU_{2}U_{1}$

,

$| \frac{\rho(y)1}{\rho(y)}$

min $\{f(x), g(x)\}$ for $y$ in $Y\backslash \{U_{1}\cup U_{2}\}$ .

Replacing $h$ in (36) by this $v$ , we have (37).

Secondly, we show that (37) implies that $M$ is a maximum mean with
weight. Set

(38) $\delta(x)=M(\chi_{tx1})$ for $x$ in $X$ .
It is not hard to see that $\delta$ is an upper semi-continuous function on $X$ and
$0\leqq\delta(x)\leqq 1$ for all $x$ in $X$ . We see

$\delta(x)f(x)=f(x)M(\chi_{tx1})=M_{y}[f(x)^{\chi_{(x\}}}(y)]=M_{y}[f(y)^{\chi_{tx\}}}(y)]\leqq M_{y}[f(y)]=M(f)$ .

Thus we have $\max_{x\in X}\{\delta(x)f(x)\}\leqq M(f)$ . Conversely, because of $\delta(x)f(x)=$

$M(f\chi_{1x1})$ , for any $\epsilon>0$ and for each $x$ in $X$, one can choose $g_{x}$ in $C(X)^{+}$ such that

$f(x)<g_{x}(x)$ and $M(g_{x})<\delta(x)f(x)+\epsilon$ .
By using the compact topology of $X$, one can choose finitely many $g_{x_{1}},$

$\cdots$ , $g_{x_{n}}$ such
that $f\leqq g_{x_{1}}\vee\cdots\vee g_{x_{n}}$ , where the function $g_{x_{1}}\vee\cdots\vee g_{x_{n}}$ is the pointwise maxi-
mum function of $g_{x_{1}},$

$\cdots$ , $g_{x_{n}}$ . Setting $g=g_{x_{1}}\vee\cdots\vee g_{x_{n}}$ (37) yields $M(g)=$

max $\{M(g_{x_{1}}), \cdots , M(g_{x_{n}})\}$ , hence

$M(f) \leqq M(g)=\max\{M(g_{x_{1}}), \cdots , M(g_{x_{n}})\}$

$\leqq\max\{\delta(x_{1})f(x_{1})+\epsilon, \cdots \delta(x_{n})f(x_{n})+\epsilon\}\leqq\max_{x\in X}\{\delta(x)f(x)\}+\epsilon$ .

Thus we have $M(f) \leqq\max_{x\in X}\{\delta(x)f(x)\}$ . Consequently $M$ is ${\rm Max}_{\delta}$ . Uniqueness
of the weight follows from (38).

Suppose $L$ is a minimum mean with weight. Consider $M^{-1}(f)=\{M(f^{-1})\}^{-1}$

for $f$ in $C(X)^{+}$ and consider $L^{-1}(g)=\{L(g^{-1})\}^{-1}$ for $g$ in $C(Y)^{+}$ . Then $L^{-1}$ be-
comes a maximum mean with weight and $M^{-1}$ commutes with $L^{-1}$ . Thus the
previous argument shows that $M^{-1}$ is a maximum mean with weight $\delta$ , so $M$

is a minimum mean with weight $1/\delta$ . $q$ . $e$ . $d$ .
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We observe two lemmas before we actually go into our proof of Theorem 2.

LEMMA 13. Let $L$ be a positjvely homogeneous mean on $C([0,1])^{+}$ . The
following holds except for at most countably many $\xi’ s$ in $[0,1]$ ,

$L(\check{\chi}_{a,b,\xi})=L(\hat{\chi}_{a.b,\xi})$ for all $a,$ $b>0$ .

(Recall (12) for the notations of $\check{\chi}_{a,b,\xi}$ and $\hat{\chi}_{a,b,\xi}$).

PROOF. For $\xi$ in $[0,1]$ , set, as in \S 1,

$F_{\xi}(a, b)=L(\check{\chi}_{a,b,\xi})$ , $F_{\xi}(a, b)=L(\hat{\chi}_{a,b,\xi})$ for all $a,$ $b>0$ .

Then $fi_{\xi}$ and $F_{\xi}$ are positively homogeneous and monotonic increasing functions
on $(0, +\infty)\cross(0, +\infty)$ and furthermore $\check{F}_{\xi}(a, a)=F_{\xi}(a, a)=a$ for all $a>0$ . It should
be noticed that being positively homogeneous together with being monotonic
increasing implies the continuity of the function. Therefore $\check{F}_{\xi}$ and $\hat{F}_{\xi}$ turn
out automatically continuous on $(0, +\infty)\cross(0, +\infty)$ . As in the proof of Lemma
7 for Theorem 1, one can choose $\xi$ from $[0,1]$ , with at most countably many
exceptions, such that $\check{F}_{\xi}$ coincides with $F_{\xi}$ at every rational point of $(0, +\infty)$

$\cross(0, +\infty)$ . For such choice of $\xi$ , the continuity of $\check{F}_{\xi}$ and $F_{\xi}$ yields $\check{F}_{\xi}=F_{\xi}$ on
$(0, +\infty)\cross(0, +\infty)$ . $q$ . $e$ . $d$ .

By combining Lemma 13 and Lemma 4 in \S 1, one can conclude that from
any positively homogeneous and bisymmetric mean $L$ on $C([0,1])^{+}$ we can derive
two dimensional positively homogeneous and bisymmetric means $N^{(L,\xi)}$ for almost
all $\xi$ in $[0,1]$ (more precisely, with at most countably many exceptions of $\xi$)

such that $N^{(L,\xi)}$ commutes with any mean which commutes with $L$ .
Now, let $L$ be a positively homogeneous and bisymmetric mean on $C(Y)^{+}$

and let $\tau$ be a continuous map from $Y$ into $[0,1]$ . As mentioned in the pre-
vious paragraph, one can have two dimensional positively homogeneous and
bisymmetric means $N^{(L^{\tau},\xi)}$ derived from $L^{\tau}$ . About these two dimensional means
we have the following observation.

LEMMA 14. If $N=N^{(L^{\tau},\xi)}$ is a right (left) point evaluafion, then by setting
$K=\tau^{-1}([\xi, 1])(K=\tau^{-1}([0, \xi]))$ , we have

$L(\chi_{K})=1$ and

$\inf_{y\in K}f(y)\leqq L(f)\leqq\sup_{y\in K}f(y)$ for all $f$ in $C(Y)^{+}$ .

PROOF. First, from 3) of Lemma 3 and 3) of Lemma 4, we see $L(\chi_{K})=$

$L^{arrow}(\hat{\chi}_{0,1,\xi})=N^{(L^{\tau},\xi)}(0,1)=1$ . Next, for any given $f$ in $C(Y)^{+},$ $sett\dot{i}g$

$a= \sup_{y\in Y}f(y)$ , $b= spf(y)y\frac{\prime u}{\sim}K$ $c= \inf_{y\in Y}f(y)$ , $d= \inf_{y\in K}f(y)$ ,
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one can define a lower semi-continuous function $v$ and an upper semi-continuous
function $u$ on $Y$ as

$v(y)=$ $\{ba$
for $y$ in $K$,

$u(y)=\{cd$
for $y$ in $K$,

for $y$ in $Y\backslash K$, for $y$ in $Y\backslash K$.
It is clear that $f\leqq v\leqq\hat{\chi}_{a,b,\xi}\circ\tau$ and $f\geqq u\geqq\check{x}_{c,d,\xi}\circ\tau$ . Hence, from 3) of Lemma 3,
we have $L(f) \leqq L(v)\leqq L(\hat{\chi}_{a,b,\xi})=N^{(L^{\tau}.\xi)}(a, b)=b=\sup_{y\in K}f(y)$ . Similarly we have
$L(f)\geqq d$ . $q$ . $e$ . $d$ .

PROOF OF THEOREM 2. Suppose $M$ is a positively homogeneous and bisym-
metric mean on $C(X)^{+}$ and suppose $M$ is not a point evaluation. By using Prop-
ositions 1, 2, 3 and 4, it suffices to show that $M$ commutes with a two dimen-
sional positively homogeneous and bisymmetric mean $N$ which is not a point
evaluation. In order to have such $N$, first observe that for any compact subset
$K$ of $X$ with $M(\chi_{K})=1$ the restriction $M^{K}$ of $M$ onto $C(K)^{+}$ is a positively
homogeneous and bisymmetric mean on $C(K)^{+}$ and $M$ commutes with $M^{K}$ .
Secondly, for any continuous map $\tau$ from $K$ into $[0,1]$ the transition $(M^{K})^{\tau}=$

$M^{K,\tau}$ of $M^{K}$ by $\tau$ is a positively homogeneous and bisymmetric mean on $C([0,1])^{+}$

and $M$ commutes with $M^{K,\tau}$ . Thirdly, two dimensional means $N=N^{(M^{K.\tau_{\xi)}}}$.
derived from $M^{K,\tau}$ are two dimensional positively homogeneous and bisymmetric
means and $M$ commutes with those $N$. Finally, therefore our task is to choose
proper $K,$ $\tau,$

$\xi$ such that $N^{(M^{K,\tau},\xi)}$ is not a point evaluation.
Let $Ji=$ { $K\subset X|K$ is compact and $M(\chi_{K})=1$ }. By Zorn’s lemma, one can

see that $X$ has a minimal element $K_{0}$ , because for any downward directed
system $\{K_{\alpha}\}$ from $JC$ we see $M( \chi_{\bigcap_{\alpha}K_{\alpha}})=\inf_{\alpha}M(\chi_{K_{\alpha}})=1$ from Lemma 1, so $\bigcap_{\alpha}K_{\alpha}$

belongs to $c\chi$ .
Case 1. Suppose $K_{0}$ contains two elements $x_{1}\neq x_{2}$ . Let $\tau$ be a continuous

map from $K_{0}$ into $[0,1]$ with $\tau(x_{1})=0$ and $\tau(x_{2})=1$ . Then one can see that
$N=N^{(M^{K_{0},\tau},\xi)}$ with $0<\xi<1$ is not a point evaluation. If $N$ were a right point
evaluation, then $K_{1}=\tau^{-1}([\xi, 1])\subset K_{0}$ and $x_{1}$ were in $K_{0}\backslash K_{1}$ , so $K_{1}\subsetneqq K_{0}$ , however
from Lemma 14 we would have $M^{K_{0}}(\chi_{K_{1}})=1$ , and from 3) of Lemma 5 $M(\chi_{K_{1}})$

$=M^{K_{0}}(\chi_{K_{1}})=1$ . Thus $K_{1}$ would belong to $JC$ , which contradicts the minimality
of $K_{0}$ . Supposing that $N$ is a left point evaluation yields a contradiction in a
completely similar manner.

Case 2. Suppose $K_{0}$ consists of a single point $x_{0}$ . Since $M$ is not a point
evaluation, there is $f_{0}$ in $C(X)^{+}$ such that $M(f_{0})\neq f_{0}(x_{0})$ . Assume $M(f_{0})>f_{0}(x_{0})$ ,
(the other case goes similarly), then choose an open neighborhood $U$ of $x_{0}$ such
that $M(f_{0})> \sup_{x\in U}f(x)$ . Take a continuous map $\tau$ from $X$ into $[0,1]$ such that
$\tau(x_{0})=1$ and $\tau(x)=0$ for all $x$ in $X\backslash U$. Now one can see that the two dimen-
sional mean $N=N^{(M^{\tau},\xi)}$ with $0<\xi<1$ is not a point evaluation. Suppose it were
a point evaluation, then $N$ must be a right point evaluation, because $1\geqq N(O, 1)$
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$=M^{\tau}(\hat{\chi}_{0,1.\xi})=M(\hat{x}_{0.1,\xi^{o}}\tau)\geqq M(\chi_{1x_{0}1})=1$ , so $N(O, 1)=1$ . By Lemma 14 we have
$M(f_{0}) \leqq\sup$ {$f_{0}(x)|\chi$ in $\tau^{-1}([\xi,$ $1])$ } $\leqq\sup$ {$f_{0}(x)|x$ in $U$ } $<M(f_{0})$ , which is a con-
tradiction. $q$ . $e$ . $d$ .

We add one remark here. We have been studying strictly bisymmetric
means which are strictly increasing or positively homogeneous. However there
are many bisymmetric means which are neither strictly increasing nor positively
homogeneous. For instance, the following is such a two dimensional example.

EXAMPLE. Let $p>0,0<t<1$ and let $N:(0, +\infty)\cross(0, +\infty)arrow(0, +\infty)$ as follows,

$N(a, b)=\{\begin{array}{ll}\max \{a, b\} if \max \{a, b\}\leqq 1,1 if \min \{a, b\}\leqq 1\leqq\max\{a, b\},\{t(a-1)’+(1-t)(b-1)^{p}\}^{1/p}+1 if \min \{a, b\}>1.\end{array}$

\S 4. Complements.

We state generalizations of Theorems 1 and 2 without proof.

1. One can generalize Theorem 1 slightly, that is, without assuming
$M(a1_{X})=a$ for all $a$ in $I’$ , one has also a representation of $M$ similar to

Theorem 1. Such generalization can be proved by reducing $M$ to the situation
where Theorem 1 is applicable. It should be mentioned that the idea of such
reduction appeared in [3] and the two dimensional version of this generalization
can be seen on pp. 287-290 of J. Acz\’el’s book [4].

THEOREM 3. Let $X$ be a $co\hat{;}npact$ Hausdorff space and let $F$ be an I-valued
confinuous functional on $C(X;I)$ . If $F$ is strictly increasing and satisfies the
bisymmetry equation

$F_{y}[F_{x}[h(x, y)]]=F_{x}[F_{y}[h(x, y)]]$ for all $h$ in $C(X\cross X;I)$ ,

there are a strictly increasing or decreasing, real valued continuous function $\phi$

defined on $I$, a fimte posjtjve measure $\mu$ on $X$ with supp0rt identical to $X$ and a
constant $c$ such that

$F(f)= \phi^{-1}\{\int_{X}\phi(f)d\mu+c\}$ for all $f$ in $C(X;I)$ ,

where $\phi$ is determined uniquely up to an affine equivalence, $\mu$ is also determined
uniquely and $\phi,$

$\mu$ and $c$ are related as $c=\phi[F(a1_{X})]-\phi(a)\mu(X)$ for all $a$ in $I$.
2. Theorem 2 can be generalized to a locally compact Hausdorff space.

Let $C_{c}^{+}(X)$ be the space of all non-negative continuous functions with compact
support on $X$.

Let $M$ be a functional on $C_{c}^{+}(X)$ , we call $M$ a positively homogeneous mean
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on $C_{c}^{+}(X)$ if $M$ has
i) $M(f_{\alpha})\downarrow_{\alpha}M(f)$ if $f_{a}\downarrow_{a}f$ pointwise on $X$ in $C_{c}^{+}(X)$ ,

ii) $M(f)\leqq M(g)$ if $f\leqq g$ in $C_{c}^{+}(X)$ ,

iii) $M(rf)=rM(f)$ for all $r\geqq 0$ and $f$ in $C_{c}^{+}(X)$ .
Note that we do not assume the continuity of $M$ with respect to the topology
of uniform convergence on $C_{c}^{+}(X)$ . However, if $X$ is compact, then i), ii) and
iii) together imply the continuity of $M$ with respect to the uniform convergence
and $M$ turns out a constant multiple of the positively homogeneous mean studied
in the previous section.

In order to define the bisymmetry equation of $M$, we need to discuss the
extension of $M$ to upper semi-continuous non-negative functions $u$ with compact
supports on $X$. Denote by $\mathcal{U}_{c}^{+}(X)$ the space of all such functions $u$ . For a
given $u$ in $\mathcal{U}_{c}^{+}(X),$ { $f|u\leqq f,$ $f$ in $C_{c}^{+}(X)$ } is a downward directed system and
converges to $u$ pointwise on $X$. Define

$M(u)= \inf$ { $M(f)|u\leqq f,$ $f$ in $C_{c}^{+}(X)$ }.

It is not hard to see that this extended functional $M$ satisfies the properties i),

ii), iii) mentioned above in the space $\mathcal{U}_{c}^{+}(X)$ instead of $C_{c}^{+}(X)$ . One can prove
the following.

LEMMA 15. For any $u$ in $\mathcal{U}_{c}^{+}(X\cross X)$ , regarding $M_{x}[u(x, y)]$ as a function
of $y,$ $M_{x}[u(x, y)]$ belongs to $\mathcal{U}_{c}^{+}(X)$ .

For any $u$ in $\mathcal{U}_{c}(X\cross X)^{+}$ , using this lemma, $M_{y}[M_{x}[u(x, y)]]$ and
$M_{x}[M_{y}[u(x, y)]]$ are well defined. Thus one can define the bisymmetry equa-
tion for a positively homogeneous mean $M$ on $C_{c}(X)^{+}$ as

$(*)$ $M_{y}[M_{x}[u(x, y)]]=M_{x}[M_{y}[u(x, y)]]$ for all $u$ in $\mathcal{U}_{c}(X\cross X)^{+}$ .

Now we are ready to state a generalization of Theorem 2 to a locally com-
pact Hausdorff space.

THEOREM 4. Let $X$ be; $a \sum locally$ compact Hausdorff space and let $M$ be a
pOsjtjvely homogeneous mean on $C_{c}^{+}(X)$ . If $M$ satisfies the bisymmetry equation
$(*)$ , then $M$ can be rePresented as one of the followings

a) there are $-\infty<p<+\infty$ and a non-negative Radon measure $\mu$ , not neces-
sarily finite, such that

$M(f)=( \int_{X}f^{p}d\mu)^{1/p}$ for all $f$ in $C_{c}^{+}(X)$ ,

where $\mu$ has a compact $suPPort$ if $P\leqq 0$ ,

b) there is an upper semi-cmtinuous funcfion $\delta$ on $X$ with $0\leqq\delta(x)<+\infty s|Ich$

that
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$M(f)= \sup_{x\in X}\{\delta(x)f(x)\}$ for all $f$ in $C_{c}^{+}(X)$ ,

c) there is a lower semi-continuous function $\gamma$ on $X$ with $0<\gamma(x)\leqq\div\infty$ such
that the closure of $\{x|\gamma(x)<+\infty\}$ is compact and

$M(f)= \inf_{x\in X}\{\gamma(x)f(x)\}$ for all $f$ in $C_{c}^{+}(X)$ ,

where $\gamma(x)f(x)$ is regarded as $+\infty$ if $\gamma(x)=+\infty$ and $f(x)=0$ .
These representations of $M$ are determined uniquely if neither $M$ is a Point

evaluation nor identically zero.
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