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§1. Introduction.

The purpose of the present paper is to study uniqueness of certain inverse
problems for heat equations.

For p=C'[0,1], heR, HER and acL%0, 1), let (E, 1 u o) be the heat
equation

ou 0?
(LY *at—‘*“(l"(x)*‘w‘)u——o 0<t<oo;0<x<])
with the boundary condition

ou ou
12 (G~ 1)]..=(y TH).=0 ©O<i<e
and with the initial condition
(1.3) ul—o=0a(x) 0<x<l).

As is known, the solution u=u(t, x) exists uniquely for given coefficients and
initial value (p, k, H, a). However, let these (p, h, H, a) be unknown, and
instead the values u(f, 0) and u(¢, x,) be observed for t=[Ty, T.] and x,=(0, 1],
where 0=T,<T,<co. Do the data {u(t, 0), u(t, x,)| T.=t=T,} determine
(p, h, H, a) ? This kind of problem is called an inverse problem, and is for-
mulated more precisely as follows.

Consider the mapping

(1.4.1) F'=F% 1,200 (g, 7, J, b)—> {v(t, 0), v@t, x0) | Ti=t=To},

where v=uv(t, x) is the solution of (E, ;s ). Let (p, h, H, a)eC'[0, I]XRXR
x L*0, 1) be given and u=u(t, x) be the solution of (E, » x ). Then the set

(151) M;,h.H,a,xOE(F%'l‘,Tz,J:o)_l(F%'l,Tg,xo(p; h’ H; a))

denotes the totality of equations (£, ; s.») Whose solutions have the same values
as those of u on £=0, x,. Namely,
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My 1,4 2,=1q, 5, ], )eC[0, IIXRXRX L*0, 1) | the solution
v=u(t, x) of the equation (E; ;)
satisfies v(t, &)=u(t, &) (T\=<t=<T,; £€=0, x,)}.

M #, 0,2, 1S independent of T, and T, because u and v are analytic in
t=(0, o) and so the condition

(1.6.1) v, §=u, &  (Th=t=T,; §=0, x)

is equivalent to

(1.6".1) vt §)=u(t, &)  (0<i<o0;£=0, x4).
It is obvious that (p, h, H, a)€M} 1 1, a,z, holds. In the case of
(171) M;),h,H,a,zo: {(1’), h; H’ (l)},

on the other hand, these data {u(t, &)| T\ <t<T,; £=0, x,} determine the unknown
(p, h, H, a), and the uniqueness of the problem holds.

However, does not hold for arbitrary (p, h, H, a). For instance,
u=0 follows from a=0, hence

M;),h,H,O,J:OD {(CI; j’ J} 0) I QECIEO, 1]! ]ER, ]ER}
for each p, h, H and x,. Actually, Murayama [9] and Suzuki proved

THEOREM 0. In the case of x,=1, (1.7.1) holds if and only if a= L¥*0, 1)
is a generating element with respect to Ap n, m. *

Here, A, » u denotes the realization in L*0, 1) of the differential operator
p(x)—0?%/dx® with the boundary condition and a=L%*0, 1) is said to be a
“generating element” with respect to A, x, if it is not orthogonal to any
eigenfunction of A, » »x. This condition is examined by {u(f, 0)|T\=t=T,}, so
that we can judge whether holds or not by the data in this theorem.

In the present paper, we show that unfortunately holds only if x,=1.
Namely,

THEOREM 1. (1.7.1) holds if and only if x,=1 and ais a generating element
with respect to Ap,a, u. *

In view of this, we next consider the mapping
(1.4.2) F*=F% 15 2,"
(g, 7, J, B)—> {(t, 0), v(t, x0), va(t, x| T1=t=T 5}
and study when
(1.7.2) M5 nn,0,20=1{(p, h, H, a)}
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is satisfied, where

(1.5.2) M ng,0,20=FF, 15 20) (F 1, 2(0, h, H, a))
={(g, 7, J, byeC[0, 11X RXRX L*0, 1) | the solution
v=v(t, x) of the equation (E, ; ;. satisfies’

vx(t: xo):ux(t’ xo), ‘I)(f, ‘S)Zu(t’ E) (Tlét_S_Tz; 5:0, xo)}‘

We introduce a few notations to state our results. The eigenvalues and the
eigenfunctions of A, » » are denoted by {4,}%-, and {¢,}75-,, respectively, the
latter being normalized by ||@,]lz2¢0,ny=1. The number

(1.8) N=#{¢|(a, dn)r200,y=0}

is called the “degenerate number” of a= L%*0, 1) with respect to A, » n. It is

calculated from {u(t, 0)| T.<t<T,} by the method of [13].
Then we have

THEOREM 2. (i) In the case of x,=1, (1.7.2) holds if and only if N=0.
(ii) In the case of 1/2<x,<1, (1.7.2) holds whenever N< co,
(ili) In the case of x,=1/2, (1.7.2) holds if and only if N=<I.
(iv) In the case of 0=x,<1/2, we always have M% 1 1. a,z,21(0, h, H, a)}. *

Thus, the position x, plays an important role as does the number N.

There are some related papers. S. Kitamura and S. Nakagiri considered in
[5] the heat equation u,=(a(x)u,),—p(x)u (0<t<oo, 0<x<1) and gave a
sufficient condition for (a(x), p(x)) to be determined from full information of the
solution: {u(t, x)|0=<t<co, 0=x<1}. They also studied the problem to deter-
mine (a(x), p(x)) from {u(t, x,)|0<t< o} for some x,=[0, 1], assuming a(x)
and p(x) to be constant functions. T.I.Seidman considered in the heat
equation with Dirichlet condition u#]|;—o=u|,-;=0. He showed that if
acsL?*0,1) is a generating element in our notation, then the values
{uzt, 0)| T,<t<T,} determine p(x) under the assumption of symmetry, that is,
p(l—x)=p(x) (0=<x=1). The result is derived from an inverse spectral theorem
by G.Borg [1]. A. Pierce considered in the heat equation with the
null initial condition u|,-,=0, with a homogeneous boundary condition of the
third kind on x=0: (u,—hu)| .=o=f, and with the homogeneous boundary condition
of the same kind on x=1: (u,—Hu)|;-,=0. He showed that under such a situation
the values {u(z, 0)|0<t<T,} and f+0 determine (p, h, H), by virtue of the
inverse spectral theory of Gel’fand-Levitan [2] and Levitan-Gasymov [7].
Theorem 0, described above, by Murayama [9] and Suzuki is an improve-

ment of Suzuki-Murayama [17] for the equation (E,,,.). For other work,
see the references of Suzuki [14, 15].
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This paper is composed of five sections and an appendix. In §2, we prepare
some elementary propositions. In §3, we show a key lemma, which is called
“deformation formula” and is obtained by [13]. §§84 and 5 are devoted to the
proof of Theorems 1 and 2, respectively. The deformation formula is applicable
to some inverse spectral problems. In Appendix, we study the work [1, 6, 3, 4]
of G.Borg, N. Levinson, H. Hochstadt and B. Lieberman, from that point of view.

Theorem 2 of the present paper was announced in [16]. The author
sincerely thanks the referee for his valuable advice. This work was supported
partly by the Fiju-kai.

§2. Preliminaries.

Let 2CR? be the interior of a triangle AABC with AC=BC, L ACB=n/2,
AB being parallel to either the x-axis or the y-axis, and let rC%£) be given.
We shall state some elementary propositions on the hyperbolic equation

2.1) K:o—K,,=r(x, YK (on Q)

without proof. These are actually obtained by Picard’s method ([10]). Let v
be the outer unit normal vector on 0£.

PROPOSITION 1. For each f=C*(AC) and g=C*BC) with flc=gls, there
exists a unique K=K(x, y)=K(x, y; 7, f, g)ECZ(Q) satisfying (2.1) and
(2.2.1) . Klac=1, Klpo=g.

Furthermore the following estimates hold, where t,: [0, c0)—(0, o) is a monotone
increasing continuous function:

(2.3.1) IKC-, <57, fr @z =tillirllera) flloeam +l gllczae) -
(2.4.1) IKC, <57, [y ©)—KCy <570, fo @2y
sn(max{l|riller@, Irlciat)
Xlri=rsllcsal flesar+gloego).- *
PROPOSITION 2. For each f E_CZ(E) and g=C'(AB), there exists a unique
K=K(x, v)=K(x, y;r, f, g)=C¥Q) satisfying (2.1) and

2.2.2) Kla=f, %K =g.

AB

Furthermore the following estimates hold, where t,: [0, c0)—(0, o) is a monotone
increasing continuous function:

(2.3.2) |K(y -5 7, f, g)ch(.(?)éfz(“rncl(g))(“ﬂ;CZ(EF*‘“g”CI(IE))-
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(24-2) ”K(" 5t f’ g)*K('y * 3 ¥, f’ g)”CZ(!j)
Srmax{|rillcid, [7elciad})
X|ri—rellcra@,( fllceam +lglcras) - *

PROPOSITION 3. For each feC¥AC) and ge_CZ(ZlTB_) with fla=gla, there
exists a unique K=K(x, yv)=K(x, v;r, f, g €C¥Q) satisfying (2.1) and

(2.2.3) Kluc=71, Kli=g.

Furthermore the following estimates hold, where t5: [0, 00)—(0, o) s a monotone
increasing continuous function:

(2.3.3) 1K, =57, fr @lleean =tsUlirlicra)l fllezae +llgllezas) -
(243) ‘ “K(', 57, f; g)—'K(': * 5 Vo, f) g)”c2(§)
Stsmax{{rillci@, [7ellciant)
Xlri—reller@d ([ flleeae +lgllczas) - *
PROPOSITION 4. For each f<C*AC), geCYAB) and heR, there exists a
unique K=K(x, y)=K(x, y;r, h, f, g €C¥Q2) satisfying (2.1) and

0

2.2.4) Klie=f, (WKJrhK)lAB: g

Furthermore the following estimates hold, where t,:[0, co)x[0, c0)—(0, co) 15 a
monotone increasing continuous function:

(2.3.4) IKC, =570 by f, @leza
stlllrlera@, DX flezao +lglerarn)  (ThI=L).
(2.4.9) VKC, =571 by fy @)—K(ey -5 73, oy b @)lc2@
srdmax{lrillcra@, Irlleral, {lri—raleia
+1hi=he [} fllceam +l glloram) (Thils TRl =L). =

REMARK 2.1. In the proof of these propositions, the equation [2.I) with the
side condition (2.2) is reduced to a certain integral equation of Volterra type.
The unique existence of the solution of that integral equation holds in the class
of C%@2), although it is eventually shown to be a C:-function. Suppose that
Q=AABC is divided into subdomains 2,=AA;B;C; (1<i<N) with 4,C;=B,C;
and £ A;B,C;=r/2, A;B; being parallel to either the x-axis or the y-axis.
Suppose, furthermore, that KeC%2) is a piecewise C’-function and satisfies
on each @, together with the side condition for example, with
feC(AC) and geC¥BC). Then, K is shown to satisfy the same integral
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equation as described above, so that, in particular, KeC¥2) follows. Similar
facts hold for Propositions 2-4 and for Propositions 5-6 given below. *

REMARK 2.2. Let C’ be the symmetric point of C with respect to the
segment AB. Then, [JACBC’ makes a regular tetragon, whose interior is
denoted by 2. In this case, Propositions 1-4 still hold if we replace 2 by £.

: %k

The following propositions are obtained by the method of [10], that is, by
“continuing” solutions of Propositions 1-4. In order to make statements simple,
we assume A=(0, 0), B=(1, 0) and C=(1/2, 1/2), without loss of generality. For
A’=(1, 1), 2’ and 2 denote the interiors of the triangles AA’BC and AABA’,
respectively. Recall that 2 denotes the interior of AABC.

PROPOSITION 5. For given reC‘(é)L g.€C¥AB), g.=CY(AB) and f eC*BA’),
there exists a solution K=K(x, y)=C*2) of the equation

@.1) Keo—Kyy=r(x, YK  (on Q)
with
(2.2.5) K(x, 0)=g.(x), K,(x, 0)=g.(x) 0=x=1)
and
(2.2.5) K1, y=f(y» 0=y=sD),
if and only if the compatibility condition
(2.5.1) g)=70),  gD=r0),
g1()—f"(0)=r(1, 0)g:(1)
is satisfied. Furthermore, the solution is unique. *

PROPOSITION 6. For given reC‘(.é), 2,:€C¥4AB), g,=CYAB), feCY(BA)
and JER, there exists a solution K=K(x, y)eC* &) of the equation

2.1) Koo—K,y=r(x, DK (on Q)

with

2.2.6) K(x, O=g:(x), K,(x,)=gsx) (0=x=l)
and

(2.2.6") K.(1, -+JKQ1, »)=Ff(y)  0=y=1),

if and only if the compatibility condition
(2.5.2) gi)+Jg:(D)=70),  giD)+Jg(H)=1"(0)
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1s satisfied. Furthermore, the solution is unique. *

In Propositions 5 and 6, similar estimates to (2.3.1)-(2.3.4) and (2.4.1)-(2.4.4)
hold for the solution K.

§3. Deformation formula.
Let D={(x, y)|0<y<x<1}. The following lemma is obtained in [13].

LEMMA 1 (Deformation Formula). (i) For given p, q=C'0, 1] and h, j=
R, there exists a unique K=C*D) such that

(3.1.a) K..—K,,+p(y)K=q(x)K (on D),
(3.1b) K(x, 0=t o) —pshds  0=x=D),
3.1.0) K,(x, 0=hK(x, 0) (0=x=l).
(iiy If @=0(x)=C?*[0, 1] satisfies
(3.2) (ptx)— di)q):x@ O=x=l),  9/(0)=h®(0)
dx
for AR, then U= (x)=C?[0, 1] defined by
(3.3) T =00)+| Kix, nOG)dy  (0=x=D)
satisfies
dZ
(3.4) (g)——F)F=  (0=x=D),

T0)=00), ¥0)=570. *

(i) is shown by Propositions 4 and 1, while (ii) is obtained in an elementary
way. See also [14, 15], for the proof.

Gel’fand-Levitan [2] showed the formula for (p, h, H)=(0, 0, 0), in which

case we have @(x)=constantxcosy/ 1 x. Suzuki-Murayama [17] showed the
formula in the case of h=;=0.

§4. Proof of Theorem 1.
Recall
4.1) My n.a-=14q 7,],0)=C'[0, I]<xRXRxL*0, 1) | the solution
v=u(t, x) of the equation (E, ; s, satisfies the

following condition (4.2)},
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4.2) vty §)=ut, &)  (Th=t=T,; =0, xo).

Here u=u(t, x) is the solution of (E, ». o). We want to show
(4.3) M nm,0.2,21{(P, h, H, a)}

for each (p, h, H, a), in the case of 0<x,<1. Let

4.4 (a, $.)=0 (I=I=N), (a, ¢)#0 (n#n, IZI=N),

N being finite or infinite. By the definition, N is the degenerate number of a
with respect to A, » ». Here and henceforth (, ) denotes the L’-inner product.
Assume first that holds for some (g, 7, J, b). Then,

(4.2) v(t, §)=ult, §  (0<t<oo; =0, x,)

holds. Let {¢#n}m-o and {¢n}7m-, be the eigenvalues and the eigenfunctions of
Aq ;. 5, respectively, the latter being normalized by [¢nlz20,n=1. We expand
u and v in terms of {$.} and {¢.}, respectively, and get by (4.2')

4.27) ;:)Oe‘”"(a, ¢n>¢n(§>=§0e-wm(b, Gn)Pm(E) (0<t<oo; =0, x,)

In the same way as in [18], we compare the behavior as t—co of both sides of
(4.2”) and see that for each n==n,, there exists m(n)eN={0, 1, 2, ---} such that

4.5) An=llm ) (n#n, 1<ISN),

(4.6) (@, ¢)Pal8)=(b, Pnm)Pmn(§) (n#n;, 1=I=N; =0, x,),
and that for each m< {m(n)|n+n,},

4.7) 0, ¢u)=0  (n& {mn)|n#n.t)

holds. Note that 4, and g, are simple (—o0<4,<4,< +++ =00, —co Ly pty < =+
—c0), ¢,(0)%#0 and ¢,(0)#0. The equalities (4.5)-(4.7) are equivalent to
under the assumption [4.4). '

Set
4.8) Vulx)=comam(x)  (nwn, IZISN),
where
(4.9) =, dnw)/(a, §o)  (n#Fmn;, ISISN).

Then, ¥,(x) satisfies, by for £=0,

2

4.10) (o W=, 022D,

dx?
V.0)=¢,(0), V0)=;7,(0),
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for A=2, (=ptm,). Hence
@.1) Vo)=gn(0)+| Klx, Dgal)dy  (0=x=1)

holds by [Lemma 1, for the solution K of (3.1). The equality

(4.12) .(L+J¥(1)=0
yields
(4.13) (J—H+K(1, 1))¢n(1>+8:{Kx(1, y)+JK(1, y)}on(y)dy=0

(n#ny, 1ZIEN).
The equality for &=x, gives

(4.14) Uulx)=¢ulxe)  (n#n, ISISN),

which means
(4.15) ["Kxo, 9)gn(dy=0  (nni, 1IZIZN).

Suppose, conversely, that there exists (g, 7, J) and K=C¥D) such that (3.1),
(4.13) and [4.15) hold. Then, ¥, defined by satisfies and
We show that there exists be L0, 1) such that (g, 7, J, ))EM} 4. #.a, 2,
[4.10) and [4.12) imply [4.5) and with some m(n)eN and ¢, RN{0} (n#n,,
1=<I/<N). Since gives ¥ ,(0)=¢,(0), we get

(4-16) Cn:gﬁn(o)/ﬁbm(n)(o) (7’[#”[, 1§1§1V)-

We now show that there exists b L*0, 1) such that
cala, ¢.)  (m=m(n), n¥n,)
0 (meE {m(n)|n+n}).

In fact, in the case of #{m(n)|n+#n,} <co, the assertion is obvious. In the case
of #{m(n)|n+#n,}=co, the relation m(n)=n (n=ne; n+n,, 1<I<N) follows for
sufficiently large n,, from and the asymptotic behavior of eigenvalues:

(4.17) o, sbm):{

(4.18) Z}{Z:nn+0(l>, ‘u},{z:mn'—FO(%) (n, m—o0).

n
Therefore, we have

Cn:¢n<0>/9—,)m(n)(0)

:1+O<—1n—> (n—oo; n#n;, 1<ISN),



48 T. Svuzukl
by virtue of the asymptotic behavior of eigenfunctions:

(4.19) ¢n(X):%COS n7rx+0<l>, gbm(x)=:/~17cos m:rx+0(7ll—)

n
(n, m—co),

and thus, the assertion has been verified. See Levitan-Sargsjan for
and (4.19), for example.

Now, follows immediately from [4.I7), while [4.8), [4.14), [4.16) and
4.17) imply

Pu(0)=cnPmn)(0)

. (bs Sl’m(n))

—W¢m<n>(0) (n#n,, 1<I<N)

and
Pnlx0)=¥ n(x4)

:Cngbm(n)(xo)

_ b, pmeny)
(a, ¢a)

which mean [(4.6). Therefore (¢, 7, J, )EM} 1 1.4, 2, holds. Furthermore, the
conditions and determine b uniquely, and thus we have established

CLAamM 1. Suppose holds and put
(4.20) M},,h,g,a,zoz {(g, 7, J)eC[0, 11X RXR | there exists some

Pme(xo)  (n#Fn, 1=I=N),

be L*0, 1) such that (q, j, ], D)EM} 1. 1,0,z -

Then, (q, 7, ])EM},,,,,H,G,IO if and only if there exists K=C¥D) satisfying (3.1),
(4.13) and [4.15). Furthermere, for each (q, ]',])EM},,,LH,Q,IO, a unique b
satisfies (q, 7, J, DYEMy 1, 1,0, 24 *

F1K=0, (g, j, J)=(p, h, H) holds by (3.1.b) and [&.I3], because of ¢n(1)#0.
If (g, ))=(p, h), conversely, K(x, x)=0 (0=x=1) holds by (3.1.b). Put
D'={(x, »)10<1—x<y<x<1}. Then K=0 on D D’ follows by
from (3.1.2), (3.1.c) and K(x, x)=0 (0=x=<1/2). Now K=0 on D’ follows by
from (3.1.2), K(x, 1—x)=0 (1/2=x=1) and K(x, x)=0 (1/2=x<1),

hence K=0 holds. Therefore, the theorem has been reduced to

CLAIM 2. In the case of 0<x,<1, there exist K=C¥D), q=C*[0, 1], jeR
and JeR with K#0, satisfying (3.1) together with
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(4.13/.1) ]:H—K(ly 1)7
(4.13".2) K.(1, y)+JK(1, y)=0  (0=y=1),
(4.15) K(xo, =0  (0=y=x,). *

PROOF OF CLAIM 2. In view of (iv) of we show the claim for
the case of 1/2=<x,<1. Put A=(0, 0), B=(, 1), C=(1, 0), P=(x,, 0), Q=(x,, x0)
and p=PC=1—x,>0. On the segment PQ, we take points P, P, -, P, in
turn so that PP,=p, P,P,=P,P,= -+ =P, ,P,=2p and P,0<2p. Similarly, on
the segment CB, we take points C,, ---, Cps1 in turn as CC,=C,Co= -+ =C,Crs1
=2p. On the line prolonged from PQ, we take P,.; as P,P,,,=2p, and the
crossing of QB and C,.,P,+: is denoted by Pr...

P,

s Pas1
-+
Q2ll+l—ﬁ /
P

a

A

PT&"]

Po ——-—'Qo
C:CO

Figure 1.

Now we divide D into D, and D, where D,={(x, y)|0<y<x<x, and
D,=DN\(D,)¢. We furthermore divide D, into 2; (—1<;7<2n+2), where

£ _,=the interior of APCP,,
sz:{ the %nter?or of AP,C,Cjs, (Oé.jén)
the interior of AP} ,.CriiB (j=n+1),
the interior of AC;P;-\P; (1=7=n)
Q”“:{ the intersection of D with the interior of AC, . P, Pri:

(J=n+1).
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Henceforth we sometimes write C, for C.
Take geC?*[x,, 1] such that
(4.21) glxo)=g"(x0)=g(1)=g"(1)=0,
and suppose, for the monent, that ¢=C*[0, 1] and JeR are given. We shall
construct K=K(x, y)eC*D) satisfying (3.1.a), (3.1.c), (4.13".2), (4.15’) and
(4.22) K(x, 0)=g(x) (xe=x=1).
Firstly, by Proposition 5, there exists a unique K_,=K_,(x, y)ecz(é_l) such
that
{ K—ux+K-1yy+1>(y)K-1=q(x)K-1 (on é—l);
K—xlppo”—‘O, K_\lpe=g(x), K_1ylpe=hg(x),
because of [4.2T} Next, for go=K-ilcp,C*CP,) there exists a unique K,
=K,(x, y)eC¥2,) such that
{ Korz_KOyy+p(y)KOZQ(x)K0 (On !50)’
Ko]CP(,:go: (Kox‘i‘]Ko)lccl:O-

Similarly, setting g;=Klp,p,, We have K;=Ki(x, y)eCz(.(—)l) such that

{ Kyzo—Kiyy+p(9)Ki=q(x)K,  (on 2,),
K11P001:g1, Kl]POPIZO-
Continuing this procedure, we get K,=K,(x, y)eC‘l(.Q ) (0=7=2n) such that
Kjoa—Kjyy+p(0)K;=q()K;  (on 2),
with
{ sz]chj‘—“sz-ﬂchjy (szx’l‘]KZj)[CjCjH:O O=j=mn),

Kij-slpyoyo;=Kajalpjycjy  Kojmalpypy =0 (1=j=n).
We now extend pC'[0,1] to p=C'[0, 2] and obtain Kps1=Kson+:(x, ¥)
eC¥23n4+1), Pon+1 being the interior of ACy41PpPr+i, such that

{ Kunss so—Kanss yy+ POV Konr=q(0)Kanez (00 Dons),

K2n+1]Pncn+1:K2anncn+1’ K2n+1[PnPn+1:O-

Finally, we obtain Kynis=Ksnss(x, V)ECH24,+2) such that

K2n+210n+lpln+1:K2n+llCn+lP'n+1)
(K2n+2x+]K2n+2)]Cn+1B:0-
Define K,=C%D,) by

{ Koniz 22— Konss yy+P(y)Kzn+2ZQ(X)K2n+2 (on §2n+2);

(4.23) Kix, y)=Kx, y) (x, y)e2;, —1=j=2n+2).
Then, K, satisfies l?llgjecz(!jj) (—1Z7=52n+2),
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(4.24.2) KooKy (0K i=qx)K,  (on 2, —1=j<2n+2),
(4.24.b) Kilxo, =0 (0=y=x,),

(4.24.c) Ki(x, )=g(x), K. (x,0)=hgx) (x,=<x=1),

and

(4.24.d) Kio(l, )+JE(L »)=0  (0=y=1).

Put

FN=Kialxe, 30  O0=y=x,).

By Proposition 6, there exists a unique I?2:K~2(x, y)eC¥D,) such that

(4.25.2) Rope—Royy+p(0Ko=q(x)K,  (on D)),
(4.25.b) Ri(xo, =0, Koulxo, =F(3)  (0=y=xy)
and

(4.25.¢) K (x, 0=hKy(x,0) (0=x=x,),

because the compatibility condition
F1(O)=K,z,(x,, 0)
=hg’(x,) (in fact, (4.23.c))
=hK,.(x,, 0)  (in fact, (4.23.c))

=hf(0)
is satisfied.
We define KeC%D) as
Kix,»  (x, y)eDy
4.26 K(x, y)=3 « _
(4.2 i {K2<x, % (x, »eDy

and show KeC¥D). Then, K satisfies the desired relations (3.1.a), (3.1.c),
(4.13".2), (4.15") and To this end, we have only to prove

(4.27) g=8(x)=K(x, 0)eC?[0, 1].

In fact, if holds, then there exists a unique K=K(x, y)=C¥D) such that
(4.28.2) KooK, ,+p(3K=¢x)k  (on D),

(4.28.b) ]?(x, 0)=g(x), KNy(x, 0)=hg(x) 0=x=1),

and

(4.28.0) K., »+JKA, =0 (0=y=D),

because the compatibility condition



52 T. Suzukr

&')+J&1)=g"(D+Jg(1)=0

is satisfied by [4.2I] On the other hand, K=C*D) is piecewise in C>-class on
D and satisfies (4.28.a) almost everywhere as well as (4.28.b) and (4.28.c).
Hence by Remark 2.1, K=KeC¥D) follows.

In order to prove [4.27), we take a point C’ on the segment PA as
PC’=p (=PC). S and S’ denote the middle points of the segments P,C and
P,C’ respectively. We then obtain a regular tetragon []P,S’PS whose interior
is denoted by £.,. Let 7, and 2_, be the interior of APC’P, and AP,CC’,
respectively.

Figure 2.

Because of the definition of K, by (4.25), K defined by satisfies K[3_,
eC?*2_,), on account of Remark 2.2 and the uniqueness assertion of
2. On the other hand, KeC¥.,) and K=C¥Q"’,) have been verified, hence
KeC¥Q.,) follows. Therefore, g=C*C'C) holds true, while g=C¥AP) follows
from K,eC¥D,). Thus, has been proved.

In this way, we have constructed KeC*D) satisfying (3.1.a), (3.1.c), (4.13".2),

(4.15") and [(4.22) for each geC?*[x,, 1] with [4.21), and for each ¢=C*[0, 1] and
JER. Now we can consider the mapping

(4.29) Tg:C'0, 11— C'[0, 1];
(g, ) n—><2—d(i~K(x, x)+p(x), H—K(1, 1)),

for each g=C?[x,, 1] with

X=C'[0, 1]XR is a Banach space with the norm |(g, /)| x=lqlcio 5+ 1.
Set Us={(q, Nll(g, NIIx=B} (B>0). In view of the construction of K, we get
by combining the estimates (2.3.1)-(2.3.4) and (2.4.1)-(2.4.4) a monotone increas-
ing continuous function z: [0, c0)—(0, o) such that

(4.30) ITe(g, Dilx=t(Blgllcozeut+M (g, J)EUB)

and
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(4.31) 1T¢(q1, J)—Te(gs, Jo)ll x
=t(B)l(g1, J1)— (g2, jz)nxng”m[zo, 11
(g1, J1), (e, J2)EUB)

for each B>0, with a positive constant M depending on (p, A, H) and x,.
Therefore, for each B>M, there exists a positive constant d such that
lgllcorz,, 10=0 implies that T, is a strict contraction mapping on Up, so that it
has a fixed point on Uz denoted by (g(g), J(g)). Construct K,=K,(x, y)C¥D)

satisfying (3.1.a), (3.1.c), (4.13".2), (4.15’) and for g=q(g) and J=J(g) as
before, and set :

(4.32) J(g)=h+K,0, 0).

Then, (g(g), 7(g), J(g)) and K, satisfy (3.1.b) and (4.13".1), while K, 30 holds if
g#0. Thus, by taking g=C?[x,, 1] with g0, (4.21) and |igllcez, =0, Claim
2 has been established. O

§5. Proof of Theorem 2.
Recall
(5.1 M:hmaz=1{g j,J, )eC[0, 1]XRXRXL¥0, 1) | the solution
v=u(t, x) of the equation (E,,; s, satisfies the
following condition [5.2)},
(5.2) va(t, xo)=ua(t, xo), v, E)=u@, § (TW=t=T,;£=0, x,).

Assume and hold. In the same way as in §4, we expand « and v in
terms of {¢,} and {¢n}, respectively, compare both sides of and see that
for each n+#n,;, there exists m(n)=N such that

(56.3) An=pmmy  (n#En, 1ZISN),

(5.4.1) (@, )Pn(x0)=(b, Pm)Pmem(x0)  (n#En, ISISN),
(5.4.2) (@, )Pr)=(b, Pn))Pnm(§)  (n#n;, ISISN; =0, x,),
and that for m¢ {m(n)|n+n,},

(5.5) 0, ¢m)=0  (m& {m(n)|n+n})

holds. (5.3)-(5.5) are equivalent to under [4.4). The conditions and
(5.4) are expressed in terms of K in [Lemma 1, and we have
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CLAIM 3. Suppose holds and put

(5.6) Mo w0 2,=1(q, j, NECO, LIXRXR | there exists some
be L¥0, 1) such that (q, 7, ], b)EMp,h,H,a,xo}»

Then, (q, j, ]YEM% 1.1, 0.2, if and only if there exists KeC¥D) satisfying (3.1),

5.7) (J=H-AK(, Dga(D+ | KL, 9K, )} $al3)dy=0
(n#n,;, ISISN),

(5.8) [0 gudy=0 (e, 1=0=N)

and

G.9) Ko, £0ga(xo)+ | Kulo, 9)8a(3)dy=0

(n#n, 1Z[EN).

(g, 7, J)=(p, h, H)if and only if K=0. For each (q, j, ])EM;h,H,a,xo, a unique
b satisfies (q, j, J, D)EM 1, 1, 0,2, hence in particular M3 4 g o, -,={(p, h, H, a)}
if and only if M3 4 . 5,={(p, h, H)}. *

Note that [5.9) follows from [5.4.1).
By Claim 3, is reduced to

CLAmM 4. (a) In the cases

(ai) x,=1, N=0 (aii) 1/2<x,<1, N<occ  (aiil) x,=1/2, N=1,
the relations (3.1) and (5.7)-(5.9) imply K=0.
(B) In the case of x,=1 and 1=N, there exist Kec¥D), ¢eC0, 1], jeR and
JeR with K==0, satisfying (3.1) together with J=H,
G.10) | KL »gady={ KoL, ))ga(3)dy=0  (n#n,, ISIEN)
and
(5.11) K(1, 1)=0.
(r) In the cases

(ri) xo=1/2, 2N (ri) 0<x,<1/2,
there exist KeC¥D), ¢qeC'[0, 1], j€R and JeR with K=0, satisfying (3.1),
(5.7.1) J=H—K(, 1),

(5.7.2) LFAL, DHTK, DMy =0 (nmi, 1SIZN),
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(5.8) K(xo, y)=0 (0=y=x,)
and
(5.9 K(x,, )=0 0=y=xy). *

REMARK 5.1. In (B8), we have only to show the assertion for N=1. Simi-
larly, in () we have only to show the assertion for the cases of

(i) xo=1/2, N=2

and

(rii") 0<x,<1/2, N=0

instead of (ri) and (yii), respectively. *
REMARK 5.2. If N<oo, (5.7) is equivalent to (5.7.1) and (5.7".2). *

In fact, an=S:{Kx(1, Y)HJK, )} aly)dy satisfies S2_qa% < oo because of K

eC¥D), hence a,—0 as n—oo. On the other hand, ¢,(1)=(—1)"/4/2+0(/n)
(n—0o0) holds by (4.19). Therefore, [5.7)] with N<co implies (5.7°.1) and (5.7’.2).
O

PROOF OF CLAIM 4 FOR THE CASE OF (ai). In this case, and [(5.9)
give (5.8’) and (5.9'), because {@,}5-, is complete in L%0, 1). Therefore, K=0
follows from (3.1.a), (3.1.c), (5.8) (with x,=1) and (5.9") (with x,=1) by Prop-
osition 6. O

PROOF OF CLAIM 4 FOR THE CASE OF (B8). We assume N=1. Then (5.10)
means

(5.10") K1, y)=c¢n,(3), K1, y)=dd.(y) (0=y=1)
for some ¢, d=R, while [5.11)] means
(5.11") c=0.
Let g=g(x)=C?[0, 1] satisfy
¢ s d
.12) =2 (6gn )0+ D)~ n,)g,

g)=0, g'(I)=d.
Such g=0 exists if |d| is small. Set

(5.13.1) K(x, y)=g(x)9,(y)
and

(5.13.2) q(x)=2—ii—(g¢nl)(x)+;b(x) » J=h+g0)¢,0), J=H.
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Then, KeC*D) and(q, 7, J)eC'[0, 1]X RX R satisfy K=0, (3.1.a), (3.1.c), J=H
and (5.10") with ¢=0. On the other hand, (3.1.b) is shown as

=hy+5 | @)= ps=g 0,0+ ——(g(S)pn(s)ds

=g(x)pn,(x)=K(x, x).
Thus, the claim has been verified. O
In order to proceed to the case of 0<x,<1, we prepare

LEMMA 2. If N<oo, then {¢,|n#n,, 1IN} is complete in L%a, b) for
each subdomain (a, b)Z(0, 1). *

In fact, if f= L%a, b) satisfies
Sbf(x)%(x)dxzo (n#ny, 1<IZN),

then f(x)e L*0, 1) defined by

el 0 50
satisfies
| fnga@idr=0  (zn, 151=N),
so that
6.14) fo=Z egnlx)  (xE0, 1)

holds for some ¢;€R (1<I<N). Since f(x)=0 on [0, 1]\(a, b), which is open,
we operate (p(x)—d?/dx*)* (0<s<N-—1) there and get

,é i)' Pay(2)=0  (x€[0, 1]1\(q, b); 0=s<N—1).

Recalling 2,,< +++ <4,y, we have
cifn(x)=0  (x€[0, 1]1N(a, b); 1=I=N)

and so ¢;=0 (1=<I<N) again by the openness of [0, 1]\(a, b). Hence f=0 on
(a, b) holds by O

PROOF OF CLAIM 4 FOR THE CASE OF (aii). In this case, implies
(5.7.1) and (5.7".2) by Remark 5.2. Also, and yield (5.8") and (5.9'),
respectively, by

Now, let us recall the notations in §4. (3.1.a), (3.1.c), (56.8") and (5.9’) give
K=0 on D, by Proposition 6. Similarly, k=0 on 2_, and K=0 on 52;-1
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(1=j7=n) follow from Propositions 6 and 2, respectively. Take B, and @, on
the segments BC and QP, respectively, as BTB:=UQ—1=2,0. Let the crossing of
Q,B; and P,C, be B,. Denote the interior of AB,QQ, and AB,B,C, by @yn41
and 2,,, respectively.

B
o/ VB
B,
P.f
Q. ";‘;Cn
A P C
Figure 3.

Then, Proposition 2 again gives K=0 on f)znﬂ._ Therefore, now Proposition 1
implies K=0 on 2,; 0<j<n—1) and K=0 on 2,,.
In this way, we have derived

(5.15) K=0 (on D(x,)),
where
(5.16) Dixo)=DN{(x, y)x+y<2x,}.

In particular, (5.7.2) gives by 1/2<x,<1

. ML 3)HTKQ, D al)dy =0 (nmy, 1SISN),

hence

(®.17) K1, »)+JK(I, =0  (@Cx,—1l=y=1)

by Lemma 2. Now (3.1.a), (5.15) and (5.17) give

(5.18) ' K=0  (on D~D(xy))

by Proposition 4, and thus K=0 on D has been verified. ‘ O

REMARK 5.4. Similarly, in the case of N<co and 0<x,<1/2, (5.7)-(5.9)
are also reduced to (5.7°.1), (5.7°.2) and (5.15) by virtue of Lemma 2 and Prop-
osition 6. Furthermore, in this case (5.15) is equivalent to



58 T. Suzuki

(5.19) K(x, 0)=0 0=x=2x,)
under (3.1.a) and (3.1.c), by *

PROOF OF CLAIM 4 FOR THE CASE OF (aiii). in this case, (6.7)-(5.9) are
reduced to (5.7.1), (5.7°.2) with N=<1 and with x,=1/2 by Remarks 5.2
and 5.4. (5.7.2) with N<1 implies

(5.20) K.(1, y)+JK({1, y)=g(y) O=y=D)
with
(5.21) gy)=co,(y) (0=y=1)

for some c=R.
(5.22) g(0)=0

follows from (with x,=1/2), hence g=0 holds. Now (3.1.a), (3.1.c),
and with g=0 imply K=0 by Proposition 6. O
PROOF OF CLAIM 4 FOR THE CASE OF (7i’). In this case (5.7°.2) means

with
(5.21) g(y)= ]‘é ;9 (y)  (O=y=D

for some c;, c,=R.

Suppose, for the moment, that ¢=C'[0, 1] and /=R are given. Take g as
(5.21") with [5.22). By Proposition 6, there exists a unique KeC?%D) satisfying
(3.1.a), (3.1.c), (with x,=1/2) and [(5.20), because the compatibility condition

g0)=0,  g’(0)=hg0)=0
is satisfied. We consider the mapping

Tg : C'[0, IJXR —> C'[0, 11X R;
d
(@, ) —> (25K, 2)+p(x), H—K(, D).

In the same way as in §4, we can show that 7, has a fixed point in
X=C'[0, 17X R if || glcero,13=0 is satisfied for a small 6>0. Noting (5.21"), we
can take such g=0 with because of ¢,(0)#0 (n=0, 1, 2, ---). Therefore,
in the same way as in the proof of Claim 2, we obtain (g, 7, J) and K==0
satisfying (3.1), (6.7".1), (5.7.2) and with x,=1/2. O

PROOF OF CLAIM 4 FOR THE CASE OF (rii’). We show that there exist
(g, 7, J) and K=0 satisfying (3.1), (5.7°.1),

(6.77.2) K.(1, »+JK{1, »=0 0=yl
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and if 0<x,<1/2. We take f=C?*0, 1] such that

(5.23) f=7"(1)=0, flx)=0 (0=x=2x,<1).

Then, for each ¢=C'[0, 1] and J=R, there exists a unique K<C?D) satisfying
(3.1.a), (3.1.¢), (5.77.2) and ‘

(5.24) Kix, 0)=f(x) (O=x=1)

by Proposition 6. Therefore, we can consider the mapping

T, : C'[0, 1] —> C[0, 1];
d
@, ) (2K (x, )+ p(x), H=K(1, D),

which has a fixed point in X=C*[0, 1JXR if ||f|cew0 17 is small. In the same
~way as in the proof of Claim 2, we obtain (g, 7, /) and K=0 satisfying (3.1),
(5.7.1), (6.77.2) and with 0<x,<1/2. O

Appendix. Uniqueness theorems in inverse spectral problems.

Here we want to describe some applications of the deformation formula to
the inverse Sturm-Liouville problem investigated by [1, 6, 3, 4]. Although our
results are stated only for p=C*[0, 1], it is possible to state them for p= L0, 1)
as in [1, 6, 3, 4], by generalizing the notion of the solution of (3.1).

Let {A,}%-0 and {gn}m-o be the eigenvalues of A, . » and A, ;,, respec-
tively, where (p, h, H), (g, 7, J)EC'[0, 11X RXR. {@,}%- and {¢Pn}n-o denote
the eigenfunctions of A, » » and A, ; ,, respectively, normalized by [@allz2c0, 1
:Hébm”Lz(o,l):l-

THEOREM [ (Hochstadt-Lieberman [4]). Suppose p(x)=¢(x) 0=Zx=1/2) and
h=j. Suppose, furthermore, that for each n+n, there exists m(n)eN such that

(A.1) An=llm(n) (n#n,).

Then, p(x)=q(x) (0=x=1) and H=] hold. *
REMARK I. In [4], H=] and

(A.1) An=fmemy  (n=0,1,2, )

are assumed besides p(x)=¢g(x) (0=x=1/2), in deriving p=q. *

PrOOF. In terms of K in in §3, (A.1) means

(J=H+K(, Dga+ (KL, 9)+TK, )} ga0)dy=0  (n#ny)

by the argument in §4, the equation which is equivalent to
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(A.2.2) J=H—K(1, 1)
and
(A.2.b) [ KL, )HTKA, DI gu(dy=0  (n# 1)

by Remark 5.2. On the other hand, p(x)=¢(x) (0=x=1/2) and h=j mean
K(x, x)=0 (0=x=1/2) by (3.1.b). Therefore,

(A.3) K=0  (on D(1/2))

holds by Proposition 6, where D(x,) (0<x,<1) is the domain defined by [5.16).
Now, K=0 on D~ND(1/2) follows from (A.2.b) and (A.3) in the same way as in
the proof of Claim 4 for the case of (aiii). Hence K=0 holds, which is equiva-
lent to (p, h, H)=(q, 7, J) under (3.1) and (A.2.a). O

In I, the conditions p(x)=¢(x) (0=<x=1/2) and (A.l) are necessary
for the uniqueness p(x)=¢(x) (0=x=1) and J=H to hold. Namely, we have

THEOREM I’. (i) For each (p, h, H) and x, in 0<x,<1/2, there exist
g#p, j and J such that

(A~4) .b(x):l](x) (0§X§XO), Zn:ﬂm(n) (n:07 -1) 2’ "')) h=]-
(ii) For each (p, h, H) and ny#n,, there exist q+p, j and J such that
(A.5) p(x)=q(x) 0=x=1/2), An=fnmy (nFny, n,), h=j. *

PROOF. In the same way as in the proof of I, (A.4) is shown to
be equivalent to (A.2.a) and

{ K1, »)+JK({1, y»)=0 (0=y=1),

(A.6)
K=0 on D(x,),

and (A.5) is shown to be equivalent to (A.2.a) and

{ [, 9)HIKA, DI Gu()ly=0  (n# 1, 1),
(A7) 0
K=0 on D(1/2).

Therefore, we have only to show that there exist (¢, j, /) and KeC%D) with
K=0 satisfying (3.1) and (A.6), and with K=£0 satisfying (3.1) and (A.7) to
prove (i) and (ii), respectively. However, these have been already done in the
proof of Claim 4 for the cases of (yii’) and (yi’), respectively. O

Let {A3}7=0 and {ph}m-o be the eigenvalues of A, » m and Agj g, r€-
spectively, where H#=H* {¢%}%-, and {¢¥%}5n-, denote the eigenfunctions of
Ap n ue and A, ; ge, respectively, normalized by |@%|| L2 n=I¢%l 20, n=1.
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THEOREM II (Borg [1], Levinson [6], Hochstadt [3]). (i) Assume that for
each n€R there exist mn)eR and [(n)ER such that

(As} /zn:,um(n); Zj::ﬂ;k(n) (n=0, 1, ---).

Then p=q, h=j, H=] and H*=]J* hold.
(ii) Assume that for each n+n, there exists m(n)e N and that for each neN
there exists [(n)eN such that

(A.9) An=Ummy MFNL), A=y, m=0,1,2, ).

Assume, furthermore, either H=] or H*=]*. Then, p=q, h=j, H=] and H*=]*
hold. *

REMARK IL.1. In [1, 6, 3], (A.9) with n,=0, h=j, H=] and H*=]J* are
assumed in deriving p=q. Levitan-Gasymov [7] reconstructed p, h, H and H*
from {2,, 4¥| n=0, 1, 2, ---} under suitable conditions. *

PrOOF OF (i). In terms of K, (A.8) means

(J—H+ K, DD+ [ 1L, 9+IK, b ga)y =0 (2=0, 1,2, )
and
(J*—H*+K(1, 1))¢ﬁ(1)+S;{Kx(L KA, )} gE(ydy=0  (n=0, 1, 2, ),
which is equivalent to
(A.10) J=H—K({1, 1), K., y)+JK({1, y)=0 0=y=<1)
and
(A.11) J*=H*—=K(1, 1), K1, y)+J*K({1, »=0 0=y=1),

respectively. In particular, J+J* holds by H+H*. Therefore, K.(1, y)=K(1, y)
=0 (0=<y<1) follows, so that K=0 by Proposition 6. |
PROOF OF (ii). In the same way, (A.9) implies (A.11) and

J=H=KL, D, (UG 3)+TK, Dbgaln)dy=0 (nny),
which means
(A.12.2) J—H=J#—H*=—K(, 1)
and
(A12b) K, 9)=cpn(3),  Kull, Y=—Tkcha(y)  (O=y=D)

for some ceR, by H+H*. Now either J=H or J*=H* gives K(1, 1)=0, hence
¢=0. Therefore, K(1, y)=K,(1, y)=0 (0=<y=<1), so that K=0 by Proposition 6.
o
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In (i) of II, the condition (A.8) is necessary for the uniqueness
(p, h, H, H=(q, 7, ], J*). In (ii) of [TheoremlII, the conditions H=] (or H*=]*)
and (A.9) are necessary for the uniqueness (p, i, H, H¥)=(q, 7, J, J*). Namely,
we have '

THEOREM II’. (i) For each (p, h, H), there exist (q, j)#(p, h), J+H and
J¥=H* such that (A.9) holds.
(ii) For each (p, h, H) and n,#n,, there exist (q, j)#(p, h), J and J* such that
J=H, J*=H* and

(A.13) Xn:)am(n) (n#ny, ns), Z?z‘:#?‘m) (n=0, 1, 2, ---).

(iii)y For each (p, h, H), n, and n,, there exist (g, j)#(p, h), J and J* such that
J=H, J*=H* and

(A.14) zn:ﬂm(n) (n#ny), 2’7'22#’1“(1;) (n#ny).

PrROOF OF (i). As we have seen above, (A.9) is equivalent to (A.12) for
some c=R. We show that there exist (¢, 7, J, J*), K=0 and ¢ satisfying (3.1)
and (A.12) to prove the theorem.

For each ¢=C'[0, 1], JeR, J*<R and c=R, there exists a unique KeC¥*D)
satisfying (3.1.a), (3.1.c) and (4.12.b) by Proposition 6, because the compatibility
condition is satisfied by ¢7,(0)—h¢,,(0)=0. Therefore, we can consider the

mapping
T, : C0, 1]XRxR — C'[0, 11X RXR;

(@, 1, 79— (2 K, 04 p(0), H-KQ, 1, (1, D).

By means of the estimates (2.3.1)-(2.3.4) and (2.4.1)-(2.4.4), T. is shown to be a
strict contraction mapping on a certain bounded closed ball in X=C'[0, 1]JXRXR,
provided that c= R is small. Therefore, in the same way as in §§4 and 5, the
assertion is verified. a
PROOF OF (ii). In terms of K, (A.13), /=H and J*=H* are equivalent to

(A.15.a) K(1, 1)=0

and
[, DHHEA, balo)dy=0 (s, 1),
[ a1, 30+ KA, 91 80My=0  (1=0,1, 2, ).

The latter means
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with
2
(A.16) 8= 2 €ifn)(y)

for some ¢;, c,€R by H#H*. We show that there exist (¢, 7, J), K=0 and
¢y, €y, satisfying (3.1), (A.15) with (A.16).
For each ¢=C*[0, 1] and ¢,, ¢c,=R with

(A.17) g)= X ¢, (D=0,

there exists a unique KeC2D) satisfying (3.1.a), (3.1.c) and (A.15.b), because
the compatibility condition

g'(0)—hg(0)=0
is satisfied. We now consider the mapping

Tepe, = C'L0, 11— C'[0, 1];
d
qr—> ZWK(X, X)-{—p(X).

For each sufficiently small (c;, ¢;)=(0, 0) with [4.17), T.,., has a fixed point,
which proves the assertion in the same way as in §§4 and 5. Note that (A.15.a)
follows from (A.17). O

PROOF OF (iii). In the same way, (A.14), J=H and J*=H* are equivalent

to

(A.18.2) K, 1)=0

and

(A.18.b) K1, )=g(y), K1, y)=g:y) 0=y=1)
with

A1 { ;Eiiifby(f;+f;_(§d¢<y>

for some ¢, d=R. We show that there exist (¢, 7, /), K=0 and ¢, d satisfying
(3.1) and (A.18) with (A.19).
For each ¢=C'[0, 1] and ¢, d=R with

(A.20) g1(D)=cn (D)+dg3,(1)=0,

there exists a unique KeC*D) satisfying (3.1.a), (3.1.c) and (A.19), because
the compatibility condition

21(0)—hg(0)=g5(0)—hg,(0)=0

is satisfied. We now consider the mapping
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Te.a : C'[0, 11 —> C'[0, 17;

qg—> Z—d%K(x, x)+p(x).

For a sufficiently small ¢, deR with (A.20), T, ., has a fixed point. Since
¢.(1)+0 and ¢¥*(1)+0, we can take such (¢, d)#(0, 0) and the assertion is proved
in the same way as in §§4 and 5. O

REMARK II.2. (i) and (ii) of II’ can be generalized as the follow-
ing II”. For the proof, see [18] Hochstadt studied the same
problem. The nonlinear equation (A._21) is a generalization of (5.12). See also

[13]. O
THEOREM II”. Let N be finite and set

G={GeCH([0, 11-R") | G satisfies —d;»—G:[(Z—i-(G-@)er)I—A]G},

dx
where - and I denote the inner product and the unit matrix in RY, and where
Any
O=0(x)=T(@n,(x), =+, Pny(x)) and A= o . Then, (q,j, ], J* satisfies
Any

(A.21) Aa=pmny (n#FEN;, 1=i<N), H=pfa, (n=0,1,2, )
if and only if there exists GG with

(A.22) G'(L)+(H*—(G- d)(1)G(1)=0
such that
(A.23) D=2 (G-Ox),  j=h+(G-0)0),
J=H—(G-®)1), Jr*=H*—(G-®)1). .
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