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1. Introduction and results.

Throughout this paper, we work in Zelmero-Fraenkel set theory with choice
(ZFC). Let & be a filter on A and let f be a function from A to B. f(%) denotes
the filter {yCB; f~lye®}. & is said to be free if @<F and NF=@. F is said
to be ample if there exists an infinite subset A, of A such that, for any x<%,
Ay—x is finite. & is said to be weakly ample if, for any free ultrafilter (uf) U
on o, there exists a function g from w to A such that g)DOF. It is trivial
that any free, ample filter is weakly ample. For any infinite cardinal &, we
denote by AN(x) the statement: “any free, weakly ample filter on & is ample”.
It is easy to see that, whenever £<2, AN(Q) implies AN(x). Puritz proved the
following [Theorem 1.

THEOREM 1 (Puritz [5]).

(@) The continuum hypothesis (CH) implies AN(c), where ¢ denotes 2°.

(b) AN(w) implies that there are P-points on w.

(c) AN(2°) does not hold.

He asked whether the existence of P-points implies AN(w). This question is
answered negatively by which appears below. By (a), (c),
under the assumption CH+21=w,, AN(x) holds if and only if r=w or r=w.
Let P be the statement: “any free, x-generated filter on w is ample, for all
k<c”. Then, the proof of (a) (in [5; p. 222]) yields a proof of that
P implies AN(c¢c). Since Martin's Axiom (MA) implies P (cf. [4; Theorem 5]),
it holds that MA implies AN(¢). By this, (b) and a result of Shelah
that the existence of P-points is unprovable (in ZFC), the negation of CH implies
neither AN(¢c) nor —AN(c).

We shall consider what cardinals ¢ satisfy AN(x) in the cases where CH
+2¢1=¢, fails. Our results are the following Theorems which are proved in
Sections 3~6.
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THEOREM 2.

(a) AN(w) implies AN(c).

(b) AN(w) implies that there are ¢t Ramsey ufs on w.

THEOREM 3. Let k be an infinite cardinal such that 2°=<k®. Then, AN(k)
does not hold.

THEOREM b. The existence of ¢t Ramsey ufs on w does not imply AN(w).

THEOREM 6.

(a) CH+2%1=w; does not imply AN(ws).

(b) CHA42%1=w; does not imply —AN(w,).

2. Notations and definitions.

We adopt the notions and conventions of current set theory. In particular,
an ordinal is the set of its predecessors and cardinals are initial ordinals. & and
A are used to denote cardinals and other lower case Greek letters are used to
denote ordinals. For any cardinals £ and 2, k? is the cardinality of the set of
all functions from A to k.  is the first infinite cardinal and w, is the a-th
infinite cardinal. For any set X, | X| denotes the cardinality of X, P(X) denotes
the power set of X and P,(X) denotes the set {xCX; |x|=w}. ACP,(X) is
said to be almost disjoint (mod. finite) if, for any distinct a, b in A, anb is
finite. A is said to be a maximal almost disjoint subset of P,(X) if A is almost
disjoint and, for any BCP,(X), whenever A is a proper subset of B, B is not
almost disjoint. S is said to be a partition of X if \US=X and, for any distinct
s,tin S, snt=¢@. For any function f and for any set a, f~'(a) (also f~'a)
denotes the set {x=dom(f); f(x)=a}. Let & be a filter on X and T a subset
of P(X). % is said to be free if @& and NF=@. T is a generator of § if
F is the smallest filter on X which includes T. & is k-generated if there
exists a generator T of § such that |T|=<g. For any function f from Xto Y,
f@& denotes the filter {yCY; f~y<% on Y. Let U be a free uf on w. U is
said to be a Ramsey uf (resp. a P-point) if, for any partition {x,|n<w) of w,
whenever x,&1 for all n<w, there exists some y<1 such that

lyNx.| =1 (resp. |yNxa.] <w) for all n<w.

3. Proofs of Theorems 2 and 3.

LEMMA 1. There exists a free, not ample filter F on w which satisfies the
following (3.1).

(3.1) For any free uf W on w, (a) and (b) are equivalent.
(a) U is Ramsey.
(b) fA)DF, for dll f:w—w.



Ramsey ultrafilters 333

PROOF. Since there is a bijection from w to wXw, it suffices to show that
there exists a free, not ample filter ¥ on wXw which satisfies the following
(3.2).

(3.2) For any free uf 1 on w, (a) and (b)’ are equivalent.
(a) U is Ramsey.
(b) gM)2F, for all g: w—wXaw.

For any function f on w, let a(f) be the set {(m, n)ewXw; f(m)+*n}. For
any k<w, let b(k) be the set (w—Ek)Xw (={m, n)cwXw; k=m}). Let F be
the filter on wXw which is generated by {a(f); f is a function on w}\J{b(k);
k<w}. It is easy to see that ¥ is free and not ample. To show (3.2), let U be
an arbitrary free uf on w.

(a)=(b)’. Suppose that 1l is Ramsey. Let g be any function from @ to
oXw. For any k<w, set x,=g '({k} Xw).

Case 1. x,€1, for some 2<w.

Since {k} Xw and b(k-+1) are disjoint, we have that

b(k+1)e& gll).
Case 2. x,<¢U, for all k<w.
Since <{x,|k<w) be a partition of w and I is Ramsey, there exists some
yell such that
ETaYTIES W for all k<w.

Since, for any k<w, g”yvN{k} Xo)=g"(x:N\y), g”y is a (graph of) partial
function on @w. So, we can choose a function f on w such that

g’yC{(m, n)ewXo; f(m)=n}.

Since a(f)CwXw—g”y, it holds that oXw—g”yCF. So, oXw—g"yeF—g).

(bY==(a). Suppose that U satisfies (b)’. Let 2 be any function on ® such
that, for any n<w, h-*{n}¢Ell. We need to show that % is one to one on some
set in U. Define the function g from @ to wX® by

gn)=(h(n), n) for all n<w.
Since g() 2%, there are #<w and functions f,, -, fm-: On @ such that
alfon - Na(fm-dNb(k)eE gl) .

Since h~'{n} < U for all n<w, it holds that b(k)=g(ll). From this, since g(ll) is
an uf on wXw, there exists some 7<m such that

oXo—a(f)egl).

Set y=g {wXw—a(f;)ell. Since wXw—a(f;) is a graph of function, A is one
to one on y. L
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LEMMA 2. Let & be an infinite cardinal. Then, there exists a subset A of
P,(k) which satisfies

(i) |Al=«"

(ii) A is almost disjoint (mod. finite).

Proor. Set X={xCwX«k; xis finite}. Since |[X|=k¢, it suffices to construct
a subset A of P,(X) which satisfies (i) and (ii). For any function f from w to
K, let a;={fIn; n<w}. Then, for any distinct functions f, g:w—«k, ayNa,
is finite. So, A={a,; f is a function from o to &} is as required. 1

LEMMA-3 Let k be an infinite cardinal. Then, the following (a) and (b) are
equivalent.

(a) —AN(x).

(b) There exists a partition {X,|a<k®)> of the set of all Ramsey ufs on w
such that, for any a<kg®,

X.=0 or N\X. 1is not ample.

PROOF. (a)=(b). Suppose that —AN(x). Let § be a free, weakly ample, not
ample filter on £ Since § is weakly ample, for any free uf 1 on w, there
exists a function f from o to £ such that f()DF. Moreover, since §F is free,
if 1 is Ramsey, then f can be chosen to be one to one. So, for each Ramsey
uf I on w, let fy be a one to one function from w to £ such that fL(I)DF. Let
{ga|la<k®> be an enumeration of the set of all functions from w to x. For each
a<kg® let

X,={1; N is a Ramsey uf on o & fu=g.}.

Then, <X.|a<k®)> satisfies (b).

(b)=(a). Suppose that <{X,.|a<k®)> satisfies (b). Let & be a free, not ample
filter on w which satisfies the condition (3.1) in Lemma 1. Let A be a subset of
P,(x) which satisfies (i) and (ii) in Let <a.|la<k®> be a one to one
enumeration of A. Define the x“-sequence <{F.|a<k®) of filter on w by

%a+1:mXa, if a</i:w and Xaig )
Fe=%F, otherwise.

For any a<k®, §. is free and not ample. Let <{h.la<x®)> be such that, for any
a<k® h, is a bijection from w to a,. Define the x“-sequence (&,|a<k®) of
filters on £ by

Goa=h.(Fa) for each a<k®.

For any a<k®, since h, is one to one, &, is a free, not ample filter on =&.
Define the filter & on & by, for any xCk,

xe® if and only if, for all a<k®, xN\a.=®,.
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The following Claim completes the proof.

Claim. @ is a free, weakly ample, not ample filter on «.

Proof of Claim. Since &, is free, for all a<x®, & is free. Since A is
almost disjoint (mod. finite) and, for all a<k?, ®, is not ample, & is not ample.
To show that & is weakly ample, let 11 be any free uf on w.

Case 1. U is Ramsey.

Let a<k® be such that UeX,. Then, it holds that UDN\X.=Fas1. So,
hari () DB DS

Case 2. U is not Ramsey.

Since & satisfies the condition (3.1) in Lemma ], there exists a function g
on w such that g(M)DF. Set f=h,°g. Then, it holds that

FA)=h(g)Dh(FH=6,08. Q.E.D. of Claim. L

COROLLARY 1. For any infinite cardinal k, AN(k) holds if and only if
AN(k®) holds.

ProoF. This corollary follows immediately from Lemma 3. L

Theorems 2 and 3 follow immediately from Lemma 3 and Corollary 1.

4. Theorem 4.

The purpose of this section is to state Theorem 4 which is used in the
proof of Theorem 6 (a). First, we need some definitions.

DEFINITION. Let f and g be functions on w;. [ dominates g (denoted by
g<f) if there is an ordinal a<w; such that, whenever a<&{<w,, g(§)< f(§).

DEFINITION. Let {f;|0<w.> be an w,-sequence of functions on w,. <{fs|0<wy>
is said to be an w,-scale on w, if the following (i) and (ii) are satisfied.

(i) For any <9<, fo<f,.

(ii) For any function g on w,, there is some d<w, such that g<f,.

THEOREM 4. Assume that CH holds and that there exisis an wy-scale on .
Then, AN(w.) does not hold.

Throughout this section, we assume that CH holds. To show Theorem 4,
we need some definitions and lemmas.

DEFINITION. For any a<w,, S, denotes the set of all functions from « to
;.

LEMMA 4. There exists an wi-sequence <{xs|s€Sqi1)|a<w;y such that, for
any a<wi,

(1) xs#x; for any distinct s, tESa+1,

(ii) {xs; sE€Sqs1} 78 @ maximal almost disjoint subset of P,(w),

(iii) for any E<a, SESes1, 1ESayy, if SCt, then x,—x, is finite,

(iv) for any yCwo, there exists some B<w. such that, for any s&Sg.,,
YNXs=@ or x,Cy.
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Proor. Using CH, the lemma is proved by the induction on a<w;. 1

In the rest of this section, {(x;|s€S.+0|a<w,> denotes some fixed w;-
sequence which satisfies (i)~(iv) in

DEerFINITION. For any function 2 on w;, 1, denotes the filter on w which is
generated by {xs,a+n; a<wy}.

LEMMA 5. For any function h on w;, Wy, is a free uf on w.

Proor. This is easy. L

DEFINITION. W denotes the set of all functions on w,.

DEFINITION. For any nonempty subset ¥ of W, &FY) denotes the filter
N{Us; hel}.

It is easy to see that F(Y) is free.

LEMMA 6. Let Y be a nonempty subset of W. Then, (a) and (b) are equivalent.

(@) FY) is not ample.

(b) For any a<w;, SESa+1, there exists f<w, and t& S,y such that

as=p & sCt & VYheY (t£h).

PROOF. (a)=>(b). Suppose that (V) is not ample. Let a<w, and s€S,,
be any elements. Then, since x; is an infinite subset of w, there exists some
yeFY) such that x,—y is infinite. Set a=x,—y. Pick an ordinal <, such
that a=f and, for any t&Sg,,,

x:N\a is finite or x,—a is finite.

Since {x;;t&=Sp:.} is a maximal almost disjoint subset of P,(w), there is some
teSp. such that x,—a is finite. Then, since x,—x,Cx,—a, it holds that
sCt. We claim that ¢ is as required. Suppose not. There is a function heY
such that tCh. Since t=h[(B+1), it holds that x,€U,. So, w—x,&N,.  Since
FY)CU,, we have that w—x,=F(Y). This contradicts the facts that yeF(Y)
and that yCw—x,.

(b)=1(a). Suppose that Y satisfies (b). Let x be any infinite subset of w.
Pick a<w; and s&S,;: such that x;—x is finite. By virtue of the fact that Y
satisfies (b), there exist S§<w; and {&€Sg4; such that

a<pf & sCt & VYheY (¢h).

Set y=w—x;. Then, because x—y is infinite, the following Claim completes the
proof.

Claim. yegY).

Proof of Claim. By the definition of F(Y), it suffices to show that, for any
heY, yell,. Let h be any functionin Y. Since ¢t¢ h, it holds that x,N\xxycg+1)
is finite. So,

Xrrg+n—y is finite.
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By this and the fact that x,,g+1y €Us, we have that yell,.
Q.E.D. of Claim. L

DEFINITION. For any a<w;, &, denotes the filter on @ which is generated
by {o—xs; s€Sau}.

It is easy to see that &, is free and not ample.

LEMMA 7. For any free uf W on w, the following (a) or (b) holds.

(a) U=, for some heW.

(b) &, CU for some a<w,.

PROOF. Suppose that (b) fails.

Claim. For any a<w,, there exists the unique s=S,,; such that x,ll.

Proof of Claim. Obvious. Q. E.D. of Claim.

For each a<w,, let u(a) be the unique s&S,;; such that x,el. Then, for
any a<f<w;, since XyNxup U, it holds that u(a)Cu(B). Set h:aglu(a).

Then, & is a function on w, and U,Cll. But, since ; is an uf on w, we have

that uh:u. 1
LEMMA 8. Supposz that there exists an wg-sequence {Y;|6<w,> such that
) A YW,
@32

(ii) for any o<w., F(Y5) is not ample.
Then, AN(w,) does not hold.

ProOOF. Let <(Y;]d0<w.> be an w,-sequence which satisfies (i) and (ii) in the
Lemma. Define the filter & on wX(w,+w;) by, for any xCw X (w.+w,),

x<$ if and only if the following (a) and (b) hold.

(a) {n<w; (n, 0)extFYs) for all 6<w,.

(b) {n<w; (n, ;:+a)ex}e®, for all a<ow;.
Then, using it is easy to see that ¥ is free, weakly ample and not
ample. L

PROOF OF THEOREM 4. Let {f;|0<w,> be an w.,-scale on w,. For any
0<w,, a<w,, define the subset Y;, of W by, for any heW,

heY;, if and only if, whenever a<&<w,, h(&)< f;(&).
Since {f;|0<w,> is an w,-scale on w,, we have that
U{Ysa; 0<w, & a<w,} =W .

To complete the proof of [Theorem 4, by Lemma 8 it suffices to show that, for
any 0<w,, 7 <o,

4.1) §Y,) is not ample.

Let 6<w, and y<w; be any elements. To show (4.1), by it suffices
to show that

(4.2) for any a<w;, SESa41, there exists f<w; and t&Sg4; such that
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as=pf & sCt & YheYs (€h).
Let a<w, and s&S,+; be any elements. Pick f<w; and s;&Sg4; such that

a=f & 1= & sCsy.
Define t&Sgs2 by
tH(B+1)=s, t(B+1)=rs(f+1).

Then, it holds that sCt¢ and that, for any heYy,

h(B+1)<fo(B+1)=t(f+1).
Thus, (4.2) holds. L

5. Proofs of Theorems 5 and 6 (b).

In this section, we assume that the reader is familiar with forcing (see [1;
Chapter 3],[3]). Throughout this section, M denotes a countable transitive
model of ZFC+GCH. To prove (resp. 6 (b)), it suffices to show that
there is a generic extension M, (resp. M,) of M which satisfies

(5.1) M;E—-AN(w)+“there are (2*)" Ramsey ufs on o”
(resp. (56.2) M,=CH-+2°1=w,+AN(w,)). We shall exhibit below such generic

extensions which are both well known.

I. Model M,. Let M; be the generic extension of M adding w¥ Cohen
generic reals. Then, M, satisfies (5.1). To show this, let P be the notion of
forcing in M such that, in M,

P={p; p is a function & dom(p) is a finite subset of wXw,
& rang (p)CA{0, 1}} .

Let G be an M-generic filter on P such that M;=M[G]. Then, the following
facts seem to be folklores. We omit the proofs.
Fact 1. The following statement holds in M[G].
“Let A be a subset of P,(w) such that
(1) [Al=w,
(ii) Vx,yeA (xnyeA).
Let {x,|n<w) be an w-sequence of elements in A such that
(i) x,41Cxn for all n<w.
Then, there exist infinite subsets y and z of w such that
(iv) ynz=9,
(v) both AJ{y} and A\J{z} have the finite intersection property,
i) yN(xn— 2240 =1 and |zN(xn—x240) | =1, for all n<w.”
FACT 2. Let x be an infinite subset of w in M[G). Then, there are vy and
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z in M such that

(i) ynz=0,

(i) yNx and zN\x are infinite.
By Fact 1, it is easy to see that, in M[G], there exist (2¢)* Ramsey ufs on w.”
To show that AN(w) does not hold in M[G], by it suffices to show
that AN(w,) does not hold in M[G]. From now on, we work in M[G]. Let
I be the set of free, not ample, w;-generated filters on w. Since 2%1=aw,, it holds
that |I'|<w.. Let {(&,|a<w,> be an enumeration of I. Define the filter § on
wXw, by

xef if and only if {n<w; (n, a)ex} €@, for all a<w,.

It is easy to check that & is free and not ample. To show that & is weakly
ample, let 1 be any free uf on w. Set B be the filter on w which is generated
by MnU. By Fact 2, B is a free, not ample, w;-generated filter. Let a<w, be
such that B=E@,. Define the function 4 from @ to wXw, by

hin)=(n, a) for all n<w.

Then, A(M)DA(B)DF.
II. Model M,. Let @ be the notion of forcing in M such that, in M,

Q=1{q; g is a function & dom{g) is a countable subset of w;Xw;
& rang(q)C {0, 1}} .

Let H be an M-generic filter on Q. Then, M,=M[H] satisfies (5.2). To show
this, since it is clear that M[H]ECH+2%1=w,, it suffices to show that

5.3 M[H]=AN(w,) .

First, we shall state which is used later. Let I be the ideal {xCw;
lx| <w} on w, and B the quotient algebra P(w)/I.
LEMMA 9. Assume CH. Let C be the algebra of regular open sets in
{g=Q ; dom(q)CTw; X {0}}. Then, the completion of B is isomorphic to C.
Proor. It suffices to show that there exist X and Y which satisfy

(5.4) X is a dense subset of B,
(5.5) Y is a dense subset of {gy=Q ; dom(g)Cw,X {0}},
(5.6) X and Y are order isomorphic.

Let xs|s€Sq+1)|a<w;) be an w;-sequence which satisfies (i)~(iv) in Lemma 4
Set

1) Kunen [2; p. 397] remarked that, in M{G], there are Ramsey ufs on w.
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X= {xs/l; 3a<w1(sesa+1)} ’
Y={9=0Q; Ja<w,(dom (¢)=(wa-+w) X {0})} .

Then, it is easy to see that X and Y satisfy (5.4)~(5.6). L

Henceforth, w, denotes the a-th infinite cardinal in M. Since M and M[H]
have the same cardinals, w, is the a-th infinite cardinal in M[H]. To show
let & be any free, not ample filter on w, in M[H]. Set G={w,—x;
xCw. & |x|=0}NF Then, we have that, in M[H], ® is a free, not ample
filler with |®|=w,. Since [@|=w, we can choose S<w; such that = M[H
N{geQ; dom(q)Cw, X B}]1. Set

Qps={g€Q; dom(9)Cw, X},

Q={g<Q; dom(9)Cw, X {8}},

Hg=HNQp,

H=HNQ,

N=M[Hg].
Then, it hold that H is an N-generic filter on Q and that M[H] is a generic
extension of N[H]. To show that & is not weakly ample in M[H], since Q is
o-closed, it suffices to prove the following

LEMMA 10. In N[HJ, there exists a free uf W on w such that, for any

fro—o, f)26.

PrOOF. Since N=CH, by we identify H with some N-generic set
on B (=P¥(w)/I). Define I by, in N[H],

U={xCw; x/IcH}.

It is easy to see that U is a free uf on w in N[H]. We claim that U is as
required. Let f be any function from w to w, in N[H]. Then, f is in M.
Define D by, in N,

D={x/I€B; x/I>0 & Iye@ynf"'x=Q)} .

Since & is free and not ample in N, it holds that, in N, D is a dense subset of
B. So, there exists some x/I in HN\D. Then, x is in 1 and y~f”x is finite,
for some ye®. Thus, w,—f"x is in @— f(11). 1
REMARK 1. Let M’ be a countable transitive model of ZFC+MA+2¢
=w,+2?2=w,;, and let @’ be the notion of forcing in M’ which is defined by,
in M/,
Q'=1{g; q is a function & dom(¢)Cw, & |q|=Zw, & rang(g)C{0, 1}}.

Let H’ be an M’-generic filter on Q’. Then, by a similar argument in II, it
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holds that
M'TH]E2=w,+2%=w,+AN(w;) .

So, ZFC+2*>w,+2°> ¢t +Ye<2°AN(k) is consistent.

6. Proof of Theorem 6 (a).

To show (a), similarly to the proofs of Theorems 5 and 6 (b),
it suffices to show that there exists a generic model N such that

(6.1) N!: CH+2‘”1=G)3—|—“1AN(Q)2) .
By Theorem 4, if

6.2) NECH+2%1=g,+“there is an w,-scale on ,”,

then N satisfies (6.1). Throughout this section, M denotes an arbitrary but
fixed countable transitive model of ZFC+CH+42“1=w,. We shall construct a
generic extension N of M satisfying (6.2). Our method is so called countable
support iterated forcing. We assume that the reader is familiar with this
iterated forcing (see [3; Chapter 8, Section 7]). From now on, we work in M
till after Corollary 2 except Lemma 11.

DEFINITION. S denotes the set of all functions from a countable ordinal to
;.

DEFINITION. For any complete Boolean algebra B, define Q=Q(B)=V 2 by

dom(Q)={E,J)? ; s€S & JVE & ||J is a set of functions on w,
with [J[=wel=1},
Q(x)=1 for all x=dom(@).

And, we regard Q as the notion of forcing in V2 whose order is defined by,
for any (3, J)E, (¢, K)®=dom(Q),

I3, HEZE, K)2|
=|32f & JOK & YacsdomG—1)VfeK(f(a)<¥(a)].

LEMMA 11. Suppose that, in M, B is an w-distributive, w,-saturated, complete
Boolean algebra. Let G be an M-generic filter on B, Q=iz(Q(B)¥) and H an
M[ G]l-generic filter on Q. Set h=\J{s;3J((s, J)€H)}. Then,

(a) in M[G],

(i) Q=SX{J;J is a set of functions on w, with |J|=w},
(ii) @ 7s o-closed and has the w.,-chain condition,
(b) n M[GI[H],
(i) h is a function on w;,
(ii) f<<h for any function [ on w, in M[G].
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Proor. This is well-known. 1

Define the sequence {R.|a<w,> of partially ordered sets by the following
induction on a (Zw,).

For each a=w,, set

B.=the algebra of regular open sets in R,.

Case 1. a=0.

R={@(=1}.
Case 2. a=y-+1 for some 7.
Set Q,=Q(B,) (€V?). For any p=<{ps|é<a),

peR, if and only if plreR, & p(y)edom(Q;).
Define the order < on R, by, for any p, g=R,,

p=q if and only if ply=qly & pIr-p()=q{).

(For any p, g R,, whenever p=¢ and ¢=p, we identify p and gq.)
Define the function e¢ from R, to R, by, for any peR,,

e(p)ir=p,
e(P)1)=(D, D).

And, for convention, we regard R, as the subset ¢”R, of R,.
Case 3. « is limit.

For any p=<{p¢|é<a),

pER, if and only if Vé<a (plé€R;) and {{<a; [p6)<U=(D, DN >0}
is at most countable.

Define the order < on R, by, for any p, g=R,,

p=gq if and only if VE<a (p|E=qlE).

In the same way in Case 2, for each §<a, we regard R; as the subset of R,.

REMARK 2. In Case 3, if cof (a)>w, then R, coincides with the direct limit
of (Rg|é<a).

The following can be proved by the induction on a (Zw,) using
standard arguments (see [3; Lemma 7.2 (p. 282) and Lemma 7.10 (p. 286)]). So,
we omit the proof.

LEMMA 12. For any a=w,,

(@) |Rq|Zws,

(b) R, is o-closed,

(¢) R, has the w,-chain condition.

Set R=R,,.
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COROLLARY 2.

(@) |R|=ws.

(b) R is o-closed.

(¢) R has the ws.-chain condition.

ProoF. This follows immediately from 1
Let G be an M-generic filter on R. Set N=M[G]. For each a<w}, set

Ga=GNR,,
M.,=M[G.].
Define <h.|a<w¥>=N by, for each a<w¥,
ho=\U{s; Ip=GIAJ((E, J)Pa=p(a))} .
Then, by the following (6.3)~(6.6) hold.
(6.3) PY(w)=P"(w).
(6.4) N and M have the same cardinals.
(6.5) 2“1=w, holds in N.

(6.6) For any function f on w; in N, there is an a<w) such that feM,.
Now, we shall show Let f be any function on w, in N. By (6.6),

there is an a<o¥ such that feM,. By [Lemma 11, since H={(s, i¢(J));

dp=G((3, J)Pa=p(a))} is an M[G.]-generic filter on 74 ,(Q.), it holds that

MIGILHIE“f<h.”.

Thus, in N, <h,|a<w.) is an w,-scale on w;.
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