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Introduction.

We study congruences between Siegel modular forms of different weights by
using differential operators. As an example, we prove the following congruence
between eigenvalues of Hecke operators on 25 and on [d]:

Alm, XR)=m*Am, [4;s])  mod7, (0.1)

which was conjectured in Kurokawa [7]. Here X is the normalized eigen cusp
form of degree 2 and weight 20 which does not lie in the image of the Saito-
Kurokawa lifting and [4,:] is the Eisenstein series of degree 2 and weight 18
characterized as the eigenform satisfying @[4,;]=4,; where @ is the Siegel
@-operator and 4, is the normalized cusp form of degree 1 and weight 18.
Further, A(m, f) is the eigenvalue of the m-th Hecke operator on an eigenform
f. For precise definitions of these two forms and some other congruences, see
§ 4 below.

In Kurokawa [7], congruences of eigenvalues of Hecke operators between
lifted eigenforms are proved by using theory of the Saito-Kurokawa lifting and
the Eisenstein lifting. Our method is different and is as follows. We denote by
M (I",) (resp. M3(I",)) the C-vector space of holomorphic modular forms (resp.
C=-modular forms) of degree n and weight 2. Let d, be the differential operator
introduced by Maass and modified as in Harris [3, 1.5.3], which sets up a
map

O : ]Wf(f'g) —> M5(I).

However, the differential operator 8, does not keep holomorphy, so we use
holomorphic projection P, on M%(I',) defined by Sturm [18, Theorem 1] to
obtain information on a holomorphic constituent. For a subring R of C, let
M(I';)r be the R-module of holomorphic modular forms of degree 2 and weight
k whose Fourier coefficients belong to R. Assume (1/2)RCR in the following.
We put 05=0440r-2 044202 In we prove a certain congruence
modulo (2w—2r—3)I between Fourier coefficients of fg and those of P,(0%f-0%g)
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at the multiples of the unit matrix, where feM,(['y); and g€ M,([",)r with
r=p+q, w=k+I(+2r and I is an ideal of R satisfying (1/2)ICI and containing
all the Fourier coefficients of g at non-zero matrices. This integrality of an
analytically defined map is relevant in our method. (Cf. Remark 1.6.) We denote
by Mi(I';)r the R-module generated by 0%f-0%g where feM,([,)r and ge
M) with r=p+q and w=~k-+/[—2r. In §2, we study the condition such that
holomorphic projection of an element of M%L([,)c is actually a holomorphic cusp
form of weight w. (We note that an element of M7([";)c is not necessarily of
bounded growth in the sense of Sturm [18, (6)].) Taking a suitable element of
M:i(I,)g, we obtain congruences modulo (2w —2r—3)I of Fourier coefficients at
the multiples of the unit matrix between holomorphic eigenforms f and g of
weight w and w—2r respectively. Here, I is an ideal of R depending on f and
g. For passage to congruences of eigenvalues of Hecke operator, we study
their relation in [Proposition 3.3 Our method of proving congruences is gathered
in Finally, concrete examples are proved in §4.

Our results suggest the following. Let feM,([",) and ge M,(I",) be eigen-
forms where £—/[ is a positive even integer. Then under some additional con-
ditions, a suitable divisor d of k+/—(n+1) is likely to provide congruences of
type

AM, fr=r(M)**-D23(M, g)  modd

where »(M) is a multiplicator of MeGSp(2n, Z) and A(M, f) is the eigenvalue
of Hecke operator T({",MI",) normalized as Andrianov [1, 1.3.3] on f. In our
example (0.1), we have 2+[/—(n+1)=20+18—-3=5-7. (The other factor 5 does
not give congruences.) This also fits to degree one case (cf. Swinnerton-Dyer
[19, p. 31, Corollary]).

We remark that there remains much to be done to obtain systematic results
as the degree one case treated by Serre and Swinnerton-Dyer [19], includ-
ing the study of /-adic representations attached to Siegel modular forms.

The results of this paper have been announced in [16]. The author would
like to thank Professor N. Kurokawa for encouragements.

NoTATION. 1. For complex numbers « and 8, we put

_ [ ala—1)---(B+1)B if a—p is a non-negative integer,
e(a, ﬁ)—{ 1 otherwise,
and

1 1 . . o
7, /3)—{ a(a—§>---(ﬁ+7)ﬁ if 2(a—pf) is a non-negative integer,
1 otherwise,

2. For a square matrix 7, |T| and Tr(T) stand for its determinant and
trace respectively. We denote by 7., (resp. Xr>,) the summation over all
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symmetric, semi-integral, positive semi-definite (resp. positive definite) matrices
ts/ 2)

T (of a fixed size). For simplicity, we denote such a matrix T= (t ot
8 2

of size two by (¢4, t,, ts).

3. For each integer n=1, H, denotes the Siegel upper half plane of degree
n. For a C>-function f(Z) on H, satisfying f(Z+S)=f(Z) for all Z=H, and
all symmetric S M(n, Z), we denote its Fourier expansion as f(Z)=>ra(T, Y,
et TrI2  wwhere T runs over all symmetric semi-integral matrices of size n.
Usually f is written in the form f(Z)=Xa’(T, Y, f)e***TrTH  but it is con-
venient for our purpose to write f as the former. If f is holomorphic, a(T,Y, f)
does not depend on Y. In this case, we write a(T,Y, f) as a(T, f) for simplicity.

§1. Differential operators and Fourier coeflicients.

We study some differential operators and their effects on Siegel modular

forms. For a variable Z :(21 23) on H, we put
Z3 2oy
_l FN_ x1 X3 . 1 y3
X=5(z+2)=(]! x)’ <Z Z>—(y y2>
and
0 1 39
d 0z, 2 0z,
Zz \1 2 a8 [
2 0z 0z,

where Z is the complex conjugate of Z, 8/8z;=(0/0x,—i6/0y,;)/2 and i=+/—1.
We define three differential operators on a C>=-function f on H, as follows:

) f 10of
Dy | dZ ' 0z:0z, 4 022’
L f—iTe(Y LidZ )=i ]S’: ,gi

Out [—> |Y|=+2D(|Y | 105 ),
Further, we set for a positive integer 7,
0 S —> Opsar-n " Opse0if .

We understand that 0) is the identity operator. These differential operators
were studied by Maass [9]. In this section, for a T=(¢,, t,, ¢;) as in Notation
2, we put B=zTr(TY) and ¢"=exp 27 Tr (TZ)).

LEMMA 1.1. Let j and k be integers, and let T, B and g* be as above. Then,
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the following operator identities hold:

0 Y7"=1Y |04+j, (L.1)
Do=(a+1)D, (1.2)
and
o (J pi omm\r
Bl —(-2—34*231 Y& (G20). (1.3)

PrROOF. For a C~-function f on H,,
0| Y/ f=|Y |- 2D |Y |FHi-t2f
=Y 704+,f .
We have Dof—oDf= Df, hence Do=(c¢-+1)D. Using 0B/0z,=—irnt,/2 and
0gT /0z,=2mit,qT, we obtain
injt,

aBig"= é]liyz(———z Bj‘qu+27rz'tLquT)

— (_é_ Bj_23j+1)qT_ Q. E.D.

For each integer n=1, I', denotes the Siegel modular group of degree n.
We denote by M,(I",) (resp. M¥(I",), Sx(I",)) the C-vector space of holomorphic
Siegel modular forms (resp. space of C=-modular forms, space of holomorphic
cusp forms) of degree n and weight .. We note that 67 maps MF(,) to
M3..(I,), by Harris [3, 1.5.3]. Further, for any subring R of C, we set

M I De={feMI"s) | a(T, f)eR forall T =0}
and
Srl")r=Mp(I"2)rNS (1)

PROPOSITION 1.2. Let R be a subring (not necessarily containing 1) of C
satisfying (1/2) RCR and let f € My (I'y)p. Then for each positive integer r, we have :
(1) 0if is a Z[1/2])-linear combination of

Y [*e*D%f

where b, ¢ and d are integers satisfying 0=Sc=<b=r, 0=d=<r and b+d=r. More-
over, the coefficient of Y |7f (i.e. in case of ¢=d=0) is given by

(-Dfesrs5-3)

(2) wm%a(T,Y, c°D%f) belongs to the ring R[B] and its degree is not greater
than c.
(3) If ¢=1 or d=1, a(0, Y, g°D?f)=0.
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PROOF. (1) We use induction on ». In case r=1, we get by a straight-
forward computation,

oif=— (k=5 )1V 17/~ (k=3 )I¥ |70+ Df . (1.4

Hence, the assertions hold. Assume (1) for . Since 0. is C-linear and 0;+'=
Or+2:0, it is enough to prove that 0., |Y | 2e°D?f satisfies (1) for r+1 in place
of . Using Lemma 1.1 with Dg°=(¢-+-1)Dg°-1=---=(g¢+1)°D, we have

Busarl V100" D4 f = (ot 2r—b) (kt2r—b— 5 )1V | #0°Df

——%(k+2r—b——;—) Y |-2-1g*1Def+|Y | -%a+1)° DS,
Moreover, if ¢c=d=0, then b must be equal to » and the first term of the above
expression is

—%(k—l—r)(k—l—r—%)lYl'“V.

Thus, we see that (1) holds in case of r+1, too.

(2) Since
a(T, D*f)=Q2ri)**|T|*a(T, f), (1.5)

it is sufficient to show that there exists an F< R[B] whose degree is not greater

than ¢, such that
aT, Y, eq")=F. (1.6)

But this is a direct consequence of [1.3).

(3) In case of d=1, the assertion holds by (1.5} For c¢=1, we see that the
constant term of the polynomial F in vanishes by [1.3). Therefore, setting
T=0, we have B=0 and F=0, so (3) also holds in this case. Q.E.D.

We prepare a formula on the generalized gamma function. From now on,

we set
U= {X:(’;’ f)eM(z, R) [ ——;—ng§% for j=1, 2, 3},
3 2
V={Y:(§: ;}z)eM(Z, R) } Y>0},
dX=dxdx.dx,, dY=dy,dy.dy;,
and

d*Y=|Y|=33dY.
It is known that the measure d*Y is invariant under Y —‘AY A for AcGL(2, R).

LEMMA 1.3. Let my, m, and ms be non-negative integers and a>1/2. Put
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Ia; my, ms,, ms)=SVy1"”y£"2y§”3e“T“Y’IYI"d*Y.

Then:
(1) If ms is odd, I{la; my, my, msy)=0.
(2) If ms is even,

bt )t B 14 ) (- )
Ha; my, my, mg)= & S

I’(a-l—-f— )

PROOF. If Y:<y1, Ve, y3)>0, then (J’u Ve, —y3)>0 also. SO, if N3 is Odd,
Ia; my, my, m;)=0. We assume that m; is even in the following.

We decompose ;Y into a product of the lower triangular matrix T:(i1 ?)
3 2

and its transpose as Y =T -‘T and change variables from Y to T as in Maass
[10, p. 77]. Then we have

F(m1+a+ UL

)

()

2
Ia; my, my, ms)= (rast2a-lp=tids,

0

XSOS- 1ms(B 1) meo-ti -3 pa2gy dt,

rmstat )

— . Mo ayMg,—-LTr¥) Ylad*Y. (17)
r ( 9 +a)
Here, we decompose Y into a product of the upper triangular matrix T = (t(; ;3
2
and its transpose. Since m, is even,
r(m+at+?) . .
(L7)= p -SSot%“"ze“fdtl
My
r ( 9 +a>
x| greemsisasg=t g, "tpse-ddar,
0 0
m 1 1
_ F(7711+a—[—~4>11(m2—{—a+~ —)F( 23 +_2)F(a~——2)
Q.E.D.

We put a brief description on the holomorphic projection. For details, see
Sturm [18]. For feMy(l,), we put
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Pw, T, a(T, ¥, H=Mw, T)| aT, ¥, fe-t=a |y |»=ay  (1.8)

where
M(w, T)“1:SV6—4zTr(TY) lY l w_adY
:I(w—-i- 0,0 0)l47rT,—w+3/2
27 :
We define

MY)y={feMyl,) | P(w, T, |a(T, Y, f)]) converges for all T >0}
and for each feMy(l,)°, we put
P,(f)=2ZPw, T, a(T, Y, f)q".
T>0

Then, P,(f) belongs to the ring of formal power series C[gs, ¢3*1[[¢1, ¢:1]
where ¢;=exp (2zniz;). Assume, moreover, that f is of bounded growth, namely,

[} iy e=re-errmayax <oo

for any positive constant p. Then, P,(f) converges for all Z<H, and belongs
to S,,(I"5). (See Sturm [18, Theorem 17.)

LEMMA 1.4. Let E be the unit matrix and m be a positive integer. For
non-negative integers b, c, ¢1, Cs, €3, d and w satisfying c<b<w—2, we have:
(1) If ¢ is odd, P(w, mE, |Y | Prctteeteaytiyiayls)=(),
2) If ¢, is even,

P(w, mE, |Y | -dzc1tceteaytiyie yis)

= (1.9)
e(w—3, w—b—2)e(w—2, wtcs—b—3 +-5-
where p=(4m)?-c1-c2=C,
@ If T>0,
P(w, T, |Y|°B¢|27iT|%)=(—1)%]4xT |?*+94-¢~¢
5 3
e\w—b—-5+c¢;, w—b—-
G 2) w0

c
01%20( Cl) s(w—g, w—b+c2—»g—) e(w—3, w—b—2) .

ProoF. We have (1) by Lemma 1.3(1). Suppose that ¢, is even. Then
using Lemma 1.3/(2), we have:
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M(w’ mE)§V7tCI+cg+c3l Y I —byglyggyg;;e—mm’l‘r(l’) I Yl w-3/2 /%Yy

(Do (§ ro-s-r(e-3)

Now, we show [1.10). Let U=GL(2, R) be a positive definite matrix such that
T=U-*U. By the substitution Y—{4x)"**U-*YU-!, we have:

P(w, T, |Y|*B¢|27:iT|9)

=I(w—%; 0, 0, 0>_1(—1)d|47rT|"+d4‘d‘°SVTr(Y)”IYI w212 TrD) Jxy

_ i L e brdf-d-c 4 . __?l.

-—I(w—z,O, 0, 0) (—1)%|4x T |44 z(c)z(w b= 1 € 0).
Hence, we have [(1.10) by Lemma 1.3/(2). Q.E.D.

THEOREM 1.5. Let R be a subring (not necessarily containing 1) of C satisfy-
ing 1/2)RCR. Let feM,I')r and g€ M, ,(I')r with ki+ky>4. Suppose that
I s an ideal of R satisfying
(1) 1/2)IcCl,

@) a(T, gyl for all T=+0.
Let r, be a non-negative integer and r, be a positive integer. We put r=ri+r,
and w=ki+ky+2r. Then for any positive integer m,

(2ni)"Ea(mE, P,@if -0pg)—vm*a(mE, fg) (1.11)

belongs to Qw—2r—3)I, where §=e(w—3, w—r—2)e(w—5/2, w—r—3/2) and y=
ﬂ(k1+7’1—1, k1—1/2)77(k2+7’2——1, k.—1/2).

PrROOF. By Proposition 1.2 and with b=r and c¢=c¢;=c¢,=c¢,=0,
(1.11) is a Z[1/2]-linear combination of

n~¥EP(w, mE, a(T,, f)a(T,, g)IYI‘°Ble§2(27ri)2d|T1I‘“ITzld2) (1.12)

satisfying
bj—!—dj:rj, 0§9j§bj§?’j and 0§d1§7’j for ]:1 and 2,

dzzl or e2§ly
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T:1+Ty=mkE, T,+0, T, T,=0

where B,=x Tr(T,Y), Bo=nTr(T,Y), b=b,+b, and d=d,+d,. Since (1/2)RCR
it is sufficient to show that

n¥EP(w, mE, mrarerteatas| Y| Py yge i) (1.13)

exists and that belongs to (2w—2r—3)R when the following conditions
are satisfied :

b+d=r, (1.14)
¢y, Cgy €320, 0= tcotes<b<r, ¢, 18 even, (1.15)
at least one of ¢y, ¢, ¢s, d is positive. (1.16)

By (1.13) exists since w—2—b=2+r>0. If @a—pB and S—7 are non-
negative integers, by the definition of ¢, we have e(a, y)e(a, B)'=¢(f—1, ).
Using and (1.14)-(1.16), we see that is equal to

c311

(4m)”'e 27

)s(wb3wr2)

><s(w+%—b+c1—g, w5 —b— )( +5 b+c2——g—, w—~r——%),

(1.17)

where b'=2b—c,—c,—c;=0. By [1.14), d>0 is equivalent to b<r. Thus, if at
least one of d, ¢, cs is positive, w—r—3/2 divides the fourth s-factor of (1.17).
Otherwise, by and (1.16), we have ¢,>0, ¢;=0 and b=r. In this case,
w—r—3/2 divides the third e-factor of (1.17). Thus belongs to (w—r—3/2)R
CQ2w—2r—3)R. Q.E.D.

REMARK 1.6. The key point of the proof is that the constant p of (L.9) is
an integer under [(1.I5). This yields the integrality property of an analytically
defined C~-map (differentiation followed by holomorphic projection). We note
that restriction to the coefficients at the multiples of the unit matrix simplify
the proof of Lemma 1.4(2). Similar integrality seems to hold at an arbitrary
half-integral positive semi-definite matrix.

§2. Cuspidal conditions on holomorphic projections.

If feMz(',) is of bounded growth, then P.(f)=S,.([",). However we must
apply P, to general f in some cases. In this section, we show that P,(f)S.([)
for certain types of f=M%([',) constructed by using differential operators. Our
method is based upon Sturm [18, § 4], where boundedness is studied for a product
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of a holomorphic modular form and a nonholomorphic Eisenstein series. For
simplicity, we put d;=¢(k+r—3/2, k—1/2)-'6;. We denote by C,, C,, -+ suitably
selected positive constants independent of T and Z.

LEMMA 2.1. For non-negative integers k and r, let My, .(I"s) be the C-vector
subspace of Mg..(I';) generated by

5;%!11-5;%/12

where kytky=k, ritr.=r (ry, r.20), he My, (I's) and hoeMy,(I'y). Let f, g
Mo (I'y).  Assume that a(T,Y, g)=0 for all |T|=0. Then we have:

O f@DI<CATHATTHAT+HA7F) 2.1)
for all Z=H, where A, and A, are eigenvalues of Y.

2 1gDI<LGlY | (2.2)
for all Z<H,.

Proor. Let 2=I",\H, be the fundamental domain such that Z=X+/Y
implies Y>C,E and that Y is a reduced matrix. (Cf. Maass [10, p. 169].)
Then we have

1 ' 3
7(t1y1+tzyz)§Tr (TY)= ?(hyrf‘fzyz)

and hence
|TY | =(Tr(TY))?

for T=(t,, ts, t;)=0. Assume that heM,(,). Using Proposition 1.1, we see
that a(T, Y, d3h) is a C-linear combination of

Y| 2Tr(TY )| T|%a(T, h)

with b+d=r and 0=<c¢=<b=<r. By the same method as Maass [10, pp. 184-185],
we have
la(T, )| TY|¢Tr(TY)|qT| =C,e~"Tr T (2.3)

Hence, we obtain |Y|"|03h(Z)| <C; for all ZQ. Using r,-+7.=r, we see that
the same is true for f, g& M}, (I'y). Setting o(Z)=|Y |*/**7| f(Z)| and a=Fk/2
in Sturm [18, Proposition 2], we have (2.1). On the other hand, by the
similar method to Maass [10, pp. 191-192] vyields

|g(Z)] <Csexp(—Ci/TYT)

for all Z€Q. Therefore, setting ¢(Z)=|Y [*/**"|g(Z)| and a=0 in Sturm [18,
Proposition 2], we have (2.2). Q.E.D.

LEMMA 2.2. For feM,I's), we have Py,50:f)=0 and P;.,(0%f)=0.
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PRrROOF. By a straightforward computation, we have and
1 1 1 1\ 1
2f— ——— -2 _ . —_ -2
of=1g1(k+1 k=g )IY | S+ (erg) (k=g ¥ 172 f

+—i—(k——-§—)(k+%)l}’l‘202f—%(k+2)(k+%)|1/ |-1Df

—-(k+—%—)|Yl‘lon+D2f. | 2.4)

We have a(T, D'f)=1|2#iT |7 a(T, f), a(T, e D'f)=—2|27iT |\ Ba(T, f)(j=0) and
a(T, o*f)=(—B+4B%»a(T, f) by [1.3). Using [Lemma I1.4(3), we see that
P(k+2, T, a(T, Y, d0,f)=0 and P(k+4, T, a(T, Y, 6%f))=0 for all T >0.
Q. E.D.
The next theorem gives us sufficient conditions so that Pj..(f) may belong
t0 Siior(ls) for f&Miue ().

THEOREM 2.3. Let feMy) and geM,(’,) with w>4 where k+i=w.
Let r and s be non-negative integers. Then we have the following :
(1) 0%f-03g is of bounded growth for r+s=3. Especially, P, .:{go%f) belongs to
Swrarls) for r=3.
(2) If at least one of f and g is a cusp form, then 0%f-0ig is of bounded
growth for all v, s=0,

(3) Puio(g0rf+fo,g) belongs to Syio(l's). Especially, Papis(f0rf) belongs to
Sorse(ly).

(4) Puya(g0if+20,f-0,g-+f0%g) belongs to Syealls).
Proor. In view of [Lemma 21, we have only to check that the integral
SUSV](SZf(X—l-Z’Y)l l5§g(X+iY)I |V |wretrso—Sp-eTrD gy X

converges at |Y |=0 since ¢ *T*¥ is a rapidly decreasing function as |V |—o0
for any fixed p>0. Since d;f-dig belongs to M5 ¢+s(I's), by Lemma 21 (1),
we see that there exist positive constants C,, C, such that

[0%f(X+iV) | [0ig(X+iY)| <CelY | -0+ for Y <C,E. (2.5)

Hence, the same argument as the proof of Sturm [18, Corollary 2] proves (1).
(Note that w+2(r+s)—3—(w-+r+s)>—1 for r+s>2.) Without loss of generality,
we may assume that g is a non-zero cusp form in the proof of (2). Then, by
Lemma 2.1 (2), we have

|08/ (X+iY) | 101g(X+iY)| <Cypl Y |~ FHres+tin for Y <CyuE

instead of (2.5). Noting /=10, we see that (2) holds by the same way.
For (3), we put F=g0,f+f0,g—0.,fgs M3..(I";). By [1.4), we have
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a(0,¢ 0), Y, F)=0 for all t=0. Using a(UTU,Y, F)=|U|%a(T, UY'U, F)
for UeGL(2, Z), we see that a(T, Y, F)=0 for all |T|=0. Hence, by (2.2), F
is of bounded growth. But P,.,(0,fg)=0by Lemma 2.2. Therefore P, ,(g0:f
+f0,g) itself belongs to S, 45(I"s). Similarly, using [2.4), we see that P, .,(g0if
+20,f-0,g+f0tg—0} fg) belongs to S,.44(I). By [Lemma 2.7, we have (4).

Q. E.D.

§3. Congruences of eigenvalues and Fourier coefficients.

If feM, (")) is a normalized elliptic eigenform, then A(m, f)=a(m, f) and
the study of congruences for eigenvalues of Hecke operators is equivalent to
the study of congruences for Fourier coefficients. In case of Siegel modular
forms of degree =2, the situation is rather complicated, but a similar relation
exists. Here we study the degree two case. For each integer m=1, T(m):
M, (I",)—M,(I",) denotes the m-th Hecke operator. If n<2 and f is a non-zero
eigen function of all Hecke operators T (m), we call f an eigenform and denote
the eigenvalue of T'(m) by A(m, f).

THEOREM 3.1. Let R be the ring of integers of an algebraic number field.
Let feMyI',) be an eigenform and g=M,(['y) be any form with w=k. We
assume that a(mkE, f) and a(mE, g) belong to R for all m=1. Let p be a prime
ideal of R and suppose that there exists a positive integer e such that

m*~*a(mE, f)=a(mE, g) mod p* (3.1
for all m=1. Then, for all m=1, we have
m¥~* A(m, fla(E, f)=a(E, T(m)g) mod p°. (3.2)

PROOF. From Proposition 2.1.2 and Theorem 2.3.1 of Andrianov [1], we
have for a prime power p*® and for a positive integer n which is prime to p,

a(n2'E, g)+2%a(n2'-'E, g) if p=2,
a(nE, T(p)g)=1 a(np'E, g)+2,21311>“”“2“'a(n1>""'E, g) if p=1 mod4,
=
a(np'E, g) if p=3 mod 4.
3.3
The same formulas hold for f also with % instead of w.
We prove that if (m, n)=1, then
a(nE, T(m)g)=mn)®~*A(m, fla(nE, f) mod p°. (3.4)

We have by setting n=1 in [3.4). We prove by induction on the
number of primes dividing m. In case of m=1, (3.4) certainly holds because of
(3.1). Next, we set m=p*m’ with (p, m")=1. We note that T(m)=T(p)T(m’).
Hence, using (3.3), if p=2 for example, we have
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a(nkE, Tm)g)=anE, T2HT(m")g)
=a(n2'E, T(m")g)+2%-2a(n2'-'E, T(m')g).

By the induction hypotheses and the multiplicativity of eigenvalues, this is
congruent mod p°® to the following:

(mn)*~*A(m’, f)(a(n2'E, f)+2*-2a(n2'-'E, f))
=(mmn)*~*A(m’, f)anE, T(2"f)
=(mn)*~*A(m, fa(nk, f).

The same is true for other primes p also. Hence we have for all co-prime
m and n. Q.E.D.

COROLLARY 3.2. Under the same assumptions and notations, we further
assume that:
(1) g is also an eigenform,
(2) a(E, g)#0 mod p.
Then,
m¥=*A(m, f)=2A(m, g) mod p° (3.5)
for all m=1.

Proor. By (3.1) with m=1, a(E, f)=a(FE, g) mod p°, which are units in R,
(the localization of R at p) by the assumption (2). Noting that A(m, f) and
A(m, g) are algebraic integers by Kurokawa [8, Theorem 1 (2)], we see that
implies [3.5) as a congruence in R. Q.E.D.

Now, we study a suitable condition which leads to the above congruence
(35). For example, when w=£k+2, if a(T, g—(1/4x*)Df) belong to p° for all
T=0, then (3.1) is satisfied. Hence we have the congruence under addi-
tional assumptions. But such a condition requiring all the Fourier coefficients
seems to be too restrictive for applications. So, in below, we
formulate a condition which requires the Fourier coefficients at mE (m=1) only.
For this purpose, we prepare a proposition.

PROPOSITION 3.3. Let {f, -+, fo} (n=dimS(I"y)) be an eigen basis of S,([,).
Let K be an algebraic number field, Ok its ring of integers, » a prime ideal of
Ox and R the localization of Ok at p. Denote by L the composite field of K and
QA(m, f))Im=1) for j=1, .-, n. Suppose that there exist positive integers my,
e My Such that

Nypix([(A0ms, f))igi,js)EQ mod p, (3.6)

where Ni;x denotes the norm mapping from L to K. Let g&S,(I"s)r and assume
that



140 T. SATOH

a(E, T(m)g)=0 mod ¢ (3.7)
for i=1, ---, n with an integer ¢>0. Then we have:
amE, g)=0 modp®  for all m=1.

Proor. We denote by O the integer ring of L.

First we remark the following fact. Let S be a localization of O, and
feM,(,)s be an eigenform. Then, if a(E, f)=0 mod I for an ideal I of S,
we have a(mE, f)=0 modI for all m=1. Since A(m, f) are algebraic integers
in O, this fact is obvious from the following equality :

3005 T) _ ok, pres—2er et EAD gy

which is obtained by setting D=-—4, X=trivial character, N=N,=F in Theorem
2.4.1 of Andrianov [1].

Now, write g= 27, ¢;f; with ¢;eC. Let P be a prime ideal of O, lying
above p and A be its ramification index. Then by

él(mi, fejalE, f)=0  mod P*. (3.9)

By [3.6), [(A0ms, f))1=£0 mod P. Therefore, [3.9) has a unique solution modulo
PBer in the localization of Oy at P and, moreover, c;a(E, f;)=0 mod P°*. Since
¢;f; is an eigenform (or is equal to 0), we have, as was remarked above,
cjamE, f=0 mod P°* for all m=1. So are a(mE, g). But a(mE, g)R and
this yields e(mFE, g)=0 mod p¢ for all m=1. Q.E.D.

THEOREM 3.4. Let K be an algebraic number jield, Og its ring of integers,
p its prime ideal not dividing the ideal (2), and R the localization of Og at p.
Let feEMy- () and g€S,(I)r be eigenforms with 4<w—2r<w. Suppose
that all the following conditions (1)-(6) are satisfied:
(1) There exist positive integers my, -+, My, such that

Nz (1A, fidisi, jsn])FEO mod p

where n=dim S, (") and {f., -+, fx} is an eigen basis of S,(I'y) and L is the
composite field of K and Q(A(m, f;)|m=1) for j=1, -, n.

(2) There exist a positive integer e and 2s (s=1) modular forms hy, & My, ,(I"2z,
ho,e € My, ,(I's)r with ky+ke=w—2r,7,, 20,7, 21 and 7y, +7rs,=r for
t=1, -+, s such that

a(mE, f)Ea(mE, é»chl,thu) mod p°
t=1

for all m=1, where
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vc:ﬁ<k1,t+7’1,r‘l, kl’,——-—é—)n(kz’r}_rz,t_l, kz,t“é‘)-
(3) p® divides Qw—2r—3)I where I is the ideal of R generated by a(T, hy ;) for
T=0, T+0 and t=1, ---, s.
(4) a(E, f)=a(E, g) mod p® and a(E, )70 mod p.
(B5) m¥A(m;, f)=A0m;, g) mod pé for 1=1, -, n.
(6) i1 Pu(0ftthy,-0%2thy ) belongs to Sy, (1),
Then we have:

m¥ A(m, f)=A(m, g) mod p° for all m=1. (3.10)

Proor. For each ¢, put

5 3\, .
— w—r—?)(zmrzrpw(a;};ghl,t-a;g;ghz,o.
Then, by we see that

a(nlE, hg’ t)—-ytm”a(mE, hl’ th2, ;)

hs, i =e(w—3, w—r—2) e(w

belongs to 2w—2r—3)I. (See the definition of the ideal I in (3).) We put
hy=3%-1hs;. By the condition (6), h; belongs to S, (I";). Using (2) and (3), we

have
a(mE, hy))=m*a(mE, f) mod p°.

Hence, by [Theorem 3.1, we have (particularly)
a(E, Tm)hy)=miA(m,, fa(E, f) mod p°.
Therefore, using (4) and (5), we obtain
a(E, T(m)(g—he))=Am,, g)a(E, g)—miAmy, fla(E, f)  mod p°
=0 mod p°.

Hene by [Proposition 3.3 and the assumption (1), a(mE, g)=a(mE, hg)=m* a(mE, f)
mod p¢ for all m=1. Using with (4), we have (3.10). Q.E.D.

REMARK 3.5. By Igusa [4], if p divides neither the ideal (2) nor the ideal
(3), then any element of M,(I',)z is an R-linear combination of ¢l X% where
a, b, ¢ and d are non-negative integers and 4a-+6b+10c+12d=k. (It is convenient
in numerical computation to use 4X,, and 12X,, instead of X;, and X;,.) If »=3, it is
possible to put all », ,=0 without violating the condition (6). Suppose moreover
that p° divides the ideal (2w—2r—3)R and that p does not divide rational primes
less than or equal to 2r+21. Then, selecting h, . from ¢, ¢4, X0 and X, we
see that v, is a unit in R. Therefore, conditions (2) and (3) are satisfied in this
case.
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§4. Examples.

We prove some congruences between Siegel modular forms of degree two
and different weights by using For simplicity, we shall omit sub-
script ¢t in case of s=1. We note that, in the situation of it is
enough to calculate values in R/p°R=0gk/p°O to prove congruences modulo p°.
This device reduces computational complexity.

First, we recall some facts on Siegel modular forms of degree 1 and degree
2. For an even integer k=4, we denote by FE,=M,([’,) the Eisenstein series
normalized to a(0, E;)=1 and, for dimS,(/")=1, we denote by 4, the normalized
eigen cusp form of weight 2. The graded C-algebra of even weight B0 Myr(I)
is generated by four elements. They are ¢, M), @& MI), X10ES1([s)
and X,,€S,,(I",). They are uniquely determined by the following normalizing
conditions : a(0, ¢,)=1, a(0, ¢o)=1, a((1, 1, 1), 4X,,)=—1 and a((1, 1, 1), 12X;5)=1.
We can calculate their Fourier coefficients using the method of Maass [11, Sitze
1 and 2]. In general, we denote Eisenstein series of weight 2 and degree 2 by
¢ It is known that @¢p,=E,, where @ is the Siegel P-operator.

There are two liftings from degree 1 to degree 2 for each even integer
k=4. The one is Eisenstein lifting [ 1: M,(I"))—M,([";), which is defined by
the generalized Eisenstein series attached to elliptic modular forms. If fe M,.(I")
is an eigenform, [f] is uniquely determined by the conditions that @[ f]=f
and that [f] is an eigenform. In this case, we have A(p, [f1)=1+p* DA, f)
for a rational prime p. The other is the Saito-Kurokawa lifting ¢, : M,,-(I";)
—M,(I'";) constructed by Maass [12, 13, 14] and Andrianov [2]. As for eigen-
values, we have A(p, a.(f)=p*2+p**+A(p, f) for an eigenform fe&M,,_,(I").
As to My I",), we know M,[')=E,@')PDS,I",) with E,([")=CE,. In the
degree two case, these two liftings give rise to the following decomposition :

My(I)=EXIs) D EF(I) D SKI ) D SH(T),

where E}(l';)= [Ek(Fl)]:C‘SDk, E{J(Fz): [Sk(rl>]; S{e(FZ):gk(Szk—z([yl)) and
SE(I,)=S¥I",)* (orthogonal complement of Si(/",) in S,(I",) with respect to the
Petersson inner product). We may call an element of S¥(I",) “a generic form”

since it does not lie in the image of above two liftings. It is shown by Kuro-
kawa [5, §5] that

Sto(I)=CXP D CARP
SiI)=CXR
where X’ (=1, 2 and 3) are eigenforms defined by
150 = 1840% 100406 —12(7699++/ D )X 1203 — 16588800(8021+ /D)%%,
= 1840X10904¢.3— 12(7699— /D X125 —16588800(8021 — /D)%,
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and
x2((3)) =4x10§04(Ps"' 12112@3+ 28569600X§0

with D=63737521. We note that X{ has the minimal weight 20 among generic
forms.

THEOREM 4.1. The following congruence holds for all m=1:
Alm, X)=m*A(m, [d5]) mod 7. 4.1)
REMARK. This congruence seems to be valid with mod 49, as was conjec-

tured by Kurokawa [7]. In the following, some computations are done in modulo
49 to clear the situation.

PrOOF. Since @([4;s]—[4::]¢s)=0, there exist @, f=C such that
7[A18]:7[A12]906+af18+‘8g18; (4.2)

where f1s=42,00% and gis=12X;,¢0,. We use the method of Kurokawa for
calculating @ and 8. Let S be (1,1,1). We apply T(2) on and compare
the Fourier coefficients at £ and S. Then, we have:

a(a(2S, f1s)—4a(S, fis)+B(a(2S, g1s)—2a(S, gis)
+(a(2S, T[di]ps)—Ra(S, T[4::1pe))=0,

a(a2E, fig)—pa(E, f1)+B(aE, gis)—palE, gis)
+(a2E, T[4:.]ps)—pa(E, T[4::1¢6))=0,

where
A=A2, [4.5])=—34603536,

p=A—2"=—34669072.

By numerical values listed in Kurokawa [5] and Resnikoff-Saldafia [15], we
have the following table.

T . E S 2F 25
a(T, fis) ‘\ 2 —1 263008 —24240
a(T, g1s) 10 1 1902560 32016

a(T, 7[4::]ps) —5814 92 —66732969% 3432000

Hence we have
a=80136/143=7  mod 49,

5=66960/143=18  mod 49.
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Here we consider these congruences in Z;,. Observing these values, we put,
in as follows: K=Q, p=(7), e=1, w=20, f=23-7[4,s], g=12)3,
s=2, 11,,=0, ry,,=101=1, 2), by, 1=k, =12, hl.1:h2,2:7[A12:|+18'12112’ kie=Fks1
=6, hy,=11¢, and h,,=23¢p,. Since all the Fourier coefficients of ¢, 12X,
7[4:], f1s, g1s and AP are rational integers by Igusa [4, Theorem 1] and Kuro-
kawa [6], all the Fourier coefficients of f, g, h,,, and h, . (t=1, 2) belong to
R:Zm-

Now we can verify that all the conditions (1)-(6) of are satisfied.
(1) We take m,=1, my=2, m;=9 and f;=X for j=1, 2 and 3. We put D=
63737521. Then using Kurokawa [5, § 7], we have

1 1 1
[(A0miy fidrsi.jssl =|5+64/D 5++/D 6 mod 7
2+vD 2+64/D 2
=2+/D  mod 7.

Since, Ngwpy/q(2/D)=—4D=0 mod 7, (1) is satisfied.
(2) By the definition of h,, and h,,, we have

é vihy ohe e =227T(T[ 412 ] s+ 18- 12X1506) mod 49
=23(T[4s]—af 1) mod 49.

Using @=0 mod 7 and fi,= My ([s)z, we see that (2) is satisfied.
(3) In our case, 2w—2r—3=35=5.7. Since h, €M, (['»)r for t=1 and 2, we
have Qw—2r—3)IC7R.
(4) From values of @ and 8, we have a(E, 23-7[4,3])=2 mod 49, which is con-
gruent to a(F, 12X5) mod 49.
(5) By values in Kurokawa [5], we have A(m, X§)—m?®A(m, [415])=0 mod 49 for
m=2 and 9 (cf. Remark 4.2 below). So condition (5) is satisfied (for mod 49 also).
(6) We have hy,10:hs 1Ry, :010hs 2=(253/2)(@6015h 1,1+ Iy, 106¢¢). Using [Theoreml
2.3(3), we see that the condition (6) is satisfied.

Thus, by [Theorem 3.4, the congruence [4.1) is proved. Q.E.D.

REMARK 4.2. We have: 2A(m, X{)—m?A(m, [4.5])=2°-3-72.2089, 2¢-3¢.72.
26140973, —212.3%-72.20287-92333 and 2°¢-38-72-139-5814268161029177 for m=2, 3, 4
and 9, respectively. Hence modulo 49 version of the congruence holds for
all m=2%3" with non-negative integers a and b.

Our next examples can be proved by applying Theorem (B) of Kurokawa
[7], which uses the theory of the Saito-Kurokawa lifting ¢, to the following
congruences :
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Am, d)=m?i(im, E) mod 5,
Am, dy)=mA(m, EL) mod 17,
Am, dy)=mtA(m, E,,) mod 19.

Here we prove the corresponding congruences independently from the above
congruences.

THEOREM 4.3. The following congruences hold for all m=1:

A(m, Xi0)=mPA0m, @s) mod 5, 4.3)
Am, Xip)=m*A(m, ¢s) mod 17, (4.4)
Alm, X1 )=m°2(m, @s) mod 19. (4.5)

PrOOF. In the proof of (4.3), we use [Theorem 1.5 and with
a slight modification. We put K=Q, y=0), R=Z,, s=1, h;=¢, and h,=5"¢..
Then, h, does not belong to M,(I,)rs. Taking into account that 5 divides
a(T, ¢,) for T+#0, we see that a(Ty, hy)a(T,, h,)eZ for T,+T,=mE under
m=1 in (1.12). Hence we see that belongs to (2w—2r—3)R and conse-
quently we have Further we put f=14-5"¢, g=7-4%,, w=10,
r=1, r;=0, r,=1, e=1, and k,=k,=4. Noting dim S;,(/’;)=1, we see that con-
ditions (1) and (5) are satisfied with m;=1. Using ¢i=¢s, we see that f=14h,h,,
hence we have (2). In our case, 2w—2r—3=15 and a(E, f)=a(E, g)=4 mod5,
which prove (3) and (4). The condition (6) holds because of [Theorem 2.3(3).
Therefore, (4.3) is proved.

In the proofs of (4.4) and (4.5), there is no need of modification as above.
We put K=Q and k; ,=4 for j=1, 2 and all t. We note that ¢i=@s= M;([ )7
and a(E, ¢5)=175680. For (4.4) we put s=2, p=(17), w=12, r=2, r,,;=0, r, ,=2,
r1,0=V2,0==1, Ny 1=hy 2=y, hs 1=T¢,, hs =%, f=8¢p; and g=5-12X;,, then we
have 5-(9/2)-4-(7/2)=(4-(7/2))*=9 mod 17 and a(E, f)=a(E, g)=16 mod 17. Also
we see that

2 441
t§1 ARY) 1, (052 thy, = T (90483§04+(a4§04)2) .

For (4.5) we put s=1, =3, r,=0, r,=3, p=(19), w=14, hy=h,=¢,, f=2¢s and
g=6-4%,,, then we have 6-(11/2)-5-(9/2)-4-(7/2)=2 mod 19 and a(E, f)=a(E, g)=
12 mod 19. Hence, in both cases, conditions (2) and (4) are satisfied. For (3), we
have p=2w—2r—3). Again observing dimS,,(/";)=dimS,,(I",)=1, we have (1)
and (5) by taking m,=1. Using [Theorem 2.3(4) and (1), we see that (6) holds.
Therefore all the conditions (1)-(6) of are satisfied.

Thus, the congruences (4.3)-(4.5) are proved. Q. E.D.
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