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On the explicit models of Shimura’s elliptic curves
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Introduction.

In Shimura [11], an abelian variety A over @ is constructed from a “Neben”-
type eigen cusp form in 52<F0(N), (.7\7» for a prime number N such that N=1

mod 4. There is an abelian subvariety B of A rational over 2y=Q(~/N); they
are closely related with the construction of class fields over 2y (Shimura [10]).
Moreover, it is known that they have everywhere good reduction over by as
one of their interesting properties (Deligne-Rapoport [1]). When N=29, 37 or
41, they are uniquely determined (so we denote them by Ay and By), and By
is an elliptic curve. On the other hand, some explicit models of elliptic curves
with everywhere good reduction over ky are known (see 1.2). Recently, T.
Nakamura has shown that B,, is actually isogenous to one of such models ([5],
Corollary).

The purpose of this paper is to determine the isomorphism class over ky
of By for N=29, 37 and 41 (see Theorem 1.3). This can be achieved by cal-
culating the period lattice and the j-invariant of By. As a Corollary, we can
show the existence of a Q-rational point of certain order on Ay (see Corollary
1.4). In Appendix, we shall give a characterization of B,,.

The author would like to express his sincere thanks to Prof. H. Yoshida and
Prof. H. Ishii for their valuable suggestion and encouragement, and to Prof. M.
Yamauchi who computed the eigen-values of Hecke operators for this paper.

§1. Main theorem.

1.1. NoTATION. Let N be a prime number 29, 37 or 41, X( )z(‘ﬁ) the
Legendre symbol, and

1‘:{[;’ g]eFO(M l Xa)=1}.

Denote by X, (resp. X) the modular curve which corresponds to I'o(N) (resp. I"),
and by J, (resp. J) its Jacobian variety; X,, X, J,, / and the natural homomor-
phism J,—J are all defined over Q. Put Ay=Coker(J,—/J). Then Ay is a 2-
dimensional abelian variety defined over @ which is attached to the Neben-type
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eigen cusp forms in S,(Is(N), X) in the sense of [11], Theorem 1.

Further, let 2y be the real quadratic field @ +/N) (embedded in C), and ¢
the non-trivial automorphism of ky. Note that in each case the narrow class
number of 2y is 1. Put H::;/—lﬁ[(])v _(1)
y of Ay rational over ky. Now put By=(1+mn)Ayx. Then By is an elliptic
curve defined over ky and has the following properties :

]. Then H induces an automorphism

By = (1—7])AN; Ay = By+B%;

1) ByN\BY% is annihilated by 2 (cf. Shimura [9], §7.5, §7.7);
(2) Ay and By have everywhere good reduction over ky ([1J).

For an elliptic curve E, let j(E) denote the j-invariant of E.

1.2. We have some examples of elliptic curves with everywhere good reduc-
tion over ky. (For the definition of 4, see Appendix.)
E. 1 yi4xy+ely = x3;
e=G+V2)/2;  d=—e"; By = (Be—2%;
(0, 0) is a rational point of order 3.

Ey: yi—ey = x3+<'36_;-i>x2+(1182+1)x;

e=6++37; d=¢et;  J(Es) =2
(0, 0) is a rational point of order 5.

Ey: y*taytay = x*+tax®+Q2a—1)x;
a=T—+41)/2; €=232+5/41; d=1/e; j(E,) =17%;
(1——a 143
4 7’ 8

is a rational point of order 2.

In each case, & denotes the fundamental unit of %y, and the equation of Ey is
globally minimal. The example E,, is due to J. Tate (Serre [7], p. 320), E; to
B. Setzer and E, is 2-isogenous to the example of F. Oort: y*+xy=x°—ex

(Stroeker [12].
1.3. THEOREM. By is isomorphic to Ex over ky for N=29, 37 and 41.

1.4. COROLLARY. A,y (resp. As;, Ay) has a Q-rational point of order 3
(resp. 5, 2).

PROOF. Let d,=3, ds=5 and d,,=2. By Theorem 1.3, By has a ky-
rational point b of order dy. Put a=b+b°=Ay. If a+0, then ¢ is a @-
rational point of order dy. Otherwise, in view of (1), dy must be even. namely
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N=41 and dy=2; hence b itself is Q-rational. q.e.d.
Theorem 1.3 follows from Lemmas 1.5 and 1.6 below.

1.5. LEMMA (Ishii). Let B and E be two semi-stable elliptic curves over an
algebraic number field k (of finite degree) whose narrow class number hy is odd.
Assume that j(B)=j(E) and that j(B)#0. Then B is isomorphic to E over k.

PROOF. Let
B: y*=4x*—g,x—g;, E :Y2=4X*-G,X—G,

be Weierstrass models of B and E over % respectively. Since j(B)=/(E), there
exists an isomorphism A: B~FE which is written as

Ax, y) = (gPx, p°y)

with an element g such that G,=p'g, and G,=p’g,. Note that g,#0 since
7(B)#0; hence p*ck. Now

¢, e) = (0, 4(b))

defines an endomorphism of BXE rational over k(g). Then Theorem 1.3 of
Ribet asserts that ¢ (hence 2) is defined over an unramified extension of k.
Since A, is odd, we see that k is the unique unramified extension of % contained
in k(y). This completes the proof.

1.6. LEMMA. J(By)=j(Ey) for N=29, 37 and 41.

Proor. By (2), j(By) is an integer in ky. Hence we can determine j(By)
by calculating the values of j(By) and j(By)® with sufficient accuracy. The
calculation will be carried out in § 2.

§2. Calculation of j(By).

2.1. The Neben-type cusp forms. Let p denote the complex conjugation,
and

fl2) = 2 a,exp2rinz), fol2) = i}la%exp(Zm’nz)

be the Neben-type eigen cusp forms in S,(I',(IN), X) normalized as a,=1. Recall
that

®) It = (55 f., |§EN| —1

(cf. Naganuma [4], Lemma 2).
In our calculation, we choose f sothat a,=+/57, a.=2i, a,=2+4/ 27 accord-
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ing as N=29, 37, 41; f is uniquely determined by this condition. The com-
putation of a,’s is due to H. Wada and M. Yamauchi.

2.2. NOTATION. Let $={z=C|Im(z)>0} the upper half plane and $*=
HUQRU{ico}. The quotient space I'\H* is identified with X(C), and S,(I") with
the space of holomorphic 1-forms on X(C), in the usual manner. For a, b %,
denote by {a, b} the element of H,(X(C), R) which is represented by a path in
O* from a to b. The group ring R[SL,(R)] acts R-linearly on H,(X(C), R) by

afa, b} = {a(a), ab)}  (aESLy(R)).

Of course, the action of I is trivial. For heS,(I"), put

e, bh, 1) = | hiadz,

and extend this map R-linearly to [, J: H(X(C), R)X S,(I")—C.
Further, let S:[(l) ﬂ, T:[(l) _é], U be a fixed element of I'y(/N) not
belonging to I, and
g+=f+fI[H],, g-=f—fI[H].
Note that g, and g- span S,(/'o(N), X) and that
4) [Ho, g.]=+[0, g.1, [U9, g.1=—1[9, g]
for any 0 H(X(C), R). Finally, let z,=:/+~/N the fixed point of H in 9.

2.3. By(C) and B%(C) as complex tori. Put

L= {[Eg g*ﬂ [ S H(X(O), Z)} c C*.

Then Proposition 3 of asserts that L is a lattice in C? such that
Ax(C)=C*?*/L
as complex tori; furthermore, the composed map
D : H* - X(C)— J(C)— Ay(C)— C*/L

can be written as

— [{ZO) 2}7 g+] *
(D(Z)“[[{zo,z},g_]] mod L  (z€ 9%

with a suitable choice of the canonical map X—].
Denote by the same letter » the isomorphism of C?/L induced from 7.
Then there exists an element ceC?/L such that

N(@2) = PHz)+c (z€9H%)
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(cf. [9] §7.2). Since {z,, H(z)}=H{z,, z}, we have

_ I:{ZO: Z}, g+]
D) = |y R

by (4). It follows that

By(C)=C/L,, V() = C/L-

as complex tori where

L.={[9, g+] | 60€ Hi(X(C), Z) such that [4, g-]=0},
L_={[0, g-1| 6€H,(X(C), Z) such that [d, g+]1=0}.
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2.4. In Table I, we list the basis <3, of H,(X(C), Z) where {=(—1++/31)/2.
The rank of H,(X(C), Z) is 8, 8, 10 according as N=29, 37, 41.

Table 1

0

29

0,=T{L+5, L+7},  6,=T{L-9, {+14},
0,=T1{{—4, {+6},  8,=T{C+10, {13},
55:U51, 56:U52) 57:U53, 58—:U64

37

0,=T{L+13, {+16}+T{{—6, {43},  0.=T{{+5, {49},
53:T{C_87 c“4}’ 54:T{C~16) C+8})
0;=U0,, 0,=U0d,, 0,=UJds, 0;=U0d,

41

0,=T{L+17, (18},  6,=T{{+3, L+7}+UT{L—~7, (13},
0,=T{{+16, {+19}+T{{—-16, {—17}, 0, =T{L+6, {+8},
0;=T{{+11, {+15}+UT{{—10, {—14},

Ie=(1+UITY{E—2, T+4} +{C+11, L+14D),

0.=Ud;, 0s=U0,, 0,=Ud;,  0,0=U0,

2.5. REMARK. Put M=(N-—1)/2 and

Then ® is a complete set of representatives of I'\SL,(Z).

f={, U, TS™, UTS™ im=—M, —M+1, ---, M)}.

Let 9, be the
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standard fundamental domain for SL.(Z)\$*, and put
D= a\éjﬂa(wo) .

Then 9 is a fundamental domain for I'\$*. Observing]the correspondences
between the sides of 9, we get Table L.

By elementary calculations, we obtain:
2.6. PROPOSITION. The following formulas hold. In the case N=29,
[51; g+] = [52: g-:l = [53) g+] - [54y g—] = 0 .
In the case N=37,
[63; gt] = i_[52y gt] ’ [51y gt] = _—t[(52—-64)y g:] .
In the case N=41,
[517 g+:| - [52) g-] - [53; g+] - [54; g—] = [56v gt] = 01
(05, gr] = 4_‘[54; g-].

PrOOF. We shall prove here only the formulas for the case N=37; the
other cases can be dealt with similarly. By virtue of (4), it is sufficient to
prove :

(i) H52:53;
(ii) (1-=U)(0,—H(8,—0,)) = 0.
. 9 -1 {+5 —1 £+9 —1 )
Since [37 _ 4] (eI') sends 37 and =8 to 37 and r—d respectively, we
have
s _J&4+5 —1y [Z+4+9 -1y _
Ho,—0, = {*g =g e ema =0

which is (i). As to (ii), for simplicity, put &,=T{{+m, {+m+1} for meZ.

If 1+mn=0 mod 37, a:[ -
) 1+mn
—£&,.. Especially,

5—82 "“U$14> 5—7: —510, 513: —Ué§,;.

_i] is an element of I',(37) such that aé,=

Moreover,

O R = T <
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vy el e el sl S
= T{{+3, -4} +UT{{+15, £+18}.
Therefore, together with (i), we get
0,—H(6,—0d,) = T{{—6, {8} +T{{+13, {+16} +UT{{+15, {+18}
= —&—& s+ 6 +T{{+14, {16} +UT{C+15, {417} + U
= (1+U)T{L+14, L+17}.
Since U*<T’, this implies (ii). g.e.d.

2.7. PROPOSITION. The lattice L. can bz written as follows: In the case
N=29,

L+ = Z[52, g+]+Z[54y g+]v L— == Z[517 g—]+Z|:63) gﬁ:l'

In the case N=37,
L.=2Z2[0d;, g.)+Z (2[4, g:-]).
In the case N=41,

L,=Z[0,, g:1+Z[o,, g1, L-=12Z[0, g-1+Z[d;, g-].

PROOF. As in the above proof, we shall treat here only L, of the case
N=37. By (4), we see that

L,C ([0, g+]1 | 0€Zd,+Z0,+2Zd:+Zd.}.
The right hand side is equal to
{[9, g+1 | 0€Z0,+Z.}

by Proposition 2.6; hence [d,, g+] and [d,, g+] are linearly independent over Q.
Again by Proposition 2.6, we see that

[x10:--x,0,+ %505+ %464, g-] =0
if and only if
x1:—x4 and x3ZXQ+x4

for x,€Z. Therefore, L, is generated by the following two elements:

{ [95+3s, g+1 = 2[0:, g+] (x.=1, x,=0)
[—0,+0:+0s, 8.1 = 2[d,, g+] (x.=0, x,=1). q.e.d.

2.8. The computation of [0;, g.]. Put
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b, ™ = 1. {ani(—%)a%} (n=1, 2, -+,

and

6. = B in( S5

= [HT {ioo, {+m}, g.] (meZ).
Then [0;, g.] can be represented as a sum of (at most four) +G.(m)’s. For
example, in the case N=41,
(3., g+1 = [T{L+3, L+7}, g+ J+[UT{L—-7, {—13}, g+]
= [HT{{+3, {+7}, g+1—[HT{C—7, {—13}, g+]

= —G:Q)+ G (N+G(—T)—G+(—13)
lan‘ . C+m T 3‘

(n) —_— ¥ T -
by (4). Note that [b¢” <" "™ by (3), and that Re(2m( N ))_ - More
over, the Riemann hypothesis for function fields implies that |a,|<2n for all n.
Hence we obtain the following estimation:

3 o e fomin(C )|

< %exp {—(no+1)g—\§i}/{1'exp (*'zN?T)}

1.4x10-*  if N=29 and #,=250,
<4 2.8%x10-1° if N=37 and n,=300,
2.3x10-" if N=41 and n,=300.

Therefore, taking the sum of the first n, terms of each G.(m), we can evaluate
[6,, g.] with the accuracy to the 15th decimal place (more precisely, to 15
digits, since the computation shows that |[d;, g.]|>0.4 in each case). For
example, in the case N=37,

[0, g.1= (0.266746435693009--)— (0.314883609969508. )i,
[8., g+] = —(0.139121620790886:--)—(0.658705434926393-+-),
[6,, g-]= (0.343821824956884.--)—(0.405868056483896---);,
[5,, g-] = —(0.314883609969508. --)— (0.266746435693000---)7.

2.9. The computation of j(By). Let r. be an element of $ which is given
in Table II. Then j(By) (resp. j(By)°) is the value of the j-function at 7.
(resp. 7-) which can be computed with the accuracy to 10 digits. In each case,
we can conclude j(By)=j(Ey) which is Lemma 1.6.
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Table 1I
' |
N 29 37 |
\
[ds, g+1/002, 8+] [0:—04, 8+1/00:, g+] —[02, g+1/[04 g+]

—+(0.901583872902068- - - )

+(1.288946276127860---);  -+(2.014328107645633--):

[51—53’ g-]/[alx g-]

\
V
|
7, | =(0.432604345936224---) {:(0.000000000000000---) =(0.000000000000000---)
|

[0z, £-1/00s, -] (0:, £-1/L0s, -]

z- =(0.500000000000000---)  |=(0.000000000000000---)  |=(0.500000000000000---)

| 4(1.573330200099442---); | +(1.288946276127860---)i| --(0.992886904774228---)i

J(ts) 18.92714854--- 4096.000000--- | 314508.7469---
i |
j(z2) —18909.92715--- l 4096.000000--- —76.74689254 -
J(By) (—18891-+35154/29)/2 4096 ‘ 157216+24565+v/41
f |
§ Appendix.

A.1. Let E be an elliptic curve over an algebraic number field 2 of finite
degree. Denote by o0,, D, and h, the maximal order, the discriminant and the

class number of % respectively. Take a cubic model of E as
(5) Viaxy+asy = x*+ax*+ax+a
with a;=0,. Put
b, = 4a,+a?, by = 2a,+a,a,, bs = 4as+al,
bs = b,as—a,a;a,+a,af—aj = (b,b—b3)/4,

A - —b%bs—8b2—27b§+9b2b4b6 .
Further put
p(x) = 6x*+b.x+b,, g(x) = 4x3+byx?+2b,x +bs,

r(x) = 3x*+byx*+3bx2-+3bsx + by,
F(x) = q(x)*{p(x)r(x)—q(x)*} —r(x)®.

Then any point P=(x,, y,) on (5) of order 5 satisfies F(x,)=0. Note that F(x)

has integral coefficients, and that
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F(x) = 5x+ -« +{bi(b.bs—b;)—bi}.

A.2. ProprosITION (cf. Miyawaki [3], Theorem 4). Assume that h,=1,
(D, 5)=1 and that E has a k-rational point P of order 5. Then there exists a
global minimal model (5) of E such that

b, = a®+6af+p% b= a*Bflat+p),
be=a'f?, by=a’f, Ad=a’fa*—1laf—p?

with some a, BE0,.

(6)

PrROOF. Since 5 is unramified in %, it can easily be shown that P has
integral coordinates in any model of E of the type (5). Hence there exists a
global minimal model (5) of E such that P=(0, 0). Then we have a,=0, b;=a?
and b2(b,bs—b%)—bi=0. From these equations, we see that b, divides bs;, and
that there exist u, veo, such that b,=a,u, by=ai(b,—u?/4, b,=2u*—v* and 8a,
=(wu—v)(u+v)®.. Then we have u+v=u—v=0 mod 2, so that u=a+j and
v=a—f with some a, B<o,. These integers satisfy (6). g.e.d.

A.3. PRrOPOSITION (cf. Ishii [2], Proposition 4.1). Besides the assumptions
of Proposition A.2, assume that kis a quadratic field, and that E has everywhere
good reduction over k. Then k=Q(~/37) and E is isomorphic to By, over k.

Proor. Take a global minimal model (5) of £ and a, f<o, satisfying (6).

Since 4 is a unit of %, so are 2 and (ﬁ>2—11(ﬁ)—1. Then we see easily that

B B B
a,._‘

E—Gi\/i’?? and j(E)=2'; hence our assertion by Lemma 1.5. g.e. d.
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