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1. Introduction and results.

Throughout this paper, we work in Zelmero-Fraenkel set theory with choice
(ZFC). Let $\mathfrak{F}$ be a filter on $A$ and let $f$ be a function from $A$ to B. $f(\mathfrak{F})$ denotes
the filter $\{y\subset B;f^{-1}y\in \mathfrak{F}\}$ . $\mathfrak{F}$ is said to be free if $\emptyset\not\in \mathfrak{F}$ and $\cap \mathfrak{F}=\emptyset$ . $\mathfrak{F}$ is said
to be ample if there exists an infinite subset $A_{0}$ of $A$ such that, for any $x\in \mathfrak{F}$,
$A_{0}-x$ is finite. $\mathfrak{F}$ is said to be weakly ample if, for any free ultrafilter (uf) $\mathfrak{U}$

on $\omega$, there exists a function $g$ from $\omega$ to $A$ such that $g(\mathfrak{U})\supset \mathfrak{F}$ . It is trivial
that any free, ample filter is weakly ample. For any infinite cardinal $\kappa$, we
denote by AN $(\kappa)$ the statement: “any free, weakly ample filter on $\kappa$ is ample”.
It is easy to see that, whenever $\kappa\leqq\lambda,$ $AN(\lambda)$ implies AN $(\kappa)$ . Puritz proved the
following Theorem 1.

THEOREM 1 (PuritZ [5]).

(a) The continuum hypothesis (CH) implies AN $(c)$ , where $c$ denotes $2^{\omega}$ .
(b) AN $(\omega)$ implies that there are P-points on $\omega$ .
(c) AN $(2^{c})$ does not hold.

He asked whether the existence of P-points implies AN $(\omega)$ . This question is
answered negatively by Theorem 5 which appears below. By Theorem 1 (a), (c),

under the assumption $CH+2^{\omega_{1}}=\omega_{2},$ $AN(\kappa)$ holds if and only if $\kappa=\omega$ or $\kappa=\omega_{1}$ .
Let $P$ be the statement: “any free, $\kappa$-generated filter on $\omega$ is ample, for all
$\kappa<c’$ . Then, the proof of Theorem 1 (a) (in [5; p. 222]) yields a proof of that
$P$ implies AN $(c)$ . Since Martin’s Axiom (MA) implies $P$ (cf. [4; Theorem 5]),

it holds that MA implies AN $(c)$ . By this, Theorem 1 (b) and a result of Shelah
that the existence of P-points is unprovable (in ZFC), the negation of CH implies
neither AN $(c)$ nor $\neg AN(c)$ .

We shall consider what cardinals $\kappa$ satisfy AN $(\kappa)$ in the cases where CH
$+2^{\omega_{1}}=\omega_{2}$ fails. Our results are the following Theorems which are proved in
Sections 3\sim 6.
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THEOREM 2.
(a) AN $(\omega)$ implies AN $(c)$ .
(b) AN $(\omega)$ impljes that there are $c^{+}$ Ramsey ufs on $\omega$.
THEOREM 3. Let $\kappa$ be an infinite cardinal such that $2^{c}\leqq\kappa^{\omega}$ . Then, AN $(\kappa)$

does not hold.
THEOREM 5. The existence of $c^{+}$ Ramsey ufs on $\omega$ does not imply AN $(\omega)$ .
THEOREM 6.
(a) $CH+2^{\omega_{1}}=\omega_{3}$ does not imply AN $(\omega_{2})$ .
(b) $CH+2^{\omega_{1}}=\omega_{3}$ does not imply $\neg AN(\omega_{2})$ .

2. Notations and definitions.

We adopt the notions and conventions of current set theory. In particular,
an ordinal is the set of its predecessors and cardinals are initial ordinals. $\kappa$ and
$\lambda$ are used to denote cardinals and other lower case Greek letters are used to
denote ordinals. For any cardinals $\kappa$ and $\lambda,$

$\kappa^{\lambda}$ is the cardinality of the set of
all functions from $\lambda$ to $\kappa$ . $\omega$ is the first infinite cardinal and $\omega_{\alpha}$ is the a-th
infinite cardinal. For any $setX,$ $|X|$ denotes the cardinality of $X,$ $P(X)$ denotes
the power set of $X$ and $P_{\omega}(X)$ denotes the set $\{x\subset X;|x|=\omega\}$ . $A\subset P_{\omega}(X)$ is
said to be almost disjoint ($mod$ . finite) if, for any distinct $a,$

$b$ in $A,$ $a\cap b$ is
finite. $A$ is said to be a maximal almost disjoint subset of $P_{\omega}(X)$ if $A$ is almost
disjoint and, for any $B\subset P_{\omega}(X)$ , whenever $A$ is a proper subset of $B,$ $B$ is not
almost disjoint. $S$ is said to be a partition of $X$ if $\cup S=X$ and, for any distinct
$s,$

$t$ in $S,$ $s\cap t=\emptyset$ . For any function $f$ and for any set $a,$ $f^{-1}(a)$ (also $f^{-1}a$ )

denotes the set $\{x\in dom(f);f(x)\in a\}$ . Let $\mathfrak{F}$ be a filter on $X$ and $T$ a subset
of $P(X)$ . $\mathfrak{F}$ is said to be free if $\emptyset\not\in \mathfrak{F}$ and $\cap \mathfrak{F}=\emptyset$ . $T$ is a generator of $\mathfrak{F}$ if

$\mathfrak{F}$ is the smallest filter on $X$ which includes T. $\mathfrak{F}$ is $\kappa$-generated if there
exists a generator $T$ of $\mathfrak{F}$ such that $|T|\leqq\kappa$ . For any function $f$ from $X$ to $Y$,
$f(\mathfrak{F})$ denotes the filter $\{y\subset Y;f^{-1}y\in \mathfrak{F}\}$ on $Y$ . Let $\mathfrak{U}$ be a free uf on $\omega$ . $\mathfrak{U}$ is
said to be a Ramsey uf (resp. a $P$-point) if, for any partition $\langle x_{n}|n<\omega\rangle$ of $\omega$,
whenever $x_{n}\not\in \mathfrak{U}$ for all $n<\omega$, there exists some $y\in \mathfrak{U}$ such that

$|y\cap x_{n}|\leqq 1$ (resp. $|y\cap x_{n}|<\omega$) for all $n<\omega$ .

3. Proofs of Theorems 2 and 3.

LEMMA 1. There exists a free, not ample filter $\mathfrak{F}$ on $\omega$ which satisfies the
following (3.1).

(3.1) For any free $uf\mathfrak{U}$ on $\omega,$ $(a)$ and (b) are equivalent.
(a) $\mathfrak{U}$ is Ramsey.
(b) $f(\mathfrak{U})\not\supset \mathfrak{F}$, for all $f:\omegaarrow\omega$ .
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PROOF. Since there is a bijection from $\omega$ to $\omega\cross\omega$, it suffices to show that
there exists a free, not ample filter $\mathfrak{F}$ on $\omega\cross\omega$ which satisfies the following
(3.2).

(3.2) For any free uf $\mathfrak{U}$ on $\omega,$ $(a)$ and $(b)’$ are equivalent.
(a) $\mathfrak{U}$ is Ramsey.
$(b)’g(\mathfrak{U})\not\supset \mathfrak{F}$, for all $g:\omegaarrow\omega\cross\omega$ .

For any function $f$ on $\omega$, let $a(f)$ be the set $\{(m, n)\in\omega\cross\omega;f(m)\neq n\}$ . For
any $k<\omega$, let $b(k)$ be the set $(\omega-k)\cross\omega(=\{(m, n)\in\omega\cross\omega;k\leqq m\})$ . Let $\mathfrak{F}$ be
the filter on $\omega\cross\omega$ which is generated by { $a(f);f$ is a function on $\omega$ } $\cup\{b(k)$ ;
$k<\omega\}$ . It is easy to see that $\mathfrak{F}$ is free and not ample. To show (3.2), let $U$ be
an arbitrary free uf on $\omega$ .

$(a)\Rightarrow(b)’$ . Suppose that $\mathfrak{U}$ is Ramsey. Let $g$ be any function from $\omega$ to
$\omega\cross\omega$. For any $k<\omega$, set $x_{k}=g^{-1}(\{k\}\cross\omega)$ .

Case 1. $x_{k}\in \mathfrak{U}$, for some $k<\omega$ .
Since $\{k\}\cross\omega$ and $b(k+1)$ are disjoint, we have that

$b(k+1)\not\in g(\mathfrak{U})$ .
Case 2. $x_{k}\not\in \mathfrak{U}$, for all $k<\omega$ .
Since $\langle x_{k}|k<\omega\rangle$ be a partition of $\omega$ and $\mathfrak{U}$ is Ramsey, there exists some

$y\in \mathfrak{U}$ such that
$|y\cap x_{k}|\leqq 1$ , for all $k<\omega$ .

Since, for any $k<\omega,$ $g’y\cap(\{k\}\cross\omega)=g’’(x_{k}\cap y),$ $g’y$ is a (graph of) partial
function on $\omega$ . So, we can choose a function $f$ on $\omega$ such that

$g’y\subset\{(m, n)\in\omega\cross\omega;f(m)=n\}$ .

Since $a(f)\subset\omega\cross\omega-g’’y$ , it holds that $\omega\cross\omega-g’y\subset \mathfrak{F}$ . So, $\omega\cross\omega-g’y\in \mathfrak{F}-g(\mathfrak{U})$ .
$(b)’\Rightarrow(a)$ . Suppose that $\mathfrak{U}$ satisPes $(b)’$ . Let $h$ be any function on $\omega$ such

that, for any $n<\omega,$ $h^{-1}\{n\}\not\in \mathfrak{U}$ . We need to show that $h$ is one to one on some
set in U. Define the function $g$ from $\omega$ to $\omega\cross\omega$ by

$g(n)=(h(n), n)$ for all $n<\omega$ .
Since $g(\mathfrak{U})\not\supset \mathfrak{F}$, there are $k<\omega$ and functions $f_{0},$ $\cdots$ , $f_{m- 1}$ on $\omega$ such that

$a(f_{0})\cap\cdots\cap a(f_{m- 1})\cap b(k)\not\in g(\mathfrak{u})$ .

Since $h^{-1}\{n\}\not\in \mathfrak{U}$ for all $n<\omega$, it holds that $b(k)\in g(\mathfrak{U})$ . From this, since $g(\mathfrak{U})$ is
an uf on $\omega\cross\omega$, there exists some $i<m$ such that

$\omega\cross\omega-a(f_{i})\in g(\mathfrak{U})$ .
Set $y=g^{-1}(\omega\cross\omega-a(f_{i}))\in \mathfrak{U}$ . Since $\omega\cross\omega-a(f_{i})$ is a graph of function, $h$ is one
to one on $y$ . $\perp$
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LEMMA 2. Let $\kappa$ be an infinite cardinal. Then, there exists a subset $A$ of
$P_{\omega}(\kappa)$ which satisfies

(i) $|A|=\kappa^{\omega}$,
(ii) $A$ is almost &sjoint (mod. finite).

PROOF. Set $X=$ { $x\subset\omega\cross\kappa;x$ is finite}. Since $|X|=\kappa$, it suffices to construct
a subset $A$ of $P_{\omega}(X)$ which satisfies (i) and (ii). For any function $f$ from $\omega$ to

$\kappa$, let $a_{f}=\{f[n;n<\omega\}$ . Then, for any distinct functions $f,$ $g;\omegaarrow\kappa,$ $a_{f}\cap a_{g}$

is finite. So, $A=$ { $a_{f}$ ; $f$ is a function from $\omega$ to $\kappa$ } is as required. $\perp$

LEMMA 3 Let $\kappa$ be an infinite cardinal. Then, the following (a) and (b) are
equivalent.

(a) $\neg AN(\kappa)$ .
(b) There exists a partition $\langle X_{\alpha}|\alpha<\kappa^{\omega}\rangle$ of the set of all Ramsey ufs on $\omega$

such that, for any $\alpha<\kappa^{\omega}$,

$X_{\alpha}=\emptyset$ or $\cap X_{\alpha}$ is not ample.

PROOF. $(a)\Rightarrow(b)$ . Suppose that $\neg AN(\kappa)$ . Let $\mathfrak{F}$ be a free, weakly ample, not
ample filter on $\kappa$ . Since $\mathfrak{F}$ is weakly ample, for any free uf $\mathfrak{U}$ on $\omega$, there
exists a function $f$ from $\omega$ to $\kappa$ such that $f(\mathfrak{U})\supset \mathfrak{F}$ . Moreover, since $\mathfrak{F}$ is free,
if $\mathfrak{U}$ is Ramsey, then $f$ can be chosen to be one to one. So, for each Ramsey
uf $\mathfrak{U}$ on $\omega$, let $f_{u}$ be a one to one function from $\omega$ to $\kappa$ such that $f_{u}(\mathfrak{U})\supset \mathfrak{F}$. Let
$\langle g_{\alpha}|\alpha<\kappa^{\omega}\rangle$ be an enumeration of the set of all functions from $\omega$ to $\kappa$ . For each
$\alpha<\kappa^{\omega}$, let

$X_{a}=$ {$\mathfrak{U};\mathfrak{U}$ is a Ramsey uf on $\omega$ $\ fu=g_{\alpha}$ }.

Then, $\langle X_{\alpha}|\alpha<\kappa^{\omega}\rangle$ satisfies (b).
$(b)\Rightarrow(a)$ . Suppose that $\langle X_{\alpha}|\alpha<\kappa^{\omega}\rangle$ satisfies (b). Let $\mathfrak{F}$ be a free, not ample

filter on $\omega$ which satisfies the condition (3.1) in Lemma 1. Let $A$ be a subset of
$P_{\omega}(\kappa)$ which satisfies (i) and (ii) in Lemma 2. Let $\langle a_{\alpha}|\alpha<\kappa^{\omega}\rangle$ be a one to one
enumeration of $A$ . Define the $\kappa^{\omega}$-sequence $\langle \mathfrak{F}_{a}|\alpha<\kappa^{\omega}\rangle$ of filter on $\omega$ by

$\mathfrak{F}_{\alpha+1}=\cap X_{\alpha}$ , if $\alpha<\kappa^{\omega}$ and $X_{\alpha}\neq\emptyset$ ,

$\mathfrak{F}_{\xi}=\mathfrak{F}$ , otherwise.

For any $\alpha<\kappa^{\omega},$ $\mathfrak{F}_{\alpha}$ is free and not ample. Let $\langle h_{a}|\alpha<\kappa^{\omega}\rangle$ be such that, for any
$\alpha<\kappa^{\omega},$ $h_{\alpha}$ is a bijection from $\omega$ to $a_{\alpha}$ . Define the $\kappa^{\omega}$-sequence $\langle \mathfrak{G}_{\alpha}|\alpha<\kappa^{\omega}\rangle$ of
filters on $\kappa$ by

$\mathfrak{G}_{a}=h_{\alpha}(\mathfrak{F}_{\alpha})$ for each $\alpha<\kappa^{\omega}$ .

For any $\alpha<\kappa^{\omega}$, since $h_{\alpha}$ is one to one, $\mathfrak{G}_{\alpha}$ is a free, not ample filter on $\kappa$ .
Define the filter $\mathfrak{G}$ on $\kappa$ by, for any $x\subset\kappa$,

$x\in \mathfrak{G}$ if and only if, for all $\alpha<\kappa^{\omega},$ $x\cap a_{a}\in \mathfrak{G}_{\alpha}$ .
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The following Claim completes the proof.
Claim. $\mathfrak{G}$ is a free, weakly ample, not ample filter on $\kappa$ .
Proof of Claim. Since $\mathfrak{G}_{\alpha}$ is free, for all $\alpha<\kappa^{\omega},$

$\mathfrak{G}$ is free. Since $A$ is
almost disjoint ($mod$ . finite) and, for all $\alpha<\kappa^{\omega},$ $\mathfrak{G}_{\alpha}$ is not ample, $\mathfrak{G}$ is not ample.
To show that $\mathfrak{G}$ is weakly ample, let $\mathfrak{U}$ be any free uf on $\omega$ .

Case 1. $\mathfrak{U}$ is Ramsey.
Let $\alpha<\kappa^{\omega}$ be such that $\mathfrak{U}\in X_{\alpha}$ . Then, it holds that $\mathfrak{U}\supset\cap X_{\alpha}=\mathfrak{F}_{a+1}$ . So,

$h_{\alpha+1}(\mathfrak{U})\supset \mathfrak{G}_{a+1}\supset \mathfrak{G}$ .
Case 2. $\mathfrak{U}$ is not Ramsey.
Since $\mathfrak{F}$ satisfies the condition (3.1) in Lemma 1, there exists a function $g$

on $\omega$ such that $g(\mathfrak{U})\supset \mathfrak{F}$. Set $f=h_{0}\circ g$ . Then, it holds that

$f(\mathfrak{U})=h_{0}(g(\mathfrak{U}))\supset h_{0}(\mathfrak{F})=\mathfrak{G}_{0}\supset \mathfrak{G}$ . Q. E. D. of Claim. $\perp$

COROLLARY 1. For any infinite cardinal $\kappa,$
$AN(\kappa)$ holds if and only if

AN $(\kappa^{\omega})$ holds.
PROOF. This corollary follows immediately from Lemma 3. $\perp$

Theorems 2 and 3 follow immediately from Lemma 3 and Corollary 1.

4. Theorem 4.

The purpose of this section is to state Theorem 4 which is used in the
proof of Theorem 6 (a). First, we need some definitions.

DEFINITION. Let $f$ and $g$ be functions on $\omega_{1}$ . $f$ dominates $g$ (denoted by
$g\prec f)$ if there is an ordinal $\alpha<\omega_{1}$ such that, whenever $\alpha\leqq\xi<\omega_{1},$ $g(\xi)<f(\xi)$ .

DEFINITION. Let $\langle f_{\delta}|\delta<\omega_{2}\rangle$ be an $\omega_{2}$-sequence of functions on $\omega_{1}$ . $\langle f_{\delta}|\delta<\omega_{2}\rangle$

is said to be an $\omega_{2}$-scale on $\omega_{1}$ if the following (i) and (ii) are satisfied.
(i) For any $\delta<\eta<\omega_{2},$ $f_{\delta}\prec f_{\eta}$ .
(ii) For any function $g$ on $\omega_{1}$ , there is some $\delta<\omega_{2}$ such that $g\prec f_{\delta}$ .
THEOREM 4. Assume that CH holds and that there exists an $\omega_{2}$-scale on $\omega_{1}$ .

Then, AN $(\omega_{2})$ does not hold.
Throughout this section, we assume that CH holds. To show Theorem 4,

we need some definitions and lemmas.
DEFINITION. For any $\alpha<\omega_{1},$ $S_{\alpha}$ denotes the set of all functions from $\alpha$ to

$\omega_{1}$ .
LEMMA 4. There exists an $\omega_{1}$-sequence $\langle\langle x_{s}|s\in S_{a+1}\rangle|\alpha<\omega_{1}\rangle$ such that, for

any $\alpha<\omega_{1}$ ,
(i) $x_{s}\neq x_{t}$ for any distinct $s,$ $t\in S_{a+1}$ ,
(ii) $\{x_{s} ; s\in S_{a+1}\}$ is a maximal almost disjoint subset of $P_{\omega}(\omega)$ ,

(iii) for any $\xi<\alpha,$ $s\in S_{\xi+1},$ $t\in S_{\alpha+1}$ , if $s\subset t$ , then $x_{t}-x_{s}$ is finite,
(iv) for any $y\subset\omega$, there exists some $\beta<\omega_{1}$ such that, for any $s\in S_{\beta+1}$ ,

$y\cap x_{s}=\emptyset$ or $x_{s}\subset y$ .
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PROOF. Using CH, the lemma is proved by the induction on $\alpha<\omega_{1}$ . $\perp$

In the rest of this section, $\langle\langle x_{s}|s\in S_{a+1}\rangle|\alpha<\omega_{1}\rangle$ denotes some fixed $\omega_{1^{-}}$

sequence which satisfies $(i)\sim(iv)$ in Lemma 4.
DEFINITION. For any function $h$ on $\omega_{1},$

$\mathfrak{U}_{h}$ denotes the filter on $\omega$ which is
generated by $\{x_{h)(a+1)} ; \alpha<\omega_{1}\}$ .

LEMMA 5. For any function $h$ on $\omega_{1},$
$\mathfrak{U}_{h}$ is a free $uf$ on $\omega$ .

PROOF. This is easy. $\perp$

DEFINITION. $W$ denotes the set of all functions on $\omega_{1}$ .
DEFINITION. For any nonempty subset $Y$ of $W,$ $\mathfrak{F}(Y)$ denotes the filter

$\cap\{\mathfrak{U}_{h} ; h\in Y\}$ .
It is easy to see that $\mathfrak{F}(Y)$ is free.
LEMMA 6. Let $Y$ be a nonempty subset of W. Then, (a) and (b) are equivalent.
(a) $\mathfrak{F}(Y)$ is not ample.
(b) For any $\alpha<\omega_{1},$ $s\in S_{a+1}$ , there exists $\beta<\omega_{1}$ and $t\in S_{\beta+1}$ such that

$\alpha\leqq\beta$ & $s\subset t$ & $\forall h\in Y(t\not\subset h)$ .

PROOF. $(a)\Rightarrow(b)$ . Suppose that $\mathfrak{F}(Y)$ is not ample. Let $\alpha<\omega_{1}$ and $s\in S_{\alpha+1}$

be any elements. Then, since $x_{s}$ is an infinite subset of $\omega$, there exists some
$y\in \mathfrak{F}(Y)$ such that $x_{s}-y$ is infinite. Set $a=x_{s}-y$ . Pick an ordinal $\beta<\omega_{1}$ such
that $\alpha\leqq\beta$ and, for any $t\in S_{\beta+1}$ ,

$x_{t}\cap a$ is finite or $x_{t}-a$ is finite.

Since $\{x_{t} ; t\in S_{\beta+1}\}$ is a maximal almost disjoint subset of $P_{\omega}(\omega)$ , there is some
$t\in S_{\beta+1}$ such that $x_{t}-a$ is finite. Then, since $x_{t}-x_{s}\subset x_{t}-a$ , it holds that
$s\subset t$ . We claim that $t$ is as required. Suppose not. There is a function $h\in Y$

such that $t\subset h$ . Since $t=hr(\beta+1)$ , it holds that $x_{t}\in \mathfrak{U}_{h}$ . So, $\omega-x_{t}\not\in \mathfrak{U}_{h}$ . Since
$\mathfrak{F}(Y)\subset \mathfrak{U}_{h}$ , we have that $\omega-x_{t}\not\in \mathfrak{F}(Y)$ . This contradicts the facts that $y\in \mathfrak{F}(Y)$

and that $y\subset\omega-x_{t}$ .
$(b)\Rightarrow(a)$ . Suppose that $Y$ satisfies (b). Let $x$ be any infinite subset of $\omega$ .

Pick $\alpha<\omega_{1}$ and $s\in S_{\alpha+1}$ such that $x_{s}-x$ is finite. By virtue of the fact that $Y$

satisfies (b), there exist $\beta<\omega_{1}$ and $t\in S_{\beta+1}$ such that

$\alpha\leqq\beta$ & $s\subset f$ & $\forall h\in Y(t\not\subset h)$ .
Set $y=\omega-x_{t}$ . Then, because $x-y$ is infinite, the following Claim completes the
proof.

Claim. $y\in \mathfrak{F}(Y)$ .
Proof of Claim. By the definition of $\mathfrak{F}(Y)$ , it suffices to show that, for any

$h\in Y,$ $y\in \mathfrak{U}_{h}$ . Let $h$ be any function in $Y$ . Since $t\not\subset h$ , it holds that $X_{t}\cap X_{h\triangleright(\beta+1)}$

is finite. So,
$x_{h\triangleright(\beta+1)}-y$ is finite.
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By this and the fact that $x_{h\triangleright(\beta+1)}\in \mathfrak{U}_{h}$ , we have that $y\in \mathfrak{U}_{h}$ .
Q. E. D. of Claim. $\perp$

DEFINITION. For any $\alpha<\omega_{1},$ $\mathfrak{G}_{\alpha}$ denotes the filter on $\omega$ which is generated
by $\{\omega-x_{s} ; s\in S_{\alpha+1}\}$ .

It is easy to see that $\mathfrak{G}_{\alpha}$ is free and not ample.
LEMMA 7. For any free $uf\mathfrak{U}$ on $\omega$, the following (a) or (b) holds.
(a) $\mathfrak{U}=\mathfrak{U}_{h}$ for some $h\in W$.
(b) $\mathfrak{G}_{\alpha}\subset \mathfrak{U}$ for some $\alpha<\omega_{1}$ .
PROCF. Suppose that (b) fails.
Claim. For any $\alpha<\omega_{1}$ , there exists the unique $s\in S_{\alpha+1}$ such that $x_{s}\in \mathfrak{U}$ .
Proof of Claim. Obvious. Q. E. D. of Claim.
For each $\alpha<\omega_{1}$ , let $u(\alpha)$ be the unique $s\in S_{\alpha+1}$ such that $x_{s}\in \mathfrak{U}$ . Then, for

any $\alpha<\beta<\omega_{1}$ , since $x_{u(\alpha)}\cap x_{u(\beta)}\in \mathfrak{U}$, it holds that $u(\alpha)\subset u(\beta)$ . Set $h= \bigcup_{\alpha<\omega_{1}}u(\alpha)$ .
Then, $h$ is a function on $\omega_{1}$ and $\mathfrak{U}_{h}\subset \mathfrak{U}$ . But, since $\mathfrak{U}_{h}$ is an uf on $\omega$, we have
that $\mathfrak{U}_{h}=\mathfrak{U}$ . $\perp$

LEMMA 8. Suppos2 that there exists an $\omega_{2}$-sequence $\langle Y_{\delta}|\delta<\omega_{2}\rangle$ such that
(i)

$\delta<\omega_{2}\cup Y_{\delta}=W$ ,

(ii) for any $\delta<\omega_{2},$ $\mathfrak{F}(Y_{\delta})$ is not ample.
Then, AN $(\omega_{2})$ does not hold.

PROOF. Let $\langle Y_{\delta}|\delta<\omega_{2}\rangle$ be an $\omega_{2}$-sequence which satisfies (i) and (ii) in the
Lemma. Define the filter $\mathfrak{F}$ on $\omega\cross(\omega_{2}+\omega_{1})$ by, for any $x\subset\omega\cross(\omega_{2}+\omega_{1})$ ,

$x\in \mathfrak{F}$ if and only if the following (a) and (b) hold.
(a) $\{n<\omega;(n, \delta)\in x\}\in \mathfrak{F}(Y_{\delta})$ for all $\delta<\omega_{2}$ .
(b) $\{n<\omega;(n, \omega_{2}+\alpha)\in x\}\in \mathfrak{G}_{\alpha}$ for all $\alpha<\omega_{1}$ .

Then, using Lemma 7, it is easy to see that $\mathfrak{F}$ is free, weakly ample and not
ample. $\perp$

PROOF OF THEOREM 4. Let $\langle f_{\delta}|\delta<\omega_{2}\rangle$ be an $\omega_{2}$-scale on $\omega_{1}$ . For any
$\delta<\omega_{2},$ $\alpha<\omega_{1}$ , define the subset $Y_{\delta\alpha}$ of $W$ by, for any $h\in W$,

$h\in Y_{\delta\alpha}$ if and only if, whenever $\alpha\leqq\xi<\omega_{1},$ $h(\xi)<f_{\delta}(\xi)$ .
Since $\langle f_{\delta}|\delta<\omega_{2}\rangle$ is an $\omega_{2}$-scale on $\omega_{1}$ , we have that

$\cup\{Y_{\delta\alpha} ; \delta<\omega_{2}\ \alpha<\omega_{1}\}=W$ .
To complete the proof of Theorem 4, by Lemma 8, it suffices to show that, for
any $\delta<\omega_{2,}\gamma<\omega_{1}$ ,

(4.1) $\mathfrak{F}(Y_{\delta\gamma})$ is not ample.

Let $\delta<\omega_{2}$ and $\gamma<\omega_{1}$ be any elements. To show (4.1), by Lemma 6, it suffices
to show that

(4.2) for any $\alpha<\omega_{1},$ $s\in S_{a+1}$ , there exists $\beta<\omega_{1}$ and $t\in S_{\beta+1}$ such that
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$\alpha\leqq\beta$ & $s\subset t$ & $\forall h\in Y_{\delta\gamma}(t\not\subset h)$ .

Let $\alpha<\omega_{1}$ and $s\in S_{\alpha+1}$ be any elements. Pick $\beta<\omega_{1}$ and $s_{1}\in S_{\beta+1}$ such that

$\alpha\leqq\beta$ & $\gamma\leqq\beta$ & $s\subset s_{1}$ .
Define $t\in S_{\beta+2}$ by

$tt(\beta+1)=s_{1}$ , $t(\beta+1)=f_{\delta}(\beta+1)$ .

Then, it holds that $s\subset t$ and that, for any $h\in Y_{\delta\gamma}$ ,

$h(\beta+1)<f_{\delta}(\beta+1)=t(\beta+1)$ .
Thus, (4.2) holds. $\perp$

5. Proofs of Theorems 5 and 6 (b).

In this section, we assume that the reader is familiar with forcing (see [1;

Chapter 3], [3]). Throughout this section, $M$ denotes a countable transitive
model of $ZFC+GCH$ . To prove Theorem 5 (resp. 6 $(b)$ ), it suffices to show that
there is a generic extension $M_{1}$ (resp. $M_{2}$ ) of $M$ which satisfies

(5.1) $M_{1}\models\neg AN(\omega)+there$ are $(2^{\omega})^{+}$ Ramsey ufs on $\omega$

’

(resp. (5.2) $M_{2}\models CH+2^{\omega_{1}}=\omega_{3}+AN(\omega_{2})$ ). We shall exhibit below such generic

extensions which are both well known.
I. Model $M_{1}$ . Let $M_{1}$ be the generic extension of $M$ adding $\omega_{2}^{M}$ Cohen

generic reals. Then, $M_{1}$ satisfies (5.1). To show this, let $P$ be the notion of
forcing in $M$ such that, in $M$,

$P=\{p;p$ is a function &dom $(p)$ is a finite subset of $\omega\cross\omega_{2}$

&rang $(p)\subset\{0,1\}\}$ .

Let $G$ be an M-generic filter on $P$ such that $M_{1}=M[G]$ . Then, the following
facts seem to be folklores. We omit the proofs.

FACT 1. The following statement holds in $M[G]$ .
“Let $A$ be a subset of $P_{\omega}(\omega)$ such that
(i) $|A|\leqq\omega_{1}$ ,
(ii) $\forall x,$ $y\in A(x\cap y\in A)$ .

Let $\langle x_{n}|n<\omega\rangle$ be an $\omega$-sequence of elements in $A$ such that
(iii) $x_{n+1}\subset x_{n}$ for all $n<\omega$ .

Then, there exist infinite subsets $y$ and $z$ of $\omega$ such that
(iv) $y\cap z=\emptyset$ ,

(v) both $A\cup\{y\}$ and $A\cup\{z\}$ have the finite intersection property,
(vi) $|y\cap(x_{n}-x_{n+1})|\leqq 1$ and $|z\cap(x_{n}-x_{n+1})|\leqq 1$ , for all $n<\omega$ .
FACT 2. Let $x$ be an infinite subset of $\omega$ in $M[G]$ . Then, there are $y$ and
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$z$ in $M$ such that
(i) $y\cap z=\emptyset$ ,
(ii) $y\cap x$ and $Z\cap X$ are infinite.

By Fact 1, it is easy to see that, in $M[G]$ , there exist $(2^{\omega})^{+}$ Ramsey ufs on $\omega^{1)}$

To show that AN $(\omega)$ does not hold in $M[G]$ , by Theorem 5, it suffices to show
that AN $(\omega_{2})$ does not hold in $M[G]$ . From now on, we work in $M[G]$ . Let
$\Gamma$ be the set of free, not ample, $\omega_{1}$-generated filters on $\omega$ . Since $2^{\omega_{1}}=\omega_{2}$ , it holds
that $|\Gamma|\leqq\omega_{2}$ . Let $\langle \mathfrak{G}_{\alpha}|\alpha<\omega_{2}\rangle$ be an enumeration of $\Gamma$ DePne the filter $\mathfrak{F}$ on
$\omega\cross\omega_{2}$ by

$x\in \mathfrak{F}$ if and only if $\{n<\omega;(n, \alpha)\in x\}\in \mathfrak{G}_{a}$ for all $\alpha<\omega_{2}$ .
It is easy to check that $\mathfrak{F}$ is free and not ample. To show that $\mathfrak{F}$ is weakly
ample, let $\mathfrak{U}$ be any free uf on $\omega$ . Set $\mathfrak{V}$ be the filter on $\omega$ which is generated
by $M\cap \mathfrak{U}$ . By Fact 2, $\mathfrak{V}$ is a free, not ample, $\omega_{1}$-generated filter. Let $\alpha<\omega_{2}$ be
such that $\mathfrak{V}=\mathfrak{G}_{\alpha}$ . Define the function $h$ from $\omega$ to $\omega\cross\omega_{2}$ by

$h(n)=(n, \alpha)$ for all $n<\omega$ .
Then, $h(\mathfrak{U})\supset h(\mathfrak{V})\supset \mathfrak{F}$.

II. Model $M_{2}$ . Let $Q$ be the notion of forcing in $M$ such that, in $M$,

$Q=\{q;q$ is a function &dom $(q)$ is a countable subset of $\omega_{1}\cross\omega_{3}$

&rang $(q)\subset\{0,1\}\}$ .
Let $H$ be an M-generic filter on $Q$ . Then, $M_{2}=M[H]$ satisfies (5.2). To show
this, since it is clear that $M[H]\models CH+2^{\omega_{1}}=\omega_{3}$ , it suffices to show that

(5.3) $M[H]\models AN(\omega_{2})$ .

First, we shall state Lemma 9 which is used later. Let $I$ be the ideal { $x\subset\omega$ ;
$|x|<\omega\}$ on $\omega$, and $B$ the quotient algebra $P(\omega)/I$ .

LEMMA 9. Assume CH. Let $C$ be the algebra of regular open sets in
{$q\in Q$ ; dom $(q)\subset\omega_{1}\cross\{0\}$ }. Then, the completjOn of $B$ is isomorphic to $C$.

PROOF. It suffices to show that there exist $X$ and $Y$ which satisfy

(5.4) $X$ is a dense subset of $B$ ,

(5.5) $Y$ is a dense subset of {$q\in Q$ ; dom $(q)\subset\omega_{1}\cross\{0\}$ },

(5.6) $X$ and $Y$ are order isomorphic.

Let $\langle\langle x_{s}|s\in S_{a+1}\rangle|\alpha<\omega_{1}\rangle$ be an $\omega_{1}$-sequence which satisfies $(i)\sim(iv)$ in Lemma 4.
Set

1) Kunen [2; p. 397] remarked that, in $M[G]$ , there are Ramsey ufs on $\omega$ .
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$X=\{x_{s}/I;\exists\alpha<\omega_{1}(s\in S_{\alpha+1})\}$ ,

$Y=\{q\in Q;\exists\alpha<\omega_{1}(dom(q)=(\omega\alpha+\omega)\cross\{0\})\}$ .
Then, it is easy to see that $X$ and $Y$ satisfy $(5.4)\sim(5.6)$ . $\perp$

Henceforth, $\omega_{\alpha}$ denotes the $\alpha$-th infinite cardinal in $M$. Since $M$ and $M[H]$

have the same cardinals, $\omega_{\alpha}$ is the $\alpha$-th infinite cardinal in $M[H]$ . To show
(5.3), let $\mathfrak{F}$ be any free, not ample filter on $\omega_{2}$ in $M[H]$ . Set $\mathfrak{G}=\{\omega_{2}-x$ ;
$x\subset\omega_{2}$ & $|x|\leqq\omega$} $\cap \mathfrak{F}$. Then, we have that, in $M[H],$ $\mathfrak{G}$ is a free, not ample
filter with $|\mathfrak{G}|=\omega_{2}$ . Since $|\mathfrak{G}|=\omega_{2}$ , we can choose $\beta<\omega_{3}$ such that $\mathfrak{G}\in M[H$

$\cap$ {$q\in Q$ ; dom $(q)\subset\omega_{1}\cross\beta$ }]. Set

$Q_{\beta}=$ {$q\in Q$ ; dom $(q)\subset\omega_{1}\cross\beta$ } ,

$\overline{Q}=$ {$q\in Q$ ; dom $(q)\subset\omega_{1}X\{\beta\}$ } ,

$H_{\beta}=H\cap Q_{\beta}$ ,

$\overline{H}=H\cap\overline{Q}$ ,

$N=M[H_{\beta}]$ .
Then, it hold that $\overline{H}$ is an N-generic filter on $\overline{Q}$ and that $M[H]$ is a generic
extension of $N[\overline{H}]$ . To show that $\mathfrak{F}$ is not weakly ample in $M[H]$ , since $Q$ is
$\sigma$-closed, it suffices to prove the following Lemma 10.

LEMMA 10. In $N[\overline{H}]$ , there exists a free $uf\mathfrak{U}$ on $\omega$ such that, for any
$f;\omegaarrow\omega_{2},$ $f(\mathfrak{U})\not\supset \mathfrak{G}$ .

PROOF. Since $N\models CH$ , by Lemma 9, we identify $\overline{H}$ with some N-generic set
on $B(=P^{N}(\omega)/I)$ . Define $\mathfrak{U}$ by, in $N[\overline{H}]$ ,

$\mathfrak{U}=\{x\subset\omega;x/I\in\overline{H}\}$ .
It is easy to see that $\mathfrak{U}$ is a free uf on $\omega$ in $N[\overline{H}]$ . We claim that $\mathfrak{U}$ is as
required. Let $f$ be any function from $\omega$ to $\omega_{2}$ in $N[\overline{H}]$ . Then, $f$ is in $M$.
Define $D$ by, in $N$,

$D=\{x/I\in B;x/I>0 \ \exists y\in \mathfrak{G}(y\cap f’x=\emptyset)\}$ .

Since $\mathfrak{G}$ is free and not ample in $N$, it holds that, in $N,$ $D$ is a dense subset of
$B$ . So, there exists some $x/I$ in $\overline{H}\cap D$ . Then, $x$ is in $\mathfrak{U}$ and $y\cap f’x$ is finite,
for some $y\in \mathfrak{G}$ . Thus, $\omega_{2}-f’x$ is in $\mathfrak{G}-f(\mathfrak{U})$ . $\perp$

REMARK 1. Let $M’$ be a countable transitive model of $ZFC+MA+2^{\omega}$

$=\omega_{2}+2^{\omega_{2}}=\omega_{3}$ , and let $Q’$ be the notion of forcing in $M’$ which is defined by,
in $M’$ ,

$Q’=$ {$q;q$ is a function &dom $(q)\subset\omega_{4}$ & $|q|\leqq\omega_{1}$ &rang $(q)\subset\{0,1\}$ }.

Let $H’$ be an M’-generic filter on $Q’$ . Then, by a similar argument in II, it
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holds that
$M’[H’]\models 2^{\omega}=\omega_{2}+2^{\omega_{2}}=\omega_{4}+AN(\omega_{S})$ .

So, $ZFC+2^{\omega}>\omega_{1}+2^{c}>c^{+}+\forall\kappa<2^{c}AN(\kappa)$ is consistent.

6. Proof of Theorem 6 (a).

To show Theorem 6 (a), similarly to the proofs of Theorems 5 and 6 (b),

it suffices to show that there exists a generic model $N$ such that

(6.1) $N\models CH+2^{\omega_{1}}=\omega_{3}+\neg AN(\omega_{2})$ .
By Theorem 4, if

(6.2) $N\models CH+2^{\omega_{1}}=\omega_{3}+there$ is an $\omega_{2}$-scale on $\omega_{1}$ ,

then $N$ satisfies (6.1). Throughout this section, $M$ denotes an arbitrary but
fixed countable transitive model of $ZFC+CH+2^{\omega_{1}}=\omega_{3}$ . We shall construct a
generic extension $N$ of $M$ satisfying (6.2). Our method is so called countable
support iterated forcing. We assume that the reader is familiar with this
iterated forcing (see [3; Chapter 8, Section 7]). From now on, we work in $M$

till after Corollary 2 except Lemma 11.
DEFINITION. $S$ denotes the set of all functions from a countable ordinal to

$\omega_{1}$ .
DEFINITION. For any complete Boolean algebra $B$ , define $Q=Q(B)\in V^{B}$ by

dom $(Q)=\{(\check{s}, J)^{B}$ ; $s\in S\ J\in V^{B}$ & $\Vert J$ is a set of functions on $\omega_{1}$

with $|J|\leqq\omega\Vert=1$},

$Q(x)=1$ for all $x\in dom(Q)$ .
And, we regard $Q$ as the notion of forcing in $V^{B}$ whose order is defined by,

for any $(\vee s, J)^{B},$ $(t\vee, K)^{B}\in dom(Q)$,

$\Vert(s\vee, J)^{B}\leqq(t\vee, K)^{B}\Vert$

$=\Vert_{S\supset f}^{\vee^{\vee}}$ &J\supset K&\forall a\in dom $(\check{s}-t\vee)\forall f\in K(f(\alpha)<s\vee(\alpha))\Vert$ .
LEMMA 11. Supp0se that, in $M,$ $B$ is an $\omega-\ stnbutive,$ $\omega_{2}$-saturated, complete

Boolean algebra. Let $G$ be an M-genenc filter on $B,$ $Q=i_{G}(Q(B)^{M})$ and $H$ an
$M[G]$-genenc filter on Q. Set $h=U\{s;\exists J((s, J)\in H)\}$ . Then,

(a) in $M[G]$ ,
(i) $Q=S\cross$ { $J;J$ is a set of functions on $\omega_{1}$ with $|J|\leqq\omega$},
(ii) $Q$ is $\sigma$-closed and has the $\omega_{2}$-chain condition,

(b) in $M[G][H]$ ,
(i) $h$ is a function on $\omega_{1}$ ,
(ii) $f\prec h$ for any function $f$ on $\omega_{1}$ in $M[G]$ .
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PROOF. This is well-known. $\perp$

Define the sequence $\langle R_{\alpha}|\alpha\leqq\omega_{2}\rangle$ of partially ordered sets by the following
induction on $\alpha(\leqq\omega_{2})$ .

For each $\alpha\leqq\omega_{2}$ , set

$B_{a}=the$ algebra of regular open sets in $R_{a}$ .

Case 1. $\alpha=0$ .
$R_{0}=\{\emptyset(=1)\}$ .

Case 2. $\alpha=\gamma+1$ for some $\gamma$ .
Set $Q_{\gamma}=Q(B_{\gamma})(\in V^{B}\gamma)$ . For any $p=\langle p_{\xi}|\xi<\alpha\rangle$ ,

$p\in R_{\alpha}$ if and only if $Pt\gamma\in R_{\gamma}$ &p(\gamma )\in dom $(Q_{\gamma})$ .
Define the order $\leqq$ on $R_{\alpha}$ by, for any $p,$ $q\in R_{a}$ ,

$p\leqq q$ if and only if $p\uparrow\gamma\leqq q[\gamma$ &p $[\gamma|\vdash p(\gamma)\leqq q(\gamma)$ .

(For any $p,$ $q\in R_{\alpha}$ , whenever $P\leqq q$ and $q\leqq p$ , we identify $P$ and $q.$)

Define the function $e$ from $R_{\gamma}$ to $R_{\alpha}$ by, for any $p\in R_{\gamma}$,

$e(p)r\gamma=p$ ,
$e(P)(\gamma)=(\emptyset\vee, \emptyset^{\vee})^{B}r$ .

And, for convention, we regard $R_{\gamma}$ as the subset $e’’R_{\gamma}$ of $R_{\alpha}$ .
Case 3. $\alpha$ is limit.
For any $p=\langle p_{\xi}|\xi<a\rangle$ ,

$p\in R_{a}$ if and only if $\forall\xi<\alpha(p[\xi\in R_{\xi})$ and $\{\xi<\alpha;\Vert p(\xi)<1(=(\emptyset, \emptyset))\Vert>0\}$

is at most countable.

Define the order $\leqq$ on $R_{a}$ by, for any $p,$ $q\in R_{\alpha}$ ,

$p\leqq q$ if and only if $\forall\xi<a(p\uparrow\xi\leqq q(\xi)$ .

In the same way in Case 2, for each $\xi<\alpha$, we regard $R_{\xi}$ as the subset of $R_{\alpha}$ .
REMARK 2. In Case 3, if cof $(\alpha)>\omega$, then $R_{\alpha}$ coincides with the direct limit

of $\langle R_{\xi}|\xi<\alpha\rangle$ .
The following Lemma 12 can be proved by the induction on $\alpha(\leqq\omega_{2})$ using

standard arguments (see [3; Lemma 7.2 (p. 282) and Lemma 7.10 (p. 286)]). So,
we omit the proof.

LEMMA 12. For any $a\leqq\omega_{2}$ ,
(a) $|R_{a}|\leqq\omega_{3}$ ,
(b) $R_{\alpha}$ is $\sigma$-closed,
(c) $R_{\alpha}$ has the $\omega_{2}$-chain con&tion.
Set $R=R_{\omega_{2}}$ .
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COROLLARY 2.
(a) $|R|=\omega_{3}$ .
(b) $R$ is a-closed.
(c) $R$ has the $\omega_{2}$-chain condition.
PROOF. This follows immediately from Lemma 12. $\perp$

Let $G$ be an M-generic filter on $R$ . Set $N=M[G]$ . For each $\alpha<\omega_{2}^{M}$, set

$G_{\alpha}=G\cap R_{\alpha}$ ,

$M_{a}=M[G_{\alpha}]$ .
Define $\langle h_{a}|a<\omega_{2}^{M}\rangle\in N$ by, for each $\alpha<\omega_{2}^{M}$ ,

$h_{\alpha}=\cup\{s;\exists p\in G\exists J((\check{s}, J)^{B}a=p(\alpha))\}$ .
Then, by Corollary 2, the following $(6.3)\sim(6.6)$ hold.

(6.3) $P^{N}(\omega)=P^{M}(\omega)$ .
(6.4) $N$ and $M$ have the same cardinals.

(6.5) $2^{\omega_{1}}=\omega_{3}$ holds in $N$ .
(6.6) For any function $f$ on $\omega_{1}$ in $N$, there is an $\alpha<\omega_{2}^{M}$ such that $f\in M_{\alpha}$ .

Now, we shall show (6.2). Let $f$ be any function on $\omega_{1}$ in $N$. By (6.6),

there is an $\alpha<\omega_{2}^{M}$ such that $f\in M_{\alpha}$ . By Lemma 11, since $H=\{(s, i_{G}(J))$ ;
$\exists p\in G((\S, J)^{B_{a}}=p(\alpha))\}$ is an $M[G_{\alpha}]$-generic filter on $i_{G_{\alpha}}(Q_{\alpha})$ , it holds that

$M[G_{\alpha}][H]\models f\prec h_{\alpha}$ ’

Thus, in $N,$ $\langle h_{a}|\alpha<\omega_{2}\rangle$ is an $\omega_{2}$-scale on $\omega_{1}$ .
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