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1. Introduction.

Let f=(fo, f1, -+, fa)(n=1) be a transcendental system in |z|<oco. That
is to say, f., fi, -+, fn are entire functions without common zero and the char-
acteristic function of f defined by H. Cartan ([3]):

Tir, = | Utre') d0-UO),

where
U(ret’)= max log | f;(re*?)|,
0<jsn

satisfies the condition

i T
ro logr
Let X be a set of linear combinations (=£0) of f,, f,, ---, f» With coefficients

in C in general position; that is, for any n+1 elements
aojfo+01jf1+ +anjfn (j=1, -, n+1)

in X, n+1 vectors (a,j, aj, -, ar;) are linearly independent.
In this paper, we shall give some necessary or sufficient conditions for f to
satisfy

(1 T(r, /)~T@r, f),
where “A(r)~B(r)” means lim A(r)/B()=1, and discuss the relations between

the Nevanlinna deficiency of F in X and the asymptotic behaviour of f satisfy-
ing (1).

We use the standard notation of the Nevanlinna theory (see [5)).
2. Cases of meromorphic functions; some lemmas and problems.

In this section, we shall pick up important results concerning transcendental
meromorphic functions g in |z|<oo which satisfy
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@) T(r, g)~T(r, g),

give some lemmas used in this paper and state some problems which will be
settled in this papér. ‘ ‘
g 1t
T(r, g=0(logr)®) (r— o),
then, _
T(r, g~N(r, a, b),

where N(r, a, b)=max {N(r, a), N(r, b)}(a#be C) [(I1]).
We can prove this by using the following well-known
LEMMA 1. Let h(z) be an entive function of genus 0, then

log M(r, h)éf&jt(%(;)r) dt+0(log r):rgj%

= N(1)

ro

dt+0O(log »)

= n(t)

vt

<N(r)+r S

di+0(log r):rg di+0(og7),

where n(®)=n(t, 1/h)—n(0, 1/h) and N¢)={"n(t)/t dt (see [3], p. 47-p.48).
The essential part of the proof of [I] is the fact that, for any a&C,
@ e =0, g) o).
This is because

rsm n(t, a)

Pt

dt=0(ogr) (r — o0).

From this point of view, G. Valiron gave the following
[II] When the order of g is zero, if T(r, g) satisfies (3) for every a=C,
then,
T(r, g@~N(r, a, b).

He generalized this result to algebroid functions and gave some interesting
results in this direction (see [12].

PROBLEM 1. What functions satisfy (3) for every a=C?

On the other hand, Y. Kubota showed that
[1II] Suppose that g is of order zero and satisfies (2) and further that there
exists ¢ in C such that d(a, g)>0. Then,

T(r, g)~N(r, b) (b+a).

Recently, W.K. Hayman (7], Theorem 6) has proved that

[IV] Suppose that g is entire. If g satisfies (2), then g is of order and so
genus zero and for every a=C
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4 n(r, a)=o(N(r, a)) (r— ).

Conversely, if g is of genus zero and there exists a value a<C satisfying (4),
then g satisfies (2).

We note that N(», a) satisfying (4) is of order zero by the method used in
the proof of Theorem 6 ([7]) and so g must be of order zero if g is of genus
zero (see Remark 1 in §3).

In the proof of this theorem, we find the fact that a meromorphic function
g satisfying (2) is of order zero. This shows that, in [III], the condition that
g is of order zero is unnecessary. But some parts of the proof of [IV] are not
applicable to meromorphic functions.

PROBLEM 2. Is it possible to generalize [IV] to meromorphic functions or
further to systems?

Next, J.M. Anderson ([1]) stated that
[V1 If g satisfies (2), then, for each distinct a, beC

T, gyi~N({, a, b).

And he says that for a proof, see théoréme II; that is, [II] in this section.

But we cannot find any direct proof of [V] in [11] It is necessary to clarify
the relation between (2) and (3).

PrROBLEM 3. What relations are there between (2) and (3)?

Concerning the asymptotic values, J. M. Anderson and J. Clunie ([2]) proved
that

[VI] If
T(r, g)=0((logr)*) (r— c0)

and if d(co, g)>0, then

o log|g(2)]
"B T, 8)

zge-set

In [9], we proved that
LVII] Suppose that g satisfies (2) and is of order zero. If d(a, f)>0, then a is
an asymptotic value of g.

To this, Hayman (7)) proved that, as is cited above, if g satisfies (2), then
g is of order zero and improved [VII]. That is to say,
[VIII] Suppose that g satisfies (2). If d(a, g)>0, then a is an asymptotic value
of g (7] [Corollary 2).

J.M. Anderson ([1]) improved this result as follows.
[IX] Suppose that g satisfies (2) and d(co, g)>0. Then, for a slim set S

Z0(co, g).

... log|g(2)]
lm Inf 21 )

z2&8

=0(c0, g),
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where a countable set of circles in the plane is said to form a slim set if the
sum of radii of those circles intersecting the annulus 2*=<|z|<2%*! is 0(2%) as
k—oo,

It is known ([TI]) that if S is a slim set, then there is a receding path I
from O to oo lying eventually outside S such that

length of I'in |z]| SR=R(1+0(1)) (R — 00).

To prove [IX], he prepared the following
LEMMA 2. Let h be an entire function for which

log M(r, h)~logM2r, h) .
Then,
log | h(z)| ~log M(r, h)

as z=re'’ — oo outside a slim set.
PROBLEM 4. Is it possible to generalize [IX] to systems?

3. Systems f satisfying (1).

Let f and X be as in §1. In this section, we discuss the systems f satisfy-
ing (1) and give solutions of Problems 1, 2 and 3.

THEOREM 1. [If f satisfies (1), then the order of f is zero and so the integral

=T@ [)
® R
converges. Further it holds

(6) T(r, f)NrS:Oﬂt—;z.—D— dt .

Conversely, if the integral (5) converges and (6) holds, then f satisfies (1).
PROOF. Suppose that f satisfies (1). Put

) vir={ T g,
then it is easily seen that

® V)~V (2r).
From (7),

T(r, f)log 2= Szrf 71(% £ dt=V2r)—V{&)

r

and so by (8)
9 T, [)=o0V(r)) (r— o).
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We apply the method used by Hayman ([7], p. 130) to our case. Let ¢ be any
positive number. Then by (9)

T(r, I<eV(r) (r=Re),

so that

Vo
Lz >R,).
V@ ; <e log . (ro>r1i=Ry)

log ;Erj; sz T@, f) dt

That is, we have
V(rs) <V(ry) (ra/r1)¢,

which shows that the order of V(r) is zero. As the order of T(r, f) is equal
to that of V(r), we obtain that the order of f is zero. From this fact, we know
that the integral (5) converges. Using that T'(r, f) is non-decreasing, we have

(10) T(r, f)<r S T@‘ e D g T(t f) dttr S T(tt H

<7Gr, prztr (T ayya

Now, f satisfying (1), we have
S o 0%
so that we obtain (6) from [(10).

Conversely, suppose that the integral (5) converges and that (6) is satisfied.
As T(r, f) is non-decreasing, we have

) [ TED gy [PTOD gy (P TET) gy

=T, f)/2+7 S——T(ZZ D 41/2

so that we obtain (1), since we have

< T(2t, 1)

T@r f)fvrgr R

from (6).
THEOREM 2. If f satisfies (1), then the order of [ is zero and so the in-
tegral (5) converges and for any Fy, -, Fniy in X,

s N(ty Flr ) F’n+1) dt

r £

T(r, f)~NGr, F, -, Fn+1>~r§

Conversely, if the integral (5) converges and if there exist Fy, -+, Fpiiin X such
that
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© N(t, Fy, =+, Fny1) dt

r 12

(12) N(r, Fy, -, Fn+1)N7’S

then f satisfies (1). Here,
N(?’, Fl: Ty Fn+1): max N(?’, 0: FJ) .
1sjsn+1

PROOF. Suppose first that f satisfies (1). Then, by the order
of f is zero, so that we may suppose without loss of generality that f,, f,, -+,
f» are all of order zero. From this, we obtain that any F in X is of order
zero. Now, for any n+1 elements Fy, -+, Frpyy in X,

13) TG, =" max log | Fy(ret®)|d0+0()

0 1sjsn+

(see [4], p. 8). Applying to F; in place of & and using n,r) and
Nj(r) instead of n(r) and N(r) respectively, we have

© n,(t)

log M(r, F)=Nyr)+r| """ dt-+0(og r)
:rSm Nt{ft) dt+0(log ),
so that, by we obtain
(14) T(r, f)= max logM(r, F;)+0(1)
1sjsn+l

 Fas) dt+0(log 7)

érsw N(t, Fl’

r 12

<rS:°L§’2th+O(log )

since for any F in X
(15) N(r, 0, F)<T(r, f)+01).
Therefore, by [Theorem 1, we obtain

< NG, Fy, -, Fa = T(t,
, ( - tz +1) dtNTST T(Zg f) dt.

T(r, f)NrS

Further, using the following inequalities obtained from as in [(10)
= NQ2t, Fy, -

r 2

T(r, )SNQ@r, Fi, -, Fn+1)/2+rg » Fas) 41191 0(10g 1)

© T(2t, f)

<T@, Ni2+r| =2 dt/2+000g 1),
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we have
T(r, f)""’N(r, Fi, -, Fry).

Conversely, we suppose that the integral (5) converges and that there exist
F,, -+, Fny, in X which satisfy (12). Then, for any F in X,
Sm N, 0, F)

1 12 dt<co
by so that for Fy, ---, Fyu4y, the integral

Sm N(t) Fl’ Tty Fn+1)
1 2

converges. Applying to N(r, Fy, -+, Fy4y) instead of T'(r, f), we have

dt

N(r, Fi, -+, Fas)~NQ@r, Fy, -+, Fpyy)

by (12), so that N(», Fy, +++, Fn4+1) and so N(r, 0, F,), ---, N(r, 0, F,,;) are of order
zero. Let II; be the canonical product of the zeros (#0) of F; then II; has
order and so genus zero (y=1, :--, n+1). Put

F]':HJ'.A]"Zdj (]:1: Tty 7l+1)

where d; is the multiplicity of zero of F; at the origin, then A; is entire without

zero. Let
gi=F;/A, (=1, ---, n+1),

then gy, *, gn+1 are entire functions and have no common zero, and put

g=(g1, ) gn+1) ’
then g is a system and

T, /)=T(, g),
where f=(F, -+, Fp.1) (see [4], p. 8). Further, as
| T, )—T(r, 7)|<O0Q)
(4], p. 9), the integral
S‘” T(r, g) dt

1 P
converges. As
T(r, g;/g)<T(r, ©+0Q1)  (j=2, -, n+1)
(4], p. 10), the integral
S“‘ T, gi/8) 4

1 rt
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converges. This shows that A;/ A, is constant because it is entire without zero
and II;/11, is of order zero. Therefore, the order of g is zero, and so that of
f is zero. Supposing that f,, fi, ---, f» are of order zero as in the former half
of this proof, we can obtain and using [15), we have

e N(t’ Fly T

" t*

> Fas) dt+0(log 7),

N, By, -, Fasd—O< T, f)<r|

so that by (12)

TG, NG, By o, Faor | A0 Tt Fand gy

Therefore, we obtain

TG, f)~rg':’ T(";’z D gy

and by [Theorem 1|,
T(r, /)~T2r, f).

COROLLARY 1. Suppose that g is transcendental meromorphic in |z|<oc.
If g satisfies (2), then the order of g is zero (and so the integral

=Tt g)

1o e a
converges) and for any two values a, beC,
T(}’, g)NN(T’, a, b)N}’Swﬁ(t’t,za’ b) dt .

Conversely, if the integral (16) converges and if, for some two values a, beC,

= N(t, a, b)
et P,

amn N, a, b)NrS

then g satisfies (2).
ProoF. Let f, and f; be two entire functions without common zero for

which
g=fo/f1, order of f;<order of g  (j=0, 1)

and pUt f:(f(); fl), then
T(r, &)=T(, f)
(4] p. 9). Further, let
X={fo—af:; acCt\I{f1=0-fo+1-f1},
then the elements in X are #0 and in general position. And, it holds

N(T, &, g):N(T, 0) fO_afl) ((XEC>,
N(r, g)=N(r, 0, f1).
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By these facts we have this corollary directly by
REMARK 1. 1) In the proof of the sufficiency of Theorem 6 (7)), Hayman
uses that f(z) and f(z)—a have the same genus ([7], p. 131). However, let

f@=T1(1+ n(lo; n)f)’

then the genus of f(z) is zero but for a¢+0, the genus of f(z)—a is one (see
[8], p. 34). In addition, his proof is very complicated. Here, we shall give
another proof of [IV] applying [Corollary 1|

Proof of [IV]. As g is entire now, we take b=co in First,
we note that under the condition

S“ﬂ%ﬂ dt<oo,
(4) is equivalent to
(18) NG, a)~r Sfi\[(—";;-“—)—dt .
This is because, is equivalent to
(19) N(r, a)~NQ2r, a)

as in [Theorem 1, and is equivalent to (4) from the following inequalities:

er n(t, a)

nr, a)log2§g L 4t=N@r, 0)—N(r, 9=n(r, ) log 2.

Now, suppose that g satisfies (2). Then, g has order and so genus zero
and for any a €C, (4) is satisfied by and the above note. Conversely,
suppose that g is of genus zero and for some a=C, (4) is satisfied. As g has
genus zero, it is of order 1 of minimal type at most ([6], p. 29) and as N(», a)
is of order zero since (4) is equivalent to [19), putting

g(2)—a=z11(z)A(z),

where II(z) is the canonical product of the zeros (#0) of g(z)—a and d is the
multiplicity of zero of g(z)—a at the origin, then A(z) is entire without zero
and so A(z) must be a constant. This shows that g(z)—a and so g(z) has order
zero, so that the integral

~T(t, g)

Sl 2 £ at
converges. Therefore, (4) deduces and so we have (2) by [Corollary 1|

2) This shows that [Theorem 2 and [Corollary 1| are solutions to Problem 2.
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According to Valiron ([11], [12]), we give the following
DEFINITION 1. When the integral (5) converges, we say that f has V-
regular growth if and only if for any F in X

"SM n(t, 0, F)

T t?

(20) dt=o(T(, 1)) (r — 00).

THEOREM 3. If f satisfies (1), then [ has V-regular growth. Conversely, if
there exist Fy, -+, Fp4y in X for which (20) holds under the condition that the
integral (5) converges, then [ satisfies (1).

PROOF. Suppose first that f satisfies (1. To begin with, we prove that
for any F in X

n(r, 0, F)=o(T(r, f))  (r— o).
Indeed, for any positive k&,

*r n(t, 0, F)
¢

r

n(r, 0, F)k(log 2)§S dt=N@2*r, 0, F)<T 2, f)+0(),

so that we have

. nr, 0, F) _. T@w, £y 1 1
lim Sup =y =M SUP T g 2~ k(log 2)

which tends to zero as k£ — oo. Therefore, we obtain
rrM dt:o(rrj%z_f_)_ dt)———o(T(r, ) (r — o0)

T 12 r

by [Theorem 1.
Conversely, suppose that the integral (5) converges and for Fy, «--, Fp4;in X

PO ED dmoTr, 1) oo, =1, mtD).

r 12

As

rng(t’ Fl, Tty Fn+1)_N(r: Fl; Ty Fn+1) di

r t?

oo max {N(t’ 0; Fj)_N(rx 0) ‘FJ)}

érgrlgjsnﬂ tz dt
< glrgoo NG, 0, Fj):N(?’, 0, FJ) dt:nﬂ rgoo n(t, (3’ FJ) gt
j=1 Jr t =1 Jr t

=o(T(r, f)  (r—o0),

we have by using (12)
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*° N(t, Fl’ o

r =

T, fsr| > Frd) 34t 01og 7)

ooN(t’ Fl) ) Fn+1)—‘N(r, Fl) Ty Fn+1)

r 2

:N(T’, F], Sty Fn+1)—|~7’S *dt

+0(10g T):N<7', Fl) Tty Fn+1)+0(T(7’, f)) (7,_> OO) ’

so that we obtain

wN(t) Fl)'“)F'rH-l) dt

. 2

T(r) f)NN(T, Fl) T Fn+l)NrS

This shows that f satisfies (1) by
REMARK 2. Applying this result to the case of meromorphic functions as
in [Corollary I, we obtain solutions of Problems 1 and 3.

4. Asymptotic points of f satisfying (1).

Let f and X be as in §1. We recall the following definition of asymptotic
points of f at co.

DEFINITION 2. We say that a=a,: a;: ---: @, belongs to A(f, o) if and
only if there exists a curve I': z=z(t) (0=t<1) in |z| <co satisfying the follow-
ing conditions: |

i) ]tl_{III z(t)=c0,

i) limllaf(z()]=0,

where

laf@l=1(a, f@)1/1all /@], @ f@)=F ),

{aIZ(élajlz)”z, ]f(z)lz(é’|fj(z)]2)1/2 ([10D).

It is easily seen that the concept of asymptotic points for systems in this
definition is a natural generalization of “asymptotic values” for meromorphic
functions.

Suppose that f satisfies (1). Then, the order of f is zero by Theorem 1
and we may suppose without loss of generality that f,, ---, f, are all of order
zero. In this situation, as a generalization of [IX], we have

THEOREM 4. If there exist n elements

Fi=ao;f ot - +an;fn
in X such that

5(“])>O (]:1, Tty n) )
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where aj=ay;: -+ an; and

] N@, 0, F,,
5(aj):1—lmrlﬂ§°upr)’/
then it holds that
(i) for any Fy in X—{Fy, -, F.},

T(T’, f)’\-’N(T’, 0: FO)NIOgM(r’ FO);

(ii) lim inf- 08 llasf @]

R Tz, py 20 UEL e

where S is a slim set.
PROOF. (i) As the order of any element of X is zero, by and
Theorem 1l we have for j=1, -, n

log M(r, Fy)=r STM

=(1=dlay)+o(T(r, N<T(r, f) (rzry).
For FQEX— {Flr Tty Fn})

dt+O(log r)

N(r. 0, F)—OW)<T(r, f):717l—_—82zmax log | Fy(re'®)| d6+0(1)

0 0sjsn

=max logM(r, F;)+0(1)

0sjsn
=log M(r, F))+0O() (r=r,)

= n(t, 0, Fo)

=N, 0, F+r | 2225 de0log r) (rzr)

(by Lemma 1)
=N(r, 0, F)+o(T(r, )) (r—c0) (by ,

which shows that (i) holds.
(ii) Since f satisfies (1), we have

log M(r, Fy)~log M(2r, F,)
for F,e X—{F,, ---, F,} from (i), so that by
log | Fo(2)| ~log M(r, Fo)~T(r, f)

as z=re'? — oo outside a slim set S. Now,

e il @] . A —01
—logllozjf(z>l1-log—~—| Fi2)| log| f(z)| —log | Fi(z)| —O(1)
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* N(ty 27 F]) d
r t
=2(1—o()T(r, f)—A—d(ay)+o(I)NT(r, f)
=((a;)—o(I)T(r, f)

=log| Fi(z)| 7 | t—0(log 7)

outside S and r=|z|=r,, so that we have

T, 20

REMARK 3. a;€EA(f, ) (j=1, -, n). :
DEFINITION 3. A countable set of circles in the plane is said to form an
E-set if the sum of radii of those circles in

r(1—BM)<lz| <r(l+p(r)

is at most KrB(r)’, K being constant, where B(») is any function decreasing to
zero as r — oo with rB(»)>1 (see [13], p. 64).

We note that if E is an E-set, there is a receding path I" from zero to oo
lying eventually outside £ and an increasing sequence {r,} to oo such that
{lz|=r,}CE*(n=1, 2, ---) and that if E,, ---, E,, are E-sets, then E,\J.--UE,
is also an E-set.

LEMMA 3. Let h be an entive function of order zero, then
= n(t)

P

dt+0O(log r)

log | h(re'?)| :N(r)+77rS
outside an E-set, where n(r), N(r) are as in Lemma 1 and
—K'B(r)*<n<1  (K’: positive constant)

(see [13], p. 64).
THEOREM 5. Suppose that f satisfies (1). If there exists an element
Fo=aofotaifi+ - +anfa
in X such that
ola)>0 (a=ay: ay: -+ ay),

then
Y jlogjla f()!
R L T

ProOOF. We may suppose without loss of generality that f,, f,, -+, f. are
all of order zero since the order of f is zero by [Theorem 1. Now, using the
relation
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21 |log| f(2)| —max log|fi2)l|=n/2,
we have from
B L lallf@)]

jN—(t’%—E‘Q»dt—-O(log P (z=ret?).

(i0Y]
gorsr‘xjas)i log | f 5(re*”)| 7’5

Further, let

< é SSOO n(t,tg, fj) dt)l/z
=|max=>* ,
) [T, o) TG, f)

then B(r) tends to zero as » — oo by and rB(r)>1 for sufficiently
~ large every r since f is of order zero and at least one of f; has infinitely many
zeros. (For example, apply to fo, f1, -+, fa.) By making use of
this B(r), we apply Lemma Jto f; (=0, 1, -+, n). Then, we have for a positive
constant K”

K” g“’ n(t)
8 ") e

(z=re*? & E;, an E-set), so that from (22) we have for z=ret? € E,JE,\J---UE,
E

(23) log| f(re’®)| = N(r)—

dt—O(log r)

I

—loglaf@I=NG, fo, -, fr)— ‘éir) 15;) ’Sm n(z,t(z), ) g,

~ [P D) 4 0g0g )

r 12
and by Theorems 2 and 1
Z(1—o(NT(r, )—K"B)T(r, f)—(1—06la)+o(I)T(r, f)
(r — o0). This shows that

... —logllaf@)]
b Inf 02T, 7

z¢E

=i(a),

where E is an E-set. This completes the proof.
REMARK 4. a<A(f, o).

COROLLARY 2. Suppose that f satisfies (1) and that f,, f1, -+, [ are all of
order zero. Then for any Fy, -+, Fpyy in X

l0g (3 1K@~ T, ) (a0, 6 B-set).

PRrROOF. To begin with, we prove



(24)
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log (3 | f2) |2 ~T(r, f) (26 E-set, z — o).
Jj=0

In fact, from and from the inequality

= nt)

ro t?

loglfj(f’ew)léNj(rH—rS dt+0(log ),

we have for z& E-set and a positive constant K

NG, fo, -, fa)=K'B()T(r, f)—O(log r)= max log| f (re*’)|

éN(?’, fO) Y fn)+ érgmﬁ(—t&f])" dt+0(10g 7’) »

r *

so that by Theorems 2 and 3, we obtain (24) by using (21). Here, using the
inequality

llog (3] | Fy(2)|%)—log (331 £,(2)])# <OQ)

for all z, we have the result.
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