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1. Introduction.

About fifty years ago, Yosida ([19]) generalized a Malmquist’s theorem ([8])
with the aid of the Nevanlinna theory of meromorphic functions.

THEOREM OF YOSIDA. If the differential equation
eh) wH™ = R (z, w), R rational in z, w, and m a positive integer,

possesses a transcendental meromorphic solution w=w(z) in the complex plane, then
R(z, w) must be a polynomial in w of degree at most 2m. Further, if w(z) has
only a finite number of poles, the degree is at most m.

It is well-known that this is the starting-point of applying the Nevanlinna
theory to the ordinary differential equation in the complex plane. Thereafter
up to the present, there are many researches in this field (e. g. see the references
in [2], [18]). Among them, there are many generalizations of this theorem
(11 (31 [6) [7) [12] i3] [T [16).

In this paper we shall consider a general differential equation and some
higher order differential equations. We denote by % the set of meromorphic
functions in the complex plane and .£ the set of EC[0, o) for which meas E <oo.
Further, the term “meromorphic” will mean meromorphic in the complex plane.

Let P be a polynomial of w, w’, -+, w™ (n=1) with coefficients in ¥ :

P=P(z, w, w’, -, w™) = 2 ca(2)w(w’)t - (w™)in,
iel
where ¢; =M and I is a finite set of multi-indices A=(,, 7,, ---, i,) for which

¢;#0 and 4,1, ---,7, are non-negative integers, and let A(z, w), B(z, w) be
polynomials in w with coefficients in <% and mutually prime in ¥ :
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Alz, w) = ﬁ) a(z)w’, Bz, w) = Zq) br2)w*,
k=0

Jj=0
where a;, by M such that a,-b,+#0.
As a generalization of (1) we shall consider the differential equation

Az, w)

(2) pm = B(z, w)

(m=1).

We put
A —= rﬁlaIX (ZQ+221+ te _|L<n+1>zn> )
e

d — maXx (l.0+i1+ A +Zn> ’
el

4, = max (i;+2i,+ - +ni,).
el
Applying in to this equation, we obtain the following.

PROPOSITION. Let w=w(z) be a nonconstant meromorphic solution of (2).
(1) When g0 or p>md,

max(q, p—md)T(r, w) = mié’[‘(r, ci)

+0( BT, a)+ 5 T, b)) +S,(r, w);
j=0 k=0
(II) When g+0 or p>md,

max(g, p—md)T(r, w) £ m4,N(r, w)+m X T(r, c;)

il

D g
+0( B Tr, a)+Z T, b)) +Sdr,w).

For nonconstant fe. M, we denote by S,(r, f) any quantity satisfying

O(1) (r—o0), when f is rational;
Sir, f) =1 O(logr) (r—o0), when f is transcendental and of finite order;
O(logrT(r, f)) (r—oo, r&Ec.L), when f is of infinite order.

In this paper we shall consider the differential equation (2) when ¢=0 and
0<p=<md. We shall estimate the Nevanlinna characteristic 7(», w) of mero-
morphic solution w=w(z) of the differential equation

3) Pr= Samw  (0=p=md, a,#0, a,c ).
j=0

A meromorphic solution w=w(z) is said to be admissible when it satisfies

T(r, f)=0oT(r, w)) (r—oo,r&EE.L)
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for all coefficients f=a; and ¢; in (3).
It is assumed that the reader is familiar with the standard notation of the

Nevanlinna theory (see [4], or [10]).

2. Lemmas.
We shall give some lemmas for later use.
LEMMA 1. For nonconstant fe M such that 9 +0,
mr, f9PR/fP)=Sr, ) (=0, k=1)
(see or [10].

LEMMA 2. Let g, and g, be meromorphic and linearly independent over C,
and put

4) gotg1=¢.
Then, we have

T(r, go) = T(r, §)+N(r, §)+N'(r, g)+Nr, g1/ 81— g/ 80)+So(r, g0)+So(r, &),
where N'(r, g,) is the N-function of the poles of g, other than poles of ¢ (cf. [15]).

PrROOF. From (3) and go+gi=¢’, we have
(Pg1/g1—9")
(g1/81—8¢/80) '
from which we obtain, putting D=gi/g:—go/go,

0:

B)  mlr, go) = m(r, ¢gi/g:—¢")+m(r, 1/D)+0O(1)

< m(r, ¢)+m(r, gi/g)+m(r, ¢'/)+m(r, D)+Nr, D)—N(r, 1/D)+0(1)
and

(6) N, go) < N(r, $)+N(r, )+N'(r, g)+N(r, 1/D).
Using the inequality

m(r, D) < m(r, go/go)+m(r, gi/g:)+0(1)
and Lemma 1, from (5) and (6) we have the desired inequality :
T(r, go) = T(r, §)+N(r, ¢)+N'(r, g)+N(r, D)+So(r, g0)+Sor, g1)-

LEMMA 3. Let f, ao, -+, a,(#0) b2 meromorphic, then we have the following
inequalities :
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@ mtr, l=mlr, 1Va)— Zmr, a)+00)
< m(r, é a,-fj> <tm(r, [)+ é m(r, a;)+0(1);
j=0 _j=0

G) (T = BT, a7)+0)

T(r, 3 a,f)) ST, A+ BT, a)+00)

TN

A

(see [9]).
LEMMA 4. For nonconstant ve M, put
1\vm H,(v, v, «, v®
(—) = ( S ) (n=1).

v
Then,
(i) H, is a homogeneous polynomial of degree n in v, v’, ---, v™
(ii) For any term cvo(v’) «-- (v™)in (¢#0, constant) of H,,

vip++1)i+ - +v+n)i, = nyv+1) (v=1).

We can easily prove this lemma by induction.

3. Theorems — general case.

We rewrite (3) as follows as in [15], p. 241:
-2
(7) P™ = ap(w+b)p+jzo bw’,

where b=a,-,/pa,, b; is a rational function of a;, a,-, and a, (0<7=<p—2).

THEOREM 1. Let w=w(z) be any nonconstant meromorphic solution of (7).

When 2<p=<m—1 and there is at least one j such that b;=0,

Tr, w) S K{ ST, e+ ST, apl+ 5 S, a)+S(r, w)

for some constant K.

Proor. Let % be the largest number of ; for which 6;#0. Then, (7)

becomes

) P" = ay(w+b)?+ B! (b0, 05k=p—2).

Let w=w(z) be any nonconstant meromorphic solution of (8) and put

k
8o = —ay(w+b)?, g, =P™ and o= z%bjwj .
~

Case 1: go=0. In this case, w=—b and we have
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T(r) w) = T(T, b) é T(r’ ap>+T(rr ap—1>+0(1) .

Case 2: g,=0. In this case, we have from (3)
p-1 ,
w? = —az' 2 aw,
j=0
from which we obtain by Lemma 3 (ii)

pT(r, w) < (p—1)T(r, w>+}§) T(r, a,)+0(1),
that is,

T(r, w) £ 5 T(r, a)+00).

Case 3: ¢=0. In this case, we have

k-1 .
w* = —by' X bw,
=0
so that by Lemma 3(ii) as in the case 2
k
T(r, w) S 3 Tlr, b)+0() £ K, £ T(r, a)+0(1)
J= j=

as each b; is rational in a,, a,-, and a; where K, is a constant.
Case 4: go-g,°9¢+0 and g,, g, are linearly dependent. In this case, there are
constants a, < C such that

ag,+Bg, =0 (a-B+0).
This means that
k

(a/B—1)a(w+b)? = X bw’.

Jj=0

As ¢+0, a/B+1. From this equality we have
T(r, w) = (9= ( £ Tlr, b)+pT(r, B+T(r, a,))+00)
< K. 3 T(r, a)4+0()

by [Lemma 3 (ii), where K, is a constant.
Case 5: ¢+0 and g,, g, are linearly independent over C. As g,+g,=¢, we
have by

Q) T(r,g0) < T(r,§)+N(r, §)+N'(r, g)+N(r, g1/ 81— g4/ 80)+So(7, 2)+S,(7, 8-
Here we estimate each term of (9).
(10) PT(r, w)y—pT(r, b)—T(r, a,)+01) =T, go);

1) TG, ¢) < kTG, w>+§ T(r, by+0(1);
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12) N, ¢) < Nr, wy+ é N, by):

(13) N'(r, g)) £ N(r, gy) = N(r, P) £ N(r, w)+ﬂ§3 N, ¢2).
el

Let z, be a pole of w other than zeros or poles of a; (=0, :--, p), then it is

easily seen that g{/g:—g¢/g. has no pole at z,. This shows that the following
inequality holds.

(14) N, gi/g1—80/g0) = N(r, 0, go)+N(r, 0, gx)+j:20 (N, 0, a)+N(r, ay));
15)  N(r,0,0) = N, 0, w+b)+N, 0, a,) £ T(r, w)+T(r, )+ T(r, a)+00);
16 Ne,0,8) = N, 0, P) = T, P10 = 270, w)+ - 5 70, )40
an N, w) = 3N, 0, e)+Ner, Cx))+j§ (N(r, 0, a)+N(r, ay).

This is because w has no poles other than zeros or poles of ¢; and a;. In fact,
if w has a pole of order v at z, other than zeros or poles of ¢; and a;, the
right-hand side of (8) has a pole of order pv at z, and P™ has a pole of order
at least my at z,. This is impossible as m> p.

18)  Silr, g0 = Sulr, W)FSlr, €S, b);
19 Siir, g) = Sr, 3 aw’) £ Sir, wit X S, a).
Jj=0 Jj=0

From (9)-(19), we have for a constant K,

(p—(k+1+p/mNT(r, w) = Kfs(ng(r, c;)+;§7OT(r, aj>)+So(r, w)~+ jzi;)so(r, a;).

As p—(k+1+p/m)>0, we have for a constant K,

v P
T(r, w) = K4( 2T, c)+ 2 T(r, a;)>+So(r, w)+ 22 So(r, aj).
A€z j=0 j=0
Combining the cases 1 ~ 5, we have the theorem.

COROLLARY. When 0=p=m—1, the differential equation (3) has no admissible
solutions except the following form:

P™ = a(w-+b)? (a, be M, a+0).

It"is uncertain whether the excluded differential equation has an admissible
solution. We shall discuss some excluded differential equations in § 4.

ExaMPLE. Let P=ww”—(w’)®. Then the differential equation

P=1
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has an admissible solution w=sinhz.
Next we consider the differential equation when p=m.

THEOREM 2. Let w=w(z) be any nonconstant meromorphic solution of the
differential equation

(20) Pm=qu™t+ S au’ (a0, a,%0, 0= k=(d—1)m).
j=0
If m+k—s—3—k/m>0, then there exists a constant K for which
Tir,w) £ K{Z T, )+ BT, a)+Tir, a)f+Solr, )+ Sor, )+ 33 Silr 0.,

PrOOF. Putting
S .
go= —aw™*k, g, = Pm™ and o =2 auw,
j=0
we can prove this theorem similarly to the case of except the follow-
ings.

(i) Case 1 does not occur in this case.
(i1) In stead of (12) and (13), we use

Ne, ¢)+N(r, g,) < N(r, w)+X§I(N(r, 0, c)+N(r, c;))+§ (N(r,0, a;)+N(r, a;)).

(iii) In stead of (17), we use
N, w) £ T, w)+0Q).
NotTe. This theorem is a generalization of 7).

4. Theorems — special case.

It is difficult to estimate the growth of meromorphic solutions of the differ-
ential equation (3) excluded from Theorems 1 and 2 in the general case. There-
fore, we shall study the growth of meromorphic solutions of (3) when P=w™
(n=2) in some excluded cases from Theorems 1 and 2. (See [11], [15], [17]
when n=1.)

THEOREM 3. Let w=w(z) be a meromorphic solution of the differential
equation

(21) (w™)™ = a(w-+b)? (a, beH, a+0; 1=p=m—1)

such that w-+b=0.
(1) When b™ =0, if m is not a divisor of jp 2Z5<n), for a constant K,

T(r, w) = K(T(r, a)+T(r, b))+Sor, a)+Sor, b)+S.(r, w).
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(II) When b =0, if m—p is not a divisor of mn and if m is not a divisor of
jp 2=7=n-1),

m_np (N(r, 0, a)+N(r, a))

T(r, w) = T(r, a)+T(r, b)+-

m—p m
+So(7y b)+So(r, w).
Proor. From we have

D
(22) (w(n))m<—aTgf7”)_k> = prPa(w P b k)P (k=1),
where
(23) Q. is a polynomial in w™, ---, w™*® q, a’, ---, a'®, homogeneous of

degree £ with respect to w™, .-, w*® and a, a’, ---, a'® respectively.
(24) The orders of poles of Q,/a®(w‘™)* are at most % ;
25 m(r, Qs/a*(w™)F)=S,r, a)+S,(r, w).
In fact, using
Q, =maw P —a’'w™;
Qrr1 = (m—pklaw ™V —(pk+1)a’w™)Q,+paw™ Q,

we can easily prove (23), (24) by induction and (25) by (23) and by Lemma 1.
(I) First we estimate m(r, 1/w‘). From for k=n, we have
Qn P (w(n)+b(n))p (b(n))p 1
-n —1 — _ —_
p Pa (an(w(n))n) - + +

(wm)m = (w(}T))m W’

from which we obtain by [Lemma 3 (i) and (25)
m(m(r, 1/w™)—pm(r, 1/6™))—pPm(r, b™)) < m(r, 1/a)+S,(r, a)+S,(r, w),

that is,
(26) m(r, 1/ w™)< "llm(r, 1/a)+pm(r, 1/6)+ p2m(r, b™ )4 S,(r, a)+S,(¥, w).

Next, we estimate N(r, 1/w™). We use for k=n:

27 (w("’)m<—ﬁz‘g{lﬁ>)n )p =p Pa(w™+b™)P .

We have only to estimate N(r, 1/w‘™) when w has at least one zero. Let z,
be a zero of w of order v (=1), ¢ (=0) be the order of zero of 4™ at z, and
s (=0) that of a at z,. If z, is a pole of b‘® or a, we consider that 5 (or a)
has a zero of order —p (or —s) at z,. Further, let ¢ be the order of pole of
Q./a™w™)" at z, then t=<n by (24).

Case 1: a(z,)#0, oo and b(z,)#co. At z, the right-hand side of is
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finite, therefore the left-hand side of is finite. The order of zero of the
left-hand side of at z, is my—itp, which is not equal to zero by the hypo-
thesis. As it has no pole at z, myv—tp>0, this shows that ¢>0 and from
we have

my—tp = pmin(y, #) =< ppt,
that is,
FL)
m m
Case 2: a(z,)=0 and b(z,)# 0., From we obtain

A

Y

my—tp = s-+pmin(y, p) = s+pp,
so that

Case 3: a{z,)=o0 and b(z,)#oco. Similarly, we obtain

my—tp = —s+pmin(y, p) < —s+pu,
that is,
ys 24P,
m m m
Case 4: a(z,)=0 and b(z,)=co. In this case,

my—tp = s—ppu,
that is,

b o s _ P
= m m m‘u

Case 5: a(z,)=o0 and b(z,)=oco. In this case,

. my—tp = —s—pu,
that is,

From the cases 1~5, we obtain

(28) Ner, 1/w)= 22 (N, 1/0)+ N7, @)+Niry 1/6™)

1 ? n)
—l—mN(r, 1/a)+mN(r, 1/6).,
Using the inequality
T, b™) < K, T(r, b)+S,(r, b) (K, : constant)
and from (26), for a constant K,,
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(29) T(r, w™) = K(T(r, a)+T(r, b))+So(r, a)+Se(r, b)+So(r, w).
Further from
(30) pT(r, w)—=T(r, a)—pT(r, b)+01) < mT(r, w™).
Combining and [30), we have for a constant K
T(r, w) = K(T(r, a)+T(r, b))+Sor, a)+So(r, b)+S.(r, w).
(II), First we consider the differential equation [21) when 6=0:
31) (w™)™ = qw? (a#0ed, 1=Zp=m—1).

Let w=w(z) be a non-zero meromorphic solution of [31). We estimate m(r, 1/w).

From

W= m=P) = g™ )™
and by we have

(m—p)m(r, 1/w) < m(r, 1/a)+S,(r, w),
that is,

(32) m(r, l/w) £ m(r, 1/a)+S(r, w).

1
m—p
Next we estimate N(r, 1/w). We have only to do it when w has at least one
zero. Let z, be a zero of w of order v (=1).

(i) a(z,)#0, co. From [31), w™(z,)=0 and let px be the order.
Case 1: 1=v<n—1. From it must be mu=py, which is impossible by the
hypothesis that # is not a divisor of jp (2=7=<n—1) and m>p.
Case 2: y=n. In this case, pg=y—n and from [31), m(v—n)=pv or v(m—p)=mn,
which is impossible by the hypothesis that m—p is not a divisor of mn. That
is, w has no zeros other than zeros or poles of a.

(ii) a(z,)=0. Let s be the order of zero of a at z,, Put v=1/w and using

[Lemma 4, we obtain from
(33) (Hn(v, U', v v(n)))m — av(n+1)m—p’ where Hn:UnH(l/U)(n)_

As w has a zero of order v at z,, v has a pole of order v at z,, By
4(it), H, has a pole of order at most n(v+1) at z,, From [33), we have

mn(y+1) = (n+1)m—pl—s,
that is,
mn s
m—p + m—p -’
(iii) a(z,)=oc. Let t be the order of pole of a at z,., As in the case (ii),
from [(33), we have

y =

mn(yv+1) = (m(n+1)—plv+t,
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that is,
mn t
m—p m—p

From (i), (ii) and (iii), we obtain

v

IA

mn
m—p

n Ne, 1/w) S 2 (NG, 1)+, a)t— LN, La).

Combining and we have the inequality
(35) T, w) £ ——T(r, &)+~ (N(r, 1/a)+Nir, a)+Sr, w).
m—p m—p

(Il)y When b+#0, let W=w+b, then from (W™)m=gqW? as b™=0.
Applying (II), to this case, from and the inequality

T, W)= T, w)—T(, b+0(),

we have the desired inequality.

ExaMmpLE. The differential equation

(W)™ = (w+az*+Bz+n)? (A=p<m, (m, p)=1; a, B, y€C)

has no transcendental meromorphic solution.

Proor. (i) a#0. By [Theorem 3J(I), we have only to prove this example
when m=2, p=1. Suppose that this equation has a transcendental meromorphic
solution w=w(z). Put wu=w-+az’+pz+y, then uw”=u'?+2a. As u’+#0, the
relation u'u”=u’u'?+2au’ reduces to (u')*=4u®?*/3+4au-t+c (c: any constant).
Put #¥?=v, then v is transcendental meromorphic and satisfies v*v’):=
v*/3+avt+c/4. When ¢#0, v cannot be transcendental by [Theoreml of Yosida
in §1, and when ¢=0, v must be (3-¥%z+¢,)?—3a (c,: any constant), which is
not transcendental. This is a contradiction.

(ii) a=0. By [Theorem 3(I), we have only to prove this example when
(m—p)|2m. As in the case (i), we can also prove that this equation has no
transcendental meromorphic solution in this case.

According to Gackstatter and Laine ([3], Satz_8), the differential equation
+E )
(36) (w ™)™ :’"g aw’  (l<k=<mn, a;€H, ans+s#0)
F=

has no admissible solution when % is not a divisor of mn. We shall generalize
this as follows.

THEOREM 4. Let w=w(z) be a nonconstant meromorphic solution of (36).
When k is not a divisor of mn, for a constant K
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T(r, w) S K'S T(r, a)+Silr, w).

Jj=0
PrROOF. When n=1, we proved this theorem in (Theorem 1). For
n=2, as w has no poles other than zeros or poles of a;, we can prove this as
in the case of n=1.

As to for k=0, we can prove the following

THEOREM 5. Let w=w(z) be a nonconstant meromorphic solution of the dif-
ferential equation

(™)™ = awm+ Zaw (a0, ¢,20).
=
Then, if s<m—3, for a constant K
T(r, w) < K( BT, a)+T0r, @) +Sir, w).

PrROOF. When n=1, we proved this theorem in (Theorem 2). For
n=2, contrary to as w has no poles other than zeros or poles of
aj a, we can prove this as in the case of n=1.

NoTE. The condition “s=<m—3” is sharp as the following example shows.
ExaMPLE. The differential equation
(wlll)Z — w2+1

has an admissible solution w=sinhz.
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