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1. Introduction.

Let $f=(f_{0}, f_{1}, \cdots , f_{n})(n\geqq 1)$ be a transcendental system in $|z|<\infty$ . That
is to say, $f_{0},$ $f_{1},$ $\cdots$ , $f_{n}$ are entire functions without common zero and the char-
acteristic function of $f$ defined by H. Cartan ([3]):

$T(r, f)= \frac{1}{2\pi}\int_{0}^{2\pi}U(re^{i\theta})d\theta-U(0)$ ,

where
$U(re^{i\theta})= \max_{0\leq j\leqq n}$ log $|f_{j}(re^{i\theta})|$ ,

satisfies the condition

$\lim_{rarrow\infty}\frac{T(r,f)}{\log r}=\infty$ .

Let $X$ be a set of linear combinations $(\not\equiv 0)$ of $f_{0},$ $f_{1},$ $\cdots$ , $f_{n}$ with coefficients
in $C$ in general position; that is, for any $n+1$ elements

$a_{0j}f_{0}+a_{1j}f_{1}+\cdots+a_{nj}f_{n}$ $(]^{=1}, \cdots n+1$ )

in $X,$ $n+1$ vectors $(a_{0j}, a_{1j}, \cdots , a_{nj})$ are linearly independent.
In this paper, we shall give some necessary or sufficient conditions for $f$ to

satisfy

(1) $T(r, f)\sim T(2r, f)$ ,

where “ $A(r)\sim B(r)$ means $\lim_{rarrow\infty}A(r)/B(r)=1$ , and discuss the relations between

the Nevanlinna deficiency of $F$ in $X$ and the asymptotic behaviour of $f$ satisfy-
ing (1).

We use the standard notation of the Nevanlinna theory (see [5]).

2. Cases of meromorphic functions; some lemmas and problems.

In this section, we shall pick up important results concerning transcendental
meromorphic functions $g$ in $|z|<\infty$ which satisfy
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(2) $T(r, g)\sim T(2r, g)$ ,

give some lemmas used in this paper and state some problems which will be
settled in this paper.
[I] If

$T(r, g)=O((\log r)^{2})$ $(rarrow\infty)$ ,
then,

$T(r, g)\sim N(r, a, b)$ ,

where $N(r, a, b)= \max\{N(r, a), N(r, b)\}(a\neq b\in\overline{C})$ ([11]).

We can prove this by using the following well-known
LEMMA 1. Let $h(z)$ be an entire function of genus $0$ , then

log $M(r, h) \leqq r\int_{0}^{\infty}\frac{n(t)}{t(t+r)}dt+O(\log r)=r\int_{0}^{\infty}\frac{N(t)}{(t+r)^{2}}dt+O(\log r)$

$<N(r)+r \int_{r}^{\infty}\frac{n(t)}{t^{2}}dt+O(\log r)=r\int_{r}^{\infty}\frac{N(t)}{t^{2}}dt+O(\log r)$ ,

where $n(t)=n(t, 1/h)-n(O, 1/h)$ and $N(r)= \int_{0}^{r}n(t)/tdt$ (see [3], p. $47-p$ . $48$).

The essential part of the proof of [I] is the fact that, for any $a\in\overline{C}$ ,

(3) $r \int_{r}^{\infty}\frac{n(t,a)}{t^{2}}dt=o(T(r, g))$ $(rarrow\infty)$ .

This is because

$r \int_{r}^{\infty}\frac{n(t,a)}{t^{2}}dt=O(\log r)$ $(rarrow\infty)$ .

From this point of view, G. Valiron ([11]) gave the following
[II] When the order of $g$ is zero, if $T(r, g)$ satisPes (3) for every $a\in\overline{C}$ ,
then,

$T(r, g)\sim N(r, a, b)$ .
He generalized this result to algebroid functions and gave some interesting

results in this direction (see [12]).

PROBLEM 1. What functions satisfy (3) for every $a\in\overline{C}$ ?
On the other hand, Y. Kubota ([8]) showed that

[III] Suppose that $g$ is of order zero and satisPes (2) and further that there
exists $a$ in $\overline{C}$ such that $\delta(a, g)>0$ . Then,

$T(r, g)\sim N(r, b)$ $(b\neq a)$ .
Recently, W. K. Hayman ([7], Theorem 6) has proved that

[IV] Suppose that $g$ is entire. If $g$ satisfies (2), then $g$ is of order and so
genus zero and for every $a\in C$
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(4) $n(r, a)=o(N(r, a))$ $(rarrow\infty)$ .
Conversely, if $g$ is of genus zero and there exists a value $a\in C$ satisfying (4),

then $g$ satisPes (2).

We note that $N(r, a)$ satisfying (4) is of order zero by the method used in
the proof of Theorem 6 ([7]) and so $g$ must be of order zero if $g$ is of genus
zero (see Remark 1 in \S 3).

In the proof of this theorem, we find the fact that a meromorphic function
$g$ satisfying (2) is of order zero. This shows that, in [III], the condition that
$g$ is of order zero is unnecessary. But some parts of the proof of [IV] are not
$applicat)le$ to meromorphic functions.

PROBLEM 2. Is it possible to generalize [IV] to meromorphic functions or
further to systemsp

Next, J. M. Anderson ([1]) stated that
[V] If $g$ satisfies (2), then, for each distinct $a,$

$b\in\overline{C}$

$T(r, g)\sim N(r, a, b)$ .
And he says that for a proof, see [11], th\’eor\‘eme II; that is, [II] in this section.
But we cannot find any direct proof of [V] in [11]. It is necessary to clarify
the relation between (2) and (3).

PROBLEM 3. What relations are there between (2) and (3)?

Concerning the asymptotic values, J. M. Anderson and J. Clunie ([2]) proved
that
[VI] If

$T(r, g)=O((\log r)^{2})$ $(rarrow\infty)$

and if $\delta(\infty, g)>0$, then

$\lim_{rarrow\infty,z\not\in\text{\’{e}}\sim}\inf_{set}\frac{\log|g(z)|}{T(|z|,g)}\geqq\delta(\infty, g)$ .

In [9], we proved that
[VII] Suppose that $g$ satisfies (2) and is of order zero. If $\delta(a, f)>0$, then $a$ is
an asymptotic value of $g$ .

To this, Hayman ([7]) proved that, as is cited above, if $g$ satisfies (2), then
$g$ is of order zero and improved [VII]. That is to say,
[VIll] Suppose that $g$ satisfies (2). If $\delta(a, g)>0$ , then $a$ is an asymptotic value
of $g$ ([7], Corollary 2).

J. M. Anderson ([1]) improved this result as follows.
[IX] Suppose that $g$ satisfies (2) and $\delta(\infty, g)>0$ . Then, for a slim set $S$

$\lim_{z\not\in s}\inf_{\infty rarrow}\frac{\log|g(z)|}{T(|z|,g)}\geqq\delta(\infty, g)$ ,
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where a countable set of circles in the plane is said to form a slim set if the
sum of radii of those circles intersecting the annulus $2^{k}\leqq|z|\leqq 2^{k+1}$ is $o(2^{k})$ as
$karrow\infty$ .

It is known ([1]) that if $S$ is a slim set, then there is a receding path $\Gamma$

from $0$ to $\infty$ lying eventually outside $S$ such that

length of $\Gamma$ in $|z|\leqq R=R(1+o(1))$ $(Rarrow\infty)$ .

To prove [IX], he prepared the following
LEMMA 2. Let $h$ be an entire function for which

log $M(r, h)\sim\log M(2r, h)$ .
Then,

log $|h(z)|\sim\log M(r, h)$

as $z=re^{t\theta}arrow\infty$ outside a slim set.
PROBLEM 4. Is it possible to generalize [IX] to systems?

3. Systems $f$ satisfying (1).

Let $f$ and $X$ be as in \S 1. In this section, we discuss the systems $f$ satisfy-
ing (1) and give solutions of Problems 1, 2 and 3.

THEOREM 1. If $f$ satisfies (1), then the order of $f$ is zero and so the integral

(5) $\int_{1}^{\infty}\frac{T(t,f)}{t^{2}}dt$

converges. Further it holds

(6) $T(r, f) \sim r\int_{r}^{\infty}\frac{T(t,f)}{t^{2}}dt$ .

Conversely, if the integral (5) converges and (6) holds, then $f$ satisfies (1).

PROOF. Suppose that $f$ satisfies (1). Put

(7) $V(r)= \int_{1}^{r}\frac{T(t,f)}{t}dt$ ,

then it is easily seen that

(8) $V(r)\sim V(2r)$ .
From (7),

$T(r, f)$ log $2 \leqq\int_{r}^{2r}\frac{T(t,f)}{t}dt=V(2r)-V(r)$

and so by (8)

(9) $T(r, f)=o(V(r))$ $(rarrow\infty)$ .
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We apply the method used by Hayman ([7], p. 130) to our case. Let $\epsilon$ be any
positive number. Then by (9)

$T(r, f)<\epsilon V(r)$ $(r\geqq R_{0}(\epsilon))$ ,

so that

$\log\frac{V(r_{2})}{V(r_{1})}=\int_{r_{1}}^{r_{2}}\frac{T(t,f)dt}{V(t)t}<\epsilon\log\frac{r_{2}}{r_{1}}$ $(r_{2}>r_{1}\geqq R_{0})$ .

That is, we have
$V(r_{2})<V(r_{1})(r_{2}/r_{1})^{\epsilon}$ ,

which shows that the order of $V(r)$ is zero. As the order of $T(r, f)$ is equal
to that of $V(r)$ , we obtain that the order of $f$ is zero. From this fact, we know
that the integral (5) converges. Using that $T(r, f)$ is non-decreasing, we have

(10) $T(r, f) \leqq r\int_{r}^{\infty}\frac{T(t,f)}{t^{2}}dt=r\int_{r}^{2r}\frac{T(t,f)}{t^{2}}dt+r\int_{2r}^{\infty}\frac{T(t,f)}{t^{2}}dt$

$\leqq T(2r, f)/2+r\int_{r}^{\infty}\frac{T(2t,f)}{t^{2}}dt/2$ .

Now, $f$ satisfying (1), we have

$r \int_{r}^{\infty}\frac{T(2t,f)}{t^{2}}dt\sim r\int_{r}^{\infty}\frac{T(t,f)}{t^{2}}dt$ ,

so that we obtain (6) from (10).

Conversely, suppose that the integral (5) converges and that (6) is satisfied.
As $T(r, f)$ is non-decreasing, we have

(11) $r \int_{r}^{\infty}\frac{T(t,f)}{t^{2}}dt=r\int_{r}^{2r}\frac{T(t,f)}{t^{2}}dt+r\int_{2r}^{\infty}\frac{T(t,f)}{t^{2}}dt$

$\geqq T(r, f)/2+r\int_{r}^{\infty}\frac{T(2t,f)}{t^{2}}dt/2$

so that we obtain (1), since we have

$T(2r, f) \sim r\int_{r}^{\infty}\frac{T(2t,f)}{t^{2}}dt$

from (6).

THEOREM 2. If $f$ satisfies (1), then the order of $f$ is zero and so the in-
tegral (5) converges and for any $F_{1},$ $\cdots$ , $F_{n+1}$ in $X$,

$T(r, f) \sim N(r, F_{1}, \cdots F_{n+1})\sim r\int_{r}^{\infty}\frac{N(t,F_{1}}{t^{2}}$
, $F_{n+1}$ )

$dt$ .

Conversely, if the integral (5) converges and if there exist $F_{1},$ $\cdots$ , $F_{n+1}$ in $X$ such
that
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(12) $N(r, F_{1}, \cdots , F_{n+1})\sim r\int_{r}^{\infty}\frac{N(t,F_{1}}{t^{2}}$
, $F_{n+1}$ )

$dt$ ,

then $f$ satisfies (1). Here,

$N(r, F_{1}, \cdots , F_{n+1})=\max_{1\leqq j\leq n+1}N(r, 0, F_{j})$ .
PROOF. Suppose first that $f$ satisfies (1). Then, by Theorem 1, the order

of $f$ is zero, so that we may suppose without loss of generality that $f_{0},$ $f_{1},$ $\cdots$ ,
$f_{n}$ are all of order zero. From this, we obtain that any $F$ in $X$ is of order
zero. Now, for any $n+1$ elements $F_{1},$ $\cdots$ , $F_{n+1}$ in $X$,

(13) $T(r, f)= \frac{1}{2\pi}\int_{0}^{2r}\max_{1\xi j\leq n+1}\log|F_{j}(re^{i\theta})|d\theta+O(1)$ .

(see [4], p. 8). Applying Lemma 1 to $F_{j}$ in place of $h$ and using $n_{j}(r)$ and
$N_{j}(r)$ instead of $n(r)$ and $N(r)$ respectively, we have

log $M(r, F_{j}) \leqq N_{j}(r)+r\int_{r}^{\infty}\frac{n_{j}(t)}{t^{2}}dt+O(\log r)$

$=r \int_{r}^{\infty}\frac{N_{j}(t)}{t^{2}}dt+O(\log r)$ ,

so that, by (13), we obtain

(14) $T(r, f) \leqq\max_{1\leq j\leqq n+1}\log M(r, F_{j})+O(1)$

$\leqq r\int_{r}^{\infty}\frac{N(t,F_{1}}{t^{2}}$
, $F_{n+1}$ )

$dt+O(\log r)$

$<r \int_{r}^{\infty}\frac{T(t,f)}{t^{2}}dt+O(\log r)$

since for any $F$ in $X$

(15) $N(r, 0, F)<T(r, f)+O(1)$ .
Therefore, by Theorem 1, we obtain

$T(r, f) \sim r\int_{r}^{\infty}\frac{N(t,F_{1}}{t^{2}}$
, $F_{n+1}$ )

$dt \sim r\int_{r}^{\infty}\frac{T(t,f)}{t^{2}}dt$ .

Further, using the following inequalities obtained from (14) as in (10)

$T(r, f) \leqq N(2r, F_{1}, F_{n+1})/2+r\int_{r}^{\infty}\frac{N(2t,F_{1}}{t^{2}}$‘
$F_{n+1}$ )

$dt/2+O(\log r)$

$\leqq T(2r, f)/2+r\int_{r}^{\infty}\frac{T(2t,f)}{t^{2}}dt/2+O(\log r)$ ,
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we have
$T(r, f)\sim N(r, F_{1}, \cdots , F_{n+1})$ .

Conversely, we suppose that the integral (5) converges and that there exist
$F_{1},$ $\cdots$ , $F_{n+1}$ in $X$ which satisfy (12). Then, for any $F$ in $X$,

$\int_{1}^{\infty}\frac{N(t,0,F)}{t^{2}}dt<\infty$

by (15), so that for $F_{1},$ $\cdots$ , $F_{n+1}$ , the integral

$\int_{1}^{\infty}\frac{N(t,F_{1},\cdots,F_{n+1})}{t^{2}}dt$

converges. APplying Theorem 1 to $N(r, F_{1}, \cdots , F_{n+1})$ instead of $T(r, f)$ , we have

$N(r, F_{1}, \cdots , F_{n+1})\sim N(2r, F_{1}, \cdots , F_{n+1})$

by (12), so that $N(r, F_{1}, \cdots , F_{n+1})$ and so $N(r, 0, F_{1}),$ $\cdots$ , $N(r, 0, F_{n+1})$ are of order
zero. Let $\Pi_{j}$ be the canonical product of the zeros $(\neq 0)$ of $F_{j}$ , then $\Pi_{j}$ has
order and so genus zero $(j=1, \cdots , n+1)$ . Put

$F_{j}=\Pi_{j}\cdot A_{j}\cdot z^{a_{j}}$ $(j=1, \cdots n+1)$

where $d_{j}$ is the multiplicity of zero of $F_{j}$ at the origin, then $A_{f}$ is entire without
zero. Let

$g_{j}=F_{j}/A_{1}$ $(j=1, \cdots n+1)$ ,

then $g_{1},$
$\cdots$ , $g_{n+1}$ are entire functions and have no common zero, and put

$g=(g_{1}, \cdots g_{n+1})$ ,

then $g$ is a system and
$T(r, f)=T(r, g)$ ,

where $\tilde{f}=(F_{1}, \cdots , F_{n+1})$ (see [4], p. 8). Further, as

$|T(r, f)-T(r, f)|<0(1)$

([4], p. 9), the integral

$\int_{1}^{\infty}\frac{T(r,g)}{t^{2}}dt$

converges. As

$T(r, g_{j}/g_{1})<T(r, g)+O(1)$ $(j=2, \cdots n+1)$

([4], p. 10), the integral

$\int_{1}^{\infty}\frac{T(t,g_{j}/g_{1})}{t^{2}}dt$
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converges. This shows that $A_{j}/A_{1}$ is constant because it is entire without zero
and $\Pi_{j}/\Pi_{1}$ is of order zero. Therefore, the order of $g$ is zero, and so that of
$f$ is zero. Supposing that $f_{0},$ $f_{1},$ $\cdots$ , $f_{n}$ are of order zero as in the former half
of this proof, we can obtain (14) and using (15), we have

$N(r, F_{1}, F_{n+1})-O(1)<T(r, f)<r \int_{r}^{\infty}\frac{N(t,F_{1}}{t^{2}}$
, $F_{n+1}$ )

$dt+O(\log r)$ ,

so that by (12)

$T(r, f) \sim N(r, F_{1}, \cdots , F_{n+1})\sim r\int_{r}^{\infty}\frac{N(t,F_{1}}{t^{2}}$
, $F_{n+1}$ )

$dt$ .
Therefore, we obtain

$T(r, f) \sim r\int_{r}^{\infty}\frac{T(t,f)}{t^{2}}dt$

and by Theorem 1,
$T(r, f)\sim T(2r, f)$ .

COROLLARY 1. Supp0se that $g$ is transcendental meromorphic in $|z_{1}^{1}<\infty$ .
If $g$ satisfies (2), then the order of $g$ is zero (and so the integral

(16) $\int_{1}^{\infty}\frac{T(t,g)}{t^{2}}dt$

converges) and for any two values $a,$
$b\in\overline{C}$ ,

$T(r, g) \sim N(r, a, b)\sim r\int_{r}^{\infty}\frac{N(t,a,b)}{t^{2}}dt$ .

Conversely, if the integral (16) converges and if, for some two values $a,$
$b\in\overline{C}$ ,

(17) $N(r, a, b) \sim r\int_{r}^{\infty}\frac{N(t,a,b)}{t^{2}}dt$ ,

then $g$ satisfies (2).

PROOF. Let $f_{0}$ and $f_{1}$ be two entire functions without common zero for
which

$g=f_{0}/f_{1}$ , order of $f_{j}\leqq order$ of $g$ $(j=0_{2}1)$

and put $f=(f_{0}, f_{1})$ , then
$T(r, g)=T(r, f)$

([4], p. 9). Further, let

$X=\{f_{0}-\alpha f_{1} ; \alpha\in C\}\cup\{f_{1}\equiv 0\cdot f_{0}+1\cdot f_{1}\}$ ,

then the elements in $X$ are $\not\equiv 0$ and in general position. And, it holds

$N(r, \alpha, g)=N(r, 0, f_{0}-\alpha f_{1})$ $(\alpha\in C)$ ,

$N(r, g)=N(r, 0, f_{1})$ .
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By these facts we have this corollary directly by Theorem 2.
REMARK 1. 1) In the proof of the sufficiency of Theorem 6 ([7]), Hayman

uses that $f(z)$ and $f(z)-a$ have the same genus ([7], p. 131). However, let

$f(z)= \prod_{n=2}^{\infty}(1+\frac{z}{n(\log n)^{2}})$ ,

then the genus of $f(z)$ is zero but for $a\neq 0$ , the genus of $f(z)-a$ is one (see

[3], p. 34). In addition, his proof is very complicated. Here, we shall give
another proof of [IV] applying Corollary 1.

Proof of [IV]. As $g$ is entire now, we take $b=\infty$ in Corollary 1. First,
we note that under the condition

$\int_{1}^{\infty}\frac{T(t,g)}{t^{2}}dt<\infty$ ,

(4) is equivalent to

(18) $N(r, a) \sim r\int_{r}^{\infty}\frac{N(t,a)}{t^{2}}dt$ .

This is because, (18) is equivalent to

(19) $N(r, a)\sim N(2r, a)$

as in Theorem 1, and (19) is equivalent to (4) from the following inequalities:

$n(r, a)$ log $2 \leqq\int_{r}^{2r}\frac{n(t,a)}{t}dt=N(2r, a)-N(r, a)\leqq n(2r, a)$ log 2.

Now, suppose that $g$ satisfies (2). Then, $g$ has order and so genus zero
and for any $a\in C,$ (4) is satisfied by Corollary 1 and the above note. Conversely,
suppose that $g$ is of genus zero and for some $a\in C,$ (4) is satisfied. As $g$ has
genus zero, it is of order 1 of minimal type at most ([6], p. 29) and as $N(r, a)$

is of order zero since (4) is equivalent to (19), putting

$g(z)-a=z^{d}\Pi(z)A(z)$ ,

where $\Pi(z)$ is the canonical product of the zeros $(\neq 0)$ of $g(z)-a$ and $d$ is the
multiplicity of zero of $g(z)-a$ at the origin, then $A(z)$ is entire without zero
and so $A(z)$ must be a constant. This shows that $g(z)-a$ and so $g(z)$ has order
zero, so that the integral

$\int_{1}^{\infty}\frac{T(t,g)}{t^{2}}dt$

converges. Therefore, (4) deduces (18) and so we have (2) by Corollary 1.
2) This shows that Theorem 2 and Corollary 1 are solutions to Problem 2.
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According to Valiron ([11], [12]), we give the following
DEFINITION 1. When the integral (5) converges, we say that $f$ has V-

regular growth if and only if for any $F$ in $X$

(20) $r \int_{r}^{\infty}\frac{n(t,0,F)}{t^{2}}dt=o(T(r, f))$ $(rarrow\infty)$ .

THEOREM 3. If $f$ satisfies (1), then $f$ has V-regular growth. Conversely, if
there exist $F_{1},$ $\cdots$ , $F_{n+1}$ in $X$ for which (20) holds under the condition that the
integral (5) converges, then $f$ satisfies (1).

PROOF. Suppose first that $f$ satisfies (1). To begin with, we prove that
for any $F$ in $X$

$n(r, 0, F)=o(T(r, f))$ $(rarrow\infty)$ .
Indeed, for any positive $k$ ,

$n(r, 0, F)k( \log 2)\leqq\int_{r}^{2^{k}r}\frac{n(t,0,F)}{t}dt\leqq N(2^{k}r, 0, F)\leqq T(2^{k}r, f)+O(1)$ ,

so that we have

$\lim_{\tauarrow}\sup_{\infty}\frac{n(r,0,F)}{T(r,f)}\leqq\lim_{rarrow}\sup_{\infty}\frac{T(2^{k}r,f)l}{T(r,f)k(\log 2)}=\frac{l}{k(\log 2)}$

which tends to zero as $karrow\infty$ . Therefore, we obtain

$r \int_{r}^{\infty}\frac{n(t,0,F)}{t^{2}}dt=o(r\int_{r}^{\infty}\frac{T(t,f)}{t^{2}}dr)=o(T(r, f))$ $(rarrow\infty)$

by Theorem 1.
Conversely, suppose that the integral (5) converges and for $F_{1},$ $\cdots$ , $F_{n+1}$ in $X$

$r \int_{r}^{\infty}\frac{n(t,0,F_{j})}{t^{2}}dt=o(T(r, f))$

As

$(rarrow\infty, j=1, \cdots n+1)$ .

$r \int_{r}^{\infty}\frac{N(t,F_{1},\cdots,F_{n+1})-N(r,F_{1},\cdots,F_{n+1})}{t^{2}}dt$

$\leqq r\int_{r}^{\infty}\frac{\max_{1\leq j\leq n+1}\{N(t,0,F_{j})-N(r,0,F_{j})\}}{t^{2}}dt$

$\leqq\sum_{j=1}^{n+1}r\int_{r}^{\infty}\frac{N(t,0,F_{j})-N(r,0,F_{j})}{t^{z}}dt=\sum_{j=1}^{n+1}r\int_{r}^{\infty}\frac{n(t,0,F_{j})}{t^{2}}dt$

$=o(T(r, f))$ $(rarrow\infty)$ ,

we have by using (12)
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$T(r, f) \leqq r\int_{r}^{\infty}\frac{N(t,F_{1}}{t^{2}}$
, $F_{n+1}$)

$dt+O(\log r)$

$=N(r, F_{1}, \cdots F_{n+1})+r\int_{r}^{\infty}\frac{N(t,F_{1},\cdots,F_{n+1})-N(r,F_{1},\cdots,F_{n+1})}{t^{2}}dt$

+0(1og $r$) $=N(r, F_{1}, \cdots , F_{n+1})+o(T(r, f))$ $(rarrow\infty)$ ,

so that we obtain

$T(r, f) \sim N(r, F_{1}, \cdots , F_{n+1})\sim r\int_{r}^{\infty}\frac{N(t,F_{1}}{t^{2}}$‘
$F_{n+1}$ )

$dt$ .

This shows that $f$ satisfies (1) by Theorem 2.
REMARK 2. Applying this result to the case of meromorphic functions as

in Corollary 1, we obtain solutions of Problems 1 and 3.

4. Asymptotic points of $f$ satisfying (1).

Let $f$ and $X$ be as in \S 1. We recall the following definition of asymptotic
points of $f$ at $\infty$ .

DEFINITION 2. We say that $\alpha=\alpha_{0}$ : $\alpha_{1}$ : $\ldots$ : $\alpha_{n}$ belongs to $A(f, \infty)$ if and
only if there exists a curve $\Gamma:z=z(t)(0\leqq t<1)$ in $|z|<\infty$ satisfying the follow-
ing conditions:

i) $\lim_{tarrow 1}z(t)=\infty$ ,

ii) $\lim_{tarrow 1}\Vert\alpha f(z(t))\Vert=0$ ,

where

$\Vert\alpha f(z)\Vert=|(\alpha, f(z))|/|\alpha||f(z)|,$ $( \alpha, f(z))=\sum_{j=0}^{n}\alpha_{j}f_{j}(z)$ ,

$| \alpha|=(\sum_{j=0}^{n}|\alpha_{j}|^{2})^{1/2},$ $|f(z)|=( \sum_{j=0}^{n}|f_{j}(z)|^{2})^{1/2}$ ([10]).

It is easily seen that the concept of asymptotic points for systems in this
definition is a natural generalization of “asymptotic values” for meromorphic
functions.

Suppose that $f$ satisfies (1). Then, the order of $f$ is zero by Theorem 1
and we may suppose without loss of generality that $f_{0},$ $\cdots$ , $f_{n}$ are all of order
zero. In this situation, as a generalization of [IX], we have

THEOREM 4. If there exist $n$ elements

$F_{j}=\alpha_{0j}f_{0}+$ $+\alpha_{nj}f_{n}$

in $X$ such that
$\delta(\alpha_{j})>0$ $(j=1, \cdots n)$ ,
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where $\alpha_{j}=\alpha_{0j}$ : $\ldots$ : $\alpha_{nj}$ and

$\delta(\alpha_{j})=1-\lim_{\tauarrow}\sup_{\infty}\frac{N(r,0,F_{f^{\text{m}}}}{T(r,f)}$ ,

then it holds that
(i) for any $F_{0}$ in $X-\{F_{1}, \cdots , F_{n}\}$ ,

$T(r, f)\sim N(r, 0, F_{0})\sim\log M(r, F_{0})$ ;

(ii) $\lim_{zarrow\infty,z\not\in S}\inf\frac{-\log||\alpha_{f}f(z)\Vert}{T(|z|,f)}\geqq\delta(\alpha_{j})$ $(j=1, \cdots n)$ ,

where $S$ is a slim set.
PROOF. (i) As the order of any element of $X$ is zero, by Lemma 1 and

Theorem 1 we have for $j=1,$ $\cdots$ , $n$

log $M(r, F_{j}) \leqq r\int_{r}^{\infty}\frac{N(t,0,F_{j})}{t^{2}}dt+O(\log r)$

$=(1-\delta(\alpha_{j})+o(1))T(r, f)<T(r, f)$ $(r\geqq r_{0})$ .
For $F_{0}\in X-\{F_{1}, \cdots , F_{n}\}$ ,

$N(r. 0, F_{0})-O(1) \leqq T(r, f)=\frac{1}{2\pi}\int_{0}^{2\pi}\max_{0\leqq j\leqq n}$ log $|F_{j}(re^{i\theta})|d\theta+O(1)$

$\leqq\max_{0\leq j\leqq n}$ log $M(r, F_{j})+O(1)$

$=\log M(r, F_{0})+O(1)$ $(r\geqq r_{0})$

$\leqq N(r, 0, F_{0})+r\int_{r}^{\infty}\frac{n(t,0,F_{0})}{t^{2}}dt+O(\log r)$ $(r\geqq r_{0})$

(by Lemma 1)

$=N(r, 0, F_{0})+o(T(r, f))$ $(rarrow\infty)$ (by Theorem 3) ,

which shows that (i) holds.
(ii) Since $f$ satisfies (1), we have

log $M(r, F_{0})\sim\log M(2r, F_{0})$

for $F_{0}\in X-\{F_{1}, \cdots , F_{n}\}$ from (i), so that by Lemma 2

log $|F_{0}(z)|\sim\log M(r, F_{0})\sim T(r, f)$

as $z=re^{i\theta}arrow\infty$ outside a slim set $S$ . Now,

$- \log\Vert\alpha_{j}f(z)\Vert=\log\frac{|\alpha_{j}||f(z)|}{|F_{j}(z)|}=\log|f(z)|-\log|F_{j}(z)|-O(1)$
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$\geqq\log|F_{0}(z)|-r\int_{r}^{\infty}\frac{N(t,0,F_{j})}{t^{2}}dt-O(\log r)$

$\geqq(1-0(1))T(r, f)-(1-\delta(\alpha_{j})+o(1))T(r, f)$

$=(\delta(\alpha_{j})-o(1))T(r, f)$

outside $S$ and $r=|z|\geqq r_{0}$ , so that we have

$\lim_{zarrow\infty,z\not\in S}\inf\frac{-\log||\alpha_{j}f(z)\Vert}{T(|z|,f)}\geqq\delta(\alpha_{j})$ .

REMARK 3. $\alpha_{j}\in A(f, \infty)(j=1, \cdots , n)$ .
DEFINITION 3. A countable set of circles in the plane is said to form an

E-set if the sum of radii of those circles in

$r(1-\beta(r))<|z|<r(1+\beta(r))$

is at most $Kr\beta(r)^{2},$ $K$ being constant, where $\beta(r)$ is any function decreasing to
zero as $rarrow\infty$ with $r\beta(r)>1$ (see [13], p. 64).

We note that if $E$ is an E-set, there is a receding path $\Gamma$ from zero to $\infty$

lying eventually outside $E$ and an increasing sequence $\{r_{n}\}$ to $\infty$ such that
$\{|z|=r_{n}\}\subset E^{c}(n=1, 2, )$ and that if $E_{1},$ $\cdots$ , $E_{m}$ are E-sets, then $E_{1}\cup\cdots\cup E_{m}$

is also an E-set.
LEMMA 3. Let $h$ be an entire function of order zero, then

log $|h(re^{i\theta})|=N(r)+ \eta r\int_{r}^{\infty}\frac{n(t)}{t^{2}}dt+O(\log r)$

outside an E-set, where $n(r),$ $N(r)$ are as in Lemma 1 and

$-K’\beta(r)^{-1}<\eta<1$ ($K’$ : positive constant)

(see [13], p. 64).

THEOREM 5. Suppose that $f$ satisfies (1). If there exists an element

$F_{0}=\alpha_{0}f_{0}+\alpha_{1}f_{1}+$ $+\alpha_{n}f_{n}$

in $X$ such that
$\delta(\alpha)>0$ $(\alpha=\alpha_{0} : \alpha_{1} : : \alpha_{n})$ ,

then

$\lim_{z\infty,z\not\in\vec{E}}\inf_{\sim set}\frac{-\log\Vert\alpha f(z)\Vert}{T(|z|,f)}\geqq\delta(\alpha)$ .

PROOF. We may suppose without loss of generality that $f_{0},$ $f_{1},$ $\cdots$ , $f_{n}$ are
all of order zero since the order of $f$ is zero by Theorem 1. Now, using the
relation
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(21) $| \log|f(z)|-\max_{0\xi j\leqq n}\log|f_{j}(z)||\leqq n/2$ ,

we have from Lemma 1

(22) $- \log\Vert\alpha f(z)\Vert=\log\frac{|\alpha||f(z)|}{|F_{0}(z)|}$

$\geqq\max_{0\leqq j\leqq n}\log|f_{j}(re^{i\theta})|-r\int_{r}^{\infty}\frac{N(t,0,F_{0})}{t^{2}}dt-O(\log r)$ $(z=re^{i\theta})$ .

Further, let

$\beta(r)=(\max_{Ir.\infty)}\frac{\sum_{J=0}^{n}s\int_{s}^{\infty}\frac{n(t,0,f_{j})}{t^{2}}dt}{T(s,f)})^{1/2}$

,

then $\beta(r)$ tends to zero as $rarrow\infty$ by Theorem 3 and $r\beta(r)>1$ for sufficiently
large every $r$ since $f$ is of order zero and at least one of $f_{j}$ has infinitely many
zeros. (For example, apply Theorem 2 to $f_{0},$ $f_{1},$ $\cdots$ , $f_{n}.$ ) By making use of
this $\beta(r)$ , we apply Lemma 3 to $f_{j}(J^{=0},1, \cdots , n)$ . Then, we have for a positive
constant $K’’$

(23) $\log|f_{j}(re^{i\theta})|\geqq N_{j}(r)-\frac{K’}{\beta(r)}r\int_{r}^{\infty}\frac{n_{j}(t)}{t^{2}}dt-O(\log r)$

($z=re^{i\theta}\not\in E_{j}$ , an E-set), so that from (22) we have for $z=re^{i\theta}\not\in E_{0}\cup E_{1}\cup\cdots\cup E_{n}$

$\equiv E$

$- \log\Vert\alpha f(z)\Vert\geqq N(r, f_{0}, f_{n})-\frac{K’}{\beta(r)}\sum_{j=0}^{n}r\int_{r}^{\infty}\frac{n(t,0,f_{j})}{t^{2}}dt$

$-r \int_{r}^{\infty}\frac{N(t,0,F_{0})}{t^{2}}dt-O(\log r)$

and by Theorems 2 and 1

$\geqq(1-0(1))T(r, f)-K’\beta(r)T(r, f)-(1-\delta(\alpha)+o(1))T(r, f)$

$(rarrow\infty)$ . This shows that

$\lim_{zarrow\infty,z\not\in E}\inf\frac{-\log\Vert\alpha f(z)\Vert}{T(|z|,f)}\geqq\delta(\alpha)$ ,

where $E$ is an E-set. This completes the proof.
REMARK 4. $\alpha\in A(f, \infty)$ .
COROLLARY 2. SuPpose that $f$ satisfies (1) and ihat $f_{0},$ $f_{1},$ $\cdots$ , $f_{n}$ are all of

order zero. Then for any $F_{1},$ $\cdots$ , $F_{n+1}$ in $X$

log $( \sum_{f\approx 1}^{n+\iota}|F_{j}(z)|^{2})^{1/2}\sim T(r, f)$ ( $zarrow\infty,$ $z\not\in E$-set).

PROOF. To begin with, we prove
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(24) log $( \sum_{j=0}^{n}|f_{j}(z)|^{2})^{1/2}\sim T(r, f)$ ($z\not\in E$-set, $zarrow\infty$).

In fact, from (23) and from the inequality

log $|f_{j}(re^{i\theta})| \leqq N_{j}(r)+r\int_{r}^{\infty}\frac{n_{j}(t)}{t^{2}}dt+O(\log r)$ ,

we have for $z\not\in E$-set and a positive constant $\tilde{K}’$

$N(r, f_{0}, \cdots , f_{n})-K_{\beta(r)T(r}’,$ $f$ ) $-O( \log r)\leqq\max_{0\leq j\leq n}$ log $|f_{j}(re^{i\theta})|$

$\leqq N(r, f_{0}, \cdots f_{n})+\sum_{j=0}^{n}r\int_{r}^{\infty}\frac{n(t,0,f_{j})}{t^{2}}dt+O(\log r)$ ,

so that by Theorems 2 and 3, we obtain (24) by using (21). Here, using the
inequality

$| \log(\sum_{j=1}^{n+1}|F_{j}(z)|^{2})^{1/2}-\log(\sum_{j=0}^{n}|f_{j}(z)|^{2})^{1/2}|<0(1)$

for all $z$ , we have the result.
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