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1. Introduction.

For the study of the spatial distribution of organisms, there are a large
number of spatially spreading population models in which biological interactions
and diffusion are taken into account. Among them, several models include non-
linear diffusion processes called “ density-dependent dispersal “. From ecological
aspects, the works by Gurney and Nisbet [8], Gurtin and MacCamy [9] are
relevent here.

In the category of such models, we propose a population model which provides
a nonlocal interaction

(1.1) $u_{t}=(D(u)u_{x})_{x}+[( \int_{-\infty}^{\infty}K(x-\xi)u(\xi, t)d\xi)u]_{x}$ ,

where $u(x, t)$ denotes the population density at position $x\in R^{1}$ and at time $t$ ,
$D(u)$ is the diffusion rate satisfying $D(O)=0$ and $D’(u)>0$, and $K(x)$ is an odd
function such that $K(x)>0$ for $x>0$ . For one example, we have

$K(x)=\{\begin{array}{ll}ke^{-sx}, x>0,-ke^{-sx}, x<0,\end{array}$

for a non-negative constant $s$ . The second term of (1.1) ecologically implies a
kind of aggregative mechanism of the individuals, which is motivated by the
notion of “ the selfish avoidance of a predator can lead to aggregation “ (see,

Hamilton [10]). If we restrict $D$ and $K$ to the specific forms $D(u)=mu^{m-1}$ and

$K(x)=\{\begin{array}{ll}k, x>0,-k, x<0,\end{array}$

where $m>1$ and $k>0$ are constants, then (1.1) is rewritten as

$u_{t}=(u^{m})_{xx}+k[( \int_{-\infty}^{x}u(\xi, t)d\xi-\int_{x}^{\infty}u(\xi, t)d\xi)u]_{x}$ .

This research was partially supported by Grant-in-Aid for Scientific Research (No.
56460005), Ministry of Education.



540 T. NAGAI and M. MIMURA

When $K=0$, the equation (1.1) occurs in the theory of flow through porous medium.
Because of the degeneracy of diffusion at $u=0$ this equation possesses the prop-
erty that an initial smooth distribution with compact support spreads out a finite
speed and loses the smoothness (see, for instance, Aronson [2], Oleinik, Kalash-
nikov and Yui-Lin [13]). Concerning the regularity of solutions for the porous
medium equation it was known that the best possible H\"older exponent of solutions
is $\min[1,1/(m-1)]$ (see, Aronson [1] and Gilding [4]).

Let the initial function $u_{0}(x)$ satisfy

$\int_{-\infty}^{\infty}u_{0}(x)dx=c<+\infty$ .

Then, by the $L^{1}(R^{1})$-conservation, (1.1) is reduced to

(1.2) $u_{t}=(u^{m})_{xx}+k[(2 \int_{-\infty}^{x}u(\xi, t)d\xi-c)u]_{x}$ .

In this Paper, we consider the following slightly more general equation than
(1.2):

(1.3) $u_{t}=(u^{m})_{xx}+[ \phi’(\int_{-\infty}^{x}u(\xi, t)d\xi)u]_{x}$ in $R^{1}\cross(0, \infty)$

subject to the initial condition

(1.4) $u(x, 0)=u_{0}(x)$ on $R^{1}$ ,

where $\phi’=d\phi/ds$ , and discuss the global existence and uniqueness of solution of
the Cauchy problem (1.3), (1.4). The assumptions to be imposed on this problem
are essentially $m>1,$ $\phi$ is a smooth function on $R^{1}$ and $u_{0}(x)$ is non-negative,
bounded and integrable on $R^{1}$ .

In Section 2, we state our main results which consist of global existence and
the regularity of non-negative solutions of (1.3), (1.4). In Section 3, we transform
the problem (1.3), (1.4) through

$v(x, t)= \int_{-\infty}^{x}u(\xi, t)d\xi$

into the more convenient Cauchy problem describedjby

(1.5) $v_{t}=[(v_{x})^{m}+\phi(v)]_{x}$ in $R^{1}\cross(0, \infty)$ ,

(1.6) $v(-\infty, t)=0$ and $v(+\infty, t)=c$ for each $f>0$ ,

(1.7) $v(x, 0)=v_{0}(x)= \int_{-\infty}^{x}u_{0}(\xi)d\xi$ on $R^{1}$ .

In Section 4, we show the uniqueness of non-negative monotone increasing solu-
tion of the problem $(1.5)-(1.7)$ , so that the uniqueness of a non-negative solution
of the original problem (1.3), (1.4) can be obtained. In Section 5, as an approxi-
mation to $(1.5)-(1.7)$ , we consider the first boundary value problem for certain
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non-degenerate parabolic equations in an expanding sequence of cylinders and
give some estimates on the derivatives by using a method similar to the ones
used by Aronson [1], Gilding $[4, 6]$ and Gilding and Peletier [7] to obtain a
sharp Holder exponent of solutions. In Section 6, using the results obtained
from the problem of non-degenerate case, we prove the global existence theorem
for $(1.5)-(1.7)$ and then assert the same theorem for the original problem (1.3), (1.4).

Finally, in Sections 7 and 8, we state the regularity of solutions of the prob-
lem (1.3), (1.4) and the well known comparison theorem of the problem $(1.5)-(1.7)$ .

The asymptotic behavior of a solution of (1.3), (1.4) and the finite speed of
propagation of disturbances are investigated in [12].

2. Main results.

Throughout this paper, we make the following assumptions:
(A.1) $\phi\in C^{4}$ ;
(A.2) The initial function $u_{0}$ is non-negative, bounded and integrable on $R^{1}$ .
In the case of the porous medium equation, that is, the equation (1.1) when

$\phi\equiv 0$, it is known that classical solutions of the Cauchy problem for this equation
do not always exist. For this reason, we have to define solutions of our problem
(1.3), (1.4) in some generalized sense.

DEFINITION 2.1. A solution $u(x, t)$ of the Cauchy problem (1.3), (1.4) is
defined by a non-negative and bounded function on $R^{1}\cross[0, \infty$ ) which satisfies
the following conditions:

(i) $u\in C(R^{1}\cross(0, \infty))\cap L_{1oc}^{\infty}([0, \infty);L^{1}(R^{1}))$ ;
(ii) $u^{m}$ has a weak derivative $(u^{m})_{x}\in L^{\infty}(R^{1}\cross[\tau, T])$ for any $0<\tau<T<\infty$ ;

(iii) $\int_{-\infty}^{x}u(\xi, t)d\xi\in C(R^{1}\cross[0, \infty)),$ $\int_{-\infty}^{\infty}u(\xi, t)d\xi\in C([0, \infty))$ and

$\lim_{tarrow 0+}\int_{-\infty}^{x}u(\xi, t)d\xi=\int_{-\infty}^{x}u_{0}(\xi)d\xi$

(iv) $u$ satisfies the integral identity

for any $-\infty<x\leqq+\infty$ ;

$\int_{0}^{\infty}\int_{-\infty}^{\infty}\{uf_{t}-[(u^{m})_{x}+\phi’(\int_{-\infty}^{x}u(\xi, t)d\xi)u]f_{x}\}dxdt=0$

for all $f\in C^{1}(R^{1}\cross(0, \infty))$ with compact support in $R^{1}\cross(0, \infty)$ .
At first we shall state the existence and uniqueness results.
THEOREM 2.1. The problem (1.3), (1.4) has a unique solution $u(x, t)$ which has

the following properties:

(i) $\int_{-\infty}^{\infty}u(x, t)dx=\int_{-\infty}^{\infty}u_{0}(x)dx$ for any $t\in(O, \infty)$ ;

(ii) For any $\tau\in(0, \infty)$ there exists a positive constant $C_{1}$ depending on $m$ ,
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$\phi,$ $\Vert u_{0}\Vert_{L^{1}},$ $\Vert u_{0}\Vert_{L}\infty$ and $\tau$ such that for $x,$ $y\in R^{1}$ and $\tau\leqq s,$ $t<\infty$

(2.1) $|u^{m}(x, s)-u^{m}(y, t)|\leqq C_{1}[|x-y|+|s-t|^{1/2}]$ .
If $u_{0}^{m}$ is Lipschjtz continuous, then (2.1) holds in $R^{1}\cross[0, \infty$ ), where $C_{1}$ depends on
the Lipschitz constant of $u_{0}^{m}$ instead of $\tau$ ;

(iii) In a neighbourhood of a point in $R^{1}\cross(0, \infty)$ where $u$ is positive, $u_{x}$ ,
$(u^{m})_{xx}$ and $u_{t}$ exist and are continuous, that is, $u$ is a classical solution of (1.3).

The regularity result is mentioned as follows.
THEOREM 2.2. Let $u$ be a solution of the pr0blem (1.3), (1.4). Then $u$ has

the following properties:
(i) For any $\tau\in(0, \infty)$ there exists a positive constant $C_{2}$ depending on $m,$ $\phi$ ,

$\Vert u_{0}\Vert_{L^{1}},$ $\Vert u_{0}\Vert_{L}\infty$ and $\tau$ such that for $x,$ $y\in R^{1}$ and $\tau\leqq s,$ $t<\infty$

\langle 2.2) $|u^{m- 1}(x, s)-u^{m- 1}(y, t)|\leqq C_{2}[|x-y|+|s-t|^{1/2}]$ .

If $u_{0}^{m- 1}$ is Lipschitz continuous, then (2.2) holds in $R^{1}\cross[0, \infty$ ), where $C_{2}$ depends
on the Lipschitz constant of $u_{0}^{m-1}$ instead of $\tau$ ;

(ii) The denvative $(u^{m})_{x}$ exists and is continuous on $R^{1}\cross(0, \infty)$ . Moreover,

if $1<m<2$ then $u_{x}$ exists and is continuous on $R^{1}\cross(0, \infty)$ .
We remark that the regularity result just mentioned above is the best possi-

ble for the porous medium equation (see [1]).

3. Reduction of the problem (1.3), (1.4) to $(1.5)-(1.7)$ .
To obtain the existence, uniqueness and regularity results, we shall transform

the problem (1.3), (1.4) into a certain Cauchy problem. Let $u(x, t)$ be a solution
of (1.3), (1.4) with the initial function $u_{0}$ and define the function $v(x, t)$ on
$R^{1}\cross[0, \infty)$ by

(3.1) $v(x, t)= \int_{-\infty}^{x}u(\xi, t)d\xi$ .

Integrating formally the equation (1.3) from $-\infty$ to $x$ , we find that the function
$v$ is a solution of the following problem:

(3.2) $v_{t}=[(v_{x})^{m}+\phi(v)]_{x}$ in $R^{1}\cross(0, \infty)$ ,

(3.3) $v(-\infty, t)=0$ and $v(+\infty, t)=c$ for each $t\geqq 0$,

(3.4) $v_{x}(x, t)\geqq 0$ on $R^{1}\cross(0, \infty)$ ,

(3.5) $v(x, 0)=v_{0}(x)$ on $R^{1}$ ,

where $v_{0}(x)= \int_{-\infty}^{x}u_{0}(\xi)d\xi$ and $c= \int_{-\infty}^{\infty}u_{0}(\xi)d\xi$ . Conversely, if $v(x, t)$ is a solution of

the problem $(3.2)-(3.5)$ and the $function_{A}^{r}u(x, t)$ is defined by

(3.6) $u(x, t)=v_{x}(x, t)$ ,
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then, differentiating formally the equation (3.2) with respect to $x$ , we see that
$u$ is a solution of (1.3), (1.4). The details will be discussed below.

First we define a solution of the problem $(3.2)-(3.5)$ with the initial function
$v_{0}$ , where $v_{0}$ satisPes the following condition:

(A.3) $v_{0}$ is a non-decreasing and Lipschitz continuous function on $R^{1}$ such
that for a constant $c,$ $0\leqq v_{0}\leqq c,$ $v_{0}(-\infty)=0$ and $v_{0}(+\infty)=c$ .

DEFINITION 3.1. A solution of the problem $(3.2)-(3.5)$ is defined by a con-
tinuous function $v(x, t)$ on $R^{1}\cross[0, \infty$ ) which satisfies

(i) $0\leqq v(x, t)\leqq c$ on $R^{1}\cross[0, \infty$ ), and for each $t\in[0, \infty$ ), $v(-\infty, t)=0$ and
$v(+\infty, t)=c$ ;

(ii) $v(x, 0)=v_{0}(x)$ on $R^{1}$ ;
(iii) $v_{x}$ is non-negative and bounded on $R^{1}\cross[0, \infty$ ) and continuous on

$R^{1}\cross(0, \infty)$ ;
(iv) $((v_{x})^{m})_{x}\in L^{\infty}(R^{1}\cross[\tau, T])$ for any $0<\tau<T<\infty$ ;

(v) $\int_{0}^{\infty}\int_{-\infty}^{\infty}\{vf_{t}-[(v_{x})^{m}+\phi(v)]f_{x}\}dxdt=0$

for all $f\in C^{1}(R^{1}\cross(0, \infty))$ with compact support in $R^{1}\cross(0, \infty)$ .
Let $u$ be a solution of the problem (1.3), (1.4) with the initial function $u_{0}$ .

By a similar calculation to that in the proof of Theorem 1 in [5], we have
PROPOSITION 3.1. For each $t\in[0, \infty$ )

$\int_{-\infty}^{\infty}u(x, t)dx=\int_{-\infty}^{\infty}u_{0}(x)dx$ .

By virtue of Proposition 3.1, we can obtain the following relation between
solutions of two problems (1.3), (1.4) and $(3.2)-(3.5)$ .

PROPOSITION 3.2. Let $u$ be a solution of the problem(1.3), (1.4). Then the
function $v$ defined by (3.1) is a solution of the problem $(3.2)-(3.5)$ . Conversely, if
$v$ is a solution of the problem $(3.2)-(3.5)$ , then the function $u$ defined by (3.6) is a
solution of the Problem (1.3), (1.4).

PROOF. It is easy to prove the second part of the assertion. Hence, we only
prove the first part.

Let $u$ be a solution of (1.3), (1.4) with the initial function $u_{0}$ . Define the
function $v$ by (3.1) and put

$v_{0}(x)= \int_{-\infty}^{x}u_{0}(\xi)d\xi$ and $c= \int_{-\infty}^{\infty}u_{0}(\xi)d\xi$ .

It can easily be seen that $v$ satisfies the condition (i) of Definition 3.1 by using
Proposition 3.1 and that the conditions $(ii)-(iv)$ are fulfilled. Let us prove the
condition (v). For any function $g\in C^{1}(R^{1}\cross(0, \infty))$ of which support is included
in a rectangle $(a, b)\cross(O, T)$ , we define the function $G(x, t)$ on $R^{1}\cross(0, \infty)$ by
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$G(x, t)= \int_{x}^{\infty}g(\xi, t)d\xi$ .
For any positive integer $N$ with $N>|a|,$ $|b|$ , we dePne the function $x_{N}(x)\in C^{\infty}(R^{1})$

such that $0\leqq\chi\leqq 1,$ $\chi_{N}(x)=1$ for $|x|\leqq N,$ $\chi_{N}(x)=0$ for $|x|\geqq N+1,$ $\Vert\chi_{N}^{J}\Vert_{L}\infty\leqq M_{1}$ and
$\Vert x_{N}’’\Vert_{L}\infty\leqq M_{1}$ , where $M_{1}$ is a positive constant independent of $N$. Substituting the
function $f(x, t)=x_{N}(x)G(x, t)$ into the condition (iv) of Definition 2.1, and inte-
grating by parts, we obtain

$\int_{0}^{\infty}\int_{-\infty}^{\infty}\{vg_{t}-[(v_{x})^{m}+\phi(v)]g_{x}\}\chi_{N}dxdt$

$= \int_{0}^{\infty}\int_{-\infty}^{\infty}vG_{t}\chi_{N}’dxdt+\int_{0}^{\infty}\int_{-\infty}^{\infty}(v_{x})^{m}Gx_{N}\prime\prime d$ xdt

$+ \int_{0}^{\infty}\int_{-\infty}^{\infty}\phi(v)Gx_{N}’’dxdt=I+II+m$ .

Noting that I is written as

$I=\int_{0}^{T}\int_{-N-1}^{-N}vG_{t}\chi_{N}’dxdt$ ,

we have
$|$ I $| \leqq M_{1}\Vert G_{t}\Vert_{L}\infty\int_{0}^{T}v(-N, t)dtarrow 0$ as $Narrow\infty$ .

Next, by using the facts that $u$ is bounded on $R^{1}\cross[0, \infty$ ) and $xarrow u(x, t)$ is
integrable on $R^{1}$ , we get

$|l I|\leqq M_{1}\Vert G\Vert_{L}\infty\int_{0}^{T}\int_{-N-1}^{-N}u^{m}dxdtarrow 0$ as $Narrow\infty$ .

Lastly, integrating by parts and estimating the resulting equality, we obtain

$|$ III $| \leqq M_{1}\Vert G\Vert_{L}\infty(\sup_{0\leqq v\leqq c}|\phi’(v)|)\int_{0}^{T}\int_{-N-1}^{-N}udxdtarrow 0$ as $Narrow\infty$ .

Hence, it holds that for all $g\in C^{1}(R^{1}\cross(0, \infty))$ with compact support in $R^{1}\cross(0, \infty)$ ,

$\int_{0}^{\infty}\int_{-\infty}^{\infty}\{vg_{t}-[(v_{x})^{m}+\phi(v)]g_{x}\}$ $dxdt=0$ .

Thus the proof is completed.
Proposition 3.2 has established a one-to-one correspondence between two

solutions of (1.3), (1.4) and $(3.2)-(3.5)$ , which are mutually combined by (3.1) and
(3.6). Hereafter, in order to show the existence, uniqueness and regularity results
of the problem (1.3), (1.4) we may consider the problem $(3.2)-(3.5)$ .

4. Uniqueness.

THEOREM 4.1. There exists at most one solution of the problem $(3.2)-(3.5)$ .
Hence, the problem(1.3), (1.4) has at most one solution.
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PROOF. We first remark that the solution $v$ of the problem $(3.2)-(3.5)$ satisfies
that

$((v_{x})^{m})_{x},$ $v_{t}\in L^{\infty}(R^{1}\cross[\tau, T])$ for any $0<\tau<T<\infty$

and
$v_{t}=[(v_{x})^{m}+\phi(v)]_{x}$ $a$ . $e$ . in $R^{1}\cross(0, \infty)$ .

Let $v$ and $w$ be solutions of the problem $(3.2)-(3.5)$ with the same initial
function $v_{0}$ . By the remark mentioned above, we have

(4.1) $(v-w)_{t}=[(v_{x})^{m}-(w_{x})^{m}]_{x}+[\phi(v)-\phi(w)]_{x}$ $a$ . $e$ . in $R^{1}\cross(0, \infty)$ .
Multiply (4.1) by $[v(x, t)-w(x, t)]\chi_{N}(x)$ by using the cut-off function $\chi_{N}(x)$ used
in Proposition 3.2 and integrate over $R^{1}\cross[\tau, T]$ , where positive constants $\tau$ and
$T$ are arbitrarily fixed. Then in the resulting equation the integration by parts
yields

$\frac{1}{2}\int_{-\infty}^{\infty}[v(x, T)-w(x, T)]^{2}\chi_{N}(x)dx$

$\leqq\frac{1}{2}\int_{-\infty}^{\infty}[v(x, \tau)-w(x, \tau)]^{2}\chi_{N}(x)dx$

$- \int_{\tau}^{T}\int_{-\infty}^{\infty}[(v_{x})^{m}-(w_{x})^{m}](v-w)\chi_{N}’$ dxdt

$+ \int_{\tau}^{T}\int_{-\infty}^{\infty}(v-w)\chi_{N}[\phi(v)-\phi(w)]_{x}dxdt$ .

Letting $\tauarrow 0$ in this inequality, we find from $v(x, O)=w(x, 0)$ that

$\frac{1}{2}\int_{-\infty}^{\infty}[v(x, T)-w(x, T)]^{2}\chi_{N}(x)dx$

(4.2) $\leqq-\int_{0}^{T}\int_{-\infty}^{\infty}[(v_{x})^{m}-(w_{x})^{m}](v-w)\chi_{N}’$ dxdt

$+ \int_{0}^{T}\int_{-\infty}^{\infty}(v-w)\chi_{N}[\phi(v)-\phi(w)]_{x}dxdt=I+I$ .
We here note that $0\leqq v,$ $w\leqq c$ on $R^{1}\cross[0, \infty$ ), and the functions $v_{x}$ and $w_{x}$ are
non-negative and bounded on $R^{1}\cross[0, \infty$ ) and belong to $L^{1}(R^{1}\cross[0, T])$ . Hence,
letting $Narrow\infty$ , we have

$I=-\int_{0}^{T}\int_{N\leqq|x|\leq N+1}[(v_{x})^{m}-(w_{x})^{m}](v-w)^{\chi_{N}’}dxdtarrow 0$

and

$IIarrow\int_{0}^{T}\int_{-\infty}^{\infty}(v-w)[\phi(v)-\phi(w)]_{x}dxdt$ .

Therefore, the function $xarrow[v(x, T)-w(x, T)]$ belongs to $L^{2}(R^{1})$ and the inequal-
ity (4.2) yields
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(4.3) $\frac{1}{2}\int_{-\infty}^{\infty}[v(x, T)-w(x, T)]^{2}dx\leqq\int_{0}^{T}\int_{-\infty}^{\infty}(v-w)[\phi(v)-\phi(w)]_{x}dxdt$ .

By noting that $v(x, T)-w(x, T)arrow 0$ as $xarrow\pm\infty$ the integration by parts on the
right hand side of (4.3) permits us to rewrite (4.3) as

(4.4) $\frac{1}{2}\int_{-\infty}^{\infty}[v(x, T)-w(x, T)]^{2}d_{X}\leqq-\int_{0}^{T}\int_{-\infty}^{\infty}[\phi(v)-\phi(w)](v-w)_{x}dxdt$ .

We now estimate the right hand side of (4.4). Let us put

$\phi(v(x, t))-\phi(w(x, t))=A(x, t)[v(x, t)-w(x, t)]$ ,

where

$A(x, t)= \int_{0}^{1}\phi’(\theta v(x, t)+(1-\theta)w(x, t))d\theta$ .

Then, it follows from integration by parts that

(4.5) $- \int_{0}^{T}\int_{-\infty}^{\infty}[\phi(v)-\phi(w)](v-w)_{x}dxdt=\frac{1}{2}\int_{0}^{T}\int_{-\infty}^{\infty}A_{x}(v-w)^{2}dxdt$ .

Here we note from the definition of $A$ that

(4.6) $A_{x}| \leqq\sup_{0\leqq\sigma\leqq c}|\phi’(\sigma)|\cdot$
$\sup_{0<t<\infty,-\infty<x<\infty}|(v+w)_{x}|\equiv K<+\infty$

.

Combining (4.4) with (4.5) and (4.6) yields that for any $0<T<\infty$

$\int_{-\infty}^{\infty}[v(x, T)-w(x, T)]^{2}dx\leqq K\int_{0}^{T}\int_{-\infty}^{\infty}[v(x, t)-w(x, t)]^{2}dxdt$ ,

which implies
$[v(x, T)-w(x, T)]^{2}=0$ for $x\in R^{1}$ and $T\in(O, \infty)$ .

This comPletes the proof.

5. Auxiliary lemmas for the existence and regularity.

As will be shown later, we shall construct a solution of the problem $(3.2)-$

(3.5) as a limit of a sequence of solutions of the first boundary value problems
for certain non-degenerate parabolic equation in an expanding sequence of
cylinders. For this purpose, we prepare some lemmas.

We first introduce some notations which will be used later. Let $Q$ be a
domain in $R^{1}\cross(0, \infty)$ . We denote by $C^{2,1}(Q)$ the set of functions $u(x, t)$ defined
on $Q$ which are continuous with their derivatives $u_{t},$ $u_{x}$ and $u_{xx}$ . Analogously,
for the closure of $Q$ , say $\overline{Q}$ , we introduce the notation $C^{2,1}(\overline{Q})$ . For a function
$u(x, t)$ on $Q$ we introduce the notation

$|u|_{\alpha,Q}= \sup_{Q}|u(x, t)|+\sup_{(x,s),(y,t)\in Q}\frac{|u(x,s)-u(y,i)|}{[|x-y|^{2}+|s-t|]^{\alpha/2}}$

where $0<\alpha\leqq 1$ . If $u_{x},$ $u_{xx}$ and $u_{t}$ exist in $Q$ we introduce
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$|u|_{2+a,Q}=|u|_{a.Q}+|u_{x}|_{a.Q}+|u_{xx}|_{\alpha.Q}+|u_{t}|_{a,Q}$ .
The set of all functions for which $|u|_{a.Q}<\infty$ is denoted by $C^{a,a/2}(\overline{Q})$ . By
$C^{2+\alpha.1+\alpha/2}(\overline{Q})$ we mean the set of all functions such that $|u|_{2+a.Q}<\infty$ . For a
positive integer $n$ and a positive number $T$ we put

$Q_{n}(T)=(-n, n)\cross(O, T]$ and $Q_{n}=(-n, n)\cross(O, \infty)$ .

Let $v_{0}(x)$ be an infinitely differentiable function on $[-n, n]$ such that $v_{0}’(x)$

$\geqq 0$ on $[-n, n],$ $0\leqq v_{0}(x)\leqq c$ on $[-n, n],$ $v_{0}(x)=0$ for $-n\leqq x\leqq-n+1$ and $v_{0}(x)$

$=c$ for $n-1\leqq x\leqq n$ . For any fixed sufficiently small $\epsilon>0$ , we consider the
following problem:

(5.1) $v_{t}=[(v_{x}+\epsilon)^{m}+\phi(v)]_{x}$ in $Q_{n}$ ,

(5.2) $v(-n, t)=0$ and $v(n, t)=c$ for $t\in[0, \infty$ ),

(5.3) $v(x, 0)=v_{0}(x)$ for $x\in[-n, n]$ .
LEMMA 5.1. The pr0blem $(5.1)-(5.3)$ has a unique (classtcal) solution $v$ in $Q_{n}$

satisfying the following properties:
(i) $0\leqq v\leqq c$ in $\overline{Q}_{n}$ ;
(ii) $v_{x}\geqq 0$ in $\overline{Q}_{n}$ and $v_{x}>0$ in $Q_{n}$ ;
(iii) There exists an $a$ with $0<\alpha\leqq 1$ such that $v\in C^{2+\alpha.1+\alpha/2}(\overline{Q_{n}(T}))$ for any

fixed $T$ with $0<T<\infty$ ;
(iv) $v_{xx}\in C^{2.1}(Q_{n})$ .
PROOF. Let $f(p)$ be the smooth function on $R^{1}$ such that $f(p)=m(p+\epsilon)^{m-1}$

for $p\geqq 0,$ $f(p)\geqq m(\epsilon/2)^{m-1}$ on $R^{1}$ and there are positive constants $\nu$ and $\mu$ satis-
fying

$\nu(|p|+\epsilon)^{m- 1}\leqq f(p)\leqq\mu(|p|+\epsilon)^{m-1}$ on $R^{1}$ .

Then, for the equation

(5.4) $v_{t}=f(v_{x})v_{xx}+\phi’(v)v_{x}$ in $Q_{n}$

and the initial-boundary conditions (5.2) and (5.3), Theorem 4.1 in [11; p. 558]

shows that there exists uniquely a function $v$ having the property (iii). The
standard maximum principle yields that $0\leqq v\leqq c$ in $\overline{Q}_{n}$ . Since $\phi\in C^{4}$ , the prop-
erty (iv) can be shown by virtue of a standard argument in [3].

Finally, we verify the property (ii) which yields that $v$ is a solution of the
problem $(5.1)-(5.3)$ in $Q_{n}$ . Differentiate the equation (5.1) with respect to $x$ and
write $w=v_{x}$ . We then have

$w_{t}=f(v_{x})w_{xx}+[f’(v_{x})_{tJ_{xx}}+\phi’(v)]w_{x}+[\phi’(v)v_{x}]w$ in $Q_{n}$ .

We note that $w(t, 0)=v_{0}’(x)\geqq 0$ in $[-n, n]$ and that $w(\pm n, t)\geqq 0$ for $t\in[0, \infty$ ) by
using the property (i) and the boundary condition (5.2). Hence, applying the
maximum principle, we know that
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$w(x, t)\geqq 0$ in $\overline{Q}_{n}$ and $w(x, t)>0$ in $Q_{n}$ ,

which implies the property (ii). This completes the proof.
Next we shall give the boundedness of $v_{x}$ by using Bernstein’s method. A

technique similar to ours was used by Aronson [1] and Gilding and Peletier [7]

to obtain a sharp H\"older exponent for solutions of the porous medium equation.
LEMMA 5.2. Let $v$ be a solution of the pr0blem $(5.1)-(5.3)$ . Then we have

$0\leqq v_{x}\leqq C_{1}$ on $\overline{Q_{n-1}}$

where $C_{1}$ is a constant depending only on $m,$ $\phi,$ $c$ and $\Vert v_{0}’\Vert_{L}\infty$.
PROOF. Define the function $\varphi(w)$ by

$\varphi(w)=-2c+6ce\int_{0}^{w}e^{-\xi^{q}}d\xi$ ,

where $q$ is a constant satisfying

$q[1-(m-1)2^{-q}]=2$ .
Here we note $q>2$ . Let us determine the range of variation $[w_{1}, w_{2}]$ of $w$ when
$\varphi(w)$ varies from $0$ to $c$ . $w_{1}$ and $w_{2}$ are given by

$\int_{0}^{w_{1}}e^{-\xi^{q}}d\xi=\frac{1}{3e}$ and $\int_{0}^{w_{2}}e^{-\xi^{q}}d\xi=\frac{1}{2e}$ .

It is obvious that $\varphi(w_{1})=0,$ $\varphi(w_{2})=c$ and

$\frac{1}{3e}<w_{1}<w_{2}<\frac{1}{2}$ .
For $w\in[w_{1}, w_{2}]$ we have

$\varphi’=6cee^{-w^{q}}>0$ , $\varphi’=-6ceqw^{q-1}e^{-w^{q}}<0$ ,
(5.5)

$\frac{\varphi’}{\varphi’}=-qw^{q-1}$ , $( \frac{\varphi’}{\varphi’})’=-q(q-1)w^{q-2}<0$ .

We now define $w(x, t)$ by

(5.6) $v(x, t)=\varphi(w(x, t))$ for $x\in R^{1}$ and $t\in[0, \infty$ ).

Substituting (5.6) into (5.1), we have

(5.7) $w_{t}=m( \varphi’w_{x}+\epsilon)^{m-1}w_{xx}+m\frac{\varphi’’}{\varphi’}(\varphi’w_{x}+\epsilon)^{m-1}(w_{x})^{2}+\phi’(\varphi)w_{x}$ .

Differentiate (5.7) with respect to $x$ and then put $p=w_{x}$ , which is non-negative.
Then, we have in $Q_{n}$

$p_{t}-m(\varphi’p+\epsilon)^{m-1}p_{xx}=m(m-1)(\varphi’p+\epsilon)^{m-2}(\varphi’p_{x}+\varphi’p^{2})p_{x}$

(5.8) $+m(m-1)( \varphi’p+\epsilon)^{m-2}(\varphi’p_{x}+\varphi’p^{2})\frac{\varphi’}{\varphi’}p^{2}$

$+m( \varphi’p+\epsilon)^{m-1}(\frac{\varphi’}{\varphi’})’p^{3}+2m(\varphi’p+\epsilon)^{m-1}\frac{\varphi’}{\varphi’}pp_{x}+\phi’p_{x}+\phi’\varphi’P^{2}$ .
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We put $z(x, t)=\chi(x)P(x, t)$ , where $\chi(x)$ is a smooth function on $R^{1}$ such that
$0\leqq\chi(x)\leqq 1$ on $R^{1},$ $\chi(x)=1$ for $|x|\leqq n-1$ and $\chi(x)=0$ for $|x|\geqq n-1/2$ . For any
fixed $T$ with $0<T<\infty$ , let us estimate the value of $z(x, t)$ in $\overline{Q_{n}(T)}=[-n, n]$

$\cross[0, T]$ . Suppose that the point where the function $z$ takes the maximum in
$\overline{Q_{n}(T})$ lies on the lower base of $\overline{Q_{n}(T}$). We then have

$0\leqq z(x, t)\leqq\Vert p(\cdot, 0)\Vert_{L}\infty$ on $\overline{Q_{n}(T}$)

and hence

(5.9) $0\leqq v_{x}(x, t)\leqq e\Vert v_{0}’\Vert_{L}\infty$ on $\overline{Q_{n-1}(T}$).

Let the maximum of $z$ be attained either inside $Q_{n}(T)$ or on the upper base of
$Q_{n}(T)$ . At this point, say $(x_{0}, t_{0})$ , we have

(5.10) $z_{x}=xp_{x}+x_{x}p=0$

and
$m(\varphi’p+\epsilon)^{m-1}z_{xx}-z_{t}\leqq 0$ ,

which can be rewritten in the form

(5.11) $\chi\{p_{t}-m(\varphi’p+\epsilon)^{m-1}p_{xx}\}\geqq 2m(\varphi’p+\epsilon)^{m-1}x_{x}p_{x}+m(\varphi’p+\epsilon)^{m-1}x_{xx}p$ .
Substituting (5.8) into (5.11) and then multiplying it by $\chi$ , we obtain

$-m( \frac{\varphi’}{\varphi’})’(\varphi’p+\epsilon)^{m-1}x^{2}p^{3}-m(m-1)\frac{\varphi’}{\varphi’}\varphi’(\varphi’p+\epsilon)^{m-2}x^{2}p^{4}$

(5.12) $\leqq-2m\{(m-1)\varphi’(\varphi’p+\epsilon)^{m-2}\chi_{x}\chi p^{3}+\frac{\varphi’}{\varphi’}(\varphi’p+\epsilon)^{m-1}\chi_{x}\chi p^{2}\}$

$+m\{(m-1)\varphi’(\varphi’p+\epsilon)^{m-2}(\chi_{x}p)^{2}-(\varphi’p+\epsilon)^{m-1}\chi_{xx}\chi p+2(\varphi’p+\epsilon)^{m-1}(\chi_{x})^{2}p\}$

$+\{\phi’’\varphi^{\prime x^{2}}P^{2}-\phi’x_{x}xp\}=I+I+m$ .
Here we used the relation (5.10) at $(x, t)=(x_{0}, t_{0})$ . It follows from (5.5) and the
choice of $q$ that

$-m( \frac{\varphi’}{\varphi’})’(\varphi’p+\epsilon)^{m-1}x^{2}p^{3}-m(m-1)\frac{\varphi’}{\varphi’}\varphi’(\varphi’p+\epsilon)^{m-2}x^{2}p^{4}$

(5.13) $\geqq m(\varphi’p+\epsilon)^{m-2}x^{2}p^{4}\varphi’\{-(\frac{\varphi’}{\varphi’})’-(m-1)(\frac{\varphi’}{\varphi’})^{2}\}$

$\geqq 6mcw_{1}^{q-2}(\varphi’p+\epsilon)^{m- 2}x^{2}p^{4}$ .
Next, by using (5.5) we get

$I\leqq 2m^{2}q\Vert\chi_{x}\Vert_{L^{\infty}}(\varphi’p+\epsilon)^{m-1}xp^{2}$,

(5.14) II $\leqq m(m+1)\max[(\Vert\chi_{x}\Vert_{L}\infty)^{2}, \Vert\chi_{xx}\Vert_{L}\infty](\varphi’p+\epsilon)^{m-1}p$ ,

$m\leqq 6ce[\max_{0\leq v\leq c}|\phi’(v)|]x^{2}p^{2}+\{[\max_{0\leqq v\leq c}|\phi’(v)|]\Vert x_{x}\Vert_{L}\infty\}xp$ .

Combining (5.12) with (5.13) and (5.14), we find that there exists a positive con-
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stant $M_{1}$ , depending only on $m,$ $c,$ $\max_{0\leqq v\leqq c}|\phi’(v)|,\max_{0\leqq v\leqq c}|\phi’’(v)|,$
$\Vert\chi_{x}\Vert_{L}\infty$ and $\Vert\chi_{xx}\Vert_{L}\infty$,

such that
$(\varphi’p+\epsilon)^{m-2}x^{2}p^{4}\leqq M_{1}\{(\varphi’p+\epsilon)^{m-1}xp^{2}+(\varphi’p+\epsilon)^{m-1}p+x^{2}p^{2}+xp\}$ .

Hence,

(5.15) $x^{2}p^{4}\leqq M_{1}\{(\varphi’P+1)xp^{2}+(\varphi’P+1)p+(\varphi’p+\epsilon)^{2-m}(x^{2}p^{2}+xp)\}$ .
It is enough to assume $p\geqq 1$ . The relation $\varphi’(w)=6cee^{-w^{q}}$ yields that

(5.16)$(\varphi’P+\epsilon)^{2- m}\leqq\{\begin{array}{l}(6cep+1)^{2-m} if 1<m<2, (6c)^{2- m} if m\geqq 2.\end{array}$

By (5.15) and (5.16), we obtain

(5.17) $xp\leqq M_{2}$

for a positive constant $M_{2}$ depending only on $m,$ $c, \max_{0\leqq v\leqq c}|\phi’(v)|,$ $\max_{0\xi v\leqq c}|\phi’(v)|$ ,
$\Vert\chi_{x}\Vert_{L}\infty$ and $\Vert\chi_{xx}\Vert_{L}\infty$ . The inequality (5.17) implies

(5.18) $0\leqq v_{x}(x, t)\leqq 6ceM_{2}$ on $\overline{Q_{n-1}(T}$).

Since $T$ is arbitrary and $M_{2}$ is independent of $T$ , we obtain Lemma 5.2 by the
inequalities (5.9) and (5.18).

LEMMA 5.3. For any $\tau\in(0, \infty)$ , (resp. $\tau=0$), there holds
(5.19) $|((v_{x}+\epsilon)^{m})_{x}|\leqq C_{2}$ on $[-n+2, n-2]\cross[\tau, \infty$),

where $C_{2}$ is a constant depending only on $m,$ $\phi,$ $c,$
$\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ (resp. $\Vert((v_{0}’)^{m})’\Vert_{L}\infty$).

PROOF. Differentiate (5.1) with respect to $x$ and put $u=v_{x}$ . We then have

(5.20) $u_{t}=[m(u+\epsilon)^{m- 1}u_{x}]_{x}+\phi’(v)u_{x}+\phi’’(v)u^{2}$ in $Q_{n}$ .
If follows from (ii) of Lemma 5.1 that $u\geqq 0$ in $\overline{Q}_{n}$ and $u>0$ in $Q_{n}$ .

Define the function $\varphi(u)$ by

$\varphi(u)=\int_{0}^{u}\frac{a(s)}{\theta(s)}ds$ for $0\leqq u\leqq C_{1}$ ,

where $C_{1}$ is the constant used in Lemma 5.2. The form of $\varphi(u)$ is the one
introduced by Gilding [6]. Here $a$ and $\theta$ are respectively specified as

$a(s)=m(s+\epsilon)^{m-1}$

and

$\theta(s)=[\int_{0}^{s}ra’(r)dr+2sa(C_{1})-sa(s)+s+1]^{1/2}$

for $0\leqq s\leqq C_{1}$ . We then have the following relations:

$\theta’(s)=\frac{1}{2}[2a(C_{1})-a(s)+1]\frac{1}{\theta(s)}>0$ ,

(5.21) $\theta’’(s)=-\frac{1}{2}[a’(s)+2(\theta’(s))^{2}]\frac{1}{\theta(s)}<0$ .
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$0\leqq a’(s)\theta(s)\leqq-2\theta^{2}(s)\theta’’(s)$ , $0\leqq a(s)\theta’(s)\leqq-\theta^{2}(s)\theta’(s)$ ,

$0 \leqq-\frac{a(s)}{\theta(s)\theta’(s)}\leqq\frac{2}{m-1}(s+\epsilon)$ .

Since $0\leqq u(x, t)\leqq C_{1}$ in $\overline{Q_{n-1}}$ by Lemma 5.2, we can define the function
$w(x, t)$ by

(5.22) $w(x, t)=\varphi(u(x, t))$ for $(x, t)\in\overline{Q_{n- 1}}$ .
Substituting (5.22) into (5.20), we get

$w_{t}=a(u)w_{xx}+ \theta’(u)(w_{x})^{2}+\phi’w_{x}+\frac{a(u)}{\theta(u)}\phi’’u^{2}$ .

Differentiate this equation with respect to $x$ and then multiply it by $w_{X}$ . Then,
writing $p=w_{x}$ , we obtain

$\frac{1}{2}(p^{2})_{t}-a(u)pp_{xx}$

(5.23) $=[ \frac{a’(u)}{a(u)}\theta(u)+2\theta’(u)]p^{2}p_{x}+\frac{1}{a(u)}\theta(u)\theta’(u)p^{4}$

$+ \{3\phi’u+[\frac{a’(u)}{a(u)}-\frac{\theta’(u)}{\theta(u)}]\phi^{r_{\mathcal{U}^{2}}}\}p^{2}+\phi’pp_{x}+\frac{a(u)}{\theta(u)}\phi^{m}u^{3}p$ .

We put $z(x, r)=x^{2}(x, t)p^{2}(x, t)$ . Here $\chi$ is a smooth function on $R^{1}\cross[0, \infty$ )

such that $0\leqq\chi(x, t)\leqq 1$ on $R^{1}\cross[0, \infty$ ), $\chi(x, t)=1$ on $[-n+2, n-2]\cross[\tau, \infty$ ) and
$\chi(x, t)=0$ on the outside of $[-n+3/2, n-3/2]\cross[\tau/2, \infty$ ), where $\tau$ is any fixed
constant with $0<\tau<\infty$ . For an arbitrary fixed $T$ with $0<T<\infty$ , let us consider
a point $(x_{0}, t_{0})$ where $z$ attains a positive maximum over $\overline{Q_{n-1}(T)}$ . At the point
$(x_{0}, t_{0})$ we have

$z_{x}=0$ and $a(u)z_{xx}-z_{t}\leqq 0$ ,

which yield

(5.24) $xp_{x}=-x_{x}p$

and

(5.25) $x^{2} \{\frac{1}{2}(P^{2})_{t}-a(u)pp_{xx}\}$

$\geqq a(u)\{x^{2}(p_{x})^{2}+4\chi\chi_{x}pp_{x}+\chi p_{xx}p^{2}+(\chi_{x})^{2}p^{2}\}+\chi\chi_{t}p^{2}$ .
Substituting (5.23) into (5.25) and using (5.24), we obtain

$- \frac{1}{a(u)}\theta(u)\theta’(u)x^{2}p^{4}\leqq-[\frac{a’(u)}{a(u)}\theta(u)+2\theta’(u)]\chi_{x}\chi p^{3}$

$+ \{-\phi’xx_{x}+3\phi’’ux^{2}+[\frac{a’(u)}{a(u)}-\frac{\theta’(u)}{\theta(u)}]\phi’’u^{2}x^{2}$

$+a(u)[-2( \chi_{x})^{2}+\chi\chi_{xx}]-\chi\chi_{t}\}p^{2}+\frac{a(u)}{\theta(u)}\phi^{m_{\mathcal{U}^{3}}}x^{2}p$ .
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Noting $\theta’’<0$ , at this point we have

(5.26) $x^{2}p^{4} \leqq[\frac{a’(u)}{\theta’(u)}+\frac{2a(u)\theta’(u)}{\theta(u)\theta’(u)}]\chi_{x}\chi p^{3}$

$- \frac{a(u)}{\theta(u)\theta’(u)}[\frac{a’(u)}{a(u)}-\frac{\theta’(u)}{\theta(u)}]\phi’’u^{2}x^{2}p^{2}$

$- \frac{a(u)}{\theta(u)\theta’(u)}\{-\phi’xx_{x}+3\phi^{\nu_{\mathcal{U}}}x^{2}+a(u)[-2(\chi_{x})^{2}+\chi\chi_{xx}]-\chi\chi_{t}\}p^{2}$

$+ \frac{-a(u)}{\theta(u)\theta’(u)}\cdot\frac{a(u)}{\theta(u)}\phi’’’u^{3}x^{2}p$ .
It is enough to assume $|p|\geqq 1$ . It follows from (5.21) that

$| \frac{a’(u)}{\theta’(u)}+\frac{2a(u)\theta’(u)}{\theta(u)\theta’(u)}|\leqq 4\theta(C_{1})$ ,

$| \frac{a(u)}{\theta(u)\theta’(u)}[\frac{a’(u)}{a(u)}-\frac{\theta’(u)}{\theta(u)}]|\leqq\frac{-1}{\theta^{2}(u)\theta’(u)}|a’(u)\theta(u)-a(u)\theta’(u)|\leqq 3$ ,

$| \frac{a(u)}{\theta(u)\theta’(u)}\cdot\frac{a(u)}{\theta(u)}|\leqq\frac{2}{m-1}(C_{1}+1)a(C_{1})$ .

Combining (5.26) with the inequalities mentioned just above and noting $|p|\geqq 1$ ,
we have

(5.27) $(xp)^{2} \leqq 4\theta(C_{1})\Vert x_{x}\Vert_{L}\infty x|p|+3C_{1}^{2}\max_{0\leq v\leq c}|\phi(v)|+M_{1}$ ,

where $M_{1}$ is a positive constant depending only on $m$ , $c,$ $C_{1},$
$\max_{0\leq v\leqq c}|\phi’(v)|$ ,

$\max^{1\phi’’(v)}|,\max_{0\leq v\leqq c}|\phi’’’(v)|$ , $\Vert x_{x}\Vert_{L}\infty$, $\Vert x_{xx}\Vert_{L}\infty$ and $\Vert x_{t}\Vert_{L}\infty$ . The inequality (5.27)

implies that
$(xp)^{2}\leqq M_{2}$

for a positive constant $M_{2}$ depending on $C_{1}$ and $M_{1}$ . We note that
$((u+\epsilon)^{m})_{x}=a(u)u_{x}=\theta(u)w_{x}$ .

Hence, at the point $(x_{0}, t_{0})$ we obtain
$|\chi((u+\epsilon)^{m})_{x}|\leqq\theta(C_{1})M_{2}^{1/2}\leqq\{[2mC_{1}(C_{1}+1)^{m-1}+C_{1}+1]M_{2}\}^{1/2}$ .

Putting $C_{2}=\{[2mC_{1}(C_{1}+1)^{m-1}+C_{1}+1]M_{2}\}^{1/2}$, we get the proof of the first part.
To prove the second part of the assertion we observe that $((v_{x}+\epsilon)^{m})_{x}$ is

bounded at $t=0$ . Hence we may take a function $\chi$ which depends only on $x$

and allow $z$ to attain its maximum at a point on the lower base of $Q_{n-1}(T)$ .
Except these consideration, the proof is the same. Thus the proof is completed.

To show the regularity result we shall need the following
LEMMA 5.4. For any $\tau\in(0, \infty)$ (resp. $\tau=0$) it holds

(5.28) $|((v_{x}+\epsilon)^{m-1})_{x}|\leqq C_{3}$ on $[-n+2, n-2]\cross[\tau, \infty$),
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where $C_{\theta}$ is a constant depending only on $m,$ $\phi,$ $c,$ $\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ (resp. $\Vert((v_{0}’)^{m- 1})’\Vert_{L^{\infty}}$).

PROOF. Differentiate (5.1) with respect to $x$ and put $u=v_{x}$ . We then have

$u_{t}=((u+\epsilon)^{m})_{xx}+\phi’(v)u_{x}+\phi’(v)u^{2}$ .
By putting $w=(u+\epsilon)^{m-1}$ , this equation is rewritten as

(5.29) $w_{t}=mww_{xx}+ \frac{m}{m-1}(w_{x})^{2}+\phi’w_{x}+(m-1)\phi’w^{1-1/(m-1)}(w^{1/(m-1)}-\epsilon)^{2}$ .

Consider the function $\varphi(z)$ defined by

$\varphi(z)=-2M_{1}+6eM_{1}\int_{0}^{z}e^{-\xi^{q}}d\xi$ .

Here $M_{1}=(C_{1}+1)^{m-1}$ , where $C_{1}$ is the constant used in Lemma 5.2, and $q$ satisfies

$6q(6e)^{1- q}\geqq(m-1)m^{-2}$ .
We dePne the function $z(x, t)$ by

$w(x, t)=\varphi(z(x, t))$ on $\overline{Q_{n- 1}}$ .
It follows from (5.29) that

$z_{t}-m \varphi z_{xx}=m[\varphi\frac{\varphi’’}{\varphi’}+\frac{1}{m-1}\varphi’](z_{x})^{2}+\phi’z_{x}$

$+(m-1) \phi’\frac{1}{\varphi’}\varphi^{1-1/(m-1)}(\varphi^{1/(m-1)}-\epsilon)^{2}$ .

By using the method almost analogous to the one used to prove Lemmas 5.2 and
5.3, we can prove that for any fixed $\tau>0$

(5.30) $|z_{x}|\leqq M_{2}$ on $[-n+2, n-2]\cross[\tau, \infty$ ) ,

where a positive constant $M_{2}$ depends only on $m,$ $\phi,$ $c,$
$\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ .

The inequality (5.30) yields

$|w_{x}|\leqq M_{3}$ on $[-n+2, n-2]\cross[\tau, \infty$),

for a constant $M_{3}$ depending on $M_{2}$ , which proves the Prst part of Lemma 5.4.
In the same way as Lemma 5.3, we can prove the second part of Lemma 5.4.
Thus we have established the lemma.

In order to show that the Holder continuity of $v$ with respect to $t$ holds
independently of $n$ and $\epsilon$ , we use the following result due to Gilding [4].

LEMMA 5.5. Let $z\in C^{2.1}((a, b)\cross(\tau, T))\cap C^{0}([a, b]\cross[\tau, T])$ be a solution of
the equation

$z_{t}=A(x, t)z_{xx}+B(x, t)z_{x}+f(x, t)$ in $(a, b)\cross(\tau, T)$ ,

where $-\infty<a<b<\infty,$ $0\leqq\tau<T<\infty$ , and let $A,$ $B$ and $f$ be continuous on $[a, b]$

$\cross[\tau, T]$ such that

$0<A(x, t)\leqq\mu$ , $|B(x, t)|\leqq\mu$ and $|f(x, t)|\leqq\mu$ in $[a, b]\cross[\tau, T]$
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for some positive constant $\mu$ . If $z$ is Holder continuous with respect to $x$ in
$[a, b]\cross[\tau, T]$ with an exp0nent $\alpha\in(0,1$] and a Holder constant $M_{1}$ , then for
any $0<d<(b-a)/2$ it holds that for $\tau\leqq s<t\leqq s+\delta\leqq T$ and $x\in[a+d, b-d]$

$|z(x, s)-z(x, t)|\leqq M_{2}|s-t|^{\alpha/2}$,
where

$\delta=\frac{d^{2}}{4\mu(1+d)}$ and $M_{2}=2\{M_{1}[2\mu(1+d)^{1/2}]^{\alpha}+\mu\delta^{1- a/2}\}$ .

Combining Lemmas 5.2 and 5.3 with Lemma 5.5, we have
LEMMA 5.6. Let $v$ be a solution of the pr0blem $(5.1)-(5.3)$ . Then $v$ satisfies

the following:
(i) $|v(x, s)-v(x, t)|\leqq C_{4}|s-t|^{1/2}$ on $\overline{Q_{n-3}}$ for a positive constant $C_{4}$ depending

only on $m,$ $\phi,$ $c$ and $\Vert v_{0}’\Vert_{L}\infty$ ;
(ii) For any $\tau\in(0, \infty)$ (resp. $\tau=0$) there exists a constant $C_{5}$ which depends

only on $m,$ $\phi,$ $c,$
$\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ (resp. $\Vert((v_{0}’)^{m})’\Vert_{L}\infty$) such that for $|x|\leqq n-3$ and $\tau\leqq s$ ,

$t<\infty$

$|(v_{x}+\epsilon)^{m}(x, s)-(v_{x}+\epsilon)^{m}(x, t)|\leqq C_{5}|s-t|^{1/2}$ .
PROOF. At first we shall prove the assertion (i). The equation (5.1) is

rewritten as
$v_{t}=m(v_{x}+\epsilon)^{m- 1}v_{xx}+\phi’(v)v_{x}$ in $Q_{n-2}$ .

It follows from Lemma 5.2 that

$0<m(v_{x}+\epsilon)^{m-1}\leqq m(C_{1}+1)^{m-1}$ on $\overline{Q_{n-2}}$

and
$|v(x, t)-v(y, t)|\leqq C_{1}|x-y|$ on $\overline{Q_{n- 2}}$ .

Hence, Lemma 5.5 leads to the assertion (i).

Next we put $w=(v_{x}+\epsilon)^{m}$ . The function $w$ satisfies the equation

$w_{t}=mw^{1- 1/m}w_{xx}+\phi’(v)w_{x}+m\phi’(v)w^{1- 1/m}(w^{1/m}-\epsilon)^{2}$ in $Q_{n-2}$ .
By Lemmas 5.2 and 5.3, Lemma 5.5 can be applied to the equation mentioned
above in $Q_{n- 2}$ , which states the assertion (ii).

Using Lemmas 5.2, 5.5 and 5.6 and then employing the same argument as
Lemma 5.6, we have

LEMMA 5.7. Let $v$ be a solution of the problem $(5.1)-(5.3)$ . For any $\tau\in(0, \infty)$

(resp. $\tau=0$ ) there exists a constant $C_{6}$ which depends only on $m,$ $\phi,$ $c,$
$\Vert v_{0}’\Vert_{L}\infty$ and

$\tau$ (resp. $\Vert((v_{0}’)^{m-1})’\Vert_{L}\infty$) such that for $|x|\leqq n-3$ and $\tau\leqq s,$ $t<\infty$

$|(v_{x}+\epsilon)^{m-1}(x, s)-(v_{x}+\epsilon)^{m- 1}(x, t)|\leqq C_{6}|s-t|^{1/2}$ .
Let us consider the following Cauchy problem in place of the problem $(5.1)-$

(5.3):

(5.31) $v_{t}=[(v_{x}+\epsilon)^{m}+\phi(v)]_{x}$ in $R^{1}\cross(0, \infty)$ ,
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(5.32) $v(x, 0)=v_{0}(x)$ on $R^{1}$,

where $\epsilon$ is a positive constant and $v_{0}$ is a smooth function on $R^{1}$ having bounded
derivatives up to the third order such that $0\leqq v_{0}(x)\leqq c$ on $R^{1},$ $v_{0}(-\infty)=0,$ $v_{0}(+\infty)$

$=c$ and $v_{0}’(x)\geqq 0$ on $R^{1}$ .
LEMMA 5.8. The pr0blem (5.31), (5.32) has a unique classical solution $v$ such

that:
(i) $0\leqq v(x, t)\leqq c$ on $R^{1}\cross[0, \infty$);

(ii) $v_{x}(x, t)\geqq 0$ on $R^{1}\cross[0, \infty$);

(iii) There exists $\alpha’\in(0,1$] such that $v\in C^{2+\alpha’,1+\alpha’/2}(R^{1}\cross[0, T])$ for any
$T\in(0, \infty)$ ;

(iv) $v_{xx}\in C^{2.1}(R^{1}\cross(0, \infty))$ ;
(v) There exists a constant $C_{7}$ which depends only on $m,$ $\phi,$ $c$ and $\Vert v_{0}’\Vert_{L}\infty$ such

that for $x,$ $y\in R^{1}$ and $0\leqq s,$ $t<\infty$

$|v(x, s)-v(y, t)|\leqq C_{7}[|x-y|+|s-t|^{1/2}]$ ;

(vi) For any $\tau\in(0, \infty)$ (resp. $\tau=0$ ) there exists a constant $C_{8}$ which depends
only on $m,$ $\phi,$ $c,$

$\Vert v_{0}’\Vert_{L}\infty$ ane $\tau$ (resp. $\Vert((v_{0}’)^{m})’\Vert_{L}\infty$) such that for $x,$ $y\in R^{1}$ and
$\tau\leqq s,$ $t<\infty$

$|(v_{x}+\epsilon)^{m}(x, s)-(v_{x}+\epsilon)^{m}(y, t)|\leqq C_{8}[|x-y|+|s-t|^{1/2}]$ ;

(vii) For any $\tau\in(0, \infty)$ (resp. $\tau=0$) there exists a constant $C_{9}$ which depends
only on $m,$ $\phi,$ $c,$

$\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ (resp. $\Vert((v_{0}’)^{m-1})’\Vert_{L}\infty$) such that for $x,$ $y\in R^{1}$ and
$\tau\leqq s,$ $t<\infty$

$|(v_{x}+\epsilon)^{m-1}(x, s)-(v_{x}+\epsilon)^{m-1}(y, t)|\leqq C_{9}[|x-y|+|s-t|^{1/2}]$ .
PROOF. Take the sequence of functions $\{v_{0.n}(x)\}$ with $v_{0.n}\in C^{\infty}(R^{1})$ satisfying:
(i) $v_{0,n}$ is non-decreasing on $R^{1}$ ;
(ii) $0\leqq v_{0.n}(x)\leqq c$ on $R^{1},$ $v_{0,n}(x)=0$ for $x\leqq-n+1$ and $v_{0,n}(x)=c$ for $x\geqq n-1$ ;
(iii) $v_{0,n}(x)arrow v_{0}(x)$ as $narrow\infty$ uniformly on $R^{1}$ ;
(iv) $\Vert v_{0,n}’\Vert_{L}\infty\leqq M_{1}\Vert v_{0}’\Vert_{L}\infty,$ $\Vert((v_{0,n}’)^{m})’\Vert_{L}\infty\leqq M_{1}\Vert((v_{0}’)^{m})’\Vert_{L}\infty$ and $\Vert((v_{0.n}’)^{m-1})’\Vert_{L}\infty\leqq$

$M_{1}\Vert((v_{0}’)^{m-1})’\Vert_{L}\infty$, where $M_{1}$ is a constant independent of $n$ .
Consider the following problem:

(5.33) $v_{t}=[(v_{x}+\epsilon)^{m}+\phi(v)]_{x}$ in $Q_{n}$ ,

(5.34) $v(-n, t)=0$ and $v(n, t)=c$ for $t\in[0, \infty$ ),

(5.35) $v(x, 0)=v_{0,n}(x)$ for $x\in[-n, n]$ .

It is shown by Lemma 5.1 that there exists a unique classical solution $v_{n}$ of
$(5.33)-(5.35)$ satisfying the properties $(i)-(iv)$ of Lemma 5.1. Moreover, it is found
that $v_{n}$ has the properties of Lemmas 5.2-5.4 and Lemmas 5.6 and 5.7. We
rewrite (5.33) as

$(v_{n})_{t}=A(x, t)(v_{n})_{xx}+B(x, t)(v_{n})_{x}$ in $Q_{n}$ ,
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where $A=m((v_{n})_{x}+\epsilon)^{m-1}$ and $B=\phi’(v_{n})$ . By Lemmas 5.2-5.4 we find that

$m\epsilon^{m-1}\leqq A(x, t)\leqq m(C_{1}+1)^{m-1}$ on $\overline{Q_{n-3}}$

and that $A,$ $B$ and $B_{x}$ are H\"older continuous with respect to the parabolic

distance on $\overline{Q_{n-3}}$ with the H\"older constant depending only on $C_{i}$ $(i=1,2, \cdots , 6)$ .
Let $T$ be an arbitrary fixed positive number and let $x_{1}$ be any point in
$[-n+4, n-4]$ , and then put $D=(x_{1}-1, x_{1}+1)\cross(0, T$], $R=(x_{1}-1, x_{1}+1)\cross\{t=0\}$

and $R_{0}=(x_{1}-1/2, x_{1}+1/2)\cross\{t=0\}$ . By virtue of Theorem 4 [3, p. 121] we see
that there exists a constant $M_{2}$ , depending only on $C_{i}$ $(i=1,2, \cdots , 6)$ , $\epsilon$ and $T$

such that for some $a\in(O, 1$]
$|v_{t}|_{2+\alpha.D_{1}}\leqq M_{2}$ ,

where $D_{1}=[x_{1}-1/2, x_{1}+1/2]\cross[0, T]$ and $l\geqq n$ . Since $x_{1}$ is an arbitrary point
in $[-n+4, n-4]$ , we obtain

$|v_{l}|_{2+\alpha.\overline{Q_{n-4^{(\tau)}}}}\leqq M_{2}$ for $l\geqq n$ .
By using Ascoli-Arzela’s theorem and a diagonal process, from $\{v_{n}\}$ we can
select a subsequence $\{v_{n_{j}}\}$ which converges with respect to the norm of the
H\"older space $C^{2+\alpha}$

‘
$1+a’/2(a’<a)$ on any domain $[-n_{0}, n_{0}]\cross[0, T]$ , and then we

know the limit function $v\in C^{2+\alpha’.1+\alpha’/2}(R^{1}\cross[0, T])$ for any $T>0$ . Moreover,
Lemmas 5.1-5.4 and Lemmas 5.6-5.7 conclude that the limit function $v$ is a
classical solution of the problem (5.31), (5.32) and satisfies the properties $(i)-(vii)$ .
The uniqueness is derived from the usual maximum principle. By the uniqueness
of solutions, we see that the original sequence $\{v_{n}\}$ converges to $v$ as $narrow\infty$ .
Thus the proof is completed.

6. Existence.

We are now in a position to prove the existence theorem for the problem
$(3.2)-(3.5)$ . The result is the following

THEOREM 6.1. Let $v_{0}$ be a function on $R^{1}$ satisfying the assumption (A.3) in
Section 3. Then there exists a unique solution $v$ of the pr0blem $(3.2)-(3.5)$ which
has the following properties:

(i) For $x,$ $y\in R^{1}$ and $0\leqq s,$ $t<\infty$

$|v(x, s)-v(y, t)|\leqq C_{7}[|x-y|+|s-t|^{1/2}]$ ,

where $C_{7}$ depends only on $m,$ $\phi,$ $\Vert v_{0}\Vert_{L}\infty$ and $\Vert v_{0}’\Vert_{L}\infty$ ;
(ii) For any $\tau\in(0, \infty)$ (resp. $\tau=0$) there exists a constant $C_{8}$ which depends

only on $m,$ $\phi,$ $\Vert v_{0}\Vert_{L}\infty,$ $\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ (resp. $\Vert((v_{0}’)^{m})’\Vert_{L^{\infty}}$) such that for $x,$ $y\in R^{1}$ and
$\tau\leqq s,$ $t<\infty$

$|(v_{x})^{m}(x, s)-(v_{x})^{m}(y, t)|\leqq C_{8}[|x-y|+|s-t|^{1/2}]$ ;

(iii) In a neighbourhood of a pojnt in $R^{1}\cross(0, \infty)$ where $v_{x}$ is posjtive, the
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function $u=v_{x}$ is a classical solution for the equation

$u_{t}=[(u^{m})_{x}+ \phi’(\int_{-\infty}^{x}u(\xi, t)d\xi)u]_{x}$ .

Theorem 6.1 implies Theorem 2.1 which shows the existence of solutions for
the original problem (1.3), (1.4). In fact, for a given function $u_{0}(x)$ on $R^{1}$ satis-
fying the assumption (A.2) in Section 2 we put

$v_{0}(x)= \int_{-\infty}^{x}u_{0}(\xi)d\xi$ and $c= \int_{-\infty}^{\infty}u_{0}(\xi)d\xi$ .

Then the assumption (A.3) is fulfilled. Theorem 6.1 states that there exists a
unique solution $v$ of the problem $(3.2)-(3.5)$ with the initial function $v_{0}$ . Prop-
osition 3.2 in Section 3 implies that the function $u=v_{x}$ is the solution of the
problem (1.3), (1.4) with the initial function $u_{0}$ . The assertion (i) of Theorem 2.1
is derived from Proposition 3.1. The assertions (ii) and (iii) of Theorem 2.1 follow
from the assertions (ii) and (iii) of Theorem 6.1, respectively.

PROOF OF THEOREM 6.1. Let $\epsilon$ be a sufficiently small positive number. We
can construct a sequence of functions $\{v_{0.\text{\’{e}}}(t)\}$ such that:

(i) $v_{0,\epsilon}$ is a smooth function on $R^{1}$ having the bounded derivatives up to
the third order;

(ii) $v_{0.\epsilon}$ is non-decreasing on $R^{1}$ ;
(iii) $v_{0.\epsilon}(-\infty)=0$ and $v_{0.\text{\’{e}}}(+\infty)=c$ ;
(iv) $v_{0.\epsilon}(x)arrow v_{0}(x)$ as $\epsilonarrow 0$ uniformly on $R^{1}$ ;
(v) $\Vert v_{0.\epsilon}’\Vert_{L}\infty\leqq M_{1}\Vert v_{0}’\Vert_{L}\infty$ ;
(vi) If $\Vert((v_{0}’)^{m})’\Vert_{L}\infty<\infty$ , then $\Vert((v_{0.\text{\’{e}}}’)^{m})’\Vert_{L}\infty\leqq M_{2}\Vert((v_{0}’)^{m})’\Vert_{L}\infty$ ;
(vii) If $\Vert((v_{0}’)^{m-1})’\Vert_{L}\infty<\infty$ , then $\Vert((v_{0.\text{\’{e}}}’)^{m-1})’\Vert_{L}\infty\leqq M_{3}\Vert((v_{0}’)^{m-1})’\Vert_{L}\infty$, where $M_{i}$

$(i=1,2,3)$ are constants independent of $\epsilon$ .
Consider the following problem:

(6.1) $v_{t}=[(v_{x}+\epsilon)^{m}+\phi(v)]_{x}$ in $R^{1}\cross(0, \infty)$ ,

(6.2) $v(x, 0)=v_{0,\epsilon}(x)$ on $R^{1}$ .
By Lemma 5.8 we find that there exists a unique solution $v_{\epsilon}$ of the problem (6.1),

(6.2) such that $v_{\epsilon}$ satisfies the properties $(i)-(vi)$ of Lemma 5.8. Applying Ascoli-
Arzela’s theorem and a diagonal process, from $\{v_{\text{\’{e}}}\}$ we can select a subsequence

$\{v_{\epsilon_{j}}\}$ which converges to a limit function $v$ uniformly on any compact set in
$R^{1}\cross[0, \infty)$ . Moreover, we obtain that

$(v_{\text{\’{e}}})_{x}arrow v_{x}j$ uniformly on any compact set in $R^{1}\cross(0, \infty)$ as $\epsilon_{j}arrow 0$ .

It follows from the properties $(i)-(vi)$ of Lemma 5.8 that the function $v$ satisfies
the following properties:

(i) $v$ is continuous on $R^{1}\cross[0, \infty$ ) and differentiable on $R^{1}\cross(0, \infty)$ ;
(ii) $0\leqq v(x, t)\leqq c$ on $R^{1}\cross[0, \infty$ ) and $v_{x}(x, t)\geqq 0$ on $R^{1}\cross(0, \infty)$ ;
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(iii) For $x,$ $y\in R^{1}$ and $0\leqq s,$ $t<\infty$

$|v(x, s)-v(y, t)|\leqq C_{7}[|x-y|+|s-t|^{1/2}]$ ,

where $C_{7}$ depends only on $m,$ $\phi,$ $\Vert v_{0}\Vert_{L}\infty$ and $||v_{0}’\Vert_{L}\infty$ ;
(iv) For any $\tau\in(0, \infty)$ there exists a constant $C_{8}$ which depends only on

$m,$ $\phi,$ $\Vert v_{0}\Vert_{L}\infty,$ $\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ such that for $x,$ $y\in R^{1}$ and $\tau\leqq s,$ $t<\infty$

$|(v_{x})^{m}(x, s)-(v_{x})^{m}(y, t)|\leqq C_{8}[|x-y|+|s-t|^{1/2}]$ .
If $\Vert((v_{0}’)^{m})’\Vert_{L}\infty<\infty$ , then the inequality mentioned above holds on $R^{1}\cross[0, \infty$ ) for
the same $C_{8}$ as the above except that $\tau$ is replaced by $\Vert((v_{0}’)^{m})’\Vert_{L}\infty$.

Multiply (6.1) by a function $f\in C^{1}(R^{1}\cross(0, \infty))$ with compact support in
$R^{1}\cross(0, \infty)$ and integrate the resulting equation over $R^{1}\cross(0, \infty)$ . Using integra-
tion by parts and letting $\epsilon_{j}arrow 0$, we obtain that the limit function $v$ satisfies the
integral identity

$\int_{0}^{\infty}\int_{-\infty}^{\infty}\{vf_{t}-[(v_{x})^{m}+\phi(v)]f_{x}\}$ $dxdt=0$ .

To show that $v$ is a solution of the problem $(3.2)-(3.5)$ , we must prove that
for each $t\in[0, \infty$ ), $v(-\infty, t)=0$ and $v(+\infty, t)=c$ . We shall show the following:

LEMMA 6.2. For any $T\in(O, \infty)$ we have $v(x, t)arrow 0$ as $xarrow-\infty$ and $v(x, t)arrow c$

as $xarrow+\infty$ uniformly in $t\in[0, T]$ .
PROOF. Since $v_{0}(-\infty)=0$, for an arbitrary fixed constant $\delta>0thereI[exists$

a positive constant $M_{1}$ , which is independent of $\epsilon_{j}$, such that
$0\leqq v_{0.\epsilon_{j}}(x)\leqq\delta+M_{1}e^{x}$ for $x\in R^{1}$ .

We consider the auxiliary function

$w(x, t)=M_{1}e^{x+\gamma t}+\delta-v_{\epsilon_{j}}(x, t)$ ,

where $\gamma$ is a constant satisfying

$\gamma\geqq m(C_{7}+1)^{m-1}+\max_{0\leqq\sigma\leq c}|\phi’(\sigma)|$ .

Let $T$ be an arbitrary fixed positive number. Then we see that
$w(x, 0)\geqq 0$ for $x\in R^{1}$

and
$|w(x, t)|\leqq M_{2}e^{M_{2}|x|^{2}}$ for $x\in R^{1}$ and $t\in[0, T]$ ,

where $M_{2}$ is a positive constant depending on $T$ . It follows from the choice of
$\gamma$ that

$Lw\equiv w_{t}-m((v_{\epsilon_{j}})_{x}+\epsilon_{j})^{m-1}w_{xx}+\phi’(v_{\epsilon_{j}})w_{x}$

$=M_{1}e^{x+\gamma t}[\gamma-m((v_{\epsilon_{j}})_{x}+\epsilon_{j})^{m- 1}-\phi’(v_{\epsilon_{j}})]$

$\geqq 0$ .
Applying the maximum principle, we obtain
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$w(x, t)\geqq 0$ for $x\in R^{1}$ and $t\in[0, T]$ ,
which yields that

$0\leqq v_{\epsilon_{j}}(x, t)\leqq\delta+M_{1}e^{x+\gamma t}$ for $x\in R^{1}$ and $t\in[0, T]$ .

Letting $\epsilon_{j}arrow 0$ , we have
$0\leqq v(x, t)\leqq\delta+M_{1}e^{x+\gamma t}$ for $x\in R^{1}$ and $t\in[0, T]$ .

Hence, for a sufficiently large positive number $N_{1}$ we have
$0\leqq v(x, t)\leqq 2\delta$ for $t\in[0, T]$ , $x\leqq-N_{1}$

which implies that

$v(x, t)arrow 0$ as $xarrow-\infty$ uniformly in $t\in[0, T]$ .
Next, using the auxiliary function

$w(x, t)=M_{1}e^{-x+\gamma t}+\delta-[c-v_{\epsilon_{j}}(x, t)]$ ,
we obtain similarly

$0\leqq v(x, t)\leqq 2\delta$ for $t\in[0, T]$ and $x\geqq N_{1}$ ,

which implies that
$v(x, t)arrow c$ as $xarrow+\infty$ uniformly in $t\in[0, T]$ .

Thus the proof of Lemma 6.2 is completed.
Let us return to the proof of Theorem 6.1. We only prove the assertion (iii)

of Theorem 6.1. By using a method similar to that used to prove the assertion
(ii) of Theorem 3 in [7], we see that $v_{xx},$ $((v_{x})^{m})_{xx}$ and $v_{xt}$ exist and are
continuous in a neighbourhood of a point in $R^{1}\cross(0, \infty)$ where $v_{x}$ is positive, and
that in this neighbourhood $v$ is a classical solution for the equation

$v_{t}=[(v_{x})^{m}+\phi(v)]_{x}$ .
Differentiating this equation with respect to $x$ and then putting $u=v_{x}$ , we obtain
that in this neighbourhood

$u_{t}=[(u^{m})_{x}+ \phi’(\int_{-\infty}^{x}u(\xi, t)d\xi)u]_{x}$ .
Here we note

$v(x, t)= \int_{-\infty}^{x}u(\xi, t)d\xi$ .
Finally we remark that the original sequence $\{v_{\epsilon}\}$ converges to $v$ by using

the uniqueness of solutions for the problem $(3.2)-(3.5)$ . Thus Theorem 6.1 is
completed.

7. Regularity.

We have constructed a solution of the problem $(3.2)-(3.5)$ . We state here
some regularity properties of this solution. The technique is similar to that used
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in the porous $\iota nedium$ equation (see Aronson [1], Gilding and Peletier [7]).

THEOREM 7.1. Let $v$ be a solution of the pr0blem $(3.2)-(3.5)$ . Then $v$ has the
following propertjes:

(i) For any positjve number $\tau$ there exists a constant $C_{9}$ which depends only
on $m,$ $\phi,$ $\Vert v_{0}\Vert_{L}\infty,$ $\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ such that for $x,$ $y\in R^{1}$ and $\tau\leqq s,$ $t<\infty$

$|(v_{x})^{m- 1}(x, s)-(v_{x})^{m-1}(y, t)|\leqq C_{9}[|x-y|+|s-t|^{1/2}]$ .

If $\Vert((v_{0}’)^{m-1})’\Vert_{L}\infty<\infty$ , the inequality mentioned just above holdS on $R^{1}\cross[0, \infty$ ) for
the same $C_{9}$ as the above except that $\tau$ is replaced by $\Vert((v_{0}’)^{m-1})’\Vert_{L}\infty$ ;

(ii) The derivatives $((v_{x})^{m})_{x}$ and $v_{t}$ exist and are continuous on $R^{1}\cross(0, \infty)$

and $v$ is a classical solution for the equation

$v_{t}=[(v_{x})^{m}+\phi(v)]_{x}$ in $R^{1}\cross(0, \infty)$ ;

(iii) If $1<m<2$ , then $v_{xx}$ exists and is continuous on $R^{1}\cross(0, \infty)$ .
Combining Theorem 7.1 with Proposition 3.2, we obtain Theorem 2.2 for

solutions of the original problem (1.4), (1.5).

PROOF OF THEOREM 7.1. Let $v_{\epsilon}$ be a solution of the problem (6.1), (6.2)

constructed in the proof of Theorem 6.1. It follows from Lemma 5.8 that for
any $\tau\in(0, \infty)$ (resp. $\tau=0$) there exists a constant $C_{9}$ depending only on $m,$ $\phi$ ,
$\Vert v_{0}\Vert_{L}\infty,$ $\Vert v_{0}’\Vert_{L}\infty$ and $\tau$ (resp. $\Vert((v_{0}’)^{m- 1})’\Vert_{L}\infty$) such that for $x,$ $y\in R^{1}$ and $\tau\leqq s,$ $t<\infty$

$|((v_{\epsilon})_{x})^{m-1}(x, s)-((v_{\epsilon})_{x})^{m-1}(y, t)|\leqq C_{9}[|x-y|+|s-t|^{1/2}]$ .
Letting $\epsilonarrow 0$ , we obtain the assertion (i) of Theorem 7.1.

Next, by a method similar to that used in the proof of the assertion (iii) of
Theorem 3 in [7], we see that $((v_{x})^{m})_{x}$ exists and is continuous on $R^{1}\cross(0, \infty)$

and that $v_{xx}$ exists and is continuous on $R^{1}\cross(0, \infty)$ if $1<m<2$ . Since $v$ is a
solution of the problem $(3.2)-(3.5)$ we have

$\int_{0}^{\infty}\int_{-\infty}^{\infty}vf_{t}dxdt=-\int_{0}^{\infty}\int_{-\infty}^{\infty}[((v_{x})^{m})_{x}+\phi’(v)v_{x}]$ fdxdt

for all $f\in C(R^{1}\cross(0, \infty))$ with compact support in $R^{1}\cross(0, \infty)$ . This relation im-
plies that $v_{t}$ exists and is continuous on $R^{1}\cross(0, \infty)$ , and that in the classical
sense $v$ satisfies the equation

$v_{t}=[(v_{x})^{m}+\phi(v)]_{x}$ in $R^{1}\cross(0, \infty)$ .
This completes the proof.

8. Comparison theorem.

By using the construction and uniqueness of solutions for the problem $(3.2)-$

(3.5), we shall show the comparison theorem for the problem $(3.2)-(3.5)$ .
THEOREM 8.1. For each $i=1,2$ let $v_{0i}$ be non-decreasing and Lipschitz con-

tinuous function on $R^{1}$ such that $0\leqq v_{0i}(x)\leqq c_{i}$ on $R^{1},$ $v_{0i}(-\infty)=0$ and $v_{0i}(+\infty)=c_{i}$ .
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Let $v_{1}$ and $v_{2}$ be two solutions of the problem $(3.2)-(3.5)$ with the corresponding
initial functions $v_{01}$ and $v_{02}$ . Suppose that

$v_{01}(x)\leqq v_{02}(x)$ on $R^{1}$ .
Then

$v_{1}(x, t)\leqq v_{2}(x, t)$ on $R^{1}\cross[0, \infty$ ).

PROOF. For each $i=1,2$ the solution $v_{i}$ is constructed as the limit function
of a sequence of functions $\{v_{i\epsilon}\}$ , where $v_{i\epsilon}$ is a classical solution of the problem
(6.1), (6.2) in Section 6 with the initial function $v_{0i\epsilon}(x)$ . Here, for each $i=1,2$

$v_{0i\epsilon}(x)$ is a smooth function on $R^{1}$ satisfying the following properties:
(i) $v_{0i\epsilon}$ is non-decreasing;
(ii) $v_{0i\epsilon}(-\infty)=0$ and $v_{0t\epsilon}(+\infty)=c_{i}$ ;
(iii) $v_{0i\epsilon}(x)arrow v_{0i}(x)$ as $\epsilonarrow 0$ uniformly on $R^{1}$ ;
(iv) $\Vert v_{0i\epsilon}’\Vert_{L}\infty\leqq M_{1}\Vert v_{i}’\Vert_{L}\infty$, where $M_{1}$ is independent of $\epsilon$ and $i$ .

Moreover, since $v_{01}(x)\leqq v_{02}(x)$ on $R^{1}$ we can suppose that for each $\epsilon$

$v_{01\epsilon}(x)\leqq v_{02\epsilon}(x)$ on $R^{1}$ .
By the standard maximum principle for parabolic equations, we obtain that for
each $\epsilon$

$v_{1\text{\’{e}}}(x, t)\leqq v_{2\epsilon}(x, t)$ on $R^{1}\cross[0, \infty$ ).

Letting $\epsilonarrow 0$ , we have
$v_{1}(x, t)\leqq v_{2}(x, t)$ on $R^{1}\cross[0, \infty$ ).

This completes the proof.
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