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We denote by $k$ a perfect field of characteristic $p$ , with $p>0$ , and by $A=$

$W(k)$ the ring of infinite Witt vectors over $k$ . Let $C_{0}$ be a complete, non-
singular curve of genus $g$ over $k$ ; we say that $C_{0}$ is ordinary if its Jacobian
variety $Jac(C_{0})$ is an ordinary abelian variety, $i$ . $e$ .

$Jac(C_{0})[p](\overline{k})\cong(Z/p)^{g}$ , where $g=genus(C_{0})=\dim(Jac(C_{0}))$ .

Let $(X_{0}, \lambda_{0})$ be a polarized abelian variety and suppose that $X_{0}$ is ordinary.
By a theorem of Serre and Tate (cf. 1.1) it has a canonical lifting $(\mathfrak{X}, \lambda)$ to
$Spec(A)$ .

We study the following problem (cf. Katz [4], p. 138).

PROBLEM. Is the canonical lifting of the Jacobian $(X_{0}, \lambda_{0})=Jac(C_{0})$ of an
ordinary curve $C_{0}$ again a Jacobian?

Note that if $(\mathfrak{X}, \lambda)$ is a polarized abelian variety over $Spec(B)$ , where $B$ is
a discrete valuation ring or a field, we say $(\mathfrak{X}, \lambda)$ is a Jacobian” if there exists
a field $L\supset B$ , and a complete stable curve $D$ over $L$ , such that its canonically

polarized generalized Jacobian variety is:

$Jac(D)\cong(\mathfrak{X}, \lambda)\otimes_{B}L$ .
Note that the answer to the problem is affirmative if $g\leqq 3$ , because by A.

Weil for $g=2$ (cf. [15], p. 37, Satz 2), and by Oort-Ueno for $g\leqq 3$ (cf. [10]), we
know that in this case a principally polarized abelian variety is a Jacobian.

In this note we show that in general the answer to the problem is negative
(cf. Cor. 2.5 below, also cf. Remark 2.6).
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\S 1. The construction by Serre and Tate of the canonical lifting of
an ordinary abelian variety.

Let $k$ be a perfect field of characteristic $p$ , with $p>0$ . Let $X_{0}$ be an abelian
variety over $k$ . We denote

$x_{0}[p]=Ker(p\cdot 1_{X_{0}} ; X_{0}arrow X_{0})$

and we say that $X_{0}$ is ordinary if the $p$ -rank of $X_{0}$ is maximal, $i$ . $e$ .
$X_{0}$ is ordinary iff $X_{0}[p](\overline{k})\cong(Z/p)^{g}$ , where $g=\dim(X_{0})$ .

We denote by $\overline{X}_{0}$ the Barsotti-Tate group of $X_{0}$ .

THEOREM (1.1) (Serre and Tate, cf. Messing [5], Chap. V, Th. 3.3 and Cor.
3.4). For an ordinary abelian variety $X_{0}$ there exists a unique projective abelian
scheme $\mathfrak{X}arrow Spec(A)$ lifting $X_{0}$ to $A=W(k)$ such that the splitting

$\overline{X}_{0}=(\overline{X}_{0})_{1oc}\oplus(\overline{X}_{0})_{et}$

of the Barsotti-Tate group in local and etale parts lifts to a direct sum splittjng
of the Barsotti-Tate group $\overline{\mathfrak{X}}$ of $\mathfrak{X}arrow Spec(A)$ ; any polarizati0n

$\lambda_{0}$ : $X_{0}arrow X_{0}^{t}$

lifts uniquely to a polarizatjon
$\lambda$ : $\mathfrak{X}arrow \mathfrak{X}^{t}$

(here $\mathfrak{X}^{t}$ is the dual of the abelian scheme $\mathfrak{X}arrow Spec(A)$); the natural maps

$End_{K}(X)\sim-End_{A}(\mathfrak{X})arrow^{\sim}End_{k}(X_{0})$

are bijective (here $K$ is the field of fractions of $A$ , and $X=\mathfrak{X}\otimes_{A}K$ is the generic
fibre of $\mathfrak{X}arrow Spec(A))$ .

DEFINITION (1.2). The abelian scheme $\mathfrak{X}arrow Spec(A)$ , or its generic fibre
$\mathfrak{X}\otimes_{A}K$, described in Theorem 1.1, is called the canonical lifting of the ordinary
abelian variety $X_{0}$ .

Next we discuss the compatibility of a specialization of an ordinary abelian
variety to another one and the specialization of their canonical liftings.

By a good curve we mean a connected, complete stable curve without ra-
tional components whose generalized Jacobian variety is an abelian variety (A

rational curve meeting three different elliptic curves transversally at three dif-
ferent points is certainly a stable curve, which the authors do not want to
regard as a good curve.); thus, a good curve is the union of smooth complete
curves of Positive genus which are connected like a tree (there are no cycles in
the graph). We use the terminology “Jacobian of a good curve“ if we mean
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the generalized Jacobian variety of that curve, $i$ . $e$ . the abelian variety obtained
as the product of the Jacobians of the components of the good curve, with polari-
zation equal to the sum of the canonical polarizations pulled back from the
factors. We use the terminology $Carrow S$ is a good curve” if we have a proper
flat family all of whose geometric fibres are good curves. A good curve $C_{0}$ in
characteristic $p>0$ is called ordinary if its Jacobian is an ordinary abelian
variety. Note that being ordinary is an open condition, and moreover a general
elliptic curve is ordinary. Hence a general curve of genus $g$ in positive charac-
teristic is ordinary.

LEMMA (1.3). Let $C_{0}$ be a good, ordinary curve over $k$ . Let

$\mathcal{D}_{0}arrow S=Spec(R)$

be a good curve over an irreducible k-scheme S. Let $s\in S(k)$ be a closed pojnt
and supp0se that the fibre at this point is $C_{0}$ :

$\mathcal{D}_{0s}\cong C_{0}$ .

Let $k_{1}=k(S)$ be the field of fractions of $R$ , and let $k_{2}$ be a perfect field contain-
ing $k_{1}$ ; let

$D_{0}$ $:=\mathcal{D}_{0}\otimes_{R}k_{2}$ ;

note that $D_{0}$ is an ordinary good curve. Supp0se that the canonical lifting of
$Jac(C_{0})=:(X_{0}, \lambda_{0})$ is not a Jacobian. Then the canonical lifting of $Jac(D_{0})=:(Z_{0}, \rho_{0})$

to $W(k_{2})$ is not a Jacobian.

PROOF. Let $R‘\subset k_{2}$ be the integral closure of $R$ in $k_{2}$ ; we choose a com-
mutative diagram

where $\varphi$ is given by $s\in S(k)$ . By the functoriality of the construction of the
ring of Witt-vectors we obtain a commutative diagram
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Let
$(\mathcal{Y}_{0}, \mu_{0})=Jac(\mathcal{D}_{0})\otimes_{R}R’$

and let $\mathcal{H}_{0}$ be the Barsotti-Tate group of $\mathcal{Y}_{0}arrow Spec(R’)$ . Then $H_{0}:=\mathcal{H}_{0}\otimes_{R’}k_{2}$ is
the Barsotti-Tate group of $Z_{0}$ $:=\mathcal{Y}_{0}\otimes_{R’}k_{2}$ , and because $k_{2}$ is perfect, we obtain
a canonical direct sum splitting

$0arrow H_{0,1oc}-\overline{Z}_{0}=H_{0}-arrow H_{0,et}arrow 0$

( $e$ . $g$ . use [7], $p$ . I. 1-4, Lemma 1.1). This induces a direct sum splitting

$arrow$

$0arrow \mathcal{H}_{0.1oc}arrow\wp_{0}=\mathcal{H}_{0}arrow \mathcal{H}_{0,et}arrow 0$

over $R’$ . From an appropriate version of the Grothendieck-Mumford deforma-
tion theory (generalize [8], p. 242, Th. 2.3.3), and from the proof of the Serre-
Tate theorem (both methods in the situation of a residue class ring $R’$ instead
of a residue class field) we conclude that there exists a principally polarized
abelian scheme

$(\mathcal{Y}, \mu)$ over $Spec(W(R’))$

such that
$(\mathcal{Y}, \mu)\otimes_{W(R’)}R’=(\mathcal{Y}_{0}, \mu_{0})$ ,

with the property that the Barsotti-Tate group $\mathcal{H}$ of $\mathcal{Y}arrow Spec(W(R’))$ splits as
a direct sum in the way required in the Serre-Tate construction. From this it
follows that the Barsotti-Tate group of

$Y\otimes_{W(R’)}W(k)$ , with $\Psi:W(R’)arrow W(k)$ ,

splits in the same way; hence by the uniqueness of the Serre-Tate lifting (cf.

Th. 1.1) it follows that
$(\mathcal{Y}, \mu)\otimes_{W(R’)}W(k)\cong(\mathfrak{X}, \lambda)$ ,

where $(\mathcal{X}, \lambda)$ is the canonical lifting of $(X_{0}, \lambda_{0})=Jac(C_{0})$ to $W(k)$ . Suppose there
would exist a field $L\supset W(k_{2})$ and a good curve $D$ defined over $L$ such that

$Jac(D)=(\mathcal{Y}, \mu)\otimes_{7v’(R’)}L$ .
Consider the Hilbert scheme $H=H_{g}$ of tricanonically embedded stable curves as
in [3], with $g=\dim X_{0}$ , and let $H^{0}\subset H$ be the subscheme corresponding with
good stable curves. We obtain a morphism

$H^{0}arrow \mathcal{A}_{g,1}$

(where $\mathcal{A}_{g,1}$ is the coarse moduli scheme of principally polarized abelian schemes).

If a Jacobian variety has good reduction, the corresponding curve has good,
stable reduction (by [3], Th. 2.4 and Th. 2.5), hence the image of $H^{0}$ in $A_{g}1$



Jacobian variety 431

is closed. From $(\mathcal{Y}, \mu)/W(R’)$ we deduce a morphism

$y$ : $Sarrow \mathcal{A}_{g.1}$ , where $S:=SpecW(R$ ‘
$)$ .

Because of the existence of $D$ the generic point of $S$ is mapped under $y$ in the
image of $H^{0}$ in $\mathcal{A}_{g.1}$ , and because this image is closed in $\mathcal{A}_{g.1}$ we conclude that
$y$ factors through this image. We define $T$ by the cartesian square

$Tarrow^{g}H^{0}$

$f\downarrow Sarrow^{y}\mathcal{A}_{g.1}\downarrow$

.

It follows that the morphism $f$ is surjective. Via $g$ we pull back the universal
curve over $H^{0}$ , and we obtain a good, stable curve

$\mathcal{D}arrow T$ , such that $Jac(\mathcal{D})\cong(\mathcal{Y}, \mu)\cross s^{T}$ .

Because $f$ is surjective we can choose a field $K$, and a commutative diagram

$Spec(K)-T$
$\downarrow$ $\downarrow f$

Spec$W(k)-S=SpecW(R^{f})$ .
We conclude that

$(\mathfrak{X}, \lambda)\otimes_{W(k)}K=(\mathcal{Y}, \mu)\otimes_{W(R’)}K\cong Jac(D)\cross_{T}Spec(K)$ ,

which contradicts the assumption that the canonical lifting of $Jac(C_{0})=(X_{0}, \lambda_{0})$

is not a Jacobian. This shows that for any field $L\supset W(k_{2})$ the polarized abelian
variety $(\mathcal{Y}, \mu)\otimes L$ is not a Jacobian, and the lemma is proved.

For later use we recall the following facts.

LEMMA (1.4). Let $Carrow S$ be a flat, prOper, smooth curve over a scheme S. $We$

obtain an $S$-morphism
$Aut_{S}(C)arrow Aut_{S}(Jac(C/S))$

from the relative automorphjsm group scheme of $Carrow S$ to the same for the ca-
nonically pOlarjzed Jacobian $Jac(C/S)arrow S$ . This morphism is a closed immersion (cf.

[11], Prop. 2.3).

THEOREM (1.5). Let $k$ be a perfect field of characteristic $p>0$ . Let $A=W(k)$

(thus $A$ is a complete discrete valuation ring of unequal characteristics in which
$P$ does not ramify). Let $GL_{n}(A)$ denote the group of $(n\cross n)$-matrices in $A$ with
determinant a unit in A. Let $\sigma\in GL_{n}(A)$ be such that $\sigma^{p}=1$ (the identity matrix).

Then there exis $f_{S}$ a matrix $P\in GL_{n}(A)$ such that



432 F. OORT and T. SEKIGUCHI

$\sigma\sim P^{-1}\sigma P=diag(Q, \cdots , Q, R, \cdots , R, E)$ ,

where $E$ is a unit matrix, $E=diag(1, \cdots, 1)$ , where $Q$ is a $(p-1)\cross(p-1)$ -matrix

$Q=(\begin{array}{llll}0 1. 1-1 -1 \cdots -1\end{array})\in GL_{p-1}(A)$ ,

and where $R$ is a $(p\cross p)$-matrix

$R=(\begin{array}{llll}0 1. 11 0 \cdots 0\end{array})\in GL_{p}(A)$

(cf. Curtis-Reiner [2], Th. 74.3).

REMARK (1.6). With the notations of (1.5) we write

$Q\otimes_{A}k=Q_{0}\in GL_{p-1}(k)$ , and
$R\otimes_{A}k=R_{0}\in GL_{p}(k)$ .

It is easy to see that $Q_{0}$ , respectively $R_{0}$ , can be put in a Jordan form of size
$p-1$ , respectively $p$ :

$Q_{0}\sim(^{1}$

1

.
$11)\in GL_{p-1}(k)$ and $R_{0}\sim(^{1}$

1

.
$11)\in GL_{p}(k)$ .

\S 2. Counter examples.

We start by constructing a Galois covering

$C_{0}arrow P^{1}$

over a field of characteristic $p>0$ with Galois group cyclic of order $p$ . We
choose an integer $r\geqq 2$ , we take $\alpha_{1},$

$\cdots$ , $a_{r}\in k$ , with $\alpha_{i}\neq\alpha_{j}$ if $i\neq j$ , and we take
$H$ and $f$ such that

$H,$ $G\in k[X]$ , degree$(G)=r$ , $G/H=f\in k(X)$ ,

$H=(X-a_{1})\cross\cdots\cross(X-\alpha_{r})$ , and

$G(\alpha_{t})\neq 0$ for $1\leqq i\leqq r$ ( $i$ . $e$ . $(G,$ $H)=1$ in $k[x]$ ).

We define $C_{0}$ as the normalization of the projective plane curve defined by
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$Y^{p}-H^{p- 1}Y=H^{p-1}G$ ;

thus the function field of $C_{0}$ equals

$k(C_{0})=k(X)( \frac{y}{H})$ , with $( \frac{y}{H})^{p}-\frac{y}{H}=f=\frac{G}{H}$ .

We define
$\sigma_{0}X=X$ and $\sigma_{0}Y=Y+H$ .

This gives
$\sigma_{0}\in Aut(k(C_{0})/k(X))=Aut(C_{0}arrow P^{1})$ ,

clearly we have that the order of $\sigma_{0}$ equals $p$ , and

$C_{0}arrow C_{0}/\langle\sigma_{0}\rangle\cong P^{1}$

(and in such a case the curve $C_{0}$ is called an Artin-Schreier curve, $e$ . $g$ . cf. [14],
p. 176). We denote by $\sigma_{0}^{*}$ the representation of $\sigma_{0}$ in $H^{0}(C_{0}, \Omega_{c_{0}}^{\otimes 2})$ . The curve
$C_{0}$ and $\sigma_{0}\in Aut_{k}(C_{0})$ satisfy the following conditions.

THEOREM (2.1). (i) The genus of $C_{0}$ equals $g=(P-1)(r-1)$ .
(ii) $C_{0}$ is non-hyPerelliptic if and only if $r\geqq 3$ .
(iii) The representaijOn matrix $\sigma_{0}^{*}$ has $(2r-3)$ Jordan blocks of szze $p$ and $r$

Jordan blocks of szze $(p-3)$ .
(iv) Because the poles of $f\in k(X)$ are xmPle, the curve $C_{0}$ is ordinary.

(For the last property, cf. Subrao [14], Prop. 3.2, further cf. [11], Prop.
2.3, Cor. 2.4, and Th. 2.6.)

LEMMA (2.2). Let $f\in k(X)$ and $C_{0}$ be as above. There does not exist a ProPer,

flat curve $C$ over $S=Spec(A)$ , with $A=W(k)$ , and an automorphism

$\sigma\in Aut_{S}(C)$

such that
$(C, \sigma)\otimes_{A}k=(C_{0}, \sigma_{0})$ .

PROOF. Assume $(C, \sigma)$ as indicated would exist. The A-module $H^{0}(C, \Omega_{c/A}^{\otimes 2})$

is free of rank $(3g-3)$ ; the automorphism $\sigma$ acts on this A-module, thus we
obtain a representation

$\sigma^{*}\in GL_{3g-3}(A)$

of $\sigma$ . Note that the canonical map

$Aut_{S}(C)arrow Aut_{k}(C_{0})$

is injective, hence the order of $\sigma^{*}$ divides $p$ . Thus, by Theorem (1.5), the
matrix $\sigma^{*}$ is conjugate to a matrix

$\sigma^{*}\sim Diag(Q, \cdots , Q, P, \cdots P, E)$
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as in (1.5). Hence (cf. Remark 1.6) we have that $\sigma^{*}\otimes_{A}k=\sigma_{0}^{*}$ has only Jordan
blocks of sizes $p,$ $(p-1)$ and 1. This contradicts Theorem (2.1, iii), which proves
the lemma.

LEMMA (2.3). Let $k$ be an algebraically closed field, $C_{0}$ a non-hyPerelliptic
curve over $k$ , let $(X_{0}, \lambda_{0})=Jac(C_{0})$ be its Jacobian variety, and let $(\mathfrak{X}, \lambda)arrow Spec(A)$

be a lifting of this over $A=W(k)$ . If the generic fibre (X, $\lambda$ ) $=(\mathfrak{X}, \lambda)\otimes_{A}K$ is a
Jacobian, then $C_{0}$ can be lifted to a curve $Carrow Spec(A)$ such that $Jac(C)\cong(\mathfrak{X}, \lambda)$ .
Moreover, if $C_{0}$ is or(knary and if (X, $\lambda$ ) is the canonical lifting of $(X_{0}, \lambda_{0})$ , then

$Aut_{A}(C)arrow^{\sim}Aut_{k}(C_{0})$ .

PROOF. Let $\mathcal{M}$ , respectively $\mathcal{A}$ , be the formal moduli spaces of $C_{0}$, respec-
tively of $(X_{0}, \lambda_{0})$ . By this we mean the following. Let $\mathcal{R}$ be the category of
local, artinian A-algebras, with $A=W(k)$ , and let

$Def(C_{0})$ : $\mathcal{R}arrow Sefs$ , resp. $Def(X_{0}, \lambda_{0})$ : $Rarrow Sets$

be the corresponding deformation functors. These are pro-representable:

$\mathcal{M}\cong SpfA[[t_{1}, \cdots , t_{3g- 3}]]$ , with $g=genus(C_{0})$ ,

$\mathcal{A}\cong SpfA[[t_{ij}]:1\leqq i\leqq j\leqq g]]$ .
Let

$\tau$ : $\mathcal{M}arrow \mathcal{A}$

be the Torelli map( $e$ . $g$ . cf. [6], 7.4). Because $C_{0}$ is non-hyperelliptic $\tau$ is a
closed immersion (this follows from Noether’s theorem, cf. [9], p. 172, Th. 7.2
and Cor. 2.8).

Suppose there exist a field $L\supset A$ and a good curve $D$ over $L$ such that

$Jac(D)=(\mathfrak{X}, \lambda)\otimes_{A}L$

(where $(\mathfrak{X},$ $\lambda)$ is a lifting of $(X_{0},$ $\lambda_{0})$ to $W(k)=A$ ). Choose a discrete valuation
ring $B\subset L$ containing $A$ ; let $b$ be the residue class field of $B$ ; suppose $b$ is
algebraically closed (if not, extend $B\subset L$ to such a situation). By Deligne and
Mumford [3], Th. 2.4, we conclude that $D$ admits a stable model

$\mathcal{D}arrow Spec(B)$

and because $Jac(D)$ extends to an abelian scheme $\mathfrak{X}\otimes_{A}B$ over $Spec(B)$ this is a
good curve, and $Jac(\mathcal{D})=(\mathfrak{X}, \lambda)\otimes_{A}B$ (cf. [3], Th. 2.5). From

$Jac(D_{0})=Jac(\mathcal{D})\otimes_{B}b\cong(X_{0}, \lambda_{0})\otimes_{k}b=Jac(C_{0})\otimes_{k}b$

(and because $b$ is algebraically closed) we conclude bv Torelli’s theorem that

$\mathcal{D}\otimes_{B}b=:D_{0}\cong C_{0}\otimes_{k}b$
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(cf. [1]). Thus $\mathcal{D}$ is a deformation of $C_{0}\otimes_{k}b$ , and hence we obtain a commuta-
tive diagram

Spf$B-$ Spf $A$

$\psi\downarrow_{P^{\prime^{\prime’}}}^{\psi,\prime}\prime\prime’\downarrow\varphi \mathcal{M}\underline{\tau}\mathcal{A}$

where $\varphi$ is given by $(\mathfrak{X}, \lambda)$ , and $\psi$ is given by $\mathcal{D}$ . Since $\tau$ is a closed immer-
sion, this implies that we have $\psi^{f}$ as indicated, leaving the diagram commutative,
and hence we conclude that $\mathcal{D}$ has a model, say $C$, over $SpecA$ ; because $k$ is
algebraically closed, from

$C\otimes_{A}b\cong \mathcal{D}\otimes_{B}b\cong C_{0}\otimes_{k}b$

it follows that its closed fibre is isomorphic with $C_{0}$ :

$Carrow SpecA$ , $C\otimes_{A}B\cong \mathcal{D}$ , and $C\otimes_{A}k\cong C_{0}$ .

Thus it follows that $Carrow SpecA$ is smooth. Now suppose moreover that $C_{0}$ is
ordinary and that $(\mathfrak{X}, \lambda)$ is the canonical lifting of $(X_{0}, \lambda_{0})$ . Let $\sigma_{0}\in Aut(C_{0})\subset$

$Aut(Jac(C_{0}))$ . By Theorem (1.1) any $\sigma_{0}\in Aut(Jac(C_{0}))$ admits a unique lifting to
an automorphism, say $\sigma$ , of $(\mathfrak{X}, \lambda)$ . By Torelli’s theorem (cf. [1]) either

$+\sigma\otimes\overline{K}\in Aut(C\otimes\overline{K})$ or $-\sigma\otimes\overline{K}\in Aut(C\otimes\overline{K})$

(here $\overline{K}$ is an algebraic closure of the field of fractions $K$ of $A$ ). In the latter
case

{specialization of $(-\sigma\otimes\overline{K})$ } $\cdot\sigma_{0}^{-1}\in Aut(C_{0})$ ,

a contradiction to the fact that $C_{0}$ is non-hyperelliptic; thus $\sigma\otimes\overline{K}\in Aut(C\otimes\overline{K})$ .
By (1.4) from $\sigma\in Aut(Jac(C))$ we conclude that $\sigma\in Aut_{A}(C)$ , and the lemma is
proved.

THEOREM (2.4). Let $r\geqq 3,$ $p\geqq 5$, and define $C_{0}$ as in the beginmng of this
section. Note that $C_{0}$ is ordinary and non-hyperelliptjc(2.1, ii and iv). Let
$(X_{0}, \lambda_{0})=Jac(C_{0})$ , and let $(\mathfrak{X}, \lambda)$ be its canomcal lifting to $A=W(k)$ , with generic
fibre (X, $\lambda$ ). This $prin\alpha pally$ polarized abelian variety is not a Jocobian.

PROOF. We may assume $k$ to be algebraically closed. By the construction
of $C_{0}$ we have an automorphism $\sigma_{0}$ of $C_{0}$ of order $p$ . Assume (X, $\lambda$ ) is a Jacob-
ian. Then by Lemma (2.3) we conclude that $(C_{0}, \sigma_{0})$ lifts to $W(k)=A$ , and
this contradicts Lemma (2.2). Q. E. D.

COROLLARY (2.5). Let $D_{0}$ be a generic curve of genus $g$ over a field $L$ .
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Assume char$(L)=p\geqq 5$, and assume $g\geqq 2(p-1)$ . The canonical lifting of $Jac(D_{0})$

is not a Jacobian.
PROOF. Choose $r=3$ , and let $C_{0}$ be defined as in the beginning of this sec-

tion (choose some $G$ and $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ as indicated); then

genus$(C_{0})=2(p-1)$

by (2.1, i), and by Theorem (2.4) the canonical lifting of $Jac(C_{0})$ is not a Jacobian.
If $g=2(p-1)$ we take $C_{0}^{f}=C_{0}$ ; if $g>2(P-1)$ choose a good ordinary curve of
genus $g-2(P-1)$ ( $e$ . $g$ . the join of copies of ordinary elliptic curves), and let $C_{0}’$

be the join of this curve with $C_{0}$ with one transversal crossing; the Jacobian
of $C_{0}’$ is the product of the Jacobians for that curve and $C_{0}$ . Note that taking
canonical liftings commutes with taking products of polarized abelian varieties.
Hence it follows from Theorem (2.4) that the canonical lifting of $Jac(C_{0}’)$ is not
a Jacobian (of any good curve). We choose $\mathcal{D}_{0}arrow S,$ $s\in S(k),$ $\mathcal{D}_{0,s}\cong C_{0}’$ with the
properties as in Lemma (1.3) such that $D_{0}$ $:=\mathcal{D}_{0}\otimes_{R}k_{2}$ is isomorphic with the $D_{0}$

given in the corollary; this choice is possible because in Deligne-Mumford [3]

irreducibility of the Hilbert scheme $H_{g}\otimes F_{p}$ of stable curves in characteristic
$p>0$ has been proved. We apply Lemma (1.3), and the corollary follows.

REMARK (2.6). We were informed that B. Dwork and A. Ogus obtained a
negative answer to the problem stated in the introduction for every $g>3$ and
$P>2$ .

REMARK (2.7). We have seen that a curve $C_{0}$ with an automorphism $\sigma_{0}$ as
constructed in the beginning of this section does not admit a lifting $(C, \sigma)$ to
an unramified $p$-adic ring (cf. Lemma 2.2). We can give another proof of this
fact, avoiding the matrix computation used in this note, but using the fact that
ramification is needed if we want to lift an Artin-Schreier covering with small
multiplicities in its conductor to a characteristic zero domain (cf. [13], Appendix).
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