
J. Math. Soc. Japan
Vol. 38, No. 1, 1986

On $Z_{p}$-extensions of real quadratic fields

By Takashi FUKUDA and Keiichi KOMATSU

(Received Sept. 18, 1984)

\S 0. Introduction.

Let $k$ be a finite totally real extension of $Q$ , and $P$ an odd prime number.
Concerning the Greenberg’s conjecture (cf. [2]) which states that Iwasawa
invariants $\mu_{p}(k)$ and $\lambda_{p}(k)$ both vanish, we have obtained some results in the
previous paper [1]. The purpose of this paper is to extend the results in our
previous work.

For a finite algebraic number field $K$, we denote by $h_{K},$ $C_{K}$ , and $E_{K}$ the
class number of $K$, the ideal class group of $K$, and the unit group of $K$, re-
spectively. We denote also by $|X|$ the cardinality of a finite set $X$.

In the following, we assume that $k$ is a real quadratic field and $\epsilon$ denotes
the fundamental unit of $k$ . Let $P$ be an odd prime number which splits in
$k/Q$, and $\mathfrak{P}$ a prime of $k$ lying above $p$ . Take $\alpha\in k$ such that $\mathfrak{P}^{h_{k}}=(\alpha)$ . We
define $n_{1}$ (resp. $n_{2}$) to be the maximal integer such that $\alpha^{p-1}\equiv 1(mod p^{n_{1}}Z_{p})$

(resp. $\epsilon^{p-1}\equiv 1(mod p^{n_{2}}Z_{p})$). Note that $n_{1}$ is uniquely determined under the
condition $n_{1}\leqq n_{2}$ . For the cyclotomic $Z_{p}$-extension

$k=k_{0}\subset k_{1}\subset k_{2}\subset\cdots\subset k_{n}\subset\cdots\subset k_{\infty}$ ,

let $A_{n}$ be the p-primary part of the ideal class group of $k_{n},$ $B_{n}$ the subgroup
of $A_{n}$ consisting of ideal classes which are invariant under the action of
$Ga1(k_{n}/k)$ , and $D_{n}$ the subgroup of $A_{n}$ consisting of ideal classes which contain
a product of ideals lying over $p$ . Let $E_{n}$ be the unit group of $k_{n}$ . For $m\geqq n\geqq 0$,
$N_{m.n}$ denote the norm maps. We fix a topological generator $\sigma$ of $G(k_{\infty}/k)$ .
Let $\zeta_{p}$ be a primitive $p$ -th root of unity, and $A_{0}^{*}$ the p-primary part of the ideal
class group of $k(\zeta_{p})$ . Our main theorems are

THEOREM 1. Let $k$ be a real quadratic field and $P$ an odd prime number
which splits in $k/Q$ . Assume that

(1) $n_{1}=1$ , and
(2) $A_{0}=D_{0}$ .

Then, for $n\geqq n_{2}-1$ , we have $A_{n}|=|D_{n}|=|D_{0}|\cdot p^{n_{2}-1}$ .
Concerning the Iwasawa invariants $\mu_{p}(k),$ $\lambda_{p}(k)$ and $\nu_{p}(k)$ , we obtain the

next corollary.
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COROLLARY. Under the same assumption as Theorem 1, we have $\mu_{p}(k)=$

$\lambda_{p}(k)=0$ and $\nu_{p}(k)=\nu+n_{2}-1$ , where $\nu$ is the integer such that $|A_{0}|=p^{\nu}$ .
THEOREM 2. Let $k$ be a real quadratic field and $p$ an odd prime number

which spliis in $k/Q$ . Assume that
(1) $2\leqq n_{1}<n_{2}$ ,

(2) $|A_{0}|=1$ , and
(3) $A_{0}^{*}$ is an elementary p-abelian group.

Then, for $n\geqq n_{1}+n_{2}-2$ , we have $(A_{n} ; D_{n})=p^{n_{1}- 1}$ , $D_{n}|=p^{n_{2}- 1}$ , and $A_{n}|=p^{n_{1}+n_{2}- 2}$ .

COROLLARY. Under the same assumption as Theorem 2, we have $\mu_{p}(k)=$

$\lambda_{p}(k)=0$ and $\nu_{p}(k)=n_{1}+n_{2}-2$ .
REMARK. Note that $1=n_{1}<n_{2}$ implies $A_{0}=D_{0}$ . Hence, the assumption ( $2\rangle$

of Theorem 1 is essential only when $n_{1}=n_{2}=1$ and $|A_{0}|\neq 1$ .

\S 1. Proof of theorems.

We first refer to the following proposition.

PROPOSITION 1 (cf. Proposition 1 [1]). Let $k$ be a real quadratic field and
$p$ an odd prime number which spljts in $k/Q$ . Then, for $n\geqq n_{2}-1$ , we have
$|B_{n}|=|A_{0}|\cdot p^{n_{2}-1}$ .

LEMMA 1. Let $k$ and $p$ be as in Proposition 1. Then,

(1) $D_{n^{k}}^{hp^{n_{2}-n_{1}-1}}\not\subset A_{n}^{\sigma-1}$ for $n\geqq n_{2}-1$ , and

(2) $D_{n^{k}}^{hp^{n_{2}-n_{1}}}\subset A_{n}^{\sigma-1}$ for $n\geqq n_{2}-1$ .

PROOF. Let $P=\mathfrak{P}\mathfrak{P}’$ be the prime factorization of $p$ in $k$ , and $\mathfrak{P}^{h_{k}}=(\alpha)$ for
$\alpha\in k$ . Let $\mathfrak{P}_{n}$ be the prime of $k_{n}$ lying above $\mathfrak{P}$ . (1) Assume that
$D_{n^{k}}^{hp^{n_{2}-n_{1}-1}}\subset A_{n}^{\sigma-1}$ . Then, $\mathfrak{P}_{n^{k}}^{hp^{n_{2}-n_{1}-1}}=I_{n}^{\sigma-1}(\alpha_{n})$ for some ideal $I_{n}$ of $k_{n}$ and

$\alpha_{n}\in k_{n}$ . Hence, $\alpha^{p^{n_{2}-n_{1}-1}}=\pm N_{n,0}(\alpha_{n})\epsilon^{m}$ for some integer $m$ , where $\epsilon$ is the
fundamental unit of $k$ . Now, $N_{n,0}(\alpha_{n})$ is $\mathfrak{P}’$-adic $p^{n_{2}-1}$-th power for $n\geqq n_{2}-1$

by local class field theory, and so is $\epsilon^{m}$ by definition of $n_{2}$ . But $\alpha^{p^{n_{2}-n_{1}-1}}$ is
just $\mathfrak{P}’$-adic $p^{n_{2}-2}$-th power. It is a contradiction. (2) By definition of $n_{1}$ and

$n_{2},$
$\alpha^{(p-1)p^{n_{2}-n_{1}}}$ and $\epsilon^{p-1}$ are both generators of $1+p^{n_{2}}Z_{p}$ . Hence, if we put

$x=\alpha^{p^{n_{2}-n_{1}}}\epsilon^{m}$ , then $x^{p- 1}\in 1+p^{n+1}Z_{p}$ for some integer $m$ . Then, by local class
field theory, $x$ is a $\mathfrak{P}’$-adic norm for $k_{n}/k$ and also $\mathfrak{L}$-adic norm if $\mathfrak{L}$ is a prime
of $h_{n}$ prime to $p$ . Hence, by the product formula of the norm residue symbol
and Hasse’s norm theorem, $x$ is a global norm. Let $x=N_{n,0}(\alpha_{n})$ for some $\alpha_{n}\in k_{n}$

and put $I_{n}=\mathfrak{P}_{n^{k}}^{\hslash p^{n_{2}-n_{1}}}(\alpha_{n})^{-1}$ . Then,
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$N_{n,0}(I_{n})=(\alpha^{p^{n_{2}-n_{1}}}N_{n,0}(\alpha_{n})^{-1})=(\epsilon^{-m})=(1)$ .

Hence, $I_{n}=J_{n}^{\sigma-1}$ for some ideal $J_{n}$ of $k_{n}$ .

We consider $A_{n}$ as a $Z_{p}[G(k_{\infty}/k)]$ -module.

LEMMA 2. Let $k$ and $P$ be as in Proposition1. If $|A_{0}|=1$ and $\rho\in 1+pZ_{p}$ ,
then $A_{n}/A_{n}^{\sigma-\rho}$ is a cyclic group for all $n\geqq 0$ .

PROOF. We denote also by $\sigma$ the restriction of $\sigma$ to $k_{n}$ . Let $L$ be the
intermediate field of the Hilbert p-class field of $k_{n}$ which corresponds to $A_{n}^{\sigma-\rho}$

and put $X=G(L/k_{n})$ . By class field theory, $X\cong A_{n}/A_{n}^{\sigma-\rho}$ . Hence, if $\tilde{\sigma}$ denotes
an extension of $\sigma$ to $L$ , then $\tilde{\sigma}^{-1}\tau\tilde{\sigma}=\tau^{\rho}$ for $\tau\in X$ . If $M$ denotes the intermediate
field of $L/k_{n}$ corresponding to $X^{p}$ , we can easily see that $M/k$ is an abelian
extension. Let $\mathfrak{P}$ and $\mathfrak{P}’$ be the primes of $k$ lying above $p$ and $N$ the inter-
medite field of $M/k$ corresponding to the inertia group of $\mathfrak{P}’$ for $M/k$ . By
the assumption $|A_{0}|=1$ , $\mathfrak{P}$ is totally ramified in $N/k$ . Therefore, $X/X^{p}\cong$

$G(M/k_{7t})\cong G(N/k)$ is isomorphic to the Galois group of a finite abelian totally
ramified extension of $k_{\mathfrak{P}}=Q_{p}$ which is cyclic by local class field theory. Hence,
$X$ is cyclic.

Let $k^{*}=k(\zeta_{p})$ where $\zeta_{p}$ is a primitive p-th root of unity and

$k^{*}=k_{0}^{*}\subset k_{1}^{*}\subset k_{2}^{*}\subset\cdots\subset k_{n}^{*}\subset\cdots\subset k_{\infty}^{*}$

the cyclotomic $Z_{p}$-extension. We identify $G(k_{\infty}/k)$ and $G(k_{\infty}^{*}/k^{*})$ , and use the same
topological generator $\sigma$ . There exists a $P$-adic unit $\kappa$ such that $\zeta^{\sigma}=\zeta^{\kappa}$ for all
p-power-th roots of unity $\zeta$ .

LEMMA 3. Let $F$ be a finite extension of $Q,$ $K$ a cyclic extension of $F$ and $\zeta_{m}$

a pnmitive m-th root of unity. We assume that $K$ contains $\zeta_{m}$ . Let $L$ be a cyclic
extenston of $K$ of degree $m$ such that $L$ is a Galois extension of F. We assume
that there exists an element $a$ of $G(L/F)$ of order $m$ such that the restnction of
$\sigma$ to $K$ is a generator of $G(K/F)$ . Let $\kappa$ be an integer such that $\zeta_{m}^{\sigma}=\zeta_{m}^{\kappa}$ . If
$\sigma^{-1}\rho\sigma=\rho^{\kappa}$ for any element $\rho$ of $G(L/K)$ , then there exists an element $a$ of $F$

such that $L=K(a^{1/m})$ .

PROOF. Since the extension $L/K$ is a Kummer extension, there exists an
element $\alpha$ of $K$ such that $L=K(\alpha^{1/m})$ . Hence, there exists a generator $\tau$ of
$G(L/K)$ such that $(\alpha^{1/m})^{\tau-1}=\zeta_{m}$ . Now, we have

$( \frac{(\alpha^{1/m})^{\sigma^{-1}}}{\alpha^{1/m}})^{\tau}=\frac{((\alpha^{1/m})^{r^{K}})^{\sigma^{-1}}}{\alpha^{1/m}\zeta_{m}}=\frac{(\alpha^{1/m}\zeta_{n\downarrow}^{\kappa})^{\sigma^{-1}}}{\alpha^{1/m}\zeta_{m}}=\frac{(\alpha^{1/m})^{\sigma^{-1}}}{\alpha^{1/m}}$ .

Hence, we have $(\alpha^{1/m})^{\sigma-1}\in K$. Since $N_{K/F}((\alpha^{1/m})^{\sigma-1})=1$ , there exists an element $d$

ofKsuch that $(\alpha^{1/m})^{\sigma-1}=d^{1-\sigma}$ . Put a $=\alpha d^{m}$ . $Thenwehavea\in FandL=K(a^{1/m})$ .
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LEMMA 4. Let $k$ and $P$ be as in ProPosition 1. Assume that $|A_{0}|=1$ and $A_{0}^{*}$

is an elementary $p$-abelian group. Then, for $n\geqq 1,$ $|A_{n}/A_{n}^{\sigma-\kappa}|=p$ if $|A_{n}|\neq 1$ .
PROOF. It is easy to see that $A_{n}|\neq 1$ implies $A_{n}/A_{n}^{\sigma-\kappa}|\neq 1$ . By Lemma

2, $A_{n}/A_{n}^{\sigma-\kappa}$ is cyclic. Assume that $p^{2}|A_{n}/A_{n}^{\sigma-\kappa}|$ . Let $L_{n}$ be the intermediate
field of the Hilbert $P$-class field of $k_{n}$ which corresponds to $A_{n}^{p^{2}}A_{n}^{\sigma-\kappa}$ . Then
$L_{n}/k_{n}$ is a cyclic unramified extension of degree $p^{2}$ and $L_{n}/k$ is a Galois ex-
tension. By Lemma 3, there exists $a\in k^{*}$ such that $k_{n}^{*}L_{n}=k_{n}^{*}(a^{1/p^{2}})$ . Since
$k_{n}^{*}(a^{1/p^{2}})/k_{n}^{*}$ is unramiPed, $(a)=I_{n}^{p^{2}}$ for some ideal $I_{n}$ of $k_{n}^{*}$ . Let $p=(\mathfrak{P}\mathfrak{P}’)^{p-1}$ be
the prime factorization of $P$ in $k^{*}$ . Since an ideal of $k^{*}$ prime to $P$ is unrami-
fied in $k_{n}^{*}/k^{*},$ $(a)=I^{p^{2}}\mathfrak{P}^{m}\mathfrak{P}^{\prime m’}$ for some ideal $I$ of $k^{*}$ and $m,$ $m’\in Z$ . Put
$b=a^{(p-1)h_{k}}$ . Since $\mathfrak{P}^{(p-1)h_{k}}$ and $\mathfrak{P}^{\prime(p-1)h_{k}}$ are both principal ideals of $k$ ,
$(b)=I^{(p-1)h_{k}p^{2}}(\beta)$ for some $\beta\in k$ . By the assumption on $A_{0}^{*},$ $I^{(p-1)h_{k}p}=(\gamma)$ for
some $\gamma\in k^{*}$ . Hence, $(b)=(\gamma^{p}\beta)$ in $k^{*}$ and $b=\gamma^{p}\beta\eta$ for some unit $\eta$ of $k^{*}$ . Since
$k^{*}$ is a CM-field, $b^{2}=\pm\gamma^{2p}\beta^{2}\eta_{+}\zeta_{p}^{r}$ for some real unit $\eta+ofk^{*}$ and an integer $r$ .
Then, $k_{n}^{*}(a^{1/p})=k_{n}^{*}((b^{2})^{1/p})=k_{n}^{*}((\beta^{2}\eta_{+})^{1/p})$ is a cyclic extension of $k_{n}^{*}$ of degree $p$ .
Since $k_{n}^{*}(a^{1/p^{2}})/k_{n}$ is an abelian extension, if we denote by $k_{n.+}^{*}$ the maximal
real subfield of $k_{n}^{*}$ , then the subextension $k_{n,+}^{*}((\beta^{2}\eta_{+})^{1/p})/k_{n.+}^{*}$ is also a Galois
extension of degree $p$ . Now, $\beta^{2}\eta+\in k_{n.+}^{*}$ . Hence, it follows that $k_{n,+}^{*}((\beta^{2}\eta_{+})^{1/p})$

contains $\zeta_{p}$ which is a contradiction.

PROOF OF THEOREM 1. Note that $A_{n}=D_{n}A_{n}^{\sigma-1}$ implies $A_{n}=D_{n}$ . By using
Proposition 1, it suffices to prove that $A_{n}=D_{n}A_{n}^{\sigma-1}$ . (1) If $n_{2}=1$ , then $A_{n}/A_{n}^{\sigma-1}|$

$=|B_{n}|=|A_{0}|=|D_{0}|$ for $n\geqq 0$ by Proposition 1. If follows that $A_{n}=D_{n}A_{n}^{\sigma-1}$ .
(2) If $n_{2}>1$ , then

$A_{n}\supset D_{n}A_{n}^{\sigma-1}\supset D_{n^{k}}^{\hslash p^{n_{2}-2}}A_{n}^{\sigma-1}\supsetneqq A_{n}^{\sigma-1}$ for $n\geqq n_{2}-1$

by Lemma 1. We see that $(A_{n} : A_{n}^{\sigma-1})=|B_{n}|=|A_{0}|\cdot p^{n_{2}-1}$ by Proposition 1. It is
easy to see that

$(D_{n}A_{n}^{\sigma-1} : D_{n^{k}}^{\hslash p^{n_{2}-2}}A_{n}^{\sigma-1})=|A_{0}|\cdot p^{n_{2}-2}$

by a group theoretical argument. Hence, we have $A_{n}=D_{n}A_{n}^{\sigma-1}$ .
PROOF OF THEOREM 2. We see that $A_{n}/A_{n}^{\sigma-\iota}|=p$ and $B_{n}|\geqq p^{2}$ for

$n\geqq n_{2}-1$ by Proposition 1 and Lemma 4. From this together with the Green-
berg’s argument [1, p. 281-282], it can be shown that $A_{n}$ is cyclic for all $n\geqq 0$ .
Thus Lemma 1 shows that $A_{n}^{\sigma-1}=D_{n}^{p^{n_{2}-n_{1}}}$ for $n\geqq n_{2}-1$ . Hence, for $n\geqq n_{2}-1$ ,

$|A_{n}|=(A_{n} : A_{n}^{\sigma-1})|A_{n}^{\sigma-1}|=|B_{n}||D_{n}^{p^{n_{2}-n_{1}}}|= \frac{|B_{n}||B_{n}^{p^{n_{2}-n_{1}}}|}{(B_{n}^{p^{n_{2^{-}}n_{1}}}:D_{n}^{p^{n_{2}-n_{1}}})}=\frac{p^{n_{1}+n_{2}- 2}}{(B_{n}:D_{n})}$ .
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Now, $(B_{n} : D_{n})\leqq p^{n_{1}-1}$ since

$B_{n}\supset D_{n}\supset D_{n}^{p^{n_{2}- n_{1}-1}}\supsetneqq 1$ .
We will show that if $n\geqq n_{2}-1$ and $(B_{n} : D_{n})>1$ , then $(B_{n} : D_{n})>(B_{n+1} : D_{n+1})$ ,
from which Theorem 2 follows. Assume that $(B_{n} : D_{n})=(B_{n+1} : D_{n+1})=p^{s}$ for
some $n\geqq n_{2}-1$ and $s\geqq 1$ . We first observe that

$(E_{0}\cap N_{n.0}(k_{n}):N_{n.0}(E_{n}))=(E_{0}\cap N_{n+1,0}(k_{n+1}):N_{n+1.0}(E_{n}))=p^{s}$

by the assumption $|A_{0}|=1$ and Lemma 1 of [1] and $(E_{0}\cap N_{n+1,0}(k_{n+1}):N_{n.0}(E_{n}))$

$=p^{S-1}$ by Lemma 2 of [1]. Now, $|A_{n}|=|A_{n+1}|$ implies that $N_{n+1,n}$ : $A_{n+1}arrow A_{n}$

is an isomorphism and hence $|B_{n}|=|B_{n+1}|$ implies that $N_{n+1,n}$ : $D_{n+1}arrow D_{n}$ is also
an isomorphism. Let $I_{n}$ be an ideal of $k_{n}$ such that $c1(I_{n})\in B_{n}$ and $I_{n+1}$ an ideal
of $k_{n+1}$ such that $c1(I_{n+1})\in B_{n+1}$ and $N_{n+1.n}(c1(I_{n+1}))=c1(I_{n})$ . Then, $I_{n}^{\sigma-1}=(\alpha_{n})$ for
some $\alpha_{n}\in k_{n}$ and $I_{n+1}^{\sigma-1}=(\alpha_{n+1})$ for some $\alpha_{n+1}\in k_{n+1}$ . We can choose $\alpha_{n}$ and $\alpha_{n+1}$

so that $N_{n+1,n}(\alpha_{n+1})=\alpha_{n}$ . Since

$(N_{n+1.0}(a_{n+1}))=(N_{n,0}(\alpha_{n}))=N_{n.0}(I_{n}^{\sigma-1})=(1)$

we see that $N_{n.0}(\alpha_{n})\in E_{0}\cap N_{n+1.0}(k_{n+1})$ . Thus, $N_{n.0}(\alpha_{n}^{p^{S- 1}})\in N_{n,0}(E_{n})$ and
$1V_{n.0}(\alpha_{n}^{p^{S-1}})=N_{n,0}(\epsilon_{n})$ for some $\epsilon_{n}\in E_{n}$ . The Hilbert Theorem 90 implies that
$\alpha_{n}^{p^{S-1}}\epsilon_{n}^{-1}=\beta_{n}^{\sigma-1}$ for some $\beta_{n}\in k_{n}$ . Then, $I_{n}^{p^{s- 1}}(\beta_{n}^{-1})$ is $\sigma$ -invariant and $c1(I_{n}^{p^{S-1}})\in D_{n}$

by the assumption $|A_{0}|=1$ . Hence, $B_{n}^{p^{S-1}}\subset D_{n}$ . It is a contradiction.

\S 2. Examples.

Let $k=Q(\sqrt{m})$ . We will give all $m$ less than 2000 such that $n_{2}\geqq 2$ for
$p=3,5$ and 7. A star in the table indicates that we can not apply Theorem 1 or
Theorem 2 to such $m$ . We have been able to determine $A_{0}^{*}$ only when $p=3$ or 5.

$p=3$
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$p=3$ (continued)
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$p=5$

$m$
$n_{1}$ $n_{2}$ $h_{k}$

$\lambda^{*}0$ $\lambda$ $m$
$n_{1}$ $n_{2}$ $h_{k}$

$a_{0}^{\star}$ $\lambda$

$39$

$51$

$69$

$89$

$109$

$114$

$134$

$139$

$161$

$186$

$191$

$211$

$214$

$241$

$259$

$271$

$314$

$326$

$366$

$426$

$434$

$466$

$489$

$501$

$509$

$514$

$519$

$526$

$534$

$541$

$574$

$581$

$589$

$606$

$626$

$629$

$634$

$674$

$699$

$719$

$734$

$761$

$789$

$791$

$869$

$874$

$966881$

$1031$

$1041$

$1051$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$2$

$2$

$1$

$1$

$1$

$2$

$1$

$1$

$1$

$1$

$1$

$2$

$1$

$1$

$2$

$1$

$1$

$1$

$1$

$2$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$2$

$1$

$2$

$1$

$1$

$2$

$1$

$1$

$2$

$1$

$2$

$1$

$2$

$2$

$2$

$2$

$3$

$2$

$2$

$2$

$3$

$2$

$2$

$3$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$3$

$2$

$2$

$2$

$2$

$3$

$2$

$2$

$2$

$2$

$2$

$2$

$3$

$4$

$2$

$2$

$4$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$3$

$2$

$2$

$1$

$1$

$1$

$2$

$1$

$1$

$1$

$2$

$1$

$1$

$1$

$1$

$2$

$1$

$2$

$3$

$2$

$2$

$4$

$2$

$1$

$1$

$1$

$4$

$2$

$1$

$2$

$1$

$6$

$1$

$1$

$2$

$4$

$2$

$2$

$4$

$2$

$1$

$1$

$3$

$1$

$4$

$1$

$6$

$1$

$4$

$1$

$1$

$1$

$(5, 5)$

$(25)$

$(5)$

$\star$

$\star$

$\star$

$\star$

$\star$

$\star$

$\star$

$\star$

$*$

$\star$

$1074$

$1079$

$1086$

$1111$

$1191$

$1194$

$1214$

$1231$

$1261$

$1279$

$1281$

$1289$

$1301$

$1321$

$1339$

$1351$

$1366$

$1389$

$1406$

$1426$

$1434$

$1441$

$1461$

$1479$

$1529$

$1531$

$1586$

$1621$

$1631$

$1641$

$1686$

$1699$

$1731$

$1741$

$1754$

$1761$

$1786$

$1829$

$1834$

$1851$

$1861$

$1874$

$1891$

$1914$

$1921$

$1959$

$1966$

$1969$

$1986$

$1999$

$1$

$2$

$1$

$2$

$1$

$1$

$1$

$1$

$2$

$1$

$2$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$1$

$2$

$1$

$1$

$1$

$1$

$1$

$2$

$1$

$1$

$2$

$1$

$2$

$1$

$2$

$1$

$1$

$2$

$2$

$2$

$2$

$2$

$3$

$2$

$2$

$2$

$3$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$3$

$2$

$4$

$2$

$2$

$3$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$2$

$3$

$2$

$2$

$2$

$3$

$2$

$2$

$2$

$6$

$10$

$6$

$2$

$1$

$1$

$2$

$1$

$2$

$1$

$1$

$1$

$6$

$8$

$1$

$1$

$6$

$4$

$2$

$1$

$1$

$4$

$1$

$1$

$4$

$1$

$4$

$5$

$2$

$1$

$4$

$1$

$2$

$7$

$2$

$1$

$2$

$6$

$1$

$2$

$2$

$8$

$2$

$2$

$1$

$1$

$2$

$1$

$\star$

$\star$

$\star$

$\star$

$\star$

$\star$

$*$

$*$

$\star$



102 T. FUKUDA and K. KOMATSU

$p=7$

References

[1] T. Fukuda and K. Komatsu, On the $\lambda$ invariants of $Z_{p}$-extensions of real quadratic
fields, to appear in J. Number Theory.

[2] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J.
Math., 98 (1976), 263-284.

Takashi FUKUDA Keiichi KOMATSU
Department of Mathematics Department of Mathematics
Faculty of Science Tokyo University of
Yamagata University Agriculture and Technology
Kojirakawacho, Yamagata 990 Fuchu, Tokyo 183
Japan Japan


	\S 0. Introduction.
	THEOREM 1. ...
	THEOREM 2. ...

	\S 1. Proof of theorems.
	\S 2. Examples.
	References

