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Additivity of Jordan x-maps between operator algebras
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(Received Dec. 3, 1984)

The addition and Jordan product in operator algebras seem to be closely
related. Our aim in this paper is to present a positive answer to the following
problem.

Let M be a unital C*-algebra and N be an associative x-algebra. A map ¢
is said to be a Jordan x-map from M to N, if ¢ satisfies the following conditions
(i)~(ii) [2].

(i) @lxey)=¢(x)°p(y) for all x and y in M, where x-y=(1/2)(xy+yx).

(ii) @(x*)=¢(x)* for all xeM.

(iii) ¢ is bijective.

Can we conclude that ¢ is additive?

Unfortunately, the answer to this problem is negative in the one dimensional
case, even if ¢ is uniformly continuous, as the following example shows. Let
dla)=ala| for a=C (the complex number field). Then ¢ is a uniformly con-
tinuous Jordan sx-map from C to C and it is not additive. If, however, M has a
system of nXn matrix units for some n=2, we obtain the following:

THEOREM. Let M be a C*-algebra, N be an associative x-algebra and ¢ be
a Jordan x-map from M to N. Suppose that M has a system of nXn matrix units
for some n=z2. Then ¢ is additive.

In [2], additivity of a Jordan s-map on an AW*-algebra with no abelian direct
summand was established under the hypothesis of continuity. S. Sakai conjectured
that the hypothesis of continuity is redundant (see [2]). This follows from our
theorem :

COROLLARY. Let M be a von Neumann algebra (or more generally an AW*-
algebra) which has no abelian direct summand, let N be a C*-algebra and let ¢ be
a Jordan x-map from M to N. Then ¢ is additive. Moreover, there exist central
projections ey, e,, es, €4 in M such that ¢ is a linear x-ring isomorphism on Me,,
¢ is a linear x-ring antiisomorphism on Me,, ¢ is a conjugate linear x-ring isomor-
phism on Me; and ¢ is a conjugate linear x-ring antiisomorphism on Me,.

Throughout this paper, we always assume that M is a unital C*-algebra, N
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is an associative x-algebra, ¢ satisfies the conditions (i)~(iii) and M has a
system of nXn matrix units for some n=2.

1. Preliminaries.

An element ¢ is called a projection if it is idempotent (¢*=e¢) and selfadjoint
(e*=¢). The relation e=ef defines a partial ordering of projections, denoted
¢=f. Projections ¢ and f will be said to be orthogonal if ¢f=0. We shall break
up the proof of the theorem into a sequence of lemmas.

LEMMA 1 ([2, Lemma 1.2]). Let e and [ be projections in M. Then
(i) ef=0if and only if e-f=0,
(ii) e=f if and only if e=e-f.

Thus ¢ is an order isomorphism from the partially ordered set M, of the
projections in M to N, in N which preserves orthogonality. So ¢(1)=1 and
¢(0)=0 follow.

LEMMA 2 ([3]). Let e and [ be projections of M. If ef=0, then ¢p(ae+Bf)
=g(ae)+@(Bf) for all a, BEC; in particular, ¢(e+f)=¢(e)+¢(f).

In fact, if ef=0, then, there exists the least upper bound eV f in M, and
eV f=e-+f. Since ¢|M, is an order isomorphism and preserves orthogonality,
there exists ¢(e)Vé(f) in N, and g(eV f)=¢(e)Vd(f). So ¢le-+f)=¢(e)+o(f).
Put a=ae+ff for arbitrary «, f<C. Then

@(a) = gla-(e+[))=¢(a)-@dle+f) = ¢(a)(d(e)+&(f))
= @(a)Ple)+¢(a)-P(f) = dlae)+o(Bf).

LEMMA 3 ([2, Lemma 2.1]). ¢|C-1 is additive.

Let {e;;} be a system of nXn matrix units in M with n=2. Put e=ey,
v=e;;@#7), p=01/2)(e+v*)(e+v) and ¢g=(1/2)(e—v*)(e—v). Then p and ¢ are
orthogonal projections in M. Since ¢(e)g(x)p(e)=¢(exe) (note that exe=
((2e—1)ex)ee; see [2, Lemma 1.6]) and by

P(a+p)-1)edles;) = d((a+B)-1)-d(e) = dleCap+2Bq)e)
= ¢(e)p(2ap+28q)d(e) = d(e)(p2ap)+d(289))p(e)
= (¢(a-1)+o(B-1))-¢(e) = (¢(a-1)+@(B-1))@(es:)

for each 7. So our follows.

COROLLARY 4. (i) ¢(—x)=—¢(x) for all xeM. (ii) ¢lpx)=pd(x) for all
x€M and all rational number p.
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Since 0=g(0)=¢(L+(—1)=¢(1)+$(—)=1+¢(—1), by ¢(—x)=
¢(—1)ed(x)=—¢(x). For arbitrary integers m (m=0) and n, me((n/m)x)=
o(nx)=nd(x). So ¢(n/m)x)=(n/m)d(x).

LEMMA 5 ([2]). Let {e;:i=1, 2, ---, n} be an orthogonal family of projections
in M such that X .e;=1. Then

¢(x) = 2 Ple)g(x)gle)+2 T {g(es), $(x), ley)}
where {x, v, z}=1/2)(xyz+zyx).
Since {¢(e;):7=1, 2, ---, n} is an orthogonal family of projections in NV such
that X,¢(e;)=1,
d(x) = §j¢(ei)¢(X)¢(ej)
= Zi)¢(ei)¢(x)¢<ei>+2i§j{¢(ei), P(x), pley}.

2. Additivity of Jordan x-maps.

LEMMA 6. Let e and f be projections in M. Then

ola-14+Bet+7rf) = ¢la-1)+¢(Be)+d(rf)
for all a, B, y<C.

Put
x =a-14+Betyf, y=¢la-)+o(Be)+¢(yf) and e’ =1l—e.
Since {¢(e), ¢(x), p(e")}=d({e, x, ¢’}) ([2, Corollary 2.27; note that 2(e-x)-e’
={e, x, ¢’}), it follows that
P(e)p(x)p(e) = glexe) = gle((a+B)-1+71/)e)
= ¢le)p((a+B+7)f+(a+BL—f)g(e)
= ¢(e)d(a+B+7))+o(a+B)1—1)))g(e)
= §(e)(¢(af)+(B)+(r/)+dlall—1)+¢(B1—Fgle)
= d(e)(dla-D+6(B-1)+d(rf Ngle)=d(e)yg(e),
Pl )p(x)p(e") = le'xe’) = g(e’(a-1+7f)e)
= @(e")d(a+7)f)+glall—F))g(e)
= (" plaf )+ PG f)+olall—f))p(e)
= @(e")@(a-1)+6(r/)d(e") = d(e")yp(e’) and
{g(e), ¢(x), gple")} = ¢({e, x, e'}) = 6({e, 1f, '})
= {g(e), o(rf), g(e")} = {¢(e), ¥, (e)}.
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Therefore
P(x) = g(e)p(x)g(e)+d(e")P(x)p(e)+2{d(e), ¢(x), P(e’)}
= gle)ydle)+d(e)yple)+2{g(e), ¥, leN} =y
by

LEMMA 7. Let u and v be symmetries (selfadjoint unitaries) in M. Then
d(au+Bv)=¢(au)+¢(Bv) for all a, BEC.

Put e=1/2)(1+u) (resp. f=(1/2)(1+v)). Then e (resp. f) is a projection in
M. Hence

dlau+ pv) = ¢ae+2Bf—(a+p)-1)
= ¢(2ae)+¢(2Bf)—p((a+p)-1)
= @QRae)+¢2pf)—($(a-1)+o(8-1))
= @(a-1)°(2¢(e)—1)+¢(8-1)=(2¢(f)—1)
by Lemma 6, [Corollary 4 and Lemma 3 On the other hand,
2¢(e)—1 = ¢(e)—(1—¢(e)) = ¢(e)—p(1—e)
= gle—(1—e)) = ¢(u)

and similarly
20(f)—1 = o).
Therefore

olau+ pv) = ¢lau)+o(fv).

LEMMA 8. Let h and k be selfadjoint elements in M. Then

@lah+BR) = glah)+@(Bk)
for dll a, BEC.

In fact, let {e¢;} be the diagonal projections of the given system of matrix
units {e;;} of M. Put y=|h|+|k], hy=7*h and k,=y-'k. Then there exist
symmetries u;, u;; (resp. v;, vy;) such that e;he;=e uze; and {ey, hy, e;}=
{ei, usy €5} @#j) (resp. e;kje;=evie; and {ey, ky, ej}={ey, vij, e;} ((#7)) (see
the proof of in and Lemma 3.5 in [2]; in fact, let

— 2
u; = e;hie;+(e;—ehie;hie)' eij+eji(ei“‘eihxeih1ei)”2

——e]-ihlei,-—}—l-—eiwej (l#])
and let
Uy = eshiej+eihie;+(ei—e;hie;hiey)'?

—(ej—ejhie;hie)V i +1—e;—e; (G+#7),
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then u; and u;; enjoy all the requirements). Put
x=ah+Bk, y=@(ah)+(Bk), wi=au;+pv, wy=au;+pv,
zi=@(au;)+¢(fv;) and z;;=¢(au;;)+d(Bvij).
Then ¢(w;)=2z; and ¢(w,;;)=z;; by Lemma 7. Hence
P(x) = §¢(ei)¢(x)¢(ei)+2% {@(es), (), pley}
= Zglexe+2Z glles 1 ¢;1)
= ¢(r-1)-Zdleawie)+2 T d{ew, wey, ;1)
= ¢(T-1)°<§¢(ei)zi¢(ei)+2§j{¢(ei), zij Plen)})
= $(r-1)-(Zple)lau)+o(Bvo)gle:)
+2i§ {@(es), plaui)+o(Bviy), dle)})
= ¢(r-De(Zgledlah)e)+2dleBhie)
+2E¢({ei, ah,, ej})+2i§ d({ei, Bk, ;1)
= 3(r-D-(Zdle)(glah)+d(Br)g(es)
+2£ {@(es), dlah,)+@(Bky), dle)})
= Zgledydle)+2 T {d(ed, 3, gl
=y.

PROOF OF THEOREM. Now we come to prove our theorem. Let h; k; (j=
1, 2) be selfadjoint elements in M such that x=h,+ih,, y=k;+ik; (*=—1). By
Lemma 8,
¢(x+3) = ¢((h1+ k) +i(he+ ko)

= @(h1+ k) + @G- Ded(hot k)

= (¢(h1)+ (k1) + PG -1)(d(ha)+P(k2))

= (§(h1)+ ¢ he))+(9(R1)+ P ko)

= ¢(x)+¢().

This completes the proof.

PrOOF OF COROLLARY. We need the following lemma which is well known
to specialists. But for the sake of completeness we give here a proof.
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LEMMA 9. Keep the notations and assumptions in Corollary in mind, let a
and b be any mutually commuting elements in M, then ¢(a)p(b)=¢(b)p(a). In
particular, ¢(the center of M) = the center of N.

In fact, if ab=ba, then a-(b-x)=b-(a-x) for all xeM, and so ¢(a)-((b)
d(x))=¢()(d(a)-¢(x)) for all xeM. So ¢(a)p(b)—¢(b)p(a) is a central element
in N, which implies that ¢(a)¢(b)—¢@(b)p(a) commutes with ¢(a). Hence, by a
theorem of Kleinecke ([4]), z=¢(a)¢(b)—d(b)¢(a) is a normal quasi-nilpotent
element in N, and so, z=0, that is, ¢(a)¢(b)=¢()d(a).

Let {p;} be a family of central orthogonal projections in M such that \/p;
=1 where Mp, has no finite type I direct summand and Mp,; (:=2) is homoge-
neous of type I,, (n;=2). Then ¢|Mp; is a Jordan x-map from Mp; to N@(p,),
because ¢(p;) is a central projection in N for each 7 by By our
theorem, it follows, for each 7, that

S(x+)9(p) = d(xpi+yp) = $(x)P(p:)+P(3)(Ps)
= (@(x)+d(¥))p(Ds)

for every pair x and y in M, because each Mp; has a system of n;Xn; matrix
units for some integer n; with n;=2. Let a=¢(x+y)—¢(x)—@(y) (N) and let
b be the inverse image of ¢ under ¢ in M. Then ¢(bp,)=¢b)d(p;)=ad(p;)=0
for each 7. The injectivity of ¢ tells us that bp,=0 for each 7. Since M is an
AW *-algebra, this implies that b=0 and so a=0, that is, ¢(x+y)=@(x)+d(¥)
for all x and y in M. The rest of the proof is the same as in [2, Theorem 3.10].

Finally, the authors express their thanks to Professor S. Sakai for his valu-
able comments.
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